Software architectures: how components
can go politely social

Paola Inverardi

Software Engineering and Architecture Group
Dipartimento di Ingegneria e Scienze dell’'Informazione e Matematica,
disim University of L’Aquila, Italy



Software Architectures

* SA serve many purposes - see [TMD2009]

— My favorite view

 glue/connectivity nature that allows subsystems/
components to interact, correctly

— Define the system structure in terms of
components/subsystems, their interactions in
terms of functional and non functional behavior,
either local and global

[TMD2009 ] Richard N. Taylor, Nenad Medvidovic, Eric Dashofy, Software Architecture: Foundations, Theory, and Practice




What is Social?

 Merriam-Webster social: relating to or
involving activities in which people spend time
talking to each other or doing enjoyable
things...

 Meet and enjoy yourself doing things
together 2 no bad things happen, be polite!



SA behavioral: A Historical Perspective

@ e The birth of Software Architecture ]

N e Software Architecture analysis

e Architectural Connectors

e Checking Assumptions & SA Synthesis

e Service Oriented Architecture

t; e NS, Interoperability, mediators

e Integration means for Services, Apps, Cloud



Software Architecture & Politeness

» SA defines structure/components and interactions

* The global behavior of the SA can be analyzed and
checked to assess politeness, e.g., absence of
deadlock, desired behavior, i.e., after a receive always
an ack

* Early 90ties Kramer& Magee, Inverardi et al., Luckam
et al, Allen&Garlan

— Formal descriptions automata, process calculi, Cham, po
sets (influence from concurrency theory)

— Complexity and scalability



System: vehicles and crosspoint




Structuring interactions:
protocols and connectors

* SA defines structure/components and interactions

— |Interactions are the observable actions at the
interface level

— Interactions are performed by following protocols,
i.e., given ordering in the way interface operations
need to be executed

are architectural elements that define
how components’ protocols match together



From components behaviors to
protocols

e Easy the behavioral proof by introducing “sort of
behavioral types”

— Allen & Garlan roles and ports

— Inverardi & Wolf & Yankelevich assumption and
behaviors

— Yellin & Strom protocol conversions

— In PL Behavioral types: session types, behavioral
contracts, ...



Connectors to improve global analysis

* Connectors can be exploited to separate concerns, decompose
system analysis = localize and gain efficiency (?)

 Wright:
connector C-S-connector =
role Client = (request!x = result?y - Client) Tl §
role Server = (invoke?x = returnly > Server) [] §
glue = (Client.request?x = Service.invoke!x = Service.return?y -2
Client.resultly = glue)

(1§

* Analysis reduces to check connectors’ behavior and to check
compatibility between ports and roles locally, no efficiency gain



Crosspoint with traffic light connector




Roles and assumptions

Roles represent explicit assumptions on the
environment, i.e., the connector and/or components

What if we start from components and SA only?

Inverardi, Wolf, Yankelevich propose a method to
generate automatically assumptions out of
components and SA and check (efficiently) for
compatibility, i.e., deadlock freedom

The SA component is a sort of connector plus+ (more in
the style of Darwin)



ing Proxy example

Compress

interface

function—-call

component

interface

ipe

UNIX p

= channel

Filter

|
1
\

~
o
P
—
-
R
¢}
o]
3
[}
[0}
A

Filter

(Adaptor)




Modeling Gzip

i(2) o(2)
end; end
o(3) i(3)
end end,

Fig. 3. AC and AS graphs for gzip.



Modeling the Adaptor

AC AS
i(1) o)
0(2) o i(2)

!

J
end,, / end;

i
!
[ .
1 1 a( o
|
1
T i(3) \ o o(3)
end; end
o(4) i(4)

Fig. 4. AC and AS graphs for the adaptor.



Mismatch signaling deadlock

ofl)
i(2)

end;

o(3)

Fig. 5. Mismatch in actual and assumed behavior leading to deadlock.



Changing the Adaptor

end o(4) /

Fig. 6. AC and AS graphs for the modified adaptor.

4



Successful match

AC

o(1) T

Fig. 7. Successful match of filter AC graphs against adaptor AS graph.



Successful match

0o(2)

end

i(3)

end

Fig. 8. Successful match of adaptor AC graph against gzip AS graph.



Successful match

Fig. 9. Successful match of gzip AC graph against adaptor AS graph.



Successful match

AS

1) o

Fig. 10. Successful match of adaptor AC graph against filter AS graphs.



A roundabout




A step further: incomplete knowledge

* What if we have only components and no SA/
glue/connector?

* Can we guarantee politeness? Yes if we filter or
mask the un-polite behavior (through connectors,
mediators, adapters etc.)

* How can we generate such filters? Synthesis

* Politeness enforcing can be synthesized more
efficiently once we know the SA style we rely on



Putting things together: the Synthesis
problem

* Components with protocol behavior
* A desired integration SA style/pattern

e Synthesize the glue so that the components
correctly integrate, if possible



An example: Coordinator concept

communicating black-box

components

Component 1

Component 3

-~ "

Component 2

solution

Component 1

Component 3

Component 2

their interaction may deadlock...
...or violate a specified desired

behavior 2

desired behavior
specification

the coordinator is an additional component/
connector synthesized so as to intercept all
component interactions in order to prevent
deadlocks and those interactions that violate
the specified desired behavior



Automatic Synthesis of Centralized FFC
— Modeling -

Component behaviour modeled using finite state machines

Integration through parallel composition of component
models

In the context of CCS:

— Components: sequence and choice operators
E.g. Server = call.service.return.Server

— Integration: parallel composition and restriction operators
Eg. (C |Gl [CHN\L

Deadlock: (C, | C, | ... | C,) \ L can reach a state where no
actions are possible



Automatic Synthesis of Centralized FFC
— Modeling—-

e Coordinator Free Architecture (CFA)

Component 1

Component 2 ’m.
channel
°

Component 3

a Coordinator Free Architecture (CFA) is a set of
components directly connected in a synchronous way

in CCS : (C,1Cy .. 1 CY\ U, - Act



Automatic Synthesis of Centralized FFC

— Modeling -
e Coordinator Based Architecture (CBA)

top

Component 1

bottom

bottom

channel 3

top

Component 3

lu_) channel 1
L
)
g
(W]
o
channel 2
top
Component 2
bottom
in CCS:
(C1[f1] | G, [f,] | ... | C,[f.] | K)\U 1 Act[f]

K is the synthesized connector, f. suitable relabeling function

bottom

NOILVOI4ILON



Automatic Synthesis of Centralized FFC
— Component Local Views —

msgl msg2
AC-Graph: the component protocol @,\’O/)

msg3

Knowing the composition mechanism and the property

. : msgl msg2
AS-Graph: assumptions on the environment @v\’Q/g)

msg3

Knowing the characteristics of the environment i.e. the coordinator

msgl, msgl. _ msg2, msg2,

: : o > > >
EX-Graph: assumptions on the coordinator
msg3,

msg3,




Automatic Synthesis of Centralized FFC
— Component Local Views Unification —

based on a
usual first-order
unification algorithm

msg2¢,
Cgmsglc1
msgl,
msg2,

coordinator
graph obtained
by the unification
of the EX-Graphs

%j

Coordin

C2
ator

msg2e, msg2,
Cgmsglcz 6msg1?
msgl, msgle;
msg2, Msg2q3
msgle, sgle msg2q,
MsSg2., >
msgle msglc, msg2c,




Automatic Synthesis of Centralized FFC

— 3-step method -

Coordinator Free Architecture

Component 1

Component 3

’\/’

Component 2

—
— —— local views of each component _ ———
Component 1 Component 3 2=l

Component 2

Dredidiecfidre Sbomtidinzio ekt dohirbiiecire

Q.

Y Bodonlh Cﬁordlnat?r
FIQQP

cod

:gde




Automatic Synthesis of Centralized FFC
— running example: inputs —

{!-C3.method1_1,!-C3.method1_2}

C3

?C3.retValue1

d 1C3.method1
0 - S

?C3.method1

.
IC3.retValue1

C1 and C2 has to interact by
following an Alternating Interaction
Protocol

31



Automatic Synthesis of Centralized FFC
— running example: enforcing deadlock freedom —

c3 ?C3.method3

2C3.retValue1 »
c1 ?CS.me;hod1
0 !C3.met:od1 3 IC3.retValue1
?2C3.method1_1
-
Q
?C3.method1_1
-
— ™M
3 s 5
3 g g
L = ®
g £ E
- 8 ™
‘o = Deadlock-free Coordinator ©
?7C3.retValue1_3 IC3.method2_3 7C3.method1_2

32



Automatic Synthesis of Centralized FFC
— running example: enforcing failure-freeness —

{!-C3.method1_1,!-C3.method1_2}

The Failure-free Coordinator is obtained
by performing synchronous product between
P and the deadlock-free coordinator

?C3.method1 1 *

@ J} “
3] - ”
g 2 S
3 $ )
Y3 < %
g £ E
—_ n >
| o o
w -—
?C3.retValue1_3 ?7C3.method1_2

& >

33

>




Automatic Synthesis of Distributed FFC
— the reference architectural style —

black-box
components

synchronous/
asynchronous
channels

coordination
wrappers

synchronous/
asychronous
channels

C1

C2

standard communication
(synchronous/asynchronous)

additional communication
(synchronous)

Distributed CBA



Networked Systems (NS)
Interoperability, Mediator Synthesis

* European FET Project Connect 2009-2013

A more complex scenario, with lack of
knowledge and standardization

* NSs that need to cooperate on the fly, to
achieve a common goal G

— Interoperability is the problem both at
middleware and application level

35



Application-layer Protocols: Talking a lot

Application-layer protocols (as opposed to middleware-

layer protocols)

— behavior of a NS in terms of the sequences of
messages at the interface level, which it may
exchange with other systems

— Interactions are performed by following a given
ordering in the way interface operations need to
be executed

— the notion of protocol abstracts from the content
of the exchanged messages, i.e., values of

method/operation parameters, return values, etc.



Modeling Application-layer Protocols

* By using Labeled Transition Systems (LTSs) and introducing
final states

Input actions, e.g., Acknowledge, model Authenticate
- methods that can be called;
- receiving messages; O
- return values.
CommentPhoto
Output actions, e.g., Authenticate, model Acknowledge UploadPhoto
- method calls;
- message transmission;
- exceptions.

A Photo Sharing producer



Interoperability

The ability of heterogeneous protocols to communicate and correctly
coordinate to achieve system goal(s) (global property)

Communication expressed as synchronization
— two protocols communicate if they are able to synchronize on common actions

— for application-layer protocols, it goes beyond single basic synchronizations
and may require a well defined sequence of synchronization to be achieved (a
primitive form of coordination)

* E.g., sendltems <-> receiveltems (simple case)
sendltems <-> receiveltem ... receiveltem (more complex case)

Coordination expressed as the achievement of a system goal

— two protocols succeed in coordinating if they interact through synchronization
according to the achievement of system goal(s)

Goal usually specified in some automata-based or temporal logic
formalism



The Interoperability Problem

It concerns the problem of both enabling communication and
achieving correct coordination (w.r.t. the specified goal)

Solution: automatic synthesis of application-layer connectors/
mediators

Automatic coordinator synthesis (seen before)

— the main focus is on addressing correct coordination by assuming the
communication problem already solved

Automatic mediator synthesis (comes next)

— it focuses on the whole interoperability problem, i.e., addressing
communication + correct coordination



The need for Mediators:
the Photo Sharing Scenario

Consumerrole ™

PhotoMetadata PhotoMetadata

Authenticate
PhotoFile

PhotoFile

CommentPhoto

UploadPhoto

1
|
I
I
I
|
I
I
I
I
Acknowledge :
/

PhotoComment

Infrasaucture-based implementation of Peer-to-peer implementation of Photo Sharing
Photo Sharing Producer




Automatic Synthesis of Mediators

Problem: interoperability between heterogeneous protocols
Goal: to find an automated solution to solve the problem

Compatible or functionally matching protocols: protocols that can
potentially communicate by performing complementary sequences
of actions

— “Communication” through (at least one) complementary sequences of actions,
i.e., trace

— “Potentially” because of heterogeneities that can be mediated, i.e.
mismatches (e.g. languages, third parties sequences of actions, ...)
Interoperability: ability of heterogeneous protocols that
functionally match to communicate and coordinate, i.e.,
synchronize to reach their goal(s)



Obtaining Mediators

Prot | M
rotocols (mediator)
Sp
Ontologies map
v
Abstracted protocols AP

Abstraction information
Matching information
Common abstracted protocol



Obtaining Mediators

-------------------------------------------------------------------------------------------------------------
]
""""""

o T o — —

*
>
0
0
0
)
»
o

*
*
*
.
.

.
.
rann

L]
L]
L
.
B
B
B

M ey
_ (mediator) ‘._

B PhotoMetadata
:: OP maps* El ’776,050 oQ .“
i @ @ E PhotoFile

UploadPhoto 3 HA@

Authenticate
PhotoFile

CommentPhoto

1
1
1
1
1
]
|
1
]
]
Acknowledge 1
1
!

Infrastructure-b ased implementation of
Photo SharingProducer

....
--------------------------------------------------

o

.....
.........................................................

* Protocols as Labelled Transition Systems (LTSs)

* Initial state + final state define the coordination policies
(traces)



:. ‘:. ety ’ M e, ,7.
;  (mediaton) B
Authenticate : 5
» se = | /Mg, .
: | o, Bk opq = OQ p
: = :
: Ap <3 Aq
: CommentPhoto @ : :
E Acknow|edge UploadPhOtO \:’. D E
5 Infrastructure-b ased implementation of .:' .;’. : s
Photo Sharing Producer o o :
:' Infrastructure-based Common Language Peer-to-peer ‘s
1 Photo Sharing Producer Photo Sharing
UploadPhoto. upP UpP PhotoMetadata.
Acknowledge (upload photo) (download photo) PhotoFile
CommentPhoto uc uc PhotoComment
(download comment)| (upload comment)
- - T4 PhotoMetadata. :
: PhotoFile
- - T, PhotoComment
- Authenticate T3 ) - g

.
.
*
>
0

g

Obtaining Mediators

.

PhotoMetadata

PhotoFile

PhotoMetadata

— the semantics of the
protocols actions

— the common language

— taus for third parties
communications

PhotoFile

— o

Consumerrole ™

|
|
|
|
|
|
|
|
|
|
|
|
!



.
.

3

ysSUNNEEIEEEEEEEEEERIEEEEERERRERE R R,
. 3

0
*

Obtaining Mediators

POLLLLLLLE R LR L LR L LR L L LY TN
.

: M s 3

% Wiator) K .

% = ) .". :

t“ | OP map OPQ PSo OQ | ’.0 :

1 . | | . :

’ 5 Srrseeere :

uc Up : Ao R Aq : :

Abstracted : : : :

Infrasaucture-based Producer H : ., Abstracted peer-to-peer Photo Sharing -
Infrastructure-based Common Language Peer-to-peer K

0
D
)
1
.

Photo Sharing Producer

Photo Sharing

UploadPhoto.
Acknowledge

CommentPhoto

UP
(upload photo)

uc

UpP
(download photo)

uc

PhotoMetadata.
PhotoFile

PhotoComment

(download comment)| (upload comment)
- - T4 PhotoMetadata.
PhotoFile
- - T, PhotoComment
Authenticate T3 - -

Abstraction:

— relabeling of protocols
with common
language and taus



Obtaining Mediators

----------------------------------------------
““““

“’\‘ maps®_[ = | 7aps, | .0’."
L | .:f: ....... .
Abstracted ot
Infrasaucture-based Producer :
= Compatibility or i ¢ Successful matching:
Functional matching: — a mediator exists and
5 up s . .
e complementary traces : — it can be automatically
. : ucC : .
modulo mismatches and synthesized
th I r d p ar ﬁes Common abstracted
Communicaﬁons %, | Photo Sharingprotocol

- *
. PS4
“sussssssssEEEEEEEEEEEEEEEEEEES



Obtaining Mediators

-------------------------------------------------------------------------------------------------------------
. ‘.
Y .

— o

Consumerrole ™

|
o |
— PhotoMetadata |
Authenticate |
PhotofFile !
. I
< i i
: |
CommentPhoto : 1
—_— : 1
Acknowledge | | UploadPhoto : I
: 1
: !
JesmRrs  emsmsmmmmamsmsmmamsmemsssermrag, o N e e m m ———— ’ .
. Infrasttucture-b ased implementation of O :
-, Photo Shari Pl. 1 . s _— '.| Peer-to-p eer implementation of Photo Sharing | K
‘o, 1oto Sharinglroducer : Authenticate 7\ Authenticate b . ¢
............................................. . 'U © E--------------------------------------------------ll‘
* Mapping I :® The mediator enables

protocols

interoperability, i.e.,
communication and
coordination (under
fairness assumption)

— mediator synthesis

PhotoMetadata

PhotoFile -

LR o*
-----------------------------------------------------



Adding performance concerns

* We build on top of our solution to the automated synthesis of
connectors to
— take into account performance concerns during the synthesis proces

— make the synthesized connectors (self-)adaptive with respect to
runtime performance requirements changes

® By reasoning on systems’ specification, the approach:

— produces a mediator that satisfies the functional requirements

— acts on the produced mediator to let it satisfy performance issues and
to make it (self-)adaptive



What is the present/future?
Services, Apps and Clouds in the air

* Avirtually infinite number of software applications
that provide computational software resources in
the open Digital Space




Developer as an integrator

 The developer in the digital space is more and more
an integrator

* It relies on third party artifacts and it is the owner of
the integration code only

*How do we achieve confidence in the final system?
*How do we easy the development process?



Software Production

Expectations/requirements can be thought as expressing a goal

The integrated software behaves as expected/required both
functionally and non functionally

Integration means: Enterprise integration patterns, connectors,
Mediators, adapters, controllers, wrappers, coordinators,
Orchestrations, Choreographies

to foster a correct reuse with respect to a given goal, we should
know the actual functional and non-functional behavior of the
software being reused

Assessed by means of suitable software models

(protocol) Models through experimental observation (mining)



A philosophical digression

Another Sign of Science in Computer Science?

Peter Denning’s Viewpoint in June 2013’s ACM Communication

“There is a growing consensus today that many of the issues we
are studying are so complex that only an experimental approach
will lead to understanding”

Empirical Software Engineering
1996 Victor Basili’s editorial to ESEE

http://www.cs.umd.edu/projects/SoftEng/tame/ESEEdit.htmidefine

Galileo’s scientific method
e Observation : quantitative characterization of the observed phenomenon
° Theory/Model construction of the phenomenon to interpret
e Validation through experimental verification




Where do models come from?

From Creationistic View
to Experimental View

)

e A producer is the
owner of the artifact,
and with the right
tools she can supply
any piece of
information

2

-

e The knowledge of a

software artifact is
limited to what can be
observed of it

e Theoretical barrier

limits the power and
extent of observations




The Envisioned Production Process

» Given a software service S, elicitation techniques are used to
produce models as complete as possible with respect to a goal G.

* Models may in general exhibit degrees of incompleteness,
provided that they are accurate enough to allow the development of
a correct integration w.r.t. the goal G.

~

« Assist the developer in creating the appropriate integration means to
compose the observed software together in order to produce an
application that satisfies the goal G.




CHOReOS

Large Scale Choreographies
for the Future Internet

Quality Model - - - }

Choreography Specification
| (INTIAL)

Choreography Specification
| [INTERMEDIATE ]

Development of e .
choreography-based W i ) - »

Chorenglraphy Specification
|

service-oriented systems __::'_;.

Choreography Quality Assessment

quality is not satifactory /

lity is satifactory .
| | B
Coordination Delegates




CHOReO
Large Scale Choreographies
for the Future Internet

Development of

Choreography

) Schema
Diagram

| choreography-based
.

service-oriented systems

—

Participant Model
- Choreography N (BPMN2 Choreography
Projection | Diagram)
‘ 1

. Inventory
Selection

""""""" *[ BC Generation }"""""ﬁ*

Service/Thing

E .
\

N

\

N

\
\

| < v 2 :

] R Choreography Architecture Bl i
Generation

_____________ 1 | !
_______________ : IIIIIIIIIIIIIIIIIIIZ_o v
{ CD Generation ]3________________________- Choreography

Choreography Deployment Architecture

+ Generation Description
| '
cD |
A 4

Choreography
Deployment

Description




Composition approaches

Rgpw
'"”“& Composite ¢
{: Service .@

Orchestration
(centralized)

Local centralized view
from the perspective
of one participant

Receive
Service A Service B
Send

= Service C
—

Choreography
(fully distributed)

Global decentralized view
from a multi-participant
perspective
(albeit without a central
controller)



Synthesized Choreography Architecture
(a sample of)

‘ genl App

:STApp

®

=] R =1

BC

=] BC

BC_Poi

BC_Personal
WeatherStations

>

=] BC =] R -aésc =] =1  BC| =) R

eeeeeeeeeeeeeee




Choreography realizability enforcement

e Given a choreography specification, and
* aset of existing services discovered as “suitable” participants,

* restrict the interaction among them so to fulfill the collaboration prescribed
by the choreography specification, hence

e preventing undesired interactions

CD2

*59*0 cD1
Synthesis

Processor

’>¥¢-+C%—*,~*¢ L——*C%a- *44%@4J [
/

CD3 CD4



« BPMN2 is the standard de facto for specifying choreographies
« BPMN?2 offers a powerful notation called Choreography Diagrams

tifyU
nd sps notifyUser
getLocations _
True SPS
notifyFriend

Join gateway

SPS

Initiating Conditional Parallel
Participant gateway gateway
[ i ~ shareEnablec : i [ sPs ) friendFou

getUserPref —>®T—> matchGPS getFriends
ru
Start t:alse !False
Task . End
Receiving —
Participant ’

—shareEnabled (g2¢
IM.getUserPref().UMS

shareEnablea

IM.matchGPS().SPS  SPS.getFriends().UMS

friendFound | S3

—friendFound

=

SPS.getLocations().SocialProxApp
o= ot o5

s21

SPS.notifyUser().NM

PS.notifyFriend().NM



Undesired interactions

Undesired interactions are those interactions that do not belong to the set of
interactions modeled by the given choreography and that can happen by letting
the discovered services collaborate in an uncontrolled way

CONSUMER (playing the role p1) PROVIDER (playing the role p2)
N 4 N
pl:S1 p2:52
op1! . op2! opl? 5O op2°?
0 1 2 0 1 2
K op2! > op1! / K op2? 3 opl? /
/ CHOR(§1$APHY~-~»../ESMN2 CHOREOGRAPHY LTS

o1 | p1 |
: { | - 1.m4::0p2(m3).p2
Q——‘ op' op2 j-»O ‘ ..>Cp1.op1(m1).p2>crp p2(m3).p >0
. . z / 0 1 2

Y,




Undesired interactions

CONSUMER (playing the role p1)

01:51

PROVIDER (playing the role p2)

Desired interaction

opl! 21!
b »0 —
0 1 2

k op2! 3 opl!/

02:S2

opl? op2?
P »O P

0

1

op2? opl?
N 3 P

2

[ CHOREOGRAPHY BPMNZ

CHOREOGRAPHY LTS

l.opl(m1l).p2
_)Cp pl(ml).p

1

pl.m4::0p2(m3).p2
>O—

2

_/




CONSUMER (playing the role p1)

Undesired interactions

PROVIDER (playing the role p2)

Undesired interaction

p1:S1
opll’C op2!
0 1 2
k op2! op1!/

0

02:S2

opl? op2?
P »O P

1

2

[ CHOREOGRAPHY BPMNZ

m3

oo oL

CHOREOGRAPHY LTS

1l.o0p1(m1).p2
_)Cp pl(ml).p

1

pl.m4::0p2(m3).p2
>O—

opl

2

_/




Undesired interactions

CONSUMER (playing the role p1)

PROVIDER (playing the role p2)

Undesired interaction
p]_ -S1 detection and prevention D 2:S2
op1l! op2! Coordination op1? |~ 0p2?

Delegate (CD) 0 1

o) opl?
\ 3

2

( CHOREOGRAPHY BPMNZ

S

CHOREOGRAPHY LTS

1.m4::0p2(m3).p2
_)Cpl .opl(m1). p2>(.\£ p2(m3).p >0

X

2
_/




'-___________________I

i

Realizability enforcement via
Coordination Delegates

D4 standard
communication
(e.g., In-only/In-Out
message exchange)

© additional communication:
coordination information
for coordination purposes
(exchanged among the
Coordination Delegates to
enforce the realization of
the specified choreography,
in a distributed way)

choreography
realization
(composition of
CHOReOS connectors
plus CDs)



Mismatching interactions

Mismatching interactions are those interactions that differ in the semantics
and granularity of the operations, and in the control structure of the

protocols

CONSUMER (to play the role p1)

PROVIDER (playing the role p2)

pl #S1’
op2! O opl’!
1 2
\_ 3 opl”l

Let us suppose that, instead of discovering S1, another
service, say S1’, would have been discovered

4 N
p2:S2
opl? 5O op2?
0 1 2
\ op2? 3 opl? /




Mismatching interactions

Mismatching interactions are those interactions that differ in the semantics
and granularity of the operations, and in the control structure of the

protocols

CONSUMER (to play the role p1)

PROVIDER (playing the role p2)

, 4 N
pl ??S1 p2:S2
op2! 1’1 opl? op2?
P >O op >Cl
1 ) 0 2
’ op2? opl?
pu 3 ot/ pu = /
opl’!
Assuming an j op2! opl!
ontology _ O >0 >0
knowledge 1] 111
1! 1! 2!
o—2=" 50 o—— 0L~ 50




Mismatching interactions

Mismatching interactions are those interactions that differ in the semantics
and granularity of the operations, and in the control structure of the

PROVIDER (playing the role p2)

protocols
CONSUMER (to play the role p1)
/
pl&—>S1’
, S1
op2! opl’!
=0 Vz Adaptor
@EORDER : op1”!
opl’!
Assuming an
ontology opl”!
knowledge 1]

opl!
Op—>O

4 N
p2:S2
opl? 5O op2?
0 1 2

op2? > opl?
N 3 /

opl!

>0

op2!

>0



Mismatching interactions

Mismatching interactions are those interactions that differ in the semantics
and granularity of the operations, and in the control structure of the

protocols
CONSUMER (playing the role p1) PROVIDER (playing the role p2)
, 4 N
pl:S1 p2:52
o op1'l op1! S1 op1? o027
1 > | Adaptor 0 1 2
MERGE op2! N 0p2? A opl?/
opl’!

Assuming an op2! opl!

ontology Z; : op1”! O >0 >0

knowledge 1] 1]

| | |
opl! o opl! 5O op2! >0




Overall architectural style

ADAPTORS

CDs

Adaptor

S3




Adaptability

Change occurrence 2
service substitution

S 1 " s2
Lldaptor o ___ _ [ Adaptor |
. ]

|
.| CD1¢ tcp2| !
| . ] I
: et s | 4\ y I
| \\ I |
I AN ! |
: l !
I Sy ' :
I Ss o 1 |
I “, - :
I b ' !
| "~ . : :
| ey |
I ) S
' CD3 | . CD4 |
-l 1 __I

| Adaptor | | Elsztor |

Choreography
evolution through
adaptation

to possible changes
in the discovered
services, while still
keeping the
prescribed
coordination.



triggered
by the
Driver

/

Send Origin and

Choreography evolution

BS-MAP DTS-GOOGLE

r—b— Route request — Routes suggestion

- [ brscooGle | [ Bswar |

BS-MAP DTS-HERE

Route request — Routes suggestion

TRVC DTS-TRV-ACC

Accident check —®- Accident check report ——

behavioral alternative 1
in context x

BS-MAP

Collect traffic waze traffic

information information request

/——

behavioral alternative 2
in context y

behavioral alternative 3
in context y and context z

/ Variation point

BS-MAP

TRVC

DTS-TRV-ACC

—t— Accident check H=- Accident check report - information

Display and store
suggested route

Report TRV

TIC

DTS-WAZE

=

waze traffic
information request

M-

waze traffic
information report

TIC ?'.
- Report traffic

information




Automata-based Choreography
Specification

m1? m1! YN 3153
G G <> )

SYNC(1 3150037
D, 5 )




Automata-based Choreography
Specification

m1? m1! YN 3102.3)
@, ) G ) <> )

SYNC 61502,3)7

SYNC(2,3)5(4,6}(5,6}

‘ 5 Y SYNCp 31504 645,61
m5! m57?
() <> 5

branch
S 2

CD,

SYNCis 615(2,3)7

SYNCs 61514617 Sy

SYNCp2 31504612 —
. sync ranc
CD4’5- ‘6 @ S S 2 syn c(2,3)->(4,6)?
m3! m3? Ys NCi4 61->2,3)(5,6!
() G D .

V”°<2,3)->(5,6)?

SYNC(s 615(2,3)4,61! v SYNC( 315,617

m4! ma?
) <> 5

Ss




Automata-based Choreography

Specification

sync
m1? m1! Y3
CD1’3. ° @ ° @

&

CD,

S

SYNCis 615(2,3)7

SYNCL,3)5(4,65,61

sync
S

SYNCp2 31504612

branch
S 2

SYNCs 61514617

SYNCy 351467

Y sync !
. SYNC4 615036 . m3! - m3? Cj {4,61>{2,3}(5.6}
)

Dy &
Q m4!

V”°<2,3)->(5,6)?

SYNCis 61502,3a.61! v

ma?

CD; ¢

©
) O




Automata-based Choreography
Specification

m1? m1! Y23 Q
@, () <@ S <>

S

?
2,3 SYNCis 652,37

SYNCL,3)5(4,65,61

SYNC(s 6 5(4,6)" Sy CD,

SYNC(2 3154613 —
. sync ranc
CD4’6. @ S, S 2 SynC(z,S)->{4,6)?

Y sync !
. SYNC4 615036 . m3! - m3? Cj 14.61>(2,315.6}
)
?
SYNC 3155617 SYNCi4,6)->(5,61
O &

SYNCis 61502,33a,61 SYNCpp 315(5,6)

? y
SYNC(3 6)-5(5,6) m4! @ ma? C)

©
) O

branch
s 2

SYNCi3 615,61




Automata-based Choreography

Specification

Y sync !
. SYNCyy 61536 . . ::X 4,6)->(2,3)(5,6}
52

m

V”C{z 355617

SYNCs 61502,3)a.6)'

ma?

branch
s 2

SYNCig6)5(5,6

SYNCi3 615,61

A

12 mil SVnC(l,a)->(z,3)!
@, () G S <>
sync ?
SYNCp2 315(,6)(5,6)' Y luees (>
CD : Sbranch2 4
23 SYNCs 612,37
Y SYNCE 31504,6465,61
m5! m5?
S <> 5
SYNCis 650,617 s :
. SYNCpy 315,612 — 5,6>14.6) 4 CD; 6 .
. sync ranc
e () () P2 2 QUGERIEI 15 ) S
Ss




Automata-based Choreography
Specification

SYNCyg 352,31
CD, ;: @
€
sync ?
SYNC(, 31514.6)5,6) YNCia.6)>(2,3) /y
CD . @ sbranch2 > S,
23 _/ SYNCis 61.502,3)7 \)
SYNCpa 315,615, 61
€
€
CD4,6: CD3,6'
Goo——C)
Sbranch2
€
| Ys NCig 61-5(2,315,6)
( :) Sync(4,6}->{3,6}'. m3! - m3? Cj B1>12,3H5,
gsync s
3 2
SYNC 355,617 SYNCi4 61556
. branch
CD; ¢: @ S
SYNC(s 61-5(2,314,61 v SYNCip 3155617
ma?
m77?




Conclusion 1

(bit of) SA increasingly important to produce “glue” code to develop “correct
by construction” composed systems out of heterogeneous third party
components. Not only coordination ... we can add logic ...

Architectural patterns as a way to give “structure” to the environment, i.e. to
constrain the environment, they provide assumptions that need to be
guaranteed by components’ behavior and facilitate model mining

Synthesis as a viable tool based on very realistic assumptions, synthesis can go
beyond interactions

Applied successfully in the choreography domain



Conclusion 2

A lot of theoretical work to exploit
From theory to practice
Synthesis is difficult but ...

... we have demonstrated that it can be practical for software
production thanks to

— Composability

— Software Architecture

— applied Formal Verification



Travelling in the digital space with ...

* Marco Autili

* Antonia Bertolino
* Massimo Tivoli

e Patrizio Pelliccione
* Romina Spalazzese

 Davide Di Ruscio

http://it.123rf.com/photo_3450020_cute-straniero-in-astronave--colore-illustrazione.html



Some bibliography

M. Tivoli and P. Inverardi, Failure-free coordinators synthesis for component-based architectures (2008), in: Science of
Computer Programming, 71:3(181-212)

M. Autili, L. Mostarda, A. Navarra and M. Tivoli, Synthesis of decentralized and concurrent adaptors for correctly
assembling distributed component-based systems (2008), in: Journal of Systems and Software, 81:12(2210-2236)

P. Inverardi and M. Tivoli, Automatic Synthesis of Modular Connectors via Composition of Protocol Mediation
Patterns, in: ICSE 2013.

A. Di Marco, P. Inverardi, and R. Spalazzese. Synthesizing Self-Adaptive Connectors meeting Functional and
Performance Concerns. In SEAMS 2013, pp. 133-142, IEEE Press, Piscataway, NJ, USA.

P. Inverardi, R. Spalazzese and M. Tivoli. Application-Layer Connector Synthesis. Formal Methods for Eternal
Networked Software Systems (SFM'11), pages 148-190, Springer-Verlag Berlin Heidelberg, LNCS, volume 6659, 2011.

Spalazzese R., Inverardi P., Issarny V..Towards a Formalization of Mediating Connectors for on the Fly
Interoperability. In Proceedings of WICSA/ECSA 09. pages 345-348, 2009

Nicola Nostro, Romina Spalazzese, Felicita Di Giandomenico, Paola Inverardi: Achieving functional and non functional
interoperability through synthesized connectors. Journal of Systems and Software 111: 185-199 (2016)

Marco Autili, Paola Inverardi, Filippo Mignosi, Romina Spalazzese, Massimo Tivoli: Automated Synthesis of
Application-Layer Connectors from Automata-Based Specifications. LATA 2015: 3-24

Vittorio Cortellessa, Antinisca Di Marco, Paola Inverardi: Model-Based Software Performance Analysis. Springer 2011,
ISBN 978-3-642-13620-7, pp. I-XIl, 1-190

Antonia Bertolino, Paola Inverardi, Henry Muccini: Software architecture-based analysis and testing: a look into
achievements and future challenges. Computing 95(8): 633-648 (2013)




Derivation of Partial Models from Running
Systems

Strawberry by Bertolino, Inverardi, Pelliccione, Tivoli — ESEC/FSE 2009

Black-box  Techniques used: Syntactic analysis, testing, and synthesis
GK-Tail by Lorenzoli, Mariani, Pezze — ICSE 2008

Grey-box  Techniques used: Static analysis of execution traces
SPY by Ghezzi, Mocci, Monga — ICSE 2009

Black-box  Techniques used: Dynamic analysis + graph transformation
Jadet by Wasylkowski, Zeller, Lindig — ESEC/FSE 2007 and
Tikanga by Wasylkowski, Zeller — ASE journal 2011

White-box Techniques used: Static program analysis + model checking + concept analysis
TAUTOKO by Dallmeier et al. — TSE 2012

Black-box  Techniques used: Test case generation + dynamic specification mining
LearnLib by Hungar et al.— Test Conference, 2003

Black-box  Techniques used: Invariant detection
Daikon by Ernst et al.— 1999

Grey-box  Techniques used: Active automata learning and experimentation
K. Krogmann, M. Kuperberg, and R. Reussner — TSE 2010

Grey-box  Techniques used: Static and dynamic analysis + genetic programming



Automatic Connector Synthesis to Support
Integration

Automated Synthesis of Service Choreographies [Autili, Di Salle, Inverardi, Tivoli, 2009-2015]
distributed choreography-based coordination

Automated Connector/Coordinator/Adaptor/Mediator synthesis [Autili, Inverardi, Spalazzese, Tivoli,
2007-2009 & 2011-2013]

centralized vs distributed coordinators, modular connectors, heterogeneous protocols mediation,
full automation
Formal approaches to protocol conversion [Calvert, Lam 1990 & Lam 1998]
Specification of protocol adapters [Yellin, Strom 1997]

seminal work not focused on sophisticated mediation logics, e.g., message reordering or different granularity of

protocol languages
Automatic mediation of business processes [Vaculin et al. 2007 & 2008]

focus on the semantic web service domain, no formal characterization
Connector wrappers as protocol transformations [Garlan et al. 2003]
Algebra of stateless connectors [Bruni, Lanese, Montanari 2006]

support for modularity, the focus is on connector design and specification => no automation
Converter synthesis [Passerone et al. 2002]

they assume an “inconsistency-free” specification of the converter
Generation of component adapters [Canal, Poizat, Salatin 2008]

it requires to know many implementation details about the adaptation



