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Abstract. In this paper we focus on behaviourism and materialism
as theory-driven approaches to the classification of AI and agency
in general. We present them and we analyse a specific utility-based
agent, the PS model presented first in [2], which has as its key feature
the capability to perform projections. We then show that this feature
is not accounted for solely by materialistic or behaviouristic stance
but represents rather a functional link between the two approaches.
This is at the same time central for agency. This analysis allows us
to present a feature-driven (or reversed) taxonomy of the concept of
agency: we sketch its main characteristics and we show that it allows
a comparison of different agents which is richer than the solely be-
haviouristic and materialistic approaches. The reason for that lies in
the fact that we have reversed the approach to agency from a theory-
driven stance to a process-driven one.

1 Introduction
The notion of “agent” has a very broad spectrum of uses both in ev-
eryday life and in academic debates, such as in computer science,
economics, or in the philosophical discussion on free will – to men-
tion a few. In this paper we are concerned with the following ques-
tion: How can one distinguish and categorise different agents?. In
order to answer this question we need a taxonomy, and since we are
addressing agency in general this taxonomy must not be bound by the
origins of the specific agents – artificial or natural. In the following
article we provide the outlines of a taxonomy of agency which sup-
ports such a holistic perspective. The philosophical interest of this
topic is on the one side related to the fact that suggesting a holis-
tic view often, if not always, has multiple applications, while on the
other side the taxonomy we describe merges advantages and avoids
pitfalls of behaviourism and materialism.

The paper is structured as follows. In section 2 we introduce
two main theory-driven approaches to the classification of agency,
namely behaviourism and materialism, and we highlight their dis-
tinctive features. In section 3 we consider a specific form of utility-
based agent, the PS model, which has the capability to perform pro-
jections of itself into future situations. We argue that this feature can-
not be accounted for solely by the presented proposals, but it can
rather be considered as a functional link between those two perspec-
tives. This characteristic allows us – in section 4 – to build a taxon-
omy for categorising different agents. By reversing the methodology
of taxonomy building and concentrating on the feature of projection
as a functional link, we suggest a perspective turnaround from “cat-
egory −→ features” to “features −→ category ”. We then close with
some concluding remarks.
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2 Theory-Driven Approaches to AI
Two theory-driven approaches contribute to the research of artificial
intelligence in significant ways:

i Behaviourism as a connection to the role model of human intelli-
gence and as a basis for assessing successful AI.

ii Materialism as the general proposal of founding higher order men-
tal functions in physical structures.

In the following section we want to work out this meaning of be-
haviourism and materialism for AI and why they do not succeed on
their own in giving a full-blown account of (artificial) intelligence.

2.1 Behaviourism
Behaviourism is an approach to psychology which does not refer to
introspection and its mental phenomena directly in order to explain
and predict human actions. By analysing the behaviour of an agent, a
behaviourist reduces “mindfulness” to its consequences in behaviour.
Behaviourism aims then at avoiding the metaphysics of mental enti-
ties while still explaining and predicting human actions.

The origins of the research endeavour of AI are intertwined with
the theory of behaviourism. In his influential paper [10] Alan Tur-
ing stresses this connection by substituting his imitation game for
the provoking philosophical question “Can machines think?”. Tur-
ing’s motivation was to reduce the phenomena of thinking to the be-
haviour of an agent in its environment. The imitation game itself is
a behaviouristic test arrangement to the core. The system consists
of an interrogator and two agents one of which is a machine. The
task for the interrogator is to find out by questioning, through written
communication, which of the two is the machine. The question “Can
machines think?” becomes in this setting “Are there imaginable dig-
ital computers which would do well in the imitation game?” [10, p.
442].

It is important to note here that this central behaviouristic ap-
proach of AI construes intelligence as the successful interaction of
an agent with its environment, while its physical realisation is con-
sidered irrelevant. Behaviourism considering AI enables us to map a
vast variety of agents based on their stimulus-response patterns onto
one scale. This approach promotes a continuum idea of intelligence,
where different degrees of it can be derived from the agent’s be-
haviour, without the burden of considering how intelligence is phys-
ically implemented.

Agents that seem to be ontologically heterogenic in terms of mind-
fulness become comparable from the behaviouristic stance. This
leads to an evolving account of intelligence in AI research.4

4 By concentrating on the interaction of agent and environment one can de-
termine different degrees of success and the notion of intelligence becomes
a gradual idea independent of its (meta)physical realisation.



2.2 Classification of AI

It is difficult to provide a unitary view on AI, since the term covers
various research fields and questions, such as in computing, philos-
ophy and psychology.5 In [8], a definition of agency is provided by
the authors, which we find to be very simple and at the same time not
committed to any specific school of thought with respect to agency
and artificial intelligence:

An agent is anything that can be viewed as perceiving its en-
vironment through sensors and acting upon that environment
through effectors. [8, p. 31]

The extension of this idea in terms of agent-performances leads to
the notion of an ideal rational agent. Given a performance measure
for the actions of an agent, an ideal rational agent is able to perform
such that its action maximize its performance, according to percep-
tions and built-in knowledge.

It is evident from that definition that rationality according to AI,
although well defined, is a general concept: the reference to built-in
knowledge implies the impossibility of defining a unified rationality
criterion. A close look at the agent and the methods to describe its
built-in knowledge are necessary elements in order to define the re-
stricted criterion for rationality. According to the behaviour of the
agent with respect to percepts, actions and goals [8], it is possi-
ble to identify four different instances of AI: simple-reflex agents,
“keeping-track-of-the-world” agents, goal-based agents and utility-
based agents.6

Simple-reflex agents get activated by stimuli in such a way that
input and action are directly linked. These agents can perform well
in a specific environment but are hard to program, because the more
complex the environment gets the more effort one has to put into the
hardwired behaviour in order to perform successfully in the environ-
ment. The success of its action is not a relevant part of the agents
perception and unforeseen input tends to produce unsuccessful inter-
action, or no interaction at all.

Agents that keep track of the world introduce an intermediate step,
where their environment (and past states of their environment) are
represented as a state of the agent. Changes in the environment be-
come relevant when analysing the input and the agent can react to
more complex stimuli in sufficient ways.

Besides these past states of the environment, a goal-based agent
also considers a (programmed) goal as part of his internal state. This
goal describes a future state of the system that is desirable. Future
states and the anticipated influence of the agent’s actions now de-
fine the right activator. A behavioural description makes actions of
the agent seem purposeful in a more abstract way. Complex actions,
which involve a chain of actions and anticipated states of the envi-
ronment, become possible.

From an outside perspective, the differentiation between a very de-
tailed simple-reflex agent and a goal-based agent gets possible only
when unforeseen environmental states are present. While a simple-
reflex agent probably fails due to his missing hard-wired behaviour,
the goal-based agent profits from the decoupling of desired behaviour
and specific input. He can learn from the changes in the environment
and pursue his goals on the collected information and anticipated fu-
ture states.

By decoupling desired behaviour from specific output the
abstraction-level of goals gets introduced and with it a variability

5 We thank anonymous reviewers for pinpointing this specific topic.
6 See, again [8, pp. 40–45].

of possible actions to achieve them. Goal-based agents might pursue
their goals in weird and complicated ways and might therefore seem
less efficient than a complex designed reflex agent from a behavioural
perspective.

Utility-based agents encounter the problem of choice by consid-
ering side goals that determine the efficiency of an action. Utility
matters when an agent has to choose between different actions to
achieve his goal, when conflicting goals are present or the likeliness
of anticipated future states has to be evaluated. In a changing envi-
ronment, the process of evaluating possible outcomes of actions gets
more complex and the effort of abstraction becomes crucial for suc-
cess.

An essential feature in realising utility-based agents is that the
internal states of the agent “can be of its own subject matter”[10,
p.449]. In evaluating possible outcomes of actions, an agent has to
consider the future state of the whole system. A self-representation
in this sense is a central feature to create rational behaviour. Turing
anticipated this quality and stated that “it may be used to help in
making up its own programmes, or to predict the effect of alterations
in its own structure. By observing the results of its own behaviour it
can modify its own programmes so as to achieve some purpose more
effectively”[10, p. 449]. The Projective Simulation Model developed
in [2] we are going to discuss later is a proposal for realising a utility-
based agent by embedding a self-representation through projection.
A taxonomy that describes these different realisations of AI by de-
gree can be partly realised by considering the performances of agents
in their environment.

2.3 Materialism

The behavioural stance lacks the capability to assess how rational
behaviour is produced, and it becomes difficult to compare differ-
ent agents due to the limitation in observations. Besides AI research
being an endeavour to produce an agent that behaves rationally in
its environment, it has an inevitable materialistic component. In or-
der to explain rationality, one has to ground intelligent behaviour in
physical structures, hence one can interpret the materialistic under-
standing of AI as the simple fact, that when implementing AI, ra-
tional behaviour gets reduced to physical structures. An engineering
process naturally begins (and ends) with a physical structure, in or-
der to create rational behaviour in an artificial agent. Nevertheless,
AI is undeniably guided by a higher-order notion of intelligence and
rationality. It therefore joins materialism in reducing these notions
to its physical basis. Human intellectual capacities are a role model
for AI research and the insights into physical realisations of AI can
guide our understanding of human rationality. It is important to note
a distinction between mechanism and materialism, as Shanker high-
lighted in [9, p. 56]. While in a mechanistic sense the physical real-
isation of AI serves as an analogy for a psychological theory of the
human mind, a materialistic AI approach would assume that human
intelligence is actually computed in the same manner.

Although this distinction might be clear in theory, practice in
neuroscience and AI provides us with another picture. It is equally
hard to apply a strictly materialistic approach as well as a rigid be-
haviouristic stance. Both positions need to be informed by the other
in order to gain significance in the domains of cognitive neuroscience
or AI research. One might argue that the connecting elements of the
two are mental entities, to begin with. Because that is what both the-
ories wanted to avoid – behaviourism – or neglect – materialism – in
the first place, bridging them via mental entities would corrupt their
original intent.



Nevertheless, what drives the research in this area is, at least
partly, wondering about psychological features, e.g. intelligence. The
bridging element that refers to these qualities is a functional un-
derstanding of mental phenomena. By reducing psychological phe-
nomena to their functional role, functionalism establishes functional
links between physical realisation and observed behaviour. In this
sense functionalism is a materialistic informed behaviourism, or a
phenomena-enriched materialism.

Let us consider learning as an example of this involvement and
summarise its different levels:

• From a behaviouristic stance, learning is recognised via observing
alterations in the behaviour of agents.

• A materialistic approach may consider neural networks in the
brain as the deciding structures for mental phenomena. The chal-
lenge is then to connect changes in this structures with different
kinds of behaviour.

The process of learning needs to be redefined by means of a function
that enhances successful behaviour through strengthening the struc-
ture that led to it. This approach allows for a functional link, which
is evident for example in Hebb’s theory of learning [3]. Learning is
defined by strengthening of cellular connections that have casual in-
terdependencies. The more they fire together, the more likely their
application gets in the future.

• AI research takes the functional link of learning and Hebbian the-
ory as models, and employs mathematical tools when implement-
ing the feature of learning into an agent.

3 Projective Simulation
In the following section we present a model which shows interesting
features with respect to the characterization of agency offered in the
previous section. The PS (Projective Simulation) model, is a simple
formal description of a learning agent introduced in [2] which pro-
vides a new step into the characterization of intelligence in the field
of “embodied cognitive science”.

3.1 PS Model
A PS model is a formal automata-description able to perform some
specific tasks. Its key feature is that the agent, in which the PS model
is embedded, is able to project itself into future possible – even not
occurred – situations, and to evaluate possible feedback received
from the environment. Note that the evaluation is done before a real
action is performed.

The procedure that allows the agent to perform the projective sim-
ulation can be described as follows. The environment sends an input
– percept – to the agent, which elaborates it in order to produce an
answer – action, output. After this exchange the environment pro-
vides feedback – which might be either positive or negative – and the
agent updates its internal structure [2].

The analysis of the internal structure of the agent is necessary in
order to understand its interactions with the environment. This will
allow us to comprehend what projective simulation is, how it is im-
plemented, and what its consequences are for the present study.

3.2 Agent Description
Given the above description of the overall system, we must clarify
two points in order to furnish a suitable description of the agent:

• How does the elaboration of the percept allow the agent to perform
an action?

• How does the incoming feedback allow the agent to update its
internal structure?

The answer is given by describing the so-called ECM (Episodic
and Compositional Memory). The ECM is defined as a stochastic
network of clips, with lines connecting them. Every clip constitutes
a node in the network and it is individuated by the couple c = (s, a)
where s refers to a percept and a to an actuator. Every clip is a
“remembered percept-action”. The lines connecting different clips
are to be interpreted as the probabilities of passing from one to an-
other; hence p(c1, c2) individuates the probability that the agent in
the state c1 will switch to c2. The process of projective simulation
is implemented as a random walk through the ECM, which allows
the agent to recall past events, and to evaluate fictitious experiences,
before performing actions. The procedure of data elaboration is then
reducible to the following steps:

• the agent gets a percept from the environment,
• the percept activates a random walk trough the ECM,
• via reaching a clip corresponding to a suitable actuator an action

is produced.7

Turning our attention to the second question – regarding the up-
dating of the internal structure of the agent – we should focus on the
relationship between the feedback and the subsequent modification
of the ECM.

Once the agent reaches a suitable actuator and performs an action,
the environment sends a reward, either positive or negative, and this
constitutes the evaluation of the performed action. The activity of up-
dating the internal structure represents then the learning capacity of
the agent. In the case of a specific percept-action sequence which is
rewarded with positive feedback all of the transitions between differ-
ent clips are modified according to some rule – for example Bayesian
updating – in such a manner that all the probabilities between clips
involved in the procedure that led to the action are enhanced, while
others are normalised. To sum up, the evaluation of an action trig-
gers a deterministic process of probability-updating that makes clips
associated with positive feedback more “attractive”.

3.3 Relevant Features
Initially, every pattern of the PS has the same probability to hap-
pen. When the agent gets a feedback from the environment it builds
“some experience”, and the updating process of probabilities in the
ECM consists in a dynamic description that keeps track of experi-
ences (previous or fictitious) as the main relevant element for fu-
ture decisions. The relevance of the PS model for our research relies
mostly in two specific features which are realised within the model.

• Decisions are taken not only according to previous experience, but
also allow the agent to project itself into future possible situations.

• The agent shows compositional features – in terms of the creation
of new clips – during its learning process.

The general concept underlying these two characteristics is the
possibility for the PS model to create new clips; it is in fact the con-
tent of the created clip which allows us to make a distinction between

7 For further characterization of the features we remand to [2] and [6] where
performances of the PS model are tested in some applied scenarios. By
“suitable actuator” here we refer to the definition given in [2, p. 3].



compositional and fictitious experience. In general, the process of
creation is associated with parallel excitation of several clips, an idea
which leads to the extension of the presented scheme in a quantum
context, see [11] and [7]. This deterministic scheme is nonetheless
sufficient to describe the process of clip-creation in the ECM: if two
(or more) clips are activated during a projective simulation frequently
and with similar probabilities it is possible to define a relative thresh-
old for the involved clips: if the connection between them exceeds
this threshold, they are then merged together into a new one.

This procedure – implemented in the PS model in e.g. [2, p. 12],
[6] – allows us to understand how compositional features of the PS
model emerge: given two clip associated with different actuators
a1, a2 their merging gives a new clip, associated with an actuator
a3, which is obtained by means of composition.

Composition is also the key feature in order to understand ficti-
tious projection. The creation of new clips can be defined in such
a manner that actions of the agent are not only guided by previous
experience; the agent can in fact create episodes which have not hap-
pened before, testing them according to the eventual reward given by
the environment. The selection over all possible fictitious episodes
are implemented then according to the confrontation with past re-
wards.

How does the idea of the creation of new clips constitute a relevant
quality for both the behaviouristic and materialistic approach? On the
one side it is evident from the previous discussion that the creation of
new clips can be translated into new learning and acting behaviours –
see, e.g. the composition case. On the other side, from a materialistic
stance it is interesting to see that a structure with defined physical
elements – the agent in the previously discussed case – “evolves”
not only by stating a redefined compositional framework, but by also
merging existent elements into new ones.

These two facets allow us to highlight the relevant role of the PS
model in the agency/intelligence debate: it seems that the feature of
projection constitutes a key element in order to build a taxonomy of
agency, which – as we will see in the next section – guarantees sev-
eral advantages over the solely behaviouristic or materialistic points
of view.

4 A Broader View on Agency

In this section we focus on the relevance of the key feature of the PS
model, namely its capability to perform projections, in order to com-
prehend to what extent it guarantees a broader understanding than
the solely behaviouristic and materialistic stances. We provide then
a feature-driven classification of the concept of agency, which we
represent by means of an “empty” graph (fig.1) outlining the general
structure of our taxonomy. This picture keeps projection as a central
item, since we account for that by merging physical and behavioural
aspects. We consider then three different instances of agency namely
a standard non-projecting AI device, the PS model, and a human be-
ing. We locate them in our hierarchy and we analyse the resulting
picture.

4.1 Projection and Behaviourism

If we consider behaviourism and its approach to AI and agency it is
clear that the process which allows the agent to perform actions does
not have any relevance, since what matters is just the final result.8

8 The imitation game sketched in a previous section is a good instance of this
concept.

If we want to offer a broader overview of agency, this approach
seems to be unsatisfying: even though it considers behaviour as a
central feature, this position completely disregards the producing
process of the behaviour itself. Two agents that perform with the
same accuracy in a given scenario are indistinguishable according
to behaviourism. But it is easy to imagine a situation in which the
first agent works in a genuinely random manner without processing
environmental inputs, and its accuracy is just determined by “luck”,
while the second agent processes the input in some specific man-
ner in order to produce behaviour.9 Alteration of behaviour has to be
manifest in order to be considered according to behaviourism.

Projection, considered as a creative internal process [1], does not
fit the constraint of being manifest, while it may modify final be-
haviour, and hence it can be regarded as an additional feature.

4.2 Projection and Materialism
Materialism constitutes the “other side of the moon” in the inter-
pretation of AI, so to say. According to this position, we are solely
concerned with the internal processes of the device that result in
actions. The idea of projection is nevertheless not comprehensible,
since according to this stance what is disregarded is the environment
in which the agent is situated. The examination of physical realisa-
tion ends with the boundaries of the agent, while projection does not
only involve internal states, since it considers possible environmen-
tal rewards. As we have seen while analysing the PS model and its
description, the capability to perform projections constitutes a dis-
tinctive portrait of the agent and accounts for the produced action as
an internal process; hence, again, it cannot be simply disregarded.

According to these two characterisation of the missing connec-
tions between behaviourism/materialism on the one side, and the ca-
pability to perform projections on the other, it is then evident that
neither of the two research approaches to AI can account for agency
and cope with projection as a key feature. The description of the PS
model suggests that projection takes on a central role with respect
to the categorisation of different agents; hence we provide a merged
account which is concentrated on projection as a functional link –
i.e. as a distinct feature which we cannot account for according to
the separate views, but which is necessary in order to build a link
between them – in order to sketch a taxonomy for AI.

4.3 Merging through a Functional Link
By merging both research stances together one gains the possibil-
ity to grasp the functional link between them and, therefore, also a
broader view on intelligent agents. We want to promote a visualisa-
tion of the resulting taxonomy for intelligent agents as shown in the
graph (fig.1).

Why should we be concerned with an empty graph?

• It provides us with the general outline and structure of the taxon-
omy we would like to promote: this graph allows us to show how
projection as a functional link is dependent on both physical and
behavioural features, as we will see in the example in sec. 4.4.

• By reversing the methodology of taxonomy building,10 we take
the need of explanation away from the categories of physical re-
alisation and behavioural interaction, and we concentrate on the
feature that defines the content of the taxonomy – i.e. the empty
space of the graph, which is to be filled.

9 Although unlikely, this situation can be imagined and is hence possible.
10 The reverse procedure goes from a “category → features” characterisation

to a “feature → category” one.



Figure 1. This graph represents a naı̈ve visualisation of the idea of
merging the behavioural response towards the environment and the physical
realisation of the agent. Note that this visualisation is not meant to represent

a mathematical function, but it is rather a supporting element for
comprehending the taxonomy.

Different agents can be distinguished according to their capabil-
ity to perform projections. This function links behavioural interac-
tions and physical realisations of the agents and defines the content
of fig.1. While it is difficult to define qualities and quantities accord-
ing to a theory-driven approach, the suggested feature- and process-
driven taxonomy allows us to assign relevant scopes to both sides.
With regard to the behavioural inquiry, this quality consists in the
flexibility to cope with a changing environment or a rising complex-
ity. The implementation of the capacity of projecting allows an agent
to consider different actions and to anticipate future changes in the
environment, both whether those changes are induced by the agent
itself or by external sources. On the materialistic side, structures that
represent the internal state of the agent become important. Feedback
loops and other recursive structures are necessary to perform projec-
tions and enable self induced state-changes and -creation [5, p. 22
ff.].

By concentrating on the functional link of projection-performing,
we are concerned with a second order quality, i.e. a quality which
gets its ontological status not independently, but rather through the
combination of behavioural interactions and physical realisations.

Even though a distinction based on these rather vague categories is
difficult,11 the benefit of our reversed taxonomy is twofold. It enables
us to compare different intelligent agents originating from nature and
AI, while at the same time it points to the direction of research in
order to clarify the categories that amount to the functional link of
projection. Instead of adopting a bottom-up approach which starts
from well-defined aspects of agency (such as behavioural interac-
tion and physical realisation) with the scope to categorize individual
agents and the functions they perform, our reverse taxonomy takes a
top-down view by identifying the functional link first, and then map
different agents into a hierarchy, trying to connect the functional link
to the “classical” categories.

11 One can think at the following question as an example: “How could one
give a unified measurement of the physical realisation of various agents?”.

4.4 An Example
Let us consider three different sorts of agents. A standard non-
projecting AI, a PS model and a human being. Our projection-based
taxonomy offers a straightforward strategy to compare them. The PS
model constitutes a step forward with respect to the non-projecting
AI since it takes into account possible not-yet occurred events, which
might be the objects of a projection. Still, the PS model does of
course not realise human intelligence. According to our approach
one of the reasons for this is that the PS model lacks the capabil-
ity to simulate other agents. One of the distinctive traits of human
intelligence is that they not only project themselves but also other
agents into many different situations. Consider two different human
agents Alice and Bob, such that Alice has some experience of how
Bob behaves in a certain situation x. One of the distinctive traits of
Alice as a human agent is that, facing the situation x, she has the
possibility to ask herself the question “What would Bob do?” before
acting and she can take a decision influenced by the evaluation of pre-
vious Bob’s experience. The PS model lacks this “theory of mind” as
a level of abstraction. This is one aspect that distinguishes humans
from the other elements in our taxonomy.12

The possibility to distinguish those three different sorts of agents
according to the functional link of projection allows us to display
them into different levels as shown in fig.2. The resulting picture
raises the question of how to connect elements represented on differ-
ent levels. One can either think of the overall evolvement of agency as
a set of discrete steps or as a continuous evolving “machinery”. Fig.2
shows – among many others – two possible connection patterns for
the three individuated levels.

Our argument for projective simulation as an essential functional
link between behaviourism and materialism implicitly supports the
idea that there is at least one discrete step in the evolvement of AI.13

Nevertheless, we want to stress the fact that one of the main advan-
tages of this approach is that it does not require any sort of commit-
ment to specific schools in philosophy of science or ontology. In the
first case, one can address both a discontinuous perspective in the
evolution of science, see e.g. [4], as well as a continuous one. The
two lines represent those two approaches. Ontologically, discontinu-
ous steps in fig.2 may as well be read as qualitative gaps between AI
and humans, while the continuous picture provides the possibility to
think of them as being in the same ontological category.

5 Conclusion
In this paper we have shown why two main theory-driven approaches
of AI, i.e. behaviourism and materialism, do not succeed on their own
in giving a full-blown account of (artificial) intelligence. This was
also done by presenting the PS model, a form of utility-based agent
which has the capability to perform projections. We have argued that
this key element constitutes a functional link between the two theory-
driven approaches.

The overall analysis allowed us to introduce a feature-driven (or
reversed) taxonomy of the concept of agency, which gives a broader
and richer view on intelligent agents. We provided a general scheme
for the distinction of different agents according to their capability to
perform projections. This perspective considers both behavioural in-
teractions and physical realisations, via the identification of flexibil-

12 We are of course aware that there are many other missing items in order to
simulate human intelligence with a PS model. It is the present scope that
requires us to individuate projection as the key feature.

13 This argument supports the overall discrete picture in an inconclusive man-
ner. This topic is the subject of further research.



Figure 2. A representation of the comparison of non-projecting AI, PS
model and human agent. Note that many patterns allow to connect those
three distinct points, leaving open the question whether this should be a

continuous or discrete “evolution”.

ity in interactions on the one side and the possible physical structures
and their complexity on the other. This conclusion is supported by
giving an example and comparing different agents according to the
individuated functional link. The emerging question of how the evo-
lution between different realisations of AI should be understood is
briefly sketched and constitutes a possible follow-up research ques-
tion, but we have argued in this paper that our approach seems to not
require any ontological or epistemological commitment.
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