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Abstract. Mathematical logic and mechanical reasoning have 
turned out to be largely irrelevant to the practice of mathematics, 
and to our philosophical understanding of the nature of that 
practice. My aim is to understand how this can be. We will see 
that the problem is not merely that the logician formalizes. Nor 
even is it, as Poincaré argues, that logicians replace all 
distinctively mathematical steps of reasoning with strictly logical 
ones. Instead, as will be shown by way of a variety of examples, 
the problem lies in the way the symbolic language of 
mathematical logic has been read. 
 
 
What has mathematical logic to do with mathematical 
understanding?1 One would have thought quite a lot. 
Mathematics is a paradigm of rational activity, of rigorous 
reasoning; and rigorous reasoning is a central concern of 
mathematical logic. So, one would think, any adequate 
understanding of mathematical practice would essentially 
involve appeal to mathematical logic. One would think. 
And yet it is by now clear that mathematical logic, 
together with its formalized, mechanistic proofs in which 
every step conforms to a recognized rule of that logic, is 
of no mathematical interest. Such proofs do not advance 
mathematical understanding; they are not more rigorous 
than the informal proofs that mathematicians actually 
produce; and very often they are simply unintelligible.2 
Mathematical logic, it has turned out, is irrelevant to the 
practice of mathematics—and to our philosophical 
investigations into the nature of that practice. 3 Where 
mathematical logic has proved exceptionally fruitful is, of 
course, in computing. Indeed, according to Kriesel ([2], 
143-4), “the clear recognition of just how much 
reasoning—that is, as far as results are concerned, never 
mind the processes—can be mechanized is surely the most 
outstanding contribution of 20th century logic sub specie 
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1  It perhaps needs to be emphasized that my concern here is with 
mathematical understanding, not with mathematics as such. That 
mathematical logic, for example, model theory, has made useful 
contributions to the discipline of mathematics seems clear—though even 
here mathematical logic has contributed less to mathematics as a 
discipline than one might have anticipated it would.  
2 All these points are well documented in the literature. See, for example, 
[1, 2, 3, 4, 5], and [6].  
3 That “mathematical logic cannot provide the tools for an adequate 
analysis of mathematics and its development” is, according to Mancosu 
[7], 5, one of the three main tenets of the “maverick” tradition in the 
philosophy of mathematics. It is also a main theme in Grosholz [8]. 

aeternitatis.” I think that we should be very puzzled by 
this. Mathematical logic—which, as Burgess ([9], 9) 
points out, “was developed . . . as an extension of 
traditional logic mainly, if not solely, about proof 
procedures in mathematics”—provides the foundations for 
computer science, mechanical reasoning, but seems to be 
altogether irrelevant to mathematical reasoning. How can 
this be? 

For much of the twentieth century the received view 
was that mathematical logic and rigorous, mechanical 
reasoning are less relevant to mathematical practice than 
one might initially have expected because fully rigorous, 
formalized proofs are simply too long and tedious to be 
bothered with in mathematical practice. On this view, 
mathematicians in their practice take for granted myriad 
little steps of logic, focusing instead on the 
mathematically significant steps of a proof. Because in a 
formalization of a mathematician’s proof there are no 
jumps or gaps in the chain of reasoning, because every 
step conforms to a small number of antecedently specified 
rules of logic, what is mathematically interesting about a 
proof tends, so it is claimed, to get buried in the logical 
detail of a fully formalized proof.4 But this is not right. 
The relationship between a mathematician’s proof and a 
fully formalized proof is not in general that between a 
gappy and a gap-free proof. In fact, “the translation from 
informal to formal is by no means a mere matter of routine 
[as it would be were one only filling in missing steps of 
logic]. In most cases it requires considerable ingenuity, 
and has the feel of a fresh and separate mathematical 
problem in itself. In some cases the formalization is so 
elusive as to seem impossible” (Robinson [5], 54). 
Formalizing a mathematician’s proof is not so much a 
matter of formalizing that proof (by filling in all the steps) 
as it is giving a completely different proof, indeed, a 
different kind of proof. A mathematician’s proof is, for 
example, often explanatory; a formalized proof is not.5 
Mathematicians’ proofs are not sketches of formal proofs, 
essentially like them save for omitting some steps, but 
instead something quite different. 
                                                
4 For a logician’s account see, for example, Suppes [10], 128. Mac Lane 
[11], 377, gives a mathematician’s slant on the claim. 
5 As Robinson [5], 56, notes, “formalizing a proof has nothing 
whatsoever to do with its cognitive role as an explanation—indeed, it 
typically destroys all traces of the explanatory power of the informal 
proof”. 



Mathematical reasoning, the reasoning that 
mathematicians actually engage in, and logical reasoning 
as understood in mathematical logic, as essentially 
mechanical, are very different.6 Most obviously, 
mathematical reasoning is focused on mathematical ideas 
while logical reasoning takes account only of logical form. 
Whereas a fully rigorous proof, in the logician’s sense of 
rigor, is one each step of which conforms to some 
antecedently specified rule of pure logic and is thoroughly 
machine checkable, a rigorous proof in the 
mathematician’s sense of rigor is instead one that a 
mathematician can see to be compelling by focusing on 
the relevant mathematical ideas and their implications. 
The two notions of rigor are different and often they are 
incompatible insofar as the logician’s formalizations can 
undermine the rigor—in the mathematician’s sense of 
rigor—of a chain of reasoning. As Detlefsen explains: 
“we’re most certain to avoid gaps in reasoning when 
premises explain conclusions . . . The greater such 
explanatory transparency, the more confident we can be 
that unrecognized information has not been used to 
connect a conclusion to premises in ways that matter. To 
the extent, then, that formalization decreases explanatory 
transparency, it also decreases rigor” ([13], 19). 

And there are other differences between the two sorts 
of proof as well. For example, although the mathematical 
logician focuses on the logical consequences of given 
axioms or other starting points, actual mathematical 
practice is more correctly described as problem solving: 
one starts not with axioms but instead with a conjecture 
and working backwards one seeks the starting points that 
would enable one to prove that conjecture.7 Finished 
proofs are, furthermore, of interest to mathematicians not 
primarily because they establish the truth of their 
conclusions, which is and must be the primary focus of 
the mathematical logician, but because they are 
explanatory, or because they introduce proof techniques 
that can be brought to bear on other problems.8 Similarly, 
what is for the mathematical logician merely a means of 
introducing an abbreviation can, for the mathematician, 
constitute a very significant mathematical advance. 
Although in logic definitions merely abbreviate, in 
mathematics good definitions, definitions that are fruitful, 
interesting, and natural, can be exceptionally important, 
both in themselves, for the understanding they enable, and 
for what they equip one to prove. For example, it is, as 
Tappenden [15], 264, argues, “a mathematical question 
whether the Legendre symbol carves mathematical reality 

                                                
6 Again, this is a point that is often made in the literature. See, for 
example, Devlin [12], Rav [4], and Detlefsen [13]. 
7 Cellucci has long emphasized this point. See, for instance, [14]. See 
also Rav [4], 6: “the essence of mathematics resides in inventing 
methods, tools, strategies and concepts for solving problems”. 
8 That is why mathematicians so often reprove theorems. If all they cared 
about were the truth of theorems this would be inexplicable. 

at the joints”. Given that the answer to this mathematical 
question has proved to be an unequivocal “yes”, the 
Legendre symbol cannot be merely an abbreviation. It 
signifies something mathematically substantive, 
something of real and enduring mathematical interest. 

It is unquestionable that mathematical practice is very 
different from what the logician and computer scientist 
would lead one to expect. But to know this is not yet to 
know why it is. Interestingly, the problem is not merely 
that the logician formalizes. “A formal proof,” we will say 
following Harrison (2008, 1395), “is a proof written in a 
precise artificial language that admits only a fixed 
repertoire of stylized steps.” The logician’s formalized 
proofs clearly fit this characterization. But so do myriad 
proofs that anyone would deem properly mathematical. 
Consider, for example, this little proof of the theorem that 
the product of two sums of integer squares is itself a sum 
of integer squares. We begin by formulating the idea of a 
product of two sums of integer squares in the familiar 
symbolic language of arithmetic and algebra: 

(a2 + b2)(c2 + d2). 
Now we rewrite as licensed by the familiar axioms of 

elementary algebra, omitting obvious steps that could 
easily be included: 

a2c2 + a2d2 + b2c2 + b2d2 
a2c2 + b2d2 + a2d2 + b2c2 

a2c2 + 2acbd + b2d2 + a2d2 − 2adbc + b2c2 
(ac + bd)2 + (ad – bc)2. 

This last expression is a sum of two integer squares, which 
is what we were to show, and so we are done. Our proof 
is, or could be made to be, fully formal in Harrison’s 
sense: it is “written in a precise artificial language that 
admits only a fixed repertoire of stylized steps”. And yet it 
is clearly mathematical. It follows directly that being 
formal is compatible with being of mathematical 
significance. 

The symbolic language of arithmetic and algebra 
together with the familiar rules governing the use of its 
symbols is a paradigm of a formal language in Harrison’s 
sense; it is “a precise artificial language that admits only a 
fixed repertoire of stylized steps”. And proofs in this 
language are, or can easily be made to be, completely gap-
free, fully rigorous. But even so the symbolic language of 
elementary algebra with its rules of use is not destructive 
of mathematical understanding but instead an enormous 
boon to mathematical understanding. As Grabiner once 
remarked [16], 357, that language has been “the greatest 
instrument of discovery in the history of mathematics”—
of discovery. Why is it, then, that in the case of the 
symbolic language of elementary algebra, the 
formalization is transformative of mathematical practice, 
whereas in our case, the case of mathematical logic and 
machine reasoning, the formalization is utterly irrelevant 
to mathematical practice? What is the difference that is 



making the difference in the two cases if it is not the mere 
fact of formalization? 

The problem of mathematical logic is not merely that 
one formalizes in it. Perhaps, then, the problem is that, as 
Poincaré argues, the logician replaces distinctively 
mathematical reasoning with purely logical, that is, 
mechanical, reasoning. After all, in our example of 
products and sums of integer squares we were still 
working with mathematical ideas, with sums, products, 
and so on. So, perhaps the real problem with the logician’s 
formalization is not that it is a formalization, but that it is 
a strictly logical one. Perhaps, again as Poincaré argues, to 
reduce a step of reasoning that mathematicians can see to 
be valid to a series of little logical steps that anyone, or 
even a machine, can see to be valid is to destroy the 
mathematics; perhaps it is to replace mathematical 
knowledge—which constitutively involves one’s grasping 
mathematical ideas and having the ability to see what 
follows on the basis of those ideas—with merely logical 
knowledge. Certainly it is true that having the ability to 
manipulate symbols according to rules, which is what 
machines can do and what is needed to do mathematical 
logic, is not to be able to do mathematics. So maybe 
Poincaré is right: to formalize a proof, replace all its 
distinctively mathematical steps with strictly logical ones 
is to destroy it, at least as a piece of mathematics.9 

Poincaré’s thought is that mathematical reasoning and 
understanding are grounded in grasp of mathematical 
ideas. Because they are, to reduce those ideas, and 
reasoning and understanding to logic, which is not about 
anything in particular, is irretrievably to lose the 
mathematics. This is not clearly right. Consider, first, the 
case in which what the mathematician takes to be a 
distinctively mathematical mode of reasoning is shown by 
the logician to consist in fact in a series of little steps all 
of which are purely logical. To show that seems clearly to 
show that what the mathematician had taken to be a 
distinctively mathematical step of reasoning is at bottom 
purely logical, strictly deductive. This would seem, 
furthermore, to be an interesting mathematical result: 
what the mathematician had taken to be a non-logical and 
presumably ampliative step of reasoning has been 
revealed to be strictly logical and hence merely 
explicative. In sum, to discover that some step of 
reasoning that we had assumed was distinctively 
mathematical is after all strictly logical is to discover 
something important about mathematics. But if that is 
right then, in at least some cases, the reduction is not 
destructive of mathematics but instead a contribution to it. 

On the other hand, it does seem right to say, with 
Poincaré, that there is a crucial difference between the 
person who can only follow all the little logical steps and 
                                                
9 This, the mathematical logician is likely to respond, is merely a matter 
of psychology, and irrelevant to our philosophical understanding of what 
is going on in a piece of mathematical reasoning. See Goldfarb [17]. 

the person who can also discern the mathematical ideas at 
work in a proof. As Detlefsen explains: “even perfect 
logical mastery of a body of axioms would not, in his 
[Poincaré’s] view, represent genuine mathematical 
mastery of the mathematics thus axiomatized. Indeed it 
would not in itself be indicative of any appreciable degree 
of mathematical knowledge at all: knowledge of a body of 
mathematical propositions, plus mastery over their logical 
manipulation, does not amount to mathematical 
knowledge either of those propositions or of the 
propositions logically derived from them” ([18], 210). 
According to Poincaré, replacing all mathematical modes 
of inference with a series of purely logical little steps 
destroys the mathematical unity of the proof that is 
essential to any adequate understanding of it. But why, 
and how, does it do that? Again, if what we had thought 
was a distinctively mathematical mode of reasoning turns 
out to be reducible to a series of strictly logical steps then 
that is an important, and importantly mathematical, 
discovery. So the cases of concern must be ones in which, 
paradigmatically, steps that are mathematically motivated 
are made explicit in conditionals, so that the conclusion 
can now follow as a matter of pure logic.10 And now 
someone not in the know might well understand the step 
merely as a matter of logic: if A then B (which here 
formulates a mathematical rule), but A, therefore B. But is 
there any reason to think that the mathematician could not 
still see that what is crucial mathematically is that if A 
then B, that it is this mathematical rule that is licensing the 
move from A to B? If there remains a discernable 
difference between cases in which some mathematical 
rule is being followed and cases that merely involve some 
truth-function, either not-A or B, then there will remain a 
difference between what the mathematician can discern in 
the proof and what the non-mathematician will discern. 

Suppose, for example, that we took our little proof that 
the product of two sums of integer squares and made it 
strictly logical, that is, every step in conformity with a rule 
of logic. Where before we had drawn a mathematical 
inference, we now write down the relevant conditional and 
justify the step by modus ponens. Once we have done this 
for all the steps of the proof, it might well be much harder 
to discern the important steps of the proof, as well as its 
key ideas—to order the summands in a certain way and 
then add and subtract the same thing so as to be able to 
factor—but those steps and ideas would still be there to be 
discerned. The formalized proof would not in that case 
destroy the mathematics—though it also would no longer 
highlight it. But if that is right then Poincaré’s claim that 
replacing distinctively mathematical forms of reasoning 
with strictly logical ones destroys the mathematics cannot 
be quite right. The complete and utter lack of interest 
mathematicians show for formalized proofs strongly 
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suggests that, just as Poincaré charges, the mathematics is 
being lost in the formalization. But given that this loss is 
not a necessary result of formalizing in the language of 
logic, we have yet to understand what is really going on 
here, why the mathematical logician’s formalized, 
mechanical proofs are so completely irrelevant to 
mathematical practice. 

Mathematicians do not need to study logic and they do 
not use the signs of logic except here and there as 
abbreviations for everyday words: “the everyday use of 
logical symbols we see [in mathematical practice] today 
closely resembles an intermediate ‘syncopation’ stage in 
the development of existing mathematical notation, where 
the symbols were essentially used for their abbreviatory 
role alone” (Harrison [1], 1398). And so, it is sometimes 
claimed, the signs even of a mathematical language such 
as the symbolic language of elementary algebra similarly 
do nothing more than to provide abbreviations of words of 
natural language. But this is simply (and really rather 
obviously) not true: mathematical languages such as the 
symbolic language of algebra, as they are actually used, 
function in a fundamentally different way from the way 
natural languages function. In particular, one can reason in 
a mathematical language in a way that is simply 
impossible in natural language. Although one cannot, for 
instance divide the words ‘six hundred and seventy-three’ 
by the word ‘seventeen’, one can divide the Arabic 
numeral ‘673’ by the numeral ‘17’. In the latter case one 
works out the answer on paper, through a chain of paper-
and-pencil reasoning (or else one imagines oneself doing 
this). Even more obviously, although one cannot bisect the 
word ‘line’ one can bisect a Euclidean (drawn) line. 

But not all mathematical reasoning is a matter of 
scribbling in a specially devised system of written marks. 
Is the reasoning in other cases instead done in natural 
language? It is not, at least not in the way that it is done in 
a specially devised written mathematical language. Where 
there is no system of written marks within which to work, 
the reasoning is instead performed mentally, by reflecting 
on ideas in ways that can then be reported in natural 
language.11 The ancient proof that there is no largest 
prime is a familiar example of such a report of mental 
mathematics. Lacking any means of displaying what it is 
to be a prime number, or even what it is to be a product of 
numbers, ancient Greek mathematicians could nonetheless 
work mentally with the idea of a prime number, and with 
the idea of a product of a finite list of primes plus one, and 
could recognize that such a product of primes plus one 
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which one has a system of written marks within which to reason and the 
case in which one instead engages in purely mental reasoning, the results 
of which can be reported in natural language. 

must either be prime or have a prime divisor larger than 
any hitherto considered. And having determined this, they 
could report their reasoning in just the way Euclid in fact 
does in the Elements. Al-Khwarizmi, a ninth century 
Islamic algebraist, similarly can tell us in natural language 
how to find a particular root. What he cannot do is show 
us how to determine that root by performing a 
calculation.12 

Sometimes we can work out the solution to a 
mathematical problem by paper-and-pencil reasoning. In 
other cases, we instead must reflect on the relevant ideas 
in order to solve the problem by a chain of mental 
reasoning. It can also happen that a piece of mathematical 
reasoning that at first can only be reported in natural 
language can later have a counterpart displayed in a 
mathematical language. A very simple example is this 
from Euclid’s Elements, Proposition IX.21: if as many 
even numbers as you like are added together, the whole 
will be even. The crucial step in the reasoning, as reported 
by Euclid, is that since each of the numbers added 
together is even, each has, by the definition of even, a half 
part; thus it follows that the whole has a half part, and 
hence (by definition) is even. That is, we are simply to 
see, as it were with the mind’s eye, that if each summand 
has a half part then the sum does as well. And this is, 
admittedly, very easy to see; but it is not by logic alone, or 
any antecedently specified step of mathematical 
reasoning, that we see this. It is an intuitively obvious step 
of reasoning but nevertheless one that is not justified by 
any rule. The inference is only reported, and either one 
gets it or one does not. But a comparable step can be 
shown in the symbolic language of algebra, and in that 
case, the conclusion does follow by an antecedently 
specified rule. First, we display in the language what it is 
to be even, that is, the form that even numbers take in the 
language, namely, 2n, for natural number n. Now we 
display an arbitrarily long finite sum of such numbers: 2a 
+ 2b + 2c + . . . + 2n.13 Because there are explicitly 
formulated rules governing the use of such signs, we can 
apply a rule to transform the expression thus: 2(a + b + c 

                                                
12 al-Khwarizmi writes: “Roots and squares are equal to numbers: for 
instance, ‘one square, and ten roots of the same, amount to thirty-nine 
dirhems’; that is to say, what must be the square which, when increased 
by ten of its own roots, amounts to thirty-nine? The solution is this: you 
halve the number of roots, which in the present instance yields five. This 
you multiply by itself; the product is twenty-five. Add this to thirty-nine; 
the sum is sixty-four. Now take the root of this, which is eight, and 
subtract from it have the number of the roots, which is five; the 
remainder is three. This is the root of the square which you sought for; 
the square itself is nine” ([20], 229). The correctness of the implicit rule 
would have been demonstrated geometrically. 
13 It is worth noting in this context that our symbolic expression is 
arbitrary along two different dimensions. First, each of the letters ‘a’, 
‘b’, ‘c’, and so on stand in for some natural number not further specified. 
The letter ‘n’ is different insofar as it is also arbitrarily large. My thanks 
to Jean Paul Van Bendegem for making this explicit. 



+ . . .  + n). This is manifestly an even number; we have 
our proof. 

As this little example of the sum of even numbers 
shows, and Whitehead [21], 34, explicitly says, “by the 
aid of symbolism, we can make transitions in reasoning 
almost mechanically by the eye, which otherwise would 
call into play the higher faculties of the brain”. Once we 
have symbolized our problem we do not have to think 
about what follows from the fact that each number in the 
sum has a half part. We simply have to apply a rule that 
enables us to show that the sum is even. Of course, we do 
need to be able to see the mathematical ideas in the 
symbolism, for example, that the expression ‘2(a + b + c + 
. . . + n)’ designates an even number; but it is the 
symbolism, not the ideas, that enables us to operate as we 
do. “In mathematics, granted that we are giving any 
serious attention to mathematical ideas, the symbolism is 
invariably an immense simplification. It is not only of 
practical use, but is of great interest. For it represents an 
analysis of the ideas of the subject and an almost pictorial 
representation of their relations to each other” (Whitehead 
[21], 33). Again, when one is working in a written 
mathematical language such as the symbolic language of 
arithmetic and algebra one does not have to think about 
the relevant mathematical ideas in the way one does have 
to think about them in the absence of such a language. 
And that is just our problem: we have in mathematical 
logic as in, say, the symbolic language of elementary 
algebra, a “precise artificial language that admits only a 
fixed repertoire of stylized steps,” a formal language 
“designed so that there is a purely mechanical process by 
which the correctness of a proof in the language can be 
verified” (Harrison [1], 1395). But unlike the symbolic 
language of elementary algebra, the language of 
mathematical logic is of no mathematical interest or 
utility. Why? 

Although it might have been expected to, the language 
of mathematical logic and mechanical reasoning has not 
proved to be a mathematically tractable language, a 
language within which to reason in mathematics. 
Mathematicians working today do not display their 
reasoning in the formal language of mathematical logic 
but only report it.14 We need, then, to think about what is 
required of a language within which to display 
mathematical reasoning. The short answer, explicit 
already in Leibniz, is that the language must exhibit 
mathematical content in a mathematically tractable way, 
that is, in a form that enables reasoning in the guise of a 

                                                
14 Avigad [22] makes this point. It is also the basis for Azzouni’s [23] 
derivation-indicator account of mathematical proofs. Rav [4], 13, makes 
the point in an especially graphic way: “The argument-style of a paper in 
mathematics usually takes the following form: ‘ . . . from so and so it 
follows that . . . . , hence . . . .: as is well known, one sees that . . . ; 
consequently, on the basis of Fehlermeister’s Principal Theorem, taking 
into consideration α, β, γ, . . . , ω, one concludes . . . , as claimed’.” 

series of rule-governed manipulations of signs. It must be, 
as Frege also saw, at once a lingua characteristica and a 
calculus ratiocinator. There is, however, a hitch: it is 
possible to read one and the same notation either as 
formulating content in a mathematically tractable way or 
as merely recording information in a way enabling 
mechanical reasoning. And because one and the same 
notation can be read in either of these two very different 
ways, it is impossible to show what is needed in a 
mathematical language by appeal only to a system of 
signs. One must also take into account how expressions in 
the system are understood. Some examples will help to 
clarify this essential point. 

Consider, first, the familiar distinction between a 
mathematical and a mechanical proof, which we here 
apply to the first proposition of Euclid’s Elements: to 
draw an equilateral triangle on a given straight line. The 
diagram for both the mechanical and the mathematical 
proof is this: 

. 
But it is drawn with very different intentions in the two 
cases. Because, in a mechanical proof, the aim is to 
construct an actual, empirical triangle, one with, as far as 
possible, sides that are actually equal in length, one is well 
advised, in that case, to use a compass to draw the 
required circles and a straight-edge to draw the lines that 
are radii of the circles and form the sides of the triangle. 
One could then measure the lines to determine how 
closely they approximate lines equal in length. In a 
mathematical demonstration no such precautions are 
necessary because the drawn circles are not intended in 
this case to be instances approximating as far as possible 
the ideal of a mathematical circle. Instead they are drawn 
to formulate or display the content of the concept of a 
circle, what it is to be a circle, namely, a plane figure all 
points on the circumference of which are equidistant from 
a center.15 As formulating such content, the drawn circles 
license inferences: if one has two radii of one circle then 
one can infer that they are equal in length—whether or not 
they look equal in length in one’s drawing. What in the 
mechanical proof is treated as a means of constructing 
some particular triangle (with its particular spatial 
location, and particular size and orientation) is in the 
mathematical proof a way of solving a strictly 
mathematical and hence constitutively general problem, 
the problem of the construction of an equilateral 
triangle—not any equilateral triangle in particular—on a 
given straight line. As Shabel [25], 101, puts the point in a 

                                                
15 See my [24], Chapter 2. 



discussion of Kant on pure and empirical intuition in 
mathematical practice, “the mechanical demonstration is 
not distinguished from the mathematical demonstration by 
virtue of a distinction between an actually constructed 
figure and an imagined figure, but rather by the way in 
which we operate on and draw inferences from that 
actually constructed figure”. One and the same drawing is 
regarded in two systematically different ways in a 
mechanical and a mathematical proof. 

A second example is this. Suppose that, having not yet 
learned various simple sums (but knowing how to count), 
one wished to determine how many seven things and five 
things make when taken together. One might proceed by 
marking out seven strokes and then five more and 
counting how many that is. This is a mechanical reading 
of the display of seven and five strokes. One thinks of it as 
presenting two collections of things, namely, strokes that 
taken together make a collection of twelve things—as one 
discovers by counting the whole collection. The proof is 
mechanical insofar as one is actually putting things 
together in order to see empirically, by counting, what 
totality they make. That one is working with a system of 
written marks is irrelevant; one could have worked as 
easily with pebbles, or peaches, or puppies. (Well, maybe 
not as easily.) 

Now we regard the strokes differently, not merely 
mechanically but as signs of a Leibnizian language within 
which to formulate content and to reason. In this case we 
do not regard each stroke as standing in for a thing to be 
counted, or indeed as itself a thing to be counted. Instead 
we regard each stroke as expressing something like a 
Fregean sense, as contributing to the sense of a whole 
collection of signs that together, as one complex sign, 
designates a number, say, the number seven, or the 
number five. So regarded, the collection of seven strokes 
exhibits what it is to be the number seven, namely, a 
certain multiplicity. The collection of seven strokes is not 
in this case a collection of seven things; it is a single 
complex sign for one number, a sign that, by contrast with 
a simple sign such as the Arabic numeral ‘7’, displays 
what it is to be seven in a mathematically tractable way. 
Given the display of five and seven using the Leibnizian 
stroke language, one can progressively reconfigure the 
whole display, adding strokes from the sign for the 
number five to the strokes making up the sign for seven in 
such a way that one eventually achieves a complex sign 
for the number twelve. Much as in Euclid’s system one 
shows (mathematically) that an equilateral triangle can be 
constructed on a given straight line, so here one shows 
that (a sign for) the number twelve can be constructed 
from (signs for) the numbers seven and five. And the 
result in both cases is synthetic a priori insofar as what 
one has to begin with provides everything one needs in 
order to perform the required construction through a 
course of mathematical reasoning. In the mathematical 

demonstrations, the triangle, and the number twelve, are 
not contained already implicitly in one’s starting points, 
but the potential for achieving them is there in the starting 
points. They can be produced, which means that the result 
is synthetic rather than analytic. But they are not produced 
mechanically, that is, empirically, as in a mechanical 
proof. They are produced mathematically. The result is a 
priori. 

Notice further that in both the Euclidean diagram and 
the Leibnizian stroke language, the signs are taken to 
function in a very distinctive way. In the case of the 
Euclidean diagram, what are at first seen as two radii of a 
circle (required in order to determine that they are equal in 
length) are later seen as sides of a triangle. One and the 
same sign, namely, a drawn line, is in the context of one 
collection of signs a radius of a circle and in the context of 
another collection of signs a side of a triangle. We can 
take it either way. What we cannot do, of course, is take 
that same line as, say, an angle or the circumference of a 
circle. The drawn line expresses a sense that completely 
and perfectly delimits its possibilities for designating in 
this or that use in a diagram. Similarly, and even more 
simply, for the strokes: a stroke that I first see as a part of 
the sign for five, as contributing a sense to the complex 
sign designating five, I later see as part of the sign for, 
say, the number eight constructed out of the original seven 
strokes plus one more. There is nothing like this in the 
mechanical proofs. In mechanical proofs, the marks are 
simply material things that are constrained by the physics 
of the case. The expressive intentions of a thinker are 
irrelevant when one is proving mechanically. 

We have seen that in a mechanical proof one pictures or 
records something, for instance, a particular circle or how 
many in a collection. In a mathematical proof one instead 
formulates content, what it is to be, say, a circle or the 
number seven; and one does so in a way that enables 
reasoning in the system of signs. We can similarly read a 
complex sign of Arabic numeration in either way, either 
as recording how many (how many units, tens, hundreds, 
and so on), that is, mechanically, or as formulating the 
arithmetical or computational content of numbers. If one 
sees the numeral the former way then one will take it that 
a calculation in Arabic numeration is merely a mechanical 
expedient for arriving at a desired result, not in any 
essential way different from the sort of mechanical 
manipulations that can be made on Roman numerals.16 If 
one instead sees the Arabic numeral as expressing 
arithmetical content, one will think of the calculation as a 
bit of mathematical reasoning, as an episode of 
mathematical thought rather than as something 
mechanical, and hence as something quite different from 
the manipulations that can be made on Roman numerals.17 
                                                
16 See Schlimm and Neth [26] for such a view. 
17 I am of course assuming that the signs of Roman numeration are being 
read mechanically, and this is certainly the most natural way to read 



In the examples we have so far considered one has a 
system of written marks that can be conceived in either of 
two fundamentally different ways, either mechanically, as 
providing an instance or record of something that can then 
be operated on in some way to yield the desired result, or 
mathematically. And in the mathematical case, we have 
seen, one formulates the content of some mathematical 
notion—the content of the concept of a circle, say, or that 
of some particular number—and one does so in a way that 
enables reasoning in the system of signs. Now we need to 
consider how things stand with systems of signs of logic. 

Consider, first, Peirce’s system of alpha graphs. Shin 
[27] has shown that although we can take the primitives of 
the system directly to picture or record, we can also take 
them only to express senses independent of their 
involvement in a proposition, to contribute a sense to the 
whole thought expressed, which thought can then be 
variously analyzed.18 In Peirce’s system considered the 
first way, that is, mechanically, to enclose a propositional 
sign in parentheses just is to negate it; the concatenation 
of signs serves similarly as conjunction.19 The complex 
sign ‘((A)(B))’, then, is to be read as recording the fact 
that it is not the case that not-A and not-B. But we can 
also read this same complex sign as an expression of a 
Leibnizian language, as exhibiting a thought that can be 
variously regarded, for instance, as the disjunction of A 
and B, or as the conditional ‘if not-A then B’, or as the 
conditional ‘if not-B then A’. Much as a line in a 
Euclidean diagram is a radius or side of a triangle only 
relative to a way of regarding that diagram, so here on the 
Leibnizian reading, the collections of signs is a 
disjunction or conditional only relative to a way of 
regarding it. And of course just this same point can be 
applied to the standard notation of mathematical logic and 
as well to Frege’s Begriffsschrift notation. Expressions in 
all these various systems of notation can be read either as 
picturing some state of affairs, say, that if not-A then B, or 
as displaying logical content in a way that can be regarded 
in turn either as, say, a conditional with a negated 
antecedent or as a disjunction, depending on whether one 
takes the tilde (negation stroke) to attach to the content A 
or to function together with the horseshoe (conditional 
stroke) to designate disjunction. 

Read mechanically a notation such as that of 
mathematical logic or Frege’s Begriffsschrift records 
information, and the rules governing the manipulation of 
the signs enable one to show that other information is also 
contained therein. Manipulating the signs according to the 

                                                                             
them. But our Leibnizian stroke language suggests that it may be 
possible, if difficult, to read signs of that language likewise as the signs 
of a Leibnizian language. 
18 Shin does not put the point this Fregean way, but could have done. 
19 In Peirce’s system one encircles propositional signs rather than 
enclosing them in parentheses. The latter is, however, more convenient 
here and works in essentially the same way. 

rules can thus make explicit what is contained already 
implicitly. The deduction is merely explicative. Much as 
making seven strokes and then making five more is 
already to have twelve strokes, so that counting up the 
resultant number of strokes is a mechanical means of 
determining how many, so manipulating the signs of some 
premises expressed in the language of mathematical logic, 
as it is generally conceived, is a mechanical means of 
showing that certain information is contained already in 
one’s starting points. But, we now know, we can also read 
the notation differently, as a notation of what I have been 
calling a Leibnizian language. Furthermore, we know that 
in general, because the signs of a Leibnizian language 
only express senses independent of a context of use, those 
signs can be used to formulate the contents of concepts. 
Can the signs of a logical language, read as a Leibnizian 
language, similarly be used to formulate the contents of 
concepts and to do so in a way that enables reasoning in 
the system of signs? They can. 

In Euclidean diagrammatic reasoning, the content of the 
concept of, say, a circle is conceived diagrammatically, 
that is, as something that can be exhibited in a drawn 
circle. In Descartes’s analytic geometry, the content of 
that same concept is conceived instead arithmetically. It is 
given in the equation ‘x2 + y2 = r2’. We have further seen 
that although the content of the concept of an even 
number, or of an odd number, cannot be displayed in a 
Euclidean diagram, those contents can be displayed in a 
mathematically tractable way in the language of arithmetic 
and algebra, the notion of an even number as ‘2n’ and that 
of an odd number as ‘2n + 1’. 

Different mathematical languages can thus involve very 
different conceptions of what are in fact the same 
mathematical concepts, very different analyses of those 
concepts. What sort of analysis is needed, then, for the 
sort of reasoning from concepts that is characteristic of 
contemporary mathematical practice? Given that the 
mathematical practice we are concerned with is that of 
deductive reasoning from concepts, the answer is clear: a 
logical analysis. We need to be able to display the 
contents of concepts as they matter to inference. 

What we are after is a way to formulate the contents of 
mathematical concepts that enables deductive reasoning in 
the system of signs. And we know by now that to achieve 
this it is not enough to introduce various signs together 
with rules governing their use because any such system of 
signs can be read either as a Leibnizian language or 
merely mechanically. To exhibit the contents of concepts 
in a mathematically tractable way, we need to read the 
system of signs as a Leibnizian language, its primitive 
signs as only expressing senses independent of any 
context of use, because only so can a whole complex of 
signs serve to designate a single concept, only so can we 
display content at all. 



Think again of our simple stroke language or of the 
system of Arabic numeration. In both cases we can treat 
the primitive signs either as having their meaning or 
designation independent of any context of use or as having 
only a sense independent of a context of use. Taken in the 
former way, as having meaning (designation) independent 
of any context of use, the signs are signs of a mechanical 
language: a collection of five strokes is just that, a 
collection of five things, and an Arabic numeral such as 
‘376’ similarly denotes a collection, a collection of three 
hundreds and seven tens and six ones. A numeral such as 
‘3’ in the language so conceived invariably denotes some 
particular number, here the number three; its position 
serves only to indicate what is being so counted, whether 
ones or tens or hundreds or something larger. But we 
know that we can also read the language differently, the 
primitive signs of the language as only expressing senses 
independent of a context of use. In that case, the collection 
of five strokes is a complex sign that designates one thing 
(not five things), namely, the number five. And the Arabic 
numeral ’376’ similarly is a complex name of one 
number. The numeral ‘3’ does not in this case designate 
three (of something) no matter what the context; instead it 
contributes a sense to a whole that only as a whole 
functions as a name for something, namely, in our 
example, for the number three hundred and seventy-six. In 
just the same way, we can regard a definition of a 
mathematical concept in a written system of logical and 
mathematical signs either as recording necessary and 
sufficient conditions, the state of affairs that obtains if the 
concept applies, or as exhibiting the content of the 
concept as it matters to inference. 

In mathematical logic and computing, the definiens of a 
definition is understood to provide necessary and 
sufficient conditions for the application of the concept, 
and the definition as a whole is taken merely to introduce 
an abbreviation for those conditions. The definition has no 
philosophical or mathematical significance; it is a 
convenience. The defined concept is, in that case, reduced 
to, or replaced by, a set of conditions much as a number is 
reduced to, replaced by, a collection of things when it is 
represented mechanically by a series of strokes. But again, 
in actual mathematical practice, definitions—both those 
that stipulate a simple sign for some complex notion and 
those that provide a new and deeper analysis for some 
concept already in use—can constitute a significant 
mathematical advance, one that is just as important 
mathematically as a new proof. And the definition is 
mathematically important precisely because and insofar as 
it formulates mathematical content in a tractable way, in a 
way enabling new and better, more explanatory proofs. 
But in order to do that in a specially devised system of 
signs, the system of signs must be read as a Leibnizian 
language the primitive signs of which only express senses. 

In a definition in a Leibnizian language the defined 
concept is not reduced to something else but instead 
designated. Indeed, it is designated twice, once by a 
simple sign, the definiendum, and again by a complex 
sign, the definiens. The two signs have the same 
designation or meaning. But although they designate one 
and the same concept, the two signs express two very 
different Fregean senses. And one can just see that they do 
insofar as the one sign is simple while the other is 
complex. Because the definiens is a complex sign that is 
made up of a variety of primitive signs of the language, 
the transformation rules of the language can be applied to 
it in a way that is manifestly impossible in the case of the 
simple sign that is the definiendum. The simple sign, the 
definiendum, is unequivocally a name for the relevant 
concept. The complex sign, the definiens, is also a name 
for that concept but because it is complex it can enable 
one to reason in light of the content it displays and 
discover thereby new truths about the concept in question. 
But, of course, one can see all this to be going on only if 
one understands the system of signs as we have done here, 
not merely mechanically but as a Leibnizian system the 
primitive signs of which only express senses independent 
of any context of use. In a fully formalized proof in a 
Leibnizian language the mathematics is not destroyed but 
instead displayed, and although superficially each step is 
the same as any other, one and all steps of logic, the 
knowledgeable reader can nonetheless distinguish those 
steps that are mathematically important from those that 
are trivial, and can discern as well the key mathematical 
ideas of the proof. The language functions, in other words, 
in much the way the symbolic language of arithmetic and 
algebra does, to extend our mathematical knowledge. 

It has long been known that the reasoning 
mathematicians engage in is quite unlike reasoning as it is 
understood in mathematical logic and computer science. 
What has proved much harder to determine is why that is. 
The problem is not merely that the logician formalizes, 
either in the sense of producing proofs that are completely 
gap-free or in the sense of working in an artificial 
symbolic language the licensed moves of which are all 
specified in advance. Nor even is it, as Poincaré suggests, 
that logicians replace all distinctively mathematical steps 
of reasoning with strictly logical ones. We know that all 
these explanations fail because it is possible to find or 
develop examples of mathematical proofs in the formula 
language of arithmetic and algebra that exhibit some or all 
of the features that have been focused on and nevertheless 
retain their mathematical interest. The explanation for the 
irrelevance of mathematical logic to mathematics must, 
then, be something distinctive of that logic in particular. 
And so it is: the reason mathematical logic is irrelevant to 
mathematical practice is that its language is read 
mechanically. Because reasoning in mathematics is not 
merely mechanical, to formalize a mathematician’s proof 



in mathematical logic really does destroy it as a piece of 
mathematical reasoning—just as Poincaré thought. 
Because the language is read mechanically, all differences 
between mathematically significant steps of reasoning and 
merely trivial steps of logic are completely effaced. No 
one, not even the mathematician, can now discern what is 
mathematically important in the proof.20 

I began with a question: what has mathematical logic to 
do with mathematical understanding? In particular, why is 
it that a fully formalized, mechanical proof in 
mathematical logic destroys the mathematical interest of 
the proof given that in other cases of formalizations, 
paradigmatically in the symbolic language of arithmetic 
and elementary algebra, the result is of clear and 
significant mathematical interest? The problem, we have 
found, does not lie in the language of mathematical logic 
conceived simply as a system of signs. The problem lies 
in the way that system of signs is conceived, in the fact 
that it is conceived mechanistically. Were it to be 
conceived instead as a Leibnizian language—that is, as a 
language within which to display the contents of concepts 
in a way enabling one to reason on the basis of those 
contents in the system of signs—then it could be used in 
formalizations in much the way the language of arithmetic 
and algebra is. It could be used, that is, to clarify and 
enrich both mathematical practice and our understanding 
of that practice. And that is to say that it could be used in 
just the way Frege envisaged the use of his Begriffsschrift, 
his concept-script—if only we had understood him.21 
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