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ABSTRACT
Workflow systems are more and more common due to the automa-
tion of business processes. The automation of business processes
enables organizations to simplify their processes, improve services
and contain costs. A problem with using workflow systems is that
processes once known by heart, are now hidden from the user. This,
combined with time pressure, lack of experience and an abundance
of options, makes it harder for a user to make the right choices.
To aid users of these systems, we have developed a multi-user
rule-based problem-solving framework that can be instantiated for
many workflow systems. It provides hints to the end user on how to
achieve her goals and makes life for the programmer easier, as she
only needs to instantiate the framework instead of programming
an ad-hoc solution. Our approach consists of two parts. First, we
present a domain-specific language (DSL) that offers commonly
used constructs for combining components of different rule-based
problems. Second, we use generic search algorithms to solve vari-
ous kinds of problems. We show a practical implementation with
an example workflow system. We show that this system fulfills
several desirable properties.

CCS CONCEPTS
• Theory of computation → Formal languages and automata
theory.

KEYWORDS
Functional programming, iTasks, Domain specific languages, Work-
flows
ACM Reference Format:
Nico Naus and Johan Jeuring. 2020. End-user feedback in multi-user work-
flow systems. In The 32nd symposium on Implementation and Application of
Functional Languages. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/1122445.1122456

1 INTRODUCTION
Due to the automation of business processes, more and more work-
flow systems are being used to manage and perform tasks. The
Dutch coastal guard uses a workflow system to monitor the seas
and to aid in emergencies [17]. Hospitals use systems like EPIC or
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for profit or commercial advantage and that copies bear this notice and the full citation
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fee. Request permissions from permissions@acm.org.
IFL2020, 2020, Kent, UK
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
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WebPT to manage patients, assign tasks and monitor treatment.
Teachers use intelligent tutoring systems to give students immedi-
ate and personalised feedback on their exercises.

A downside of using workflow systems is that a process that was
once known by heart, is now hidden from the user. This, combined
with the fact that there might be time pressure, lack of experience
or an abundance of options, makes it harder for end users to make
the right choices between different options and to achieve the goal
a user has in mind.

To overcome this problem, we want to assist a user in reaching
her goals more efficiently. This is commonly done by employing a
decision support system (DSS) [29]. Many different types of DSS
exist, but they have several components in common. A DSS has
some model that represents the domain in which a decision needs
to me made. Using data about the current situation, together with
the model, some kind of analysis is performed. The specific analysis
used differs per DSS. Based on the results of the analysis, the DSS
suggests a decision to the user.

Using a DSS has many advantages [24]. The productivity of
individual users is improved. Users spend less time on the adminis-
trative aspects of the tasks they need to perform, and spend less
time manipulating data. The quality and speed of the decisions is
increased. Time spent on retrieving decision-relative information
is reduced, and fact-based decision making is stimulated.

Traditional DSS have several downsides. First of all, since a DSS
relies on a model of the problem, these systems are very rigid. If the
problem is not modelled, the DSS cannot be used. When the problem
or the domain are altered or expanded, a programmer needs to go
back and change the model accordingly. A second downside is the
large financial investment that is required [24].

To overcome the downsides of using a DSS, while still being able
to enjoy its benefits, we present a multi-user rule-based problem
solver. Our system consists of two parts; a domain-specific language
(DSL) that allows programmers to express multi-user rule-based
problems, and several generic solving algorithms that calculate
traces to the goal, from which hints can be produced.

The advantage of our system is that it is much easier to model
a multi-user rule-based problem. On top of that, once the model
has been described, there is no need to develop a custom analysis.
Once the model has been expressed in our DLS, one of the generic
solving algorithms can be used to find a solution.

In previous work [19], we have presented a single-user rule-
based problem-solving framework with a practical implementation.
This paper presents both a formal multi-user rule-based problem-
solving framework, as well as a practical implementation. The trace
semantics of the framework is shown to be sound and complete
with respect to the regular semantics of our DSL, using a property
verification tool.
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2 PROBLEM DESCRIPTION
Our goal is to describe a generic framework for autonomously
generating hints that end-users of workflow systems can use to
achieve their goal(s). By a workflow system we mean a system
that automates workflows, allows multiple users to collaborate, and
works on some kind of shared data.

Van der Aalst et al. [2] have identified common patterns of work-
flow systems. We will use this set to specify constructs used in
workflow systems.

2.1 Constructs
The following constructs are common in most workflow systems.

Sequence Perform activities one after the other.
Parallel Split Perform multiple activities at the same

time.
Exclusive Choice Choose exactly one activity from a list.
Milestone Make an activity available when the

state is in a certain condition.
Interleaving Perform activities in an arbitrary order.
Multi-Choice Choose one or more activities from a

list.
Arbitrary Cycles Repeat part of a workflow an arbitrary

number of times.
In traditional workflow systems, steps can pass data along to the

next step, as well as work on shared data. We simplify our model
of workflow systems to only consider shared data. Therefore we
do not need constructs like explicit synchronisation points and
discriminators, as described by van der Aalst et al. Steps can imme-
diately observe the result of every other step through the shared
data, instead of having to wait on incoming branches.

In addition to the constructs above, we want to support multiple
users. The most straightforward way to accommodate this is by
means of an Assign construct, which assigns an activity to a user
or possibly a set of users. Such a construct is heavily used in for
example the iTasks workflow framework [23].

2.2 Hints
The purpose of our framework is to give hints to end-users of
workflow systems; information that they can use to achieve their
goal. What is the best treatment to select for a certain patient?
What action needs to be taken when a fire breaks out on a ship?

We use traces consisting of sequences of steps that lead users to
states in which the goal has been reached. From these traces, richer
feedback information can be constructed. For example, next-step
hints can be constructed by returning the first element in the trace.

The traces that we want to generate are composed of sets of
steps per time unit, where multiple users can perform a step in each
time unit. Section 2.2 lists an example of such a trace, where statei
is the state at time i . Application of all steps in one time unit leads
to the next state in the trace.

For this to work properly, we require that all steps performed
in one time unit are independent of each other. This means that
the order of applying steps to the original state does not affect the
resulting state. On top of that, we require that every user performs
at most one step per time unit.

state0

©«
user1 : step1
user2 : step2

ª®®¬
−−−−−−−−−−−−−−−−−−−−→ state1

©«
user1 : step3

user3 : step4

ª®®¬
−−−−−−−−−−−−−−−−−−−−→ state2

Figure 1: A visualization of a trace

2.3 Research question
In the following sections, we will answer the question: how do we,
for any given multi-user workflow problem, calculate traces that
lead to a solution state?

We aim to answer this question by first tackling the issue of
dealing with different multi-user workflow systems. By defining a
domain-specific language that allows for the uniform description
of problems, we can treat each of them in a similar manner. Then,
to calculate the partial traces, we employ search algorithms from
artificial intelligence.

3 PROBLEM FORMALISATION
A multi user workflow problem can be considered a well-defined
artificial intelligence (AI) problem [26], which consists of the fol-
lowing components.

Initial state The state of the problem that you want
to solve.

Operator set The set of steps that can be taken, to-
gether with their effects.

Goal test A predicate that is True if the problem
is solved.

Path Cost function A function that describes the cost of
each operation.

This is similar to workflows: the state of the workflow system is
the initial state, the steps users can take are the operator set, the
goal the user has in mind is the goal test and finally the resources a
workflow uses can be captured in a path cost function.

By choosing a uniform way to describe workflow problems as
well-defined AI problems, we can treat each problem within the
same framework.

Currently, several languages exist to allow programmers to de-
scribe workflow and rule-based problems, but none of them are
completely suitable for our purposes. Workflow languages allow
programmers to model complex behaviour that makes calculating a
path to the goal of a user very complex or even unfeasible. They are
therefore not suitable for our purposes. Existing rule-based problem
modeling languages like PDDL [18], STRIPS [8], SITPLAN [9] and
PLANNER [12] have limitations that prevent us from fully describ-
ing the problems from the workflow domain. These languages do
not support higher order definitions, and most of them only support
a finite state-space. Higher order definitions make it much easier to
reuse code, and reduce the amount of modeling needed to express
a problem. To overcome these disadvantages, we design our own
rule-based problem modeling language.

We opt for a domain-specific language (DSL) that is embedded
in a language that supports higher order programming. This means
that our DSL is expressed in a standard programming language,
called the host language. Embedding a DSL into a host language

2020-08-15 17:35. Page 2 of 1–10.
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RuleTreea = Seq [RuleTreea]
| Choice [RuleTreea]
| Par [RuleTreea]
| Assign u (RuleTreea)
| Leaf (CRa)
| Empty

CRa = Cond (Preda) (CRa)
| Rule n (Effecta)
| u @ (Rule n (Effecta))

Preda = a → Bool
Effecta = a → a
Goala = a → Bool
n ∈ set of names
u ∈ set of user identifiers

Figure 2: Syntax of our rule-based problem DSL

has the specific advantage that we can use all features from the
host language in specifying programs in our DSL. In this case, we
are particularly interested in using abstraction, application and
recursion from the host language.

Figure 2 lists the components of our DSL.
With the DSL, we want to cover all workflow constructs men-

tioned in section 2.1, as well as the elements of a well-defined AI
problem as listed above.

We use a slightly simplified definition of an AI problem however.
If there is a cost associated with a certain operation, we encode this
as an effect on the state. This is the common way to encode these
effects in workflow systems. Therefore, we do not need a path cost
function.

The (initial) state is modelled by a value of type a.
The operator set is represented by a tree structure we call a

RuleTree. This tree structure describes how operations, which we
call rules, relate to each other. There are four ways to combine
RuleTrees; in sequence (Seq), by choosing among them (Choice),
in parallel (Par), or by assigning them to a user (Assign). These
correspond to the workflow constructs sequence, exclusive choice,
parallel split, and user assignment. The Milestone construct is mod-
elled by means of a condition. Interleaving and multi-choice can
be built from these constructs. For arbitrary cycles we rely on the
host language to provide abstraction and application.

The design of the RuleTree DSL is loosely based on strategy
language from the Ideas framework [11], iTask combinators [23],
and the strategy language presented by Visser and others [34].

Finally, the goal test is represented by the predicate Goala. These
three components make up our DSL for describing rule-based prob-
lems.

The leaves of the RuleTree are CRa and Empty. Here, CRa is
either a Cond or an actual rule, where the rule can be assigned to
a user u (u@(Rule n (Effect a))) or unassigned (Rule n (Effect a)),
with n the name of the rule and Effecta the effect of the rule on the
state. Conds can be nested. Rules can be seen as steps, tasks or the
smallest units in which work can be divided.

Conditions are part of the leaves, and guard a CRa, which may
contain another condition. A single leaf is considered to be an
atomic action. This prevents conflicts between rules and conditions
when leaves are executed in parallel.

We implement the DSL as an embedded DSL in Haskell. This
allows us to use standard Haskell functions to construct for ex-
ample a RuleTree. We chose not to implement recursion in our
DSL, but instead make use of recursion in the host language. The
advantage of this is that we can keep our DSL simple and small.
Implementing recursion in the DSL requires adding abstraction
and application, making the DSL significantly more complex. Most
rule-based problem can be encoded in this DSL, and as long as there
is an appropriate solving algorithm available, our framework can
generate hints for it.

3.1 Semantics
Figure 3 defines what it means to apply an entire RuleTree to a
state. The result of the application is a set of end states that can be
reached.

Application of a RuleTree is rather straightforward, except for
the Seq and Par cases. If an error occurs inside a Seq, denoted by  ,
the whole sequence needs to be aborted since the next step does
not become available. This can occur when a condition does not
hold, or when a choice has to be made out of zero elements.

We are only interested in the final states that can be reached,
not in the intermediate states. As a consequence, we can view the
semantics of Par as interleaving of the individual steps contained in
the sub-trees. The function step takes a RuleTree and calculates a
set of tuples containing all steps that can be applied at this point and
the remaining RuleTree. This result is then used by the RuleTree
application to interleave all possible steps, and calculate the final
state.

4 TRACE SEMANTICS
We are not so much interested in the final state that is reached,
but rather in the steps that users can take to transition between
states. To calculate these steps, we use a trace semantics. The trace
semantics consists of two parts, namely the firsts and empty obser-
vations over RuleTrees, and the function traces that makes use of
these observations.

We introduce two new constructs that will be used to define the
two parts.

RuleSet a = P(CR a))
Trace a = Step a (RuleSet a) (Trace a)

| State a

4.1 RuleTree observations
The basis of the trace semantics of our multi-user rule-based prob-
lem consists of the functions F and E, listed in Figure 4 and Figure 5.

The function F (firsts) produces a set of elements of the form
(R̄, rt), where R̄ is a set of CRa-elements. R̄ contains all rules that
are executed at the same time. It contains at most one rule per user
and all rules in this set are independent.

Function E (empty) checks if a RuleTree is empty. A RuleTree
is considered empty if at least one of the applications of the tree
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· : RuleTree a × a → P(a)

(Seq (rt :rts)) · s
| rt · s =  7→  
| rt · s ,  7→ {x | s ′ ∈ rt · s,x ∈ (Seq rts) · s ′}

(Seq [ ]) · s = {s}

(Choice (rt :rts)) · s = rt · s ∪ (Choice rts) · s

(Choice [ ]) · s =  
(Par (rt :rts)) · s
= {(Par (rt ′:rts)) · (r · s) | (r , rt ′) ∈ step rt}

∪{(Par (rt :rts ′)) · (r · s) | (r , rts ′) ∈ step (Par rts)}

(Par [ ]) · s = {s}

(Assign u rt) · s = rt · s

(Leaf (Cond p r )) · s | ¬p s 7→  
| p s 7→ (Leaf r ) · s

(Leaf (Rule n e)) · s = {e s}

Empty · s = {s}

step : RuleTree a → P(RuleTree a × RuleTree a)
step (Seq (rt :rts))
= (

⋃
{step (Seq rts) | (Empty,Empty) ∈ step rt})

∪{(r , Seq (rt ′:rts)) | (r , rt ′) ∈ step rt}

step (Seq [ ]) = {(Empty,Empty)}
step (Choice (rt :rts)) = step rt ∪ step (Choice rts)

step (Choice [ ]) = ∅

step (Par (rt :rts))
= (

⋃
{step (Par rts) | (Empty,Empty) ∈ step rt})

∪{(r , Par (rt ′:rts)) | (r , rt ′) ∈ step rt}

∪{(r ′, Par (rt :rts ′)) | (r ′, Par rts ′) ∈ step (Par rts)}

step (Par [ ]) = {(Empty,Empty)}
step (Assignu rt) = step rt

step Leaf c = {(Leaf c,Empty)}
step Empty = {(Empty,Empty)}

Figure 3: Semantics of RuleTree application

does not execute any rules. For example, the empty list sequence
(Seq [ ]) is empty, since it holds no rules. A tree can be empty
even when F returns a ruleset. This is the case for the RuleTree
Choice [Seq [ ], Rule n e], for example, since when one chooses
the first element, no rule is applied. But F returns a set containing
Rule n e .

Building the set of first rulesets is not trivial in a multi-user
setting. This especially shows in the case of Par. This is due to the
fact that parallel RuleTrees allow multiple users to execute rules at
the same time.

F : RuleTree a × a → P(RuleSet a × RuleTree a)

F (Seq (rt :rts), s)

=


{(R̄, Seq (rt ′:rts)) | (R̄, rt ′) ∈ F (rt , s)}

∪{x | E(rt),x ∈ F (Seq rts, s)} F (rt , s) .  
 F (rt , s) ≡  

F (Seq [ ], s) = ∅

F (Choice (rt :rts), s) = F (rt , s) ∪ F (Choice rts, s)

F (Choice [ ], s) =  
F (Par [rt1, · · · , rtn ], s)
= {(R̄, Par [rt ′1, · · · , rt

′
n ])

| (R̄i , rt
′
i ) ∈ (F (rti , s) ∪ {(∅, rti )})

, R̄ = R̄1 ∪ · · · ∪ R̄n

, R̄ , ∅

, ∀ux@ri ,uy@r j ∈ R̄ : ri (r j · s) = r j (ri · s)
, ∀ux@rp ,uy@rq ∈ R̄ : rp , rq ⇒ ux , uy }

F (Par [ ], s) = ∅

F (Assign u rt , s) = F (applyAssign(rt ,u), s)
F (Leaf c, s) = {({c},Empty)}
F (Empty, s) = ∅

Figure 4: Semantics of the firsts observation F

E : RuleTree a → Bool
E (Seq (rt :rts)) = E (rt) ∧ E (Seq rts)

E (Seq [ ]) =True
E (Choice (rt :rts)) = E (rt) ∨ E (Choice rts)

E (Choice [ ]) = False
E (Par (rt :rts)) = E (rt) ∧ E (Par rts)

E (Par [ ]) =True
E (Assign u rt) = E (rt)

E (Empty) =True
E (Leaf c) = False

Figure 5: Semantics of the empty observation E

To calculate F (Par rts, s), we calculate F for every RuleTree
that is executed in parallel. Since we do not have to execute a
rule from every parallel RuleTree at each step, we add the empty
ruleset with the original RuleTree ((∅, rti )) to the set of F . For each
RuleTree rti in rts , we now pick one element of this F set that
also contains the empty ruleset. Then, we put all the selected rules
for each rti together to build the total ruleset R̄. The remaining
RuleTree is built by concatenating all rt ′i elements. These could just
be the original RuleTree rti , if the selected element was the empty
set.

2020-08-15 17:35. Page 4 of 1–10.
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· : RuleSet a × a → a

R̄ · s =


R̄ \ {Leaf (u @ (Rule n e))} · (e s) Leaf (u @ (Rule n e)) ∈ R̄

R̄ \ {Leaf (Rule n e)} · (e s) Leaf (Rulen e) ∈ R̄

R̄ \ {Leaf (Cond p c)} · (c · s)) Leaf (Cond p c) ∈ R̄,p s

 Leaf (Cond p c) ∈ R̄,¬(p s)

 ∪  =  
A ∪  = A

 ∪A = A

A ∪ B = {x | x ∈ A ∨ x ∈ B}

applyAssign : RuleTree a × User → RuleTree a

applyAssign(Seq [rt1, · · · , rtn ],u) = Seq [Assign u rt1, · · · ,Assign u rtn ]

applyAssign(Choice [rt1, · · · , rtn ],u) = Choice [Assign u rt1, · · · ,Assign u rtn ]

applyAssign(Par [rt1, · · · , rtn ],u) = Par [Assign u rt1, · · · ,Assign u rtn ]

applyAssign(Leaf (Cond p c),u) = Leaf (Condp (Assign u r ))

applyAssign(Assign u2 rt ,u1) = Assignu2 rt

applyAssign(Leaf r ,u) = Leaf (u@r )

applyAssign(Empty,u) = Empty

Figure 6: auxiliary definitions

traces : RuleTree a × a → P(Trace a)

traces (rt , s) =


{State s | E (rt)}

∪{s
R̄
−→ x | (R̄, rt ′) ∈ F (rt , s), x ∈ traces (rt ′, R̄ · s)} F (rt , s) ,  

∅ F (rt , s) =  

Figure 7: Definition of the traces function

Three conditions must hold for any R̄. First, we require R̄ to be
non-empty. Second, we require every pair of elements in R̄ to be
independent, meaning that the order of application to s does not
influence the resulting state. And third, we verify that there is at
most one rule assigned to every user.

Function F relies on several auxiliary functions listed in Figure 6.

4.2 Traces of RuleTrees
Now that we have defined the firsts and empty observation, the
traces function can be constructed. Figure 7 lists the definition of
this function.

The function traces takes a RuleTree and state, and returns the
set of all possible traces. F is called on the RuleTree. This returns
a ruleset, paired with the remaining RuleTree. These rulesets repre-
sent every possible action that can be taken. For each ruleset, a new
state is calculated by applying the set to the current state. Then
traces is calculated recursively to calculate the rest of the trace.
When a RuleTree is empty (E(rt)), the trace is completed, and the
current state is returned.

This completely describes our trace semantics.

5 SOLVING ALGORITHMS
For the purpose of constructing hints, traces are of limited interest.
A RuleTree includes all steps that can be taken, and therefore pos-
sibly also incorrect steps. Instead, we would like to obtain traces
that end in a state that satisfies the goal the user is trying to reach.

To achieve this, we develop several solving algorithms. All algo-
rithms return traces that may not completely apply the RuleTree,

as opposed to the traces function, which only returns traces that
have fully applied the RuleTree.

5.1 Breadth First Trace
The first algorithm we introduce is a breadth first trace algorithm,
BFTrace. It performs a breadth first search, to find a state that
satisfies the goal condition д. Figure 8 lists its definition.

Going over the definition from top to bottom, one of three cases
applies.

• If the goal is satisfied, the set containing only the current
state is returned.

• If there exists one or more expansions that satisfy the goal,
the traces that belong to those expansions are returned.

• If none of the expansions satisfies the goal test, BFTrace is
called recursively.

5.2 Heuristic Trace
A possible disadvantage of the breadth first trace is that it expands
all traces, and can be very slow or even infeasible, depending on
the complexity of the problem. An often used solution is to perform
a best first search. This method uses a heuristic function to score
each expansion, and then selects the best state to further expand. If
in the set of current expanded traces e there is an expansion that
fulfills the goal condition, it is returned, else we recurse on the
expansions that have the lowest heuristic score. The definition of
our heuristic trace function is given in Figure 9.

hTrace takes as argument a tuple containing the goal test д, a
heuristic scoring function h and the set of current expansions e . We

2020-08-15 17:35. Page 5 of 1–10.
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BFTrace : Goal a × RuleTree a × a → P(Trace a)
BFTrace (д, rt , s) | д s 7→ {State s}

| ¬д s,∃(R̄, rt ′, s ′) ∈ expand (rt , s) : д s ′ 7→ {s
R̄
−→ State s ′ | (R̄, rt ′, s ′) ∈ expand (rt , s),д s ′}

| ¬д s,∀(R̄, rt ′, s ′) ∈ expand (rt , s) : ¬(д s ′) 7→ {s
R̄
−→ x | (R̄, s ′, rt ′) ∈ expand (rt , s),x ∈ BFTrace (д, rt ′, s ′)}

Figure 8: BFTrace search algorithm definition

hTrace : (Goal a) × (a → Integer) × P(RuleTree a × a × Trace a) → P(Trace a)
hTrace (д,h, e) | ∃(rt , s,x) ∈ e : д s 7→ {x | (rt , s,x) ∈ e,д s}

| ∀(rt , s,x) ∈ e : ¬д s 7→ hTrace (д,h, lowExp ∪ high)

where

high = {(rt , s,x) | (rt , s,x) ∈ e,∀(_, si , _) ∈ e : h s > h si }
low = {(rt , s,x) | (rt , s,x) ∈ e,∃(_, si , _) ∈ e : h s ≤ h si }

lowExp = {(rt ′, s ′,x
R̄
−→ State s ′) | (rt , s,x) ∈ low, (R̄, rt ′, s ′) ∈ expand (rt , s)}

Figure 9: hTrace search algorithm definition

require h to be a monotonically decreasing function, which returns
a lower value as the state comes closer to the desired goalд. Initially,
this set will contain only one element, namely (rt , s, Leaf s), where
rt is the initial RuleTree, s the initial state, and Leaf s the trace
that just contains the current state. If the set of current expansions
contains one or more traces that lead to the goal, the algorithm
returns those traces. If none of the expansions satisfies the goal,
the expansions are scored using the scoring function h, and divided
into two sets, one containing the lowest scoring expansions, and
one containing the others. The lowest scoring expansions are then
expanded. hTrace is called recursively on the union of the expanded
traces and the low scoring traces.

6 IMPLEMENTATION
Our framework has been implemented in Haskell. Haskell is a
purely functional programming language. It has a static type system
and lazy evaluation. While this helps with the implementation, it is
not crucial to the realisation of the system.

1 firsts :: Eq a => RuleTree a −> a
2 −> Maybe[(RuleSet a, RuleTree a)]
3 empty :: RuleTree a −> Bool
4 expand :: Eq a => RuleTree a −> a
5 −> Maybe[(RuleSet a, a , RuleTree a)]
6 traces :: Eq a => RuleTree a −> a −> [Trace a]
7

8 BFTrace :: Eq a => (Goal a) −> [(RuleTree a, a , [(a ,RuleSet a )])]
9 −> [Trace a]

10 heuristicTrace :: Eq a => (Goal a) −> (a −> Int)
11 −> [(RuleTree a, a , [(a ,RuleSet a )])]
12 −> [Trace a]

Listing 1: Type signatures of framework implementation

Listing 1 lists the types of the functions that correspond to the
functions described in Sections 3 to 5. The full implementation can
be found online 1.

We have also implemented two examples that use the framework
to generate hints: Tic Tac Toe and a command and control system.
Both examples are included in the full implementation available on-
line. We discuss the command and control example in the following
section.

6.1 Properties of the traces function
To validate our definition of F , E, expand and traces, we want to
show them to be correct.

We do this by verifying the traces function to be sound and
complete with respect to the RuleTree application semantics.

We consider traces to be sound if, for any RuleTree rt and initial
state s , there exists an end state in the result of rt · s that is equal
to the end state reached by every trace in traces(rt , s).

We consider traces to be complete if for all elements in the set
of end states from the application of the RuleTree, there exists an
element from traces, such that the end state of this trace is equal to
the element of the end state set. Instead of showing soundness and
completeness separately, we verify Conjecture 6.1, from which we
can deduce the two.

Conjecture 6.1 (Correctness of traces). For all RuleTrees rt
and states s we have:

{sn | s
R̄1
−−→ · · ·

R̄n
−−→ sn ∈ traces (rt , s)} = rt · s .

We verify that our implementation works correctly by testing
the correctness properties as formulated in Conjecture 6.1, using

1https://github.com/niconaus/rule-tree-semantics
2020-08-15 17:35. Page 6 of 1–10.
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Figure 10: Rendering of an example initial state for the
simplified Command & Control system with two workers:
Janeway and Chakotay

QuickCheck [7]. QuickCheck generates random test cases for prop-
erties, based on the type signature of the input of a property. The
translation of this Conjecture to Haskell is listed in listing 2.

1 rtEquality :: RuleTree [Int] −> [Int] −> Property
2 rtEquality rt s = ( fromList ( traceS rt s ))
3 === ( fromList (appS rt s ))

Listing 2: Correctness property expressed in Haskell

6.2 Command & Control system
We take a look at a Command & Control application that was
developed in cooperation with the Netherlands Royal Navy [31].
The goal of this application is to model workflows on board a navy
ship. This includes workers, sensors, mission goals, resources and
systems. Tasks can be assigned to users working on the vessel, and
sensors are used to monitor the current situation.

For the sake of this example, we use a simplified version of the
complete ship application. Workers can walk around the ship. When
a fire breaks out, the workers have to walk to an extinguisher, pick
it up, walk to the fire, and put it out. A visual representation of this
example is shown in Figure 10.

The code below shows how we describe the problem in our
DSL. Only the most important definitions are given. For the goal
and heuristic functions, only the type signature is given here. The
complete definitions can be found online 2.

1 data SimulationState = SimulationState [[Room]]
2 (M.Map User Agent)
3

4 data User = User String
5 data Agent = Agent RoomNumber −− Current position
6 Inventory
7 User −− User that controls Agent
8

9 data Room = Room RoomNumber
10 (Int , Int) −− Room coordinates
11 [ Exit ] −− Rooms it has doors to
12 Inventory
13 RoomState
14 Int −− Room depth
15

16 data Exit = ENorth RoomNumber
17 | EEast RoomNumber

2https://github.com/niconaus/rule-tree-semantics

18 | ESouth RoomNumber
19 | EWest RoomNumber
20

21 data Inventory = NoItem | Extinguisher
22 data RoomState = Normal | Fire
23

24 shipTree :: RuleTree SimulationState
25 shipTree = Parallel (map (\usr −> Assign usr
26 ( shipSimulation usr ))
27 [Janeway, Chakotay])
28

29 shipSimulation :: User −> RuleTree SimulationState
30 shipSimulation usr
31 = times 10
32 (Choice
33 [ Leaf (Condition (canPickup usr) (pickUp usr ))
34 , Leaf (Condition (canExtinguish usr )
35 , Choice (map (\ x −> (Leaf
36 (Condition (canMove usr)
37 (Rule (show x)
38 (applyMove usr x )))))
39 [1..10])])
40

41 shipState :: SimulationState
42 shipNotOnFire :: Goal SimulationState
43 shipHeuristic :: SimulationState −> Int
44

45 solveShip = heuristicTrace shipNotOnFire
46 shipHeuristic
47 [( shipTree , shipState , [])]

The first line models the state, and shipTree expresses the
RuleTree, with the help of shipSimulation.

Assuming the system itself is also implemented in Haskell, the ex-
isting code from the implementation can be used when defining the
RuleTree. Functions like pickUp, canExtinguish and applyMove
can be the exact same code as the system implementation.

shipNotOnFire is the goal condition, and shipHeuristic is
the heuristic used to score each state. To solve this problem, we
plug these functions into the generic heuristicTrace algorithm,
together with the RuleTree and a state, as shown on the last line.
When we execute solveShip, we get back a trace that will lead
the workers on the ship to the quickest way to extinguish all fires,
if possible. If there is only a single fire, instructions for only one
user will be generated. If there are multiple fires, both workers will
perform actions at the same time, as described by the ruleTree.

This example clearly shows the advantage of our system: a pro-
grammer only needs to define the problem by describing it as a
ruleTree, possibly reusing existing code, come up with a goal func-
tion and a heuristic, and then gets a multi-user solver for free.

7 RELATED WORK
A lot of work exists that attempts to assist users of workflow sys-
tems, from many different angles.

2020-08-15 17:35. Page 7 of 1–10.
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7.1 Assistive TopHat
In earlier work, we have presented a different approach to generate
next-step hints for workflow systems, called Assistive TopHat [20].
Instead of letting the programmer relate the existing workflow to
a generic flow structure, the structure of the workflow language
itself is utilized. A symbolic execution engine developed previously
for the workflow language TopHat [21] is used to generate all paths
towards a user defined goal. From these paths, next-step hints are
constructed and returned to the user.

The major downside of this approach is that a symbolic execu-
tion engine has to be either available or to be build for the target
workflow language. The approach presented in this paper works for
most workflow systems, and only requires programmers to relate
their system to the RuleTrees.

7.2 Rule-based problem modelling
We follow in a long tradition of creating (domain-specific) languages
that allow programmers to model rule-based problems, such as
planning problems. Some of the early languages written for this
purpose are STRIPS [8], PLANNER [12] and SITPLAN [9]. Most of
these are based on the same principles as our approach, namely to
describe state, operator set and goal test. For example, a STRIPS
problem is defined as ⟨P ,O, I ,G⟩, where P is the set of states the
problem can be in, O the set of operators, I the initial state, and G
the goal state [6].

A more recent language is PDDL [18]. Version one of the lan-
guage, from 1998, consists of a domain description, action set, goal
description and effects. Again, these ideas coincide with our notion
of a problem formalization. The PDDL standard has been updated
several times [14], and there are many variants currently in use.
These variants include MA-PDDL [15], which can deal with multi-
ple agents, and PPDDL [35], which supports probabilistic effects.

The language we present is different from all of the aforemen-
tioned languages in several ways. Our language is a DSL, embedded
in Haskell. This means that the programmer can use the full power
of Haskell when constructing the problem description in our DSL.
The languages mentioned above are not embedded in any language
and therefore the programmer is limited to the syntax of the DSL in
constructing the problem description. Another big difference is the
fact that in all of the other languages mentioned, except PDDL, the
state-space is finite. For example, in SITPLAN, part of the problem
description is a finite set of possible situations, and in STRIPS, the
set of states is defined as a finite set of conditions that can be either
true or false. In our DSL, we do not limit the set of possible states.
This allows us to describe many more problems in our DSL, but at
the same time makes solving them harder.

The second part of our approach is to solve the problem described
in our DSL. Comparing to other approaches, both SITPLAN and
PDDL rely on general solvers, just like our approach. In fact, PDDL
was initially designed as a uniform language to compare different
planning algorithms in the AIPS-98 competition [18]. STRIPS and
PLANNER however, do include a specific solving algorithm.

For each of the frameworks that we discussed in this section,
there has been some research on generically solving problems. The
Ideas framework includes a set of feedback services to generate
hints for the user. For example, the basic.allfirsts service generates

all steps that can be taken at a certain point in the exercise [10]. For
the iTasks framework, a system was developed to inspect current
executions by using dynamic blueprints of tasks [30]. It can give
additional insight in the current and future states, but does not act
as a hint-system and does not take a goal into account.

7.3 Workflow Analysis
Our work is also related to tools that analyse workflow systems.
Basu and Blanning introduce metagraph [4] to describe workflows
so that they can be better evaluated. Other approaches apply work-
flow mining to evaluate implementations [1]. Stutterheim et al. [32]
present a system for generating visualisations from the source code
of workflow systems implemented in the iTasks workflow frame-
work. Their system Tonic also features dynamic inspection and
limited path prediction. These approaches do not use their analyses
to assist the end-user. Instead they focus on workflow and business
optimisation from the system design perspective.

Research has also been done on systems that help end users
in making choices. These decision support systems usually lever-
age some artificial intelligence approach like probabilistic reason-
ing [22] or planning [13]. These are all solutions that are custom
made for a specific workflow system instance.

7.4 Decision Support Systems
As mentioned in the first section of this paper, a Decision Support
System is defined as a system that models a certain domain and
then assists the user in making choices by using analysis techniques
[29]. There exists a great variety in both domains where DSSs are
applied, as well as their implementation. Clinical DSSs support
making decisions about the treatment of individual patients [5].
There are agricultural DSSs aimed to improve land use, planning
and management of soil [25]. The biggest area of application is
management and business [33]. Here, DSSs help managers make
the right choices faster, better allocate resources or identify trends.

The basic design of a DSS consists of some representation of the
domain, a reasoning engine and a way to communicate with the
user.

Using a DSS has many advantages [24]. It improves the produc-
tivity of individuals, improves the quality of decisions and the speed
with which they are made. Organizational control is improved, as
well as communication between workers.

Employing a DSS comes with several challenges. First of all,
there is a large financial risk involved, since it requires a significant
investment [24]. The model that is used in the DSS limits the appli-
cability of the system. When the domain or the problem changes,
the model needs to be updated as well. Social issues may come up
as well, workers may resist the change that comes with a DSS.

7.5 Electronic Performance Support Systems
Electronic Performance Support Systems (EPSS) focus on workers
or individuals that have to achieve a certain goal or complete a task,
but who do not yet have sufficient knowledge or are not sufficiently
skilled yet. They facilitate on the job training by providing the user
with just-in-time information on the task that they are working on
[27].

2020-08-15 17:35. Page 8 of 1–10.
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An EPSS is typically composed of a user interface, giving access
to generic tools like documentation and help systems, and applica-
tion specific support tools such as tutorials [3]. Usually, the EPSS
is geared towards the specific domain it is being used in, a certain
business setting for example.

An EPSS can provide workers with just in time information
on how to perform certain tasks. It cannot however assist hem in
making decisions based on the precise situation that they are in.
Only general documentation, help and guidelines can be offered.

The aim of our next-step hint system is not necessarily to provide
training to workers, but to assist them with a specific goal and
situation.

8 CONCLUSIONS
In this paper, we have demonstrated how to construct a complete
and sound framework for calculating hints for multi-user workflow
systems. By means of a DSL, we are able to describe problems
in a uniform way, and make them tractable to generic solving
algorithms. These algorithms produce traces that lead to the goal of
the user. Besides a formal system, we have also presented a practical
implementation. We have implemented two examples, one of which
we have described in this paper.

To our knowledge, we are the first to describe a workflow solv-
ing system that works generically on a broad range of problems
structured in a workflow.

8.1 Future work
Following the research presented in this paper, we see four different
questions remaining.

8.2 iTasks integration
Currently, iTasks is the most used Task Oriented Programming
(TOP) implementation. This programming paradigm calls the small-
est pieces of work performed in a workflow environment tasks.
These tasks are combined into bigger tasks using a combinator
language. This programming structure makes it very suitable for
the techniques described in this paper. The example presented in
this paper is quite ad-hoc; programmers need to relate their struc-
ture to the RuleTree structure for each workflow system separately.
The RuleTree structure could instead be integrated in the iTasks
language to allow programmers to integrate the rule-based problem
description in the actual task specification.

8.3 Hint presentation
The current implementation is a mere proof of concept. It is possible
to calculate next-step hints, but there is currently no way to display
hints in a user friendly manner. The information calculated by
the system potentially contains duplicate hints and redundant or
irrelevant information.

The same holds for the user defined goals, there is no user
friendly way to set a goal. When implementing the hint frame-
work into real-world applications, some research has to be done to
determine how to display end-user hints and how to set goals.

8.4 Testing the effect of hints
The effectiveness of hints has been shown in other research, espe-
cially in the intelligent tutoring community [16, 28]. To validate
the approaches proposed in this paper, it would be interesting to
conduct empirical studies. This would allow us to determine the
effectiveness of next-step hints in workflow systems.

8.5 Other kinds of feedback
In this paper, we focus mainly on providing next-step hints. Of
course, there are many other possible forms of feedback.

In certain cases, it might be that a more general hint is more
didactically effective. For example, when solving a math problem, it
could be more useful to first tell a student what approach she could
try, before actually suggesting a concrete step.

In interactive programs, it might be the case that certain steps
are not available to a user. It would be useful to inform the user,
why a step is unavailable. For example, it could be that she needs
to wait on her colleague to perform some action.

A different angle would be to look at managers’ information. It
is possible to build a manager’s overview with information on the
progress of tasks in an ad-hoc manner, but we are also interested
in developing a more generic way to offer managers feedback.

REFERENCES
[1] Wil M. P. van der Aalst. 2011. Process Mining - Discovery, Conformance and

Enhancement of Business Processes. Springer.
[2] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and

Alistair P. Barros. 2003. Workflow Patterns. Distributed and Parallel Databases
14, 1 (2003), 5–51.

[3] Philip Barker and Ashok Banerji. 1995. Designing electronic performance support
systems. Innovations in Education and Training International 32, 1 (1995), 4–12.

[4] Amit Basu and Robert W. Blanning. 2000. A Formal Approach to Workflow
Analysis. Information Systems Research 11, 1 (2000), 17–36.

[5] Eta S Berner and Tonya J La Lande. 2007. Overview of clinical decision support
systems. In Clinical decision support systems. Springer, 3–22.

[6] Tom Bylander. 1994. The Computational Complexity of Propositional STRIPS
Planning. Artificial Intelligence 69, 1-2 (1994), 165–204.

[7] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ICFP’00. 268–279.

[8] Richard Fikes and Nils J. Nilsson. 1971. STRIPS: A New Approach to the Applica-
tion of Theorem Proving to Problem Solving. Artificial Intelligence 2, 3-4 (1971),
189–208.

[9] N.I. Galagan. 1979. Problem description language SITPLAN. Cybernetics and
Systems Analysis 15, 2 (1979), 255–266.

[10] Bastiaan Heeren and Johan Jeuring. 2014. Feedback services for stepwise exercises.
Science of Computer Programming 88 (2014), 110–129.

[11] Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. 2010. Specifying Rewrite
Strategies for Interactive Exercises. Mathematics in Computer Science 3, 3 (2010),
349–370.

[12] Carl Hewitt. 1969. PLANNER: A Language for Proving Theorems in Robots.
In Proceedings of the 1st International Joint Conference on Artificial Intelligence.
295–302.

[13] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998.
Planning and Acting in Partially Observable Stochastic Domains. Artificial
Intelligence 101, 1-2 (1998), 99–134.

[14] Daniel L. Kovacs. 2011. BNF definition of PDDL 3.1. (2011).
[15] Daniel L. Kovacs. 2012. A Multi-Agent Extension of PDDL3. WS-IPC 2012 (2012),

19.
[16] James A Kulik and JD Fletcher. 2016. Effectiveness of intelligent tutoring systems:

a meta-analytic review. Review of Educational Research 86, 1 (2016), 42–78.
[17] Bas Lijnse, Jan Martin Jansen, and Rinus Plasmeijer. 2012. Incidone: A Task-

Oriented Incident Coordination Tool. In Proceedings of ISCRAM.
[18] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL-the planning
domain definition language. AIPS-98 planning committee 3 (1998), 14.

[19] Nico Naus and Johan Jeuring. 2017. Building a generic feedback system for
rule-based problems. In Trends in Functional Programming - 17th International

2020-08-15 17:35. Page 9 of 1–10.

9



Unpu
bli

shed
work

ing dra
ft.

Not
for

dis
trib

utio
n.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

IFL2020, 2020, Kent, UK Naus and Jeuring

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Symposium, TFP 2016. Springer.
[20] Nico Naus and Tim Steenvoorden. 2020. Generating next step hints for task

oriented programs using symbolic execution. In Trends in Functional Programming
- 21st International Conference, TFP’20.

[21] Nico Naus, Tim Steenvoorden, and Markus Klinik. 2019. A symbolic execution
semantics for Tophat. In IFL’19 (accepted for publication).

[22] Judea Pearl. 1989. Probabilistic reasoning in intelligent systems - networks of
plausible inference. Morgan Kaufmann.

[23] Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter W. M.
Koopman. 2012. Task-oriented programming in a pure functional language. In
Principles and Practice of Declarative Programming, PPDP’12. 195–206.

[24] Daniel J Power. 2002. Decision support systems: concepts and resources for managers.
Greenwood Publishing Group.

[25] Diego de la Rosa, Francisco Mayol, Elvira Díaz-Pereira, Miguel Fernandez, and
Diego de la Rosa Jr. 2004. A land evaluation decision support system (MicroLEIS
DSS) for agricultural soil protection: With special reference to the Mediterranean
region. Environmental Modelling and Software 19, 10 (2004), 929–942.

[26] Stuart J. Russell and Peter Norvig. 2010. Artificial Intelligence - A Modern Approach
(3. internat. ed.). Pearson Education.

[27] Paul Van Schaik, Robert Pearson, and Philip Barker. 2002. Designing electronic
performance support systems to facilitate learning. Innovations in Education and
Teaching International 39, 4 (2002), 289–306.

[28] Ramesh Sharda, Steve H Barr, and James C MCDonnell. 1988. Decision support
system effectiveness: a review and an empirical test. Management science 34, 2
(1988), 139–159.

[29] Jung P. Shim, Merrill Warkentin, James F. Courtney, Daniel J. Power, Ramesh
Sharda, and Christer Carlsson. 2002. Past, present, and future of decision support
technology. Decision Support Systems 33, 2 (2002), 111–126.

[30] Jurriën Stutterheim, Peter Achten, and Rinus Plasmeijer. 2015. Static and Dy-
namic Visualisations of Monadic Programs. In Implementation and Application of
Functional Languages, IFL’15. 1–13.

[31] Jurriën Stutterheim, Peter Achten, and Rinus Plasmeijer. 2016. C2 Demo. (2016).
[32] Jurriën Stutterheim, Rinus Plasmeijer, and Peter Achten. 2014. Tonic: An In-

frastructure to Graphically Represent the Definition and Behaviour of Tasks.
In Trends in Functional Programming - 15th International Symposium, TFP’14.
122–141.

[33] Efraim Turban. 1988. Decision support and expert systems: Managerial perspectives.
Macmillan.

[34] Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building
Program Optimizers with Rewriting Strategies. In Proceedings of the third ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98). 13–26.

[35] Hakan L.S. Younes and Michael L. Littman. 2004. PPDDL1. 0: The language for
the probabilistic part of IPC-4. In Proc. International Planning Competition.

2020-08-15 17:35. Page 10 of 1–10.

10



Asynchronous Shared Data Sources
Mart Lubbers

Institute for Computing and Information Sciences
Radboud University

Nijmegen, The Netherlands
mart@cs.ru.nl

Haye Böhm
Institute for Computing and Information Sciences

Radboud University
Nijmegen, The Netherlands

haye.bohm@gmail.com

Pieter Koopman
Institute for Computing and Information Sciences

Radboud University
Nijmegen, The Netherlands

pieter@cs.ru.nl

Rinus Plasmeijer
Institute for Computing and Information Sciences

Radboud University
Nijmegen, The Netherlands

rinus@cs.ru.nl

ABSTRACT
to appear

KEYWORDS
Task Oriented Programming, Uniform Data Sources, Functional
Programming, Distributed Applications, Clean
ACM Reference Format:
Mart Lubbers, Haye Böhm, Pieter Koopman, and Rinus Plasmeijer. 2021.
Asynchronous Shared Data Sources. In Proceedings of International Sympo-
sium on Implementation and Application of Functional Languages (IFL’20).
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Complex applications deal with many different types of data. These
data sources may represent data from the system itself, a database,
shared memory, external data streams or even physical data re-
trieved by a person. Consequently, each data source has different
intrinsic properties, methods and swiftness of accessing and may
therefore require each their own separate interface.

Shared Data Sources (SDSs) are an extension of Uniform Data
Sources (UDSs) [3] and provide an atomic, uniform and compos-
able interface over abstract data for functional languages. This
abstract data can be anything ranging from data in a state, inter-
action with the file system to system resources such as time and
random numbers. SDSs are wholly defined by their atomic read
and write functions, i.e. given a linear state, they either read or
write the source and yield the state again and no synchronisation
is required. Furthermore, by slightly defunctionalising the read and
write functions a first-order parametric view can be created with
which it is possible to implement a lean and mean notification mech-
anism [1]. These properties make them suitable for Task Oriented
Programming (TOP) frameworks such as iTask [4] and mTask [2]
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL’20, September 2020, Kent
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to share data between tasks. A downside of this data model is that
access to the underlying data is synchronous. In other words, it
finishes in one go and while doing so, everyone else has to wait.
This makes it strenuous to implement data sources for which the
operations might depend on Operating System (OS) functionality
such as select.

1.1 Research contribution
The research contribution of this paper are two extensions to the
SDSs:

• The deeply embedded DSL housing the SDSs is changed
to a class-based embedding allowing for finer control and
combinators with more precise constraints.

• The functions for the SDS operations are changed to rewrit-
ing functions making the SDSs asynchronous (ASDSs). A
server can then choose to interleave operations so that it can
do things while operations are in progress in the background.

• A proof of concept implementation of the novel model in
the iTasks framework showing practical ASDSs modelling
data from the internet or interleaved calculations.

2 SHARED DATA SOURCES
2.1 Uniform Data Sources
UDSs are housed in a single data structure parametrized by a read
and write type and the monad in which they operate. All construc-
tors of the type represent a type of UDS or combinator. For example,
the following constructors contain UDS definitions for sources that
read directly in the monad and write in it.

:: UDS m r w = Source (m r) (w � m ())
| ∃r ′ w′ : CRead (UDS m r ′ w) (r ′ � UDS m r w′)
| . . .

The read and write functions operate on this data type. In practice
these functions contain some error handling as well.

11



IFL’20, September 2020, Kent Mart Lubbers, Haye Böhm, Pieter Koopman, and Rinus Plasmeijer

read :: (UDS m r w) � m r
read (Source rfun _) = rfun world
read (CRead sds rfun) = read sds >>= read . rfun
read . . .

write :: w (UDS m r w) � m ()
write w (Source _ wfun) = wfun w
write w (CRead sds _) = write w sds
write . . .

In single threaded systems such as the iTask system, UDSs can
be used for SDSs as well. The read and write operations are atomic
for the threaded unique state, hence all data sources are under the
exclusive control of the iTask server and no synchronisation is
necessary.

2.2 Parametric Lenses
Parametric lenses are an extension to SDSs allowing the program-
mer to focus on parts of the data. By defunctionalising the SDS
combinators, parts of the shared data can be read, written and a
task can be notified when a relevant portion of the share changes.
The parameter of the SDS is added as an extra type parameter to
the datatype:

:: SDS m p r w = Source (p � m r) (p w � m())
| ∃p′ r ′ w′ : LensRead (SDS m p′ r ′ w′) (p � p′)

(p r ′ � r) (p w r ′ � w′)
| . . .

3 CLASS-BASED SHARED DATA SOURCES
Lifting the SDS access functions to classes allows every type of
SDS to be defined in their own datatype. This increases modularity
since it removes the need to revisit the original datatype and update
all of its functionality but allows you to create a new type of SDS
orthogonally.

class Readable sds where
read :: (sds m p r w) � m r | Monad m

class Writable sds where
write :: w (sds m p r w) � m () | Monad m

Furthermore, by parametrising the SDS datatype with the SDS
type of the possible children, fine-grained constraints can be placed
on the class instances as is shown later. For example, the Source
SDS can now be defined by just combining a ReadSource and a
WriteSource and putting them in a datatype.

:: ReadSource m p r w = ReadSource (p � m r)
:: WriteSource m p r w = WriteSource (p w � m ())
:: RWPair sdsr sdsw m p r w = RWPair (sdsr m p r w) (sdsw m p r w)

In the previous models, a readonly SDS was just a regular SDS for
which writing was is a no-op. A write only SDS was just a regular
SDS from which only unit could be read. With the novel approach,
these operations are downright impossible because the program
would already be rejected during compilation.

instance Readable ReadSource where . . .

instance Writable WriteSource where . . .

instance Readable (RWPair sdsl sdsr) | Readable sdsl where . . .

instance Writable (RWPair sdsl sdsr) | Writable sdsr where . . .

4 ASYNCHRONOUS SHARED DATA SOURCES
Changing the model to be asynchronous requires changing the
results of the read and write operations. If it happens to be that an
operation is not done yet, a new SDS is yielded that can be used
to continue the operation. This new SDS does not have to be of
the same type as the original SDS but it has to have at least the
same constraint, i.e. Readable for the read operation and Writable
otherwise.

:: ReadResult m p r w = Read r
| ∃.sds : Reading (sds m p r w) & Readable sds

:: WriteResult m p r w = Written ()
| ∃.sds : Writing (sds m p r w) & Writable sds

This approach still allows for the synchronous approach with
helper functions:

getShare :: (sds m () r w) � m r | Monad m & read sds
getShare s = read s () >>= 𝜆v � case v of

Reading s = getShare s
Read r = pure r

setShare :: w (sds m () r w) � m () | Monad m & write sds
setShare w s = write s () w >>= 𝜆v � case v of

Writing s = setShare w s
Written _ = pure ()

5 ASYNCHRONOUS SDSS IN ITASKS
TOP is a declarative programming paradigm...

6 RELATED WORK
To appear

7 CONCLUSION
To appear

8 FUTURE WORK
To appear
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ABSTRACT
Interactive systems can require complex input from their users. A
grammar specifies the allowed expressions in such a Domain Specific
Language, DSL. An algebraic DataType, ADT, is a direct represen-
tation of such a grammar. For most end-users a structured editor
with pull-down menus is much easier to use than a free text editor.
The iTask system can derive such structured editors based on an
ADT using datatype generic programming. However, the input DSL
has often also semantical constraints, like proper use of types and
variables. A solution is to use a shallow embedded DSL or a DSL
based on a Generalized ADT to specify the input. However, such a
specification cannot be handled by datatype generic programming.
Hence, one cannot derive structured editors for such a DSL.

As a solution we introduce structured web-editors that are based
on dynamic types. These dynamic types are more expressive; they
can express the required DSL constraints. In the new dynamic editor
library we need to specify just the dynamic relevant for the DSL. The
library takes care of displaying the applicable instances to the user
and calls itself recursively to create the arguments of the dynamic
functions. In this paper we show how this can be used to enforce
the requires constraints on ADTs, to create structured web-editors
for shallow embedded DSLS, and to create those editors for GADT
based DSLs.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Graphical user interface languages.
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1 INTRODUCTION
Many programs accept quite complex inputs specified by some
Domain Specific Language, DSL, Most domain experts prefer struc-
tured text editors with pull-down menu’s to create an inout over a
free text editor since the structured editor provides more guidance.
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An Algebraic DataType, ADT, can representation of the syntax of
the input language directly. The iTask system can derive structured
web-editors for such an ADT based DSL by generic programming
[3, 4, 6]. This yields a web-editors that yields proper instances of
the ADT for free.

The input DSL has typically also semantic constraints like the
proper definition of identifiers and type restrictions. The system can
only enforce correctness of the ADT in the host language, but not the
additional DSL constraints. Implementing a type-checker of the DSL
is significant and nontrivial work. Moreover, it acts too late; it rejects
the DSL construct that the user has made by the structure editor
instead of guiding the user during the creation of the expression.

The dynamics in Clean offer a convenient way to perform dy-
namic type-checks and runtime unification [2, 15]. In this paper,
we build web-editors based on these dynamic using the new dy-
namic editor library of the iTask system. With this library one has
to specify just one dynamic for each DSL construct. The system se-
lects the items that can be applied in the current context and creates
appropriate web-editors for the arguments of the construct.

Section 2 shows how we can derive a structured editor for a
ADT based DSL. In Section 3 we show how we can enforce type
constraints on this DSL by the new dynamic editor library.

The functions used in a shallow embedded DSL can express most
constraints of the DSL. Since the DSL consists of functions instead
of an ADT one cannot derive a structured editor for such a DSL. In
Section 4 we show how we can define a type-safe structured editor
for such a DSL using our dynamic editors.

Generalized ADTs use richer types to express the constraints of
the DSL in the datatype [4, 6]. In this paper we use a version of
GADT based on bimaps [2, 6]. Due to functions and existentially
quantified type-variables used in those types we cannot derive struc-
tured editors for those GADTs. In Section 5 we create structured
editors for such a GADT using the dynamic editors.

We have used dynamic editors successfully to create queries over
the combination of ships, their movements, history, owners and
cargo in a system for the Dutch coast guard. We are developing an
application to assign task dynamically to Super Sensors [8]. This
system is based on cheap and energy-efficient microprocessors in-
stead of Raspberry Pi’s using mTask our DSL for programming
the IoT [11, 12]. The mTask system itself is a Tagless DSL [5] that
interoperates seaminglessly with the iTask system.

The main contributions of this paper are:

• it introduces dynamic editors, these structured web-editors are
used to create DSL-expressions interactively while enforcing
type-constraints on the fly;

• we demonstrate how to enforce type-constraints on editors
for ordinary ADTs;
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• we show how to create type-safe editors for shallow embed-
ded DSLs;

• we present concise type-safe dynamic web-editors for GADTs;
• we demonstrate how a pool of type variables is used to ensure

that only existing variables of the desired type can be used in
the dynamic editor. Even GADTs are not able to do this on
their own.

The examples used in this paper are all well-known DSLs to
demonstrate the power of our approach. This is a somewhat atypical
use of the dynamic editors and certainly not a limitation of the
approach.

The dynamic editor library used in this paper is part of the stan-
dard iTask system available at https://clean.cs.ru.nl/ITasks. The ex-
amples in this paper will be published on github as soon as the paper
is accepted.

2 BASIC WEB-EDITORS
The iTask system [3, 16] is a DSL embedded in Clean [1, 17] for
Task Oriented programming, TOP. This system offers basic tasks like
web-editors as well as combinators to compose subtasks to larger
tasks. In this paper, we focus on web-editors. We use a very limited
set of combinators that will be described briefly at their first use.

In iTask there are web-editors for basic types like integers, Booleans,
lists, record fields strings. The system is able to derive tailor-made
web-editors for ADTs using generic programming. This implies that
the usual restrictions of generics apply; all types must be known and
function types are not allowed. The system works fine for (recursive)
ADTs and records.

As an example, we show an ADT representing a simple DSL over
integer and Boolean values with a limited number of operations.

:: Expr

= Int Int

| Bool Bool

| Add Expr Expr / / Integer addition
| And Expr Expr / / Boolean conjunction
| Eq Expr Expr / / Equality for integers and Booleans
| If Expr Expr Expr / / Conditional expression

The smallest program making an interactive structural web editor
for Expr in iTask is:

derive class iTask Expr

Start :: *World → *World

Start world = doTasks (updateInformation [] (Int 0)) world

A few screen shots in Figure 1 from the browser illustrate the behav-
ior of this program.

Our example Expr reveals already the limitations of this system.
Since expressions like Add (Int 1) (Bool False) are well-typed in the
host language they are accepted by the editor. However, in DSL
terms we consider it to be a type-error.

There are several solutions to such problems. First, we can make
more sophisticated ADTs as explained in Section 2.1. Next, we
can make a dynamic editor for the type above that enforces well-
typed instances as shown in Section 3. Finally, one can use other
representations of the DSL that is able to enforce the required type-
constraints. In Section 4 we use a dynamic editor for a shallow

Figure 1: Some screenshots of the editor for expression in use.

embedded DSL. Section 5 uses a GADT like representation of the
DSL.

2.1 Better Algebraic Data-Types
Inspired by the Nielson’s we can use separate data for Integer and
Boolean expressions in our DSL [14]. We use ExprI for Integer
expressions and ExprB for Boolean expressions. We can derive editors
for these types and make a web-editor just like for Expr above.

:: ExprI = Int Int | Add ExprI ExprI | IfI ExprB ExprI ExprI

:: ExprB = Bool Bool | And ExprB ExprB | IfB ExprB ExprB ExprB

| EqB ExprB ExprB | EqI ExprI ExprI

Although this works perfectly for this tiny example the limitations
are also obvious. Since there is no overloading in this representation
we had to copy the condition If and the equality Eq to cope with
different types. With only two types and a small set of operations in
the DSL this is bearable. However, this quickly becomes unpleasant
for more serious DSLs. We get an additional datatype for each type
in the DSL and copies of overloaded operators for those types.

3 DYNAMIC EDITORS FOR RESTRICTING
ALGEBRAIC DATA TYPES

Another solution to prevent type problems in a DSL is by type-
checking the expressions entered by the user. Preferably the system
performs the type checks on-the-fly; while the expression is created
by the user. Such a dynamic type check can be quite tricky since we
want overladed operators, like equality, in the DSL. This implies that
the type of arguments is not always known. We want a system that
checks the type of the arguments as soon as the subexpressions are
given. It should not be delayed until the entire expression is known.

As a consequence, we need a runtime type-checker that is able to
handle overloading. Immediate extensions are class restrictions and
cooperation with the type-system in the host-language. Implement-
ing such a type-checker is a nontrivial and significant effort. Instead
of implementing such a type-checker, we will use the dynamic types
of Clean to guarantee well-typed expressions in our DSL [2, 15]. In
the next sub-section, we briefly review this dynamic system.

3.1 Dynamics
In Clean a value of any type can be transformed to the type Dynamic.
Instances of Dynamic are ordinary values in Clean. So, dynamic
values can be stored in data-structures like lists, be the argument or
result of a function and so on.
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The keyword dynamic is used to transform a value of any type to a
value of type Dynamic. One can specify a type of the value but this is
not necessary if the compiler can determine the type. Some typical
examples aredynamic 36,dynamic False::Bool,dynamic (+) 1::Int→Int

and dynamic map::∀ a b:(a→b) [a]→[b]. When the type is completely
polymorphic, one has to add the class constraint TC for the type.

toDynamic :: a → Dynamic | TC a

toDynamic x = dynamic x

For instance, we can pack expressions of various types as dynamic
in a list.

list :: [Dynamic]
list = [dynamic 7, dynamic (fib, 4), dynamic (str2int, "30")

,dynamic "1", dynamic (+) 1]

It makes only sense to pack values in a Dynamic if we can also unpack
them. Since Clean is a strongly typed language, this has to be done
in such a way that it does not break the strong type-system. This is
achieved by a pattern match on the types stored in a Dynamic value.
The alternative is not applicable if the type does not match the
pattern. This is demonstrated in the function dSum that sums some of
the dynamics in the give list to an integer value:

dSum :: [Dynamic] → Int

dSum [a::Int : rest] = a + dSum rest

dSum [t::(a→Int,a): rest] = fst t (snd t) + dSum rest

dSum [dyn : rest] = dSum rest

dSum list = 0

When we apply dSum to the list above the result will be 42. This
example demonstrates that we can use type variables in the dynamic
type match. A type variable from the static type of the function
containing the dynamic match is denoted as a .̂

toA :: Dynamic → Maybe a | TC a

toA (x :: a )̂ = Just x

toA _ = Nothing

3.2 Dynamic Editors
The DynamicEditor library in the iTask system allows programmers to
specify web-editors for types that cannot be handled by the deriving
mechanism. This library uses as much as possible of the existing
iTask infrastructure. This guarantees a smooth interaction and a
similar look and feel.

A dynamic editor is parameterized by a list of (grouped) editor
elements of type DynamicCons. This dynamic constructor is an abstract
type that can be constructed by functionConsDyn. This function has
two strings and a dynamic as arguments. The first string is a unique
identifier used to turn dynamic editor values to ordinary values. The
second string is the name shown in the editor to the user. The dy-
namic contains the value produced by this editor element. If this
dynamic contains a function the system is used recursively to pro-
duce the arguments needed to turn the function into its result type.
This might include type variables and dynamic unification. Only
those elements that can produce a value of the demanded type are
shown when the system can determine the desired result.

:: DynamicEditor a =: DynamicEditor [DynamicEditorElement]
:: DynamicEditorElement

= DynamicCons DynamicCons

| DynamicConsGroup String [DynamicCons]

functionConsDyn :: DynamicConsId String Dynamic → DynamicCons

:: DynamicConsId :== String

With dynamicEditor a dynamic editor can be turned into a real iTask
editor that produces a DynamicEditorValue. There is a variant from this
function that is parameterized by a state, we will illustrate its use in
Section 4.1. This is a somewhat complicated internal representation
of the state of a dynamic editor. With valueCorrespondingTo we can
extract the actual value from such a state.
dynamicEditor :: (DynamicEditor a)

→ Editor (DynamicEditorValue a) | TC a

parametrisedDynamicEditor :: (p→DynamicEditor a)
→ Editor (p,DynamicEditorValue a)
| TC a & gEq{|⋆ |}, JSONEncode{|⋆ |}

, JSONDecode{|⋆ |} p

valueCorrespondingTo :: (DynamicEditor a) (DynamicEditorValue a)
→ a | TC a

The internals of this editor are somewhat complicated because it
has to do many things simultaneously; creating an editor, selecting
and displaying its elements, creating arguments, use the dynamic
system or unification and producing tailor-made errors messages if
argument unification fails. Fortunately, the use of the system is less
complicated. The remainder of this paper describes several ways to
use these dynamic editors.

3.3 A Type-Safe Dynamic Expression Editor
We start with a type-safe editor for the expression from Section
2. We use the same datatype to represent the expressions. During
construction of the expression, we use a phantom type that mimics
the type represented by the expression constructed. The additional
type is a reusable solution to add a phantom type b to a type given as
the type parameter a.
:: Typed a b =: Typed a

exprEditor :: DynamicEditor Expr

exprEditor = DynamicEditor

[ DynamicCons $ functionConsDyn "Expr" "(enter expr)"
(dynamic λ(Typed e) → e :: ∀ a: (Typed Expr a) → Expr)

, DynamicConsGroup "Integer"
[ functionConsDyn "Int" "integer value"
(dynamic λi → Typed (Int i) :: Int → Typed Expr Int)

, functionConsDyn "Add" "add"
(dynamic λ(Typed x) (Typed y) → Typed (Add x y) ::

(Typed Expr Int) (Typed Expr Int) → Typed Expr Int)
]

, DynamicConsGroup "Boolean"
[ functionConsDyn "Bool" "Boolean value"

(dynamic λb → Typed (Bool b) :: Bool → Typed Expr Bool)
, functionConsDyn "And" "and"

(dynamic λ(Typed x) (Typed y) → Typed (And x y) ::

(Typed Expr Bool) (Typed Expr Bool) → Typed Expr Bool)
, functionConsDyn "Eq.Int" "eq Int"

(dynamic λ(Typed x) (Typed y) → Typed (Eq x y) ::

(Typed Expr Int) (Typed Expr Int) → Typed Expr Bool)
, functionConsDyn "Eq.Bool" "eq Bool"

(dynamic λ(Typed x) (Typed y) → Typed (Eq x y) ::

(Typed Expr Bool) (Typed Expr Bool) → Typed Expr Bool)
]

, DynamicConsGroup "Conditional"

16



IFL20, September 2–4, 2020, Kent Koopman, Michels, Plasmeijer

Figure 2: The dynamic editor.

[ functionConsDyn "If" "conditional"
(dynamic λ(Typed c) (Typed t) (Typed e) → Typed (If c t e) ::

∀ a: (Typed Expr Bool) (Typed Expr a) (Typed Expr a)
→ Typed Expr a)

]
, DynamicConsGroup "Editors"
[ customEditorCons "Int.Val" "enter integer value" intEditor

, customEditorCons "Bool.Val" "enter boolean value" boolEditor

]
]

intEditor :: Editor Int

intEditor = gEditor{|⋆ |}

Figure 2 shows the generated editor in action. The user is con-
structing an addition with137 as the first argument. Only the options
that can produce an integer value are shown in the dropdown box for
the second argument.

This approach works, but it has two drawbacks. First, the host
language is not able to check the given phantom types. An erroneous
type in the definition is happily accepted by the system. For instance,
dynamic i→ Typed (Int i) :: Int → Typed Expr Bool with result type
Bool instead of Int will treat expressions like Int 1 incorrectly as
a Boolean in the DSL. The second drawback is that there is no
overloading in the equality. Below we introduce solutions for these
limitations.

In the actual implementation, we use some tuning combinators to
improve the layout. This tuning is omitted here for brevity.

4 DYNAMIC EDITORS FOR SHALLOW
EMBEDDED DSLS

Dynamic editors are focussed on creating instances of datatypes.
In deep embedded DSL the expressions are function applications.
nevertheless, we can use dynamic editors to create expressions in a
deep embedded DSL. The key step here is to pack these functions in
a datatype.

4.1 Identifiers in the DSL
Many DSLs contain identifiers. These identifiers are used to indi-
cate variables, functions, function arguments etc. The identifiers are
typically distinguished by a unique name or number. There are two,
related, problems with these identifiers in a type-safe DSL. First,
we have to guarantee that all used identifiers are indeed defined in
the given DSL program. Second, it is important to ensure that the
identifier represents a value of the desired type.

In this paper, we tackle these problems by using a user-defined
set of typed identifiers. The user of the editor can always add new
variables, even while constructing a DSL expression. All variables
get an initial value at their definition. In the DSL expression editor,
the user can only select an element from the current set of variables1.

Variables in the DSL are represented by records of type Bind. The
editor ensures that the strings identifying the variables are unique.
Since the identifiers are bound to values of various types, we store
these values as dynamics in the State.

:: Bind a = {idnt::String, val::a}
:: State :== [Bind Dynamic]

A list of bindings is convenient in the iTask editor for variables.
Since we intend to use relatively small and simple DSL-expressions,
the list is also efficient enough. Without much effort, we can replace
the list with a more efficient storage structure, like a map.

To work with this state in iTask editors we derive everything in
the class iTask. To set values in the state and get them from the state
we have the obvious functions.

derive class iTask Bind

getVal :: String State → Maybe Dynamic

setVal :: String Dynamic State → State

To ensure that the dynamic editor is always using the current list
of identifiers we put this state in a Shared Data Source, SDS. With
standard iTask technology we make an editor task for this state

identifierEditor :: (SimpleSDSLens State) → Task State

identifierEditor sds =

( Title "Identifiers" @>>
editChoiceWithShared [ChooseFromGrid showBinding] sds Nothing)

||- (Title "Add new identifier" @>>
Hint "Identifier names must be unique" @>>
forever

(get sds @ map (λb→b.idnt) >>=λvars →

enterInformation [] >>*
[OnAction

(Action "Add")
(ifValue (λdef → not (isMember (def.idnt) vars))
(λdef → upd (λl →

sort [{idnt=def.idnt, val=varVal def.val}: l]) sds))
]))

The value of each identifier is stored as a dynamic. To make such
values we use an additional type in the task identifierEditor. In the
current dynamic editor is able to use the types integer, Boolean as
well as (higher-order) functions over these types. Since we cannot
make functions directly, we use the datatype IdType to specify the
type of the desired function. The function idDyn creates a dynamic
with a value of the desired type.

:: IdType = Int | Bool | Fun IdType IdType

idDyn :: IdType → Dynamic

idDyn Int = dynamic 0
idDyn Bool = dynamic False

idDyn (Fun x y)
= case (idDyn x, idDyn y) of (a::a, b::b) = (dynamic (λa→b) :: a→b)

1It would be more convenient to construct the set of defined variables on-the-fly while
constructing the DSL-expression. The current version of iTask editors is not capable to
change the state on-the-fly. Such an extension editors is currently under construction.
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Finally, showBinding is used to display the type of the dynamic type
of the current identifier bindings as a table in the task.
showBinding :: (Bind Dynamic) → Bind String

showBinding {idnt,val}
= {idnt=idnt, val=toString (typeCodeOfDynamic val)}

For convenience the editor below starts with some predefined identi-
fiers. However, it is perfectly possible to make all identifiers dynam-
ically.

4.2 A Dynamic Editor for the Lambda-Calculus
To demonstrate the power of this approach we show how to make
a dynamic editor for the simply typed lambda calculus. For conve-
nience, we add some integer functions, equality, conditionals and the
Y-combinator to our DSL. Every values in our shallowly embedded
DSL is a function with the state as an argument. Since we have no
side-effects, the state is not a reduction result and is not threaded
through the evaluator.
:: Val a :== (State → a)

Our DSL for the shallowly embedded lambda-calculus is the set of
functions below. Integer manipulations like subtraction and multipli-
cation are omitted for brevity.
:: Lam a :== (State → a)

ap :: (Lam (a→b)) (Lam a) → Lam b

ap f x = λs.(f s) (x s)

abs :: String (Lam b) → Lam (a→b) | TC a

abs v body = λs. λarg.body (setVal v (dynamic arg) s)

Y :: (Lam (a→a)) → Lam a

Y f = ap f (Y f)

var :: String → (Lam a) | TC a

var v = λs.case getVal v s of
Just (a::a )̂ = a

_ = abort (v +++ " not properly bound")

lit :: a → Lam a | == a

lit a = λs.a

add :: (Lam Int) (Lam Int) → Lam Int

add x y = λs.x s + y s

eq :: (Lam a) (Lam a) → Lam Bool | == a

eq x y = λs.x s == y s

If :: (Lam Bool) (Lam a) (Lam a) → Lam a

If c t e = λs.if (c s) (t s) (e s)

and :: (Lam Bool) (Lam Bool) → Lam Bool

and x y = λs.x s && y s

To make a dynamic editor for this lambda calculus we use the tooling
introduced in the previous section and the type Val a introduced here.
For most constructs, there is a dynamic editor clause corresponding
to the function listed above.

The handling of variables deserves some additional attention.
We distinguish variable introduction for abs and variable use as an
element of an expression. For variable introduction we use Name to

select a variable from the shared state. The identity function used
as the first argument is used to ensure the type-constraint TC on
expressions in our DSL. When a dynamic requires such a class
restriction it is turned by the compiler into an additional dictionary
argument of that dynamic function. There is no easy way to make
such dictionaries in our dynamic editors. Hence, we need some
other way to tell the compiler which instance of the class has to be
used. The function toName convert an element from the state to the
corresponding dynamic construct containing the name.

For applied occurrences of identifiers, we use toDynamicCons. This
function transforms a state element to typed dynamic that will extract
the corresponding value from the state during evaluation.

:: Name a = Name (a→a) String & TC a

toName :: (Bind Dynamic) → DynamicCons

toName {idnt,val} = case val of
(x::t) = functionConsDyn ("Name." +++ idnt) idnt

(dynamic (Name id idnt) :: Name t)

toDynamicCons :: (Bind Dynamic) → DynamicCons

toDynamicCons {idnt, val} = case val of
(x::t) = functionConsDyn ("Var." +++ idnt) idnt

(dynamic (var idnt) :: Val t)

With these elements, we can construct a dynamic editor for our
typed shallowly embedded lambda calculus. The cases for name
introduction and variable application are:

exprEditor :: State → DynamicEditor (Val v)
exprEditor state = DynamicEditor

[ DynamicConsGroup "Variables" (map toDynamicCons state)
, DynamicConsGroup "Names" (map toName state)
..

For the other cases we skip the groups, names and layout information.
For brevity, we just list the relevant dynamics for the construction of
the editor.

,dynamic λi → (lit i) :: Int → Val Int

,dynamic λx y → (add x y) :: (Val Int) (Val Int) → Val Int

,dynamic λb → (lit b) :: Bool → Val Bool

,dynamic λx y → (and x y) :: (Val Bool) (Val Bool) → Val Bool

,dynamic λx y → (eq x y) :: (Val Int) (Val Int) → Val Bool

,dynamic λx → (Not x) :: (Val Bool) → Val Bool

,dynamic λc t e → (If c t e) ::

∀ a: (Val Bool) (Val a) (Val a) → Val a

,dynamic λf x → (ap f x) :: ∀ a b: (Val (a→b)) (Val a) → Val b

,dynamic λf → (Y f) :: ∀ a b: (Val ((a→b)→(a→b))) → Val (a→b)
,dynamic λ(Name f x) (body) → (λs a.(abs x body) s (f a))

:: ∀ a b: (Name a) (Val b) → Val (a→b))
]

The complete task ensures that only values of type Int or Bool can
be produced. This guarantees that we have not to cope with abstrac-
tions as a result. Any abstraction will be applied to an appropriate
argument.

Figure 3 shows the editor in action. The complete iTask program
runs this editor in parallel with the editor to introduce identifiers
from Section 4.1. The program contains a button to evaluate the
current expression. After such a reduction the result is shown. Since
the value of the editor is stored in a shared data store, we can always
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Figure 3: The editor for shallow embedded lambda calculus in action.

return to the value in the editor with a button and update it. The
dynamics ensure that one can only make well-typed expressions.

The value created with this editor in Figure 3 is the application of
the familiar factorial function applied to the argument 5. From the
state we used the variable f with type (Int→Int)→(Int→Int) and x

of type Int. Reduction yields the value 120.

ap (Y (abs "f"
(abs "x" (If (eq (var "x") (int 0))

(int 1)
(mul (var "x")

(ap (var "f") (sub (var "x") (int 1))))))))
(lit 5)

In this example, we use the types of the functions in the shallow
embedded DSL themselves instead of some phantom type that carries
user-provided additional information. In contrast to the approach of
the previous section, the types of the DSL themselves are checked by
the compiler of the host language. This guarantees that runtime type
errors can not occur. Our variable store guarantees that all variables
used are defined and well-typed. The worst that can happen is that a
variable is only defined in the state, but not introduced properly in
the DSL expression. The state still provides a value of the correct
type when this would occur.

This example shows that we can make typed editors for a Turing
complete DSL with our dynamic editors. We like to stress again that

this example is chosen to demonstrate the power of the approach.
We expect that most DSL handle by actual applications are more
domain-specific and less complicated.

5 DYNAMIC EDITORS FOR GENERALIZED
ALGEBRAIC DATA-TYPES

Above we have demonstrated that one can use dynamic editors to
impose type restrictions on a deep embedded DSL to obtain only
properly typed instanced and to that dynamic editors can be used to
create well-typed instances of a shallow embedded DSL. In this sec-
tion, we will review the possibility to improve the design of the deep
embedded DSL in such a way that the datatype enforces well typed
expressions. For this purpose, we use a version of GADT’s based
on bimaps [2, 6]. A bimap indicates the transformation between
two datatypes in both directions. This approach has the advantage
that there is no extension of the Hindly-Milner type-system needed.
The drawback is that we have to indicate the desired type equalities
explicitly in bimaps.

In this paper, we use a record BM for these bimaps. We need only
two transformation functions from a to b and from b to a. In more
complex situations we need transformations of other kinds, e.g.,
tab::∀ t:(t a)→t b. For our application we only need the instance
bm of this type. It tells the compiler that the types a and b are equal.
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:: BM a b = {ab :: a → b, ba :: b → a}

bm :: BM a a

bm = {ab = id, ba = id}

The simple expression type from Section 2 is extended with a type
variable as argument that mimics the result type. The type becomes:

:: Expr a

= Lit a

| Add (BM a Int) (Expr Int) (Expr Int)
| And (BM a Bool) (Expr Bool) (Expr Bool)
| ∃ b: Eq (BM a Bool) (Expr b) (Expr b) & type b

| If (Expr Bool) (Expr a) (Expr a)

class type a | toString2, iTask a

The Lit a replaces Int and Bool. The type variable a nicely indicates
the appropriate result type here. For the integer addition, Add, the
arguments must be expressions representing an integer value. Hence,
their type is Expr Int. The additional argument BM a Int indicates
that the result is also an integer by binding a to Int. This additional
argument is the first argument to allow currying. The logical con-
junction And is very similar, we just replaced Int by Bool. For the
overloaded equality, eq, we need a new type variable for the type
of elements to compare. In a datatype, we need to introduce such
a variable explicitly by ∃ b:, in functions we can introduce such
variables implicitly. We use the same variable for both argument
expression to enforce that they have the same type. The argument
BM a Bool indicates again that the result of the equality is a Boolean
value. The class restriction & type b enforces that any type b used
here should be a member of the listed class. This class contains
just the collection of all type-restrictions we impose on the types
used. By putting all restrictions in a separate type class we can add
a restriction needed in a new view without toughing existing code
[9, 10]. It is necessary to enforce all class constraints here since
we have no access to the type variable later on. Finally, the first
argument of the conditional, If, must be a Boolean expression. The
other arguments are expressions of the same type as result type.

The actual expression datatype used in the next example contains
more constructors. The introduction of typed variables by Var String

is the most noticeable.
To evaluate expression we use the same state as in the previous

example. Just like in the previous example there are no side effects.
This implies that we can pass the state down during evaluation, but
the state does not have to be part of the result. There is no reason
to pass the state around, neither explicitly nor hidden in a monad.
The evaluation is implemented as the function evalE. For a variable
this function does a dynamic pattern match to the type a of the
evaluator by (x::a )̂. For the constructors Add, And and Eq the result
type is not a but Int or Bool. We use the function bm.ba to convince
the type-checker that this is indeed the required type. This explicit
type-equality ensures that all expressions are correctly typed.

evalE :: (Expr a) State → a | TC a

evalE expr state = case expr of
Lit x = x

Var s = case getVal s state of Just (x::a )̂ = x

Add bm x y = bm.ba (evalE x state + evalE y state)
And bm x y = bm.ba (evalE x state && evalE y state)
Eq bm x y = bm.ba (evalE x state === evalE y state) / / generic eq

If c t e = if (evalE c state) (evalE t state) (evalE e state)

Other views of this DSL, like transforming expressions to strings,
do not need the bimaps at all. For example, the instance of the class
to transform an expression to a string is:

instance toString2 (Expr a) | toString2 a where
toString2 expr = case expr of
Lit x = toString2 x

Var s = "(Var " +++ s +++ ")"
Add _ x y = "(Add " +++ toString2 x +++ " " +++ toString2 y +++ ")"
And _ x y = "(And " +++ toString2 x +++ " " +++ toString2 y +++ ")"
Eq _ x y = "(Eq " +++ toString2 x +++ " " +++ toString2 y +++ ")"
If c t e =

"(If " +++ toString2 c +++ toString2 t +++ toString2 e +++ ")"

In contrast to the expression created by the editor in Section 3.3,
correctly typed expressions in the DSL are not a property enforced
by a smart editor, but by the type-system of our host language. The
only place where the evaluator can fail is that a used variable does
not occur in the state, or has another type in the state. We reuse the
approach from the lambda-calculus editor of Section 4.2 to ensure
that variables do exist with the desired type.

It is not possible to derive a web-editor for the type Expr a. The
generics used in such a derivation cannot handle the functions in the
record BM a b. Moreover, the actual type introduced by ∃ b: is not
known, hence the generic system cannot make a generic represen-
tation of the type b. Finally, the generic system cannot handle class
restrictions on variables like toString2, iTask b. For those reasons,
we have to construct a dynamic editor for Expr a.

5.1 A Type for Tasks Expressions
To demonstrate the power of our dynamic editors we make editors
over task expressions. They cover an important subset of the iTask
system. The type Expr a is used for ordinary expressions in those
task expressions, like the argument of a Rtrn.

The type for task expressions follows the same pattern as the
Expr a. Variables are explicitly introduced by existential quantifiers.
All restrictions needed in the views are collected in the class type.

:: TaskExpr a

= Rtrn (Expr a)
| IF (Expr Bool) (TaskExpr a) (TaskExpr a)
| EnterInfo (BM a a) String

| UpdateInfo String (Expr a)
| ViewInfo String (Expr a)
| UpdateSharedInfo String String

| ViewSharedInfo String String

| ∃ b: Bind (TaskExpr b) String (TaskExpr a) & type b

| ∃ b: Seq (TaskExpr b) (TaskExpr a) & type b

| ∃ b.c: Both (BM a (b,c)) (TaskExpr b) (TaskExpr c)
& type b & type c

| One (TaskExpr a) (TaskExpr a)
| Select [Button a]
| ∃ b: All (BM a [b]) [TaskExpr b] & type b

| Forever (TaskExpr a)
| Get String

| Set (Expr a) String

:: Button a = Button String (TaskExpr a)

We will briefly discuss these constructors.
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Rtrn lifts the argument from a plain expression to a task expres-
sion.

IF the conditional choice of tasks.
EnterInfo creates an enter information editor for the user. The

string specifies a hint given to the user. The bimap is needed
here to fix the type of the value to enter.

UpdateInfo creates an update information editor. Here the
type is fixed by the value to be updated.

ViewInfo shows the given value to the user. In contrast with
UpdateInfo the user cannot change this value.

UpdateSharedInfo an update for a shared data source.
ViewSharedInfo shows the value of a shared data source to the

user.
Bind the monadic bind. The string denotes the name of the variable

used to bind the value of the first task.
Seq the monadic sequence of two tasks.
Both execute both tasks in parallel. The combination has a result when

both tasks have a result.
One return the value of the first task that is finished. When both task

finishes on the same event the result of the first task is returned.
Select the user is shown all buttons labelled by the string that is argu-

ment of Button. When the user selects the button the corresponding
task is executed.

All executes all tasks is the list. The construct terminates when all task
are terminated by a list with the values of all tasks.

Forever repeats the given argument task forever.
Get returns the current value of the given shared data source.
Set updates the value of the shared data source.

These operations all have an equivalent in the iTask system. In
the selection of elements from the iTask system to include in this
DSL we have focussed on selecting illustrative features. This is by
no means a complete coverage of the iTask system. That is not the
intention of this example, nor of the dynamic editors introduced in
this paper.

5.2 Types in our DSL
The amount of overloading in our previous DSLs was limited due
to the small number of datatypes handled by those languages. The
DSL developed here works for any datatype that implements the
class type. We use the same approach to offer variables as shown in
Section 4.1. There are two minor differences. In order to make type
identifiers we use the data type VarVal instead of IdType. It contains
integers, Booleans, a record type for persons2, tuples and list over
types. The record Bind is extended with a Boolean valued field share

to indicate if this identifier is a SDS or a plain variable.

:: VarVal = Int | Bool | Person | Pair VarVal VarVal | List VarVal

5.3 A Dynamic Editor for Expressions and iTasks
Due to the occurrence of functions, existential quantified variables
and class restrictions in the types Expr a and TaskExpr a editors in the
iTask system cannot be derived. In this section, we will outline how
a dynamic editor for these types looks.

The first thing to notice is that there is only one dynamic edi-
tor despite the fact that there are different types involved, e.g. Expr,
TaskExpr, Int, Bool, Person, Button etc. For the programmer, this im-
plies that there is a limited separation of concerns. Fortunately, the

2Record TypePerson is just added to show that we are not limited to primitive types.

dynamic editor is a list of items. Whenever desired we can append
lists to compose one big editor from smaller ones and to reuse code.
For the user of the dynamic editor, this is not much of an issue.
The dynamic editor will only display the elements that produce an
element of the desired type at runtime.

5.3.1 Fixed Types. A small number of constructs in our DSL
have a fixed type of arguments and results. These cases are handled
by fully specified dynamic types in the editor items. Some typical
examples are:

,(dynamic λx y → (Add bm x y) :: (Expr Int) (Expr Int)→Expr Int)
,(dynamic λx y → (And bm x y) / / type is derived

5.3.2 Overloaded Constructs. A number of constructs in the
DSL is fully overloaded, i.e., there are no class restrictions on the
type variables. Defining dynamic editor entries for those constructs
requires the introduction of a new type variable in the type of the
dynamic. Apart from this type introduction in the dynamic, the items
follow the scheme of the fixed type cases.

,(dynamic λe → (Rtrn e) ::

∀ b: (Expr b) → TaskExpr b)
,(dynamic λx y → One x y ::

∀ b: (TaskExpr b) (TaskExpr b) → TaskExpr b)
,(dynamic λs → EnterInfo bm s :: ∀ b: String → TaskExpr b)
,(dynamic λi → (Lit i) :: ∀ b: b → Expr b)
,(dynamic λc t e → (If c t e) ::

∀ b: (Expr Bool) (Expr b) (Expr b) → (Expr b))

5.3.3 Class Restrictions. The most challenging part of creat-
ing dynamic editors is the correct handling of the type class con-
straints for the existentially quantified variables. A typical exam-
ple is ∃ b: Eq (BM a Bool) (Expr b) (Expr b) & type b. When using
dynamic editors those existentially quantified variables carry over to
type class restrictions in the dynamic functions. Like any type-class
restriction (that is not solved at compile time), those restrictions are
transformed to an additional, first, function argument. This dictio-
nary argument contains the appropriate functions for the actual type.
This implementation of class restrictions is normally completely in-
visible. However, if we make dynamics with class restrictions those
dictionaries become visible. The dynamic editor will ask the user of
the program to provide such a dictionary. Alas, these dictionaries
are no ordinary object in Clean and cannot be provided in the editor
by the user.

We see two solutions to this problem. The easiest solution is to
solve the overloading by specifying a specific instance of the class.
The other way is to use an other way to provide the appropriate types
and associated dictionaries.

5.3.4 Solving Overloading for Class Restrictions. The easiest
solution to handle the problem with dictionaries is to ensure that
they are not needed. When the Clean compiler is able to determine
the types in an application of a function with overloading, the com-
piler will replace the functions from the class with the appropriate
instances or provide the appropriate dictionary.

For the example ∃ b: Eq (BM a Bool) (Expr b) (Expr b) & type b

we can achieve this by using the following dynamic editor instances.

[functionConsDyn "Eq.Int" "equal int"
(dynamic λx y → Eq bm x y :: (Expr Int) (Expr Int)→Expr Bool)
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,functionConsDyn "Eq.Bool" "equal bool"
(dynamic λx y → Eq bm x y :: (Expr Bool) (Expr Bool)→Expr Bool)

For the All construct from the task expressions we can use the same
approach.

,listConsDyn "All" "all tasks"
(dynamic (id, λlist → All bm list) ::

((TaskExpr Int) → TaskExpr Int, [TaskExpr Int] → TaskExpr [Int]))

This approach works fine if there are a small number of relevant
types. Otherwise, we end up with many editor entries for the same
operator. There are infinitely many types introduced by the construct
in Section 5.2. Hence, it is impossible to list them all. In practices, a
relatively small number of types is usually sufficient.

5.3.5 Providing Dictionaries. The other way to provide a dictio-
nary is by applying a function that delivers the desired dictionary.
We illustrate this by a small example. Function f1 requires the class
constraint toString a to ensure that the function toString exists for
the argument type a. We have argued that such a class constraint
becomes a dictionary in our dynamic editor and hence an (unwanted)
additional argument in the editor. The datatype Dict contains just the
identity function for a type a that is an instance of the class toString3.
The function intDict yields an instance for the type Int. In function
f2we use the user defined type Dict to ensure that there is an instance
of toString for the type a. The Start rule contains an application of
this construct.

f1 :: a → String | toString a / / Class constraint required
f1 x = toString x

:: Dict a = Dict (a→a) & toString a

intDict :: Dict Int

intDict = Dict id

f2 :: (Dict a) a → String / / Note: no explicit class constraint
f2 (Dict f) x = toString (f x)

Start = f2 intDict 42

In our dynamic editors we use the same idea. We need the class con-
straint type for a, Expr a and TaskExpr a. Hence the type for explicit
Types, ET is slightly bigger.

:: ET a =

ET (a→a) ((Expr a)→Expr a) ((TaskExpr a)→TaskExpr a) & type a

We use the dynamic editors to create the required instances for
arbitrary nested types described by VarVal from Section 5.2.

,(dynamic ET id id id :: ET Int)
,(dynamic ET id id id :: ET Bool)
,(dynamic ET id id id :: ET Person)
,(dynamic λ(ET f _ _) (ET g _ _) → ET (λ(b,c)→(f b,g c)) id id

:: ∀ b c: (ET b) (ET c) → ET (b,c))
,(dynamic λ(ET f1 f2 f3) → ET (λx → map f1 x) id id

:: ∀ b: (ET b) → ET [b])

3In simple applications Dict does not need the identity function argument, a phantom
type will do. The function is needed for proper binding when there are multiple type
variables.

Using these explicit type constructs to handle class restriction implies
that the user of the editor has to indicate the type, even if there is
only a single option. Fortunately, the dynamic editor will only show
this single option and hence type selection is easy for the user.

Some typical examples of the use of these explicit type selections
are:
,(dynamic λ(ET _ f _) x y → Eq bm (f x) (f y) ::

∀ b: (ET b) (Expr b) (Expr b) → Expr Bool)
,(dynamic λ(ET _ _ f) x (ET _ _ g) y → Both bm (f x) (g y) ::

∀ b c: (ET b) (TaskExpr b) (ET c) (TaskExpr c)
→ TaskExpr (b,c))

,(dynamic λ(ET f _ _) pair → Fst (fixFst f pair) ::

∀ b c: (ET c) (Expr (b,c)) → Expr b)

5.3.6 Names for Identifiers and Shares. The final issue is the
selection of names from the state maintained in the dynamic editor.
The state contains two kinds of names: plain identifiers for the DSL
and the names of SDSs in the DSL. The Boolean field in the record
Bind distinguishes these categories of names. For instance:
:: Share a = Share String

toShare :: (Bind Dynamic) → DynamicCons

toShare {idnt,val} = case val of
(x::t) = functionConsDyn ("Share." +++ idnt) idnt

(dynamic (Share idnt) :: Share t)

The appropriate shares in the dynamic editor are created by:
map toShare (filter (λvar → var.share) state)

The application of using identifiers and shares is illustrated in the
next editor items:
,(dynamic λ(ET _ _ f) x (Name name) y → Bind (f x) name y ::

∀ b c: (ET c) (TaskExpr c) (Name c) (TaskExpr b) → TaskExpr b)
,(dynamic λ(Share s) → Get s :: ∀ b: (Share b) → TaskExpr b)
,(dynamic λ(Share s) e → Set e s ::

∀ b: (Share b) (Expr b) → TaskExpr b)

5.3.7 Using the DSL. We used this DSL in an iTask program
where the user can interactively define identifiers and shares in as
well as a task expression of the chosen type. When the editor contains
a complete task expression it can be transformed to a plain iTask
expression that is executed in the same simulator by pressing the Run
button. The user can always return to the editor by using the back

button. This is illustrated by the screenshots in Figure 4.
To execute the DSL-expression it is transformed from the in-

ternal editor representation to an expression of type TaskExpr by
valueCorrespondingTo (exprEditor state) value. Next we create all SDSs
in state and evaluate the task expression with a function similar to
evalE :: (Expr a) State → a.

6 RELATED AND FUTURE WORK
There is a plethora of ways to create web-pages is various program-
ming languages these days. See [7] for an up-to-date overview of
Haskell based systems. Yesod [19], Happstack [20] and Servant [13]
aim to make type safe web-pages. They all specify web-pages by
defining their elements and handler while we specify DSL constructs
and generate the web-pages.

The low-code approach aims to develop complete applications
interactively [22]. This name was coined by Richardson [18]. Gartner
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Figure 4: Screenshots of the task editor and simulator.

calls this the Magic Square [21]. Although the aims and techniques
of these approaches have similarities with our goals, there is also
an important difference. We want to provide structured input for a
running program instead of creating those programs in such a way.

Once the iTask editors are able to pass a state around we will
use this to replace the global state of identifiers with a dynamically
maintained set of identifiers. We are looking for even better ways to
handle class restrictions in the DSL.

7 DISCUSSION
Using algebraic datatypes for structured input has many advantages.
The datatype can match the syntax of the input and the iTask system
can derive structured web-editors for those datatypes. This enables
end-user to created well-typed inputs while the programmer only
has to specify the algebraic datatypes matching the grammar. Most
end-users highly prefer those structured editors over free-text editors.

For more complex inputs, the syntax of the input mimicked by
the datatype is not enough to ensure correctness. There are also
semantic restrictions on the input that are not captured by the ADT.
A type-checker over the ADT detects the problems too late, after the
end-user has created the input, and is typically rather complicated to
make.

In this paper, we show how the new dynamic editor library of the
iTask system uses the type checks of the native dynamics to create a
structured editor that obeys the type constraints. The dynamic editor
selects dynamically which items match the required type and shows
those to the user. The system is used recursively for the arguments
of the construct selected by the user. We show how one can use these
dynamic editors in three different ways. First, we use a phantom
type to enforce type-correctness on ordinary datatypes. Next, we
used the function types of a shallow embedded DSL directly in the
dynamic editor to enforce the required type constraints. Finally, the
type-parameters of a GADT based deep embedded DSL can be used
to enforce well-typed DSL-expressions.

Class constraints for overloaded functions appear to be the tricki-
est part of these editors. This is due to the implementation of these

overloaded functions with class restrictions; the actual functions
of the instance of the class are passed as an additional dictionary
argument to the functions. The dynamics reveal this argument but do
not provide a way to make those dictionaries. We demonstrated an
elegant way to provide these dictionaries by an additional dynamic
argument that let the end-user chose the actual type required in the
application. In this way, we have to provide just one dynamic for
each overloaded construct in our input DSL.

By limiting the identifiers in the structured editor to a pool of
dynamically created typed values we can even prevent that the end-
user selects undefined or ill-typed identifiers. This is more powerful
than a plain GADT can ensure.
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Abstract
Generic web-based editors have been an integral feature of
the iTask Framework since its conception, and even predate
it in the form of the iData library. The availability of generic
editors is useful for prototyping, but as applications mature,
the need for increased control over editor behaviour arises.
This can be accomplished by creating customised editors.
Unfortunately defining custom editors is no trivial task. The
interface for composing editors is useful for common cases,
but is too abstract to enable the creation of arbitrary editors.
The low-level interface for creating editors from scratch
is sufficiently powerful, but exposes many implementation
details which makes it complicated to use. In this paper we
present a new interace and composition API for editors in
iTasks. This new approach is based on an asymmetric typed
interface for editors with separate type parameters for data
that is consumed and data that is produced by the web editors.
We demonstrate the new possibilities by reconstructing a

previously builtin editor as a composition of simpler editors
and various other examples.
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Abstract
We present a type system for Erlang based on subtyping. Subtyping
systems can reason about types that are more general, for example
the universal type that can represent any value.

We present a new theoretical approach which offers a bridge
between theory and practical implementation. At the core of the
implementation is a propagation algorithm that is very close to
algorithms already in the literature. What is new are the theoretical
underpinnings which serve as a guide when extending the type
system.

Using this approach, we have developed a subtyping system
for Erlang. The implementation checks ordinary Erlang programs
(though naturally not all Erlang programs can be typed, and some-
times it is necessary to add specifications of functions and data
types). We describe the implementation of the type checker and
give performance measurements.

1 Introduction
This paper presents a static type system for Erlang, a functional
programming language with dynamic typing. The type system is
designed with HM as a starting point, but relies on subtyping to
provide a greater flexibility. The type system is safe; programs that
type should be free from type errors at run-time.

In functional programming, the standard approach to static typ-
ing is to use Hindley-Milner type inference [15]. Hindley-Milner
type inference (HM) traces its roots to simply typed lambda calculus
and has many strong points–it is quite simple, is easy to implement,
allows parametric polymorphism and is fast in practice. It is used
by many functional programming languages (for example SML and
Haskell). However, HM has some important limitations. One is that
a recursive data type must be defined using constructors that are
specific to that data type. Thus, one constructor cannot be a part of
more than one data type.

It has been noted by many authors that the limitations of HM
could be overcome by allowing subtyping. This will allow, for exam-
ple, data types that overlap and the universal type that can represent
any value. However, in practice subtyping systems either tend to
be limited and lacking in features, or conversely, to be complex and
difficult to extend.

Our framework intend to offer an flexible and extensible ap-
proach to subtyping. To type Erlang, the framework has been ex-
tended with features that allow it to reason about a rich domain of
data types. The type system does not require types to be explicitly
defined and is able to infer complex types from usage in a program.

Subtyping is structural, thus (for example) a type may be a sub-
type of another type where a constructor has been added. The type
system is quite general and permits many types that could not be

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

expressed in a HM type system. Some are probably not useful, for
example a type which only allows lists of even length, or a type
which builds lists backwards. Others are clearly useful and practi-
cal, for example the universal type which is the supertype of every
other type and subtyping between recursive data types.

One important difference from earlier appraches is how pro-
grams are typed. When the subtyping system types a program, it
generates, like other subtyping systems, a set of constraints. The
constraints capture the problem of typing the program–thus the
program is typable if and only if there is a solution to the constraint
system. We show that to determine whether a solution exists, it
is sufficient to check the consistency of the constraint system–no
assumptions needs to be made about the domain of types, and we
show how to do this checking.

We describe the implementation of the type checker and give
performance measurements. The implementation checks ordinary
Erlang programs (though naturally not all Erlang programs can
be typed, and sometimes it is necessary to add specifications of
functions and type declarations). The implementation is in Erlang
and can itself be typed.

We have two reasons for choosing Erlang: the language is dy-
namically typed, thus the run-time system is already adopted to
a richer range of values and there are many programs that take
advantage of the flexibility. Second, Erlang does not allow side ef-
fects that modify data structures. This simplifies the design of the
subtyping system.

The algorithm for type inference does not extract type informa-
tion for function definitions in a human-readable format, instead
the checker compares function definitions to specifications and
conversely, that functions are used according to specification.

Our main contributions are a new way of designing an extensible
type system and a type checker for Erlang based on this methodol-
ogy. If we use the methodology to design a very simple type system,
we end up with a type checker that is not that different from what
is already in the literature. However, for more complex type sys-
tems that reflect the features of modern programming languages,
our approach allows a systematic way of introducing more fea-
tures, making sure that the type system agrees with the operational
semantics and that the implementation of the type checker will
succeed exactly when the program types.

The rest of this paper is organised as follows. In Section 2 we give
an overview of our approach by defining a subtyping system for a
simple formal language based on lambda calculus. We describe a
simple type checker for this language, discuss how the type system
can be extended to manage more powerful constraint languages and
link the type system to the semantics of the programming language
through the subject reduction property. In Section 3 we extend the
subtyping system with constructors, filters (that allow a form of
discriminated unions) and conversion of constructors. In Section 4
we discuss the problem of adapting a static type system to Erlang

1
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and describe how type declarations and function specifications can
be added to Erlang code. Section 5 describes the implementation.
Section 6 presents our experimental evaluation and Section 7 places
our results in the context of earlier work.

2 How to build a type system
Let’s start with an overview of the approach. We first develop a
simple type checker for a simple functional language. The algorithm
for type checking is straight-forward, but an important question we
also try to answer is: How can the type checker guarantee safety?

2.1 What is a type?
It is possible to give the domain of types a simple inductive defi-
nition based on the syntactic form of type expressions. Inductive
definitions are familiar to any computer scientist and have well-
understood properties.

However, sometimes inductively defined type domains are not
what we want. The most obvious limitation is that a domain of this
kind lacks solutions to circular equations such as X = (t → X ).
Now, there have been many attempts to overcome these difficulties
by extending the set of types to include recursive types, see for
example [2], but we then lose the simplicity of inductively defined
types.

A definition by Barendregt [3] suggests a different approach:

Definition (Barendregt 11A.1). A type structure is of the form
S = ⟨|S | , ⩽,→⟩ , where ⟨|S | , ⩽⟩ is a poset and→ : |S |2 → |S | is a
binary operation such that for a, b, a′, b ′ ∈ |S | one has

a′ ⩽ a & b ⩽ b ′ ⇒ (a → b) ⩽ (a′ → b ′).

The structure intended is an algebraic structure, i.e., a set of
elements with some operations on the set, where the operations
should satisfy some algebraic properties. (A poset is a partial order,
i.e., the relation ⩽ is transitive, anti-symmetric and reflexive.) The
interesting thing is that elements of a type structure do not need
to look like type expressions. The properties of Barendregt’s type
structures are the ones typically seen in subtyping systems; the
⩽ relation defines a partial order, and the arrow operation (which
takes two types and builds a new type) satisfies the rule

a′ ⩽ a b ⩽ b ′
(a → b) ⩽ (a′ → b ′)

In other words, this definition says that any combination of a set |S |
with an ordering ⩽ and a binary operation→ over |S | that satisfies
the properties is a type structure.

An inductive definition of types (together with some appropriate
definition of ⩽) satisfies the definition of type structures. However,
there are other interesting type structures, for example type struc-
tures with infinite types.

Now, it would be useful to show that it is possible to type the
program using some type structure, even if we did not know pre-
cisely which type structure. This is the approach taken in this paper.
But first we need to refine the definition of type structures.

For our purposes, the axioms in Barendregt’s definition are in-
sufficient as there would not be any program that did not type. This
would in turn make the problem of type checking rather uninter-
esting. To remedy this we introduce a set of atomic types, types that
are distinct from each other and from function types.

Let T ,U range over types. Assume a set Atom of atoms, and let
A,B range over types associated with these values. Also require

that if two function types T → U and T ′ → U ′ are related, i.e.,
if (T → U ) ⩽ (T ′ → U ′), then it holds that T ′ ⩽ T and U ⩽ U ′.
Barendregt calls type structures that satisfy this property invertible
but we will assume that all type structures satisfy this property.

Definition 2.1. A type structure S is an algebraic structure of the
form

S = ⟨|S |, ⩽,→,Atom, a⟩
such that

1. the relation ⩽ ⊆ |S | × |S | is transitive and reflexive,
2. (→) : |S | × |S | → |S | is a binary operation where for types

T ,T ′,U ,U ′ ∈ S we have (T → U ) ⩽ (T ′ → U ′) iff T ′ ⩽ T
and U ⩽ U ′,

3. Atom is some set,
4. a : Atom→ |S|,
5. for A,B ∈ Atom, A , B, it never holds that a(A) ⩽ a(B), and
6. for A ∈ Atom and types T ,U it never holds that a(A) ⩽

(T → U ) or (T → U ) ⩽ a(A).

2.2 Simple constraints
Let X ,Y ∈ TVar be the set of type variables. Also let A,B ∈ Atom
be the set of atomic types. Let the set of type expressions t ,u,v,w ∈
TExp be defined as follows:

1. TVar ⊆ TExp,
2. A ∈ TExp, if A ∈ Atom.
3. (t1 → t2) ∈ TExp, if t1, t2 ∈ TExp,

Let the set of constraints φ ∈ Constraint be formulas of the follow-
ing forms (where ⊥ is the inconsistent constraint):

1. t1 ⩽ t2, for t1, t2 ∈ TExp
2. ⊥

A constraint system G is a finite set of constraints.
We express the properties of type structures as derivation rules

for constraints; that the ⩽ relation is reflexive and transitive, proper-
ties of the→ operator, and things that must not occur, for example
A ⩽ (t → u) for some atomic type A and arbitrary types t and u.

To describe situations which must not occur, we use⊥ to indicate
inconsistency, for example in rule AW. Now, it should be easy to
see that the derivation rules for constraints of Figure 1 correspond
exactly to the axioms given for type structures in Definition 2.1.

We say that a constraint system G is consistent if G ⊢ ⊥ does not
hold, and, conversely, that G inconsistent if G ⊢ ⊥ holds. Naturally
we are only interested in consistent constraint systems. We would
not expect to find a solution for a constraint system containing, say,
a constraint A ⩽ (t → u).

For example, if G = {A ⩽ X ,X ⩽ B}, where A and B are distinct
atoms, we have by rule (T) that G ⊢ A ⩽ B and by rule (AA) that
G ⊢ ⊥, i.e., the constraint system is inconsistent.

2.3 Some mathematical logic
To solve constraint systems, or, more precisely, to determine whether
a constraint system can be solved, we will turn to mathematical
logic. Mathematical logic is a complex subject and we will only
mention some basic definitions and results. We will be brief as
details are not important for the rest of the paper. Textbooks on
the subject will provide further information, see for example [24].

In first order predicate logic, a sentence may be composed of pred-
icate symbols and expressions (as the constraints defined earlier). A
sentence may also be composed using the usual connectives (∧, ∨
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ϕ ∈ G
G ⊢ ϕ (∈)

G ⊢ t ⩽ t
(R) G ⊢ t ⩽ u, G ⊢ u ⩽ v

G ⊢ t ⩽ v (T)

G ⊢ t ′ ⩽ t , G ⊢ u ⩽ u ′
G ⊢ (t → u) ⩽ (t ′ → u ′) (W)

G ⊢ (t → u) ⩽ (t ′ → u ′)
G ⊢ t ′ ⩽ t

(WL) G ⊢ (t → u) ⩽ (t ′ → u ′)
G ⊢ u ⩽ u ′ (WR)

G ⊢ A ⩽ (t → u)

G ⊢ ⊥ (AW)
G ⊢ (t → u) ⩽ A

G ⊢ ⊥ (WA)

G ⊢ A ⩽ B A , B

G ⊢ ⊥ (AA)

Figure 1. Derivation rules for constraints. The rules define the
relation ⊢.

and ¬) and existential and universal quantifiers. As for constraint
systems, we say that a set of sentences is consistent if a contradiction
cannot be derived.

Each rule of Figure 1 can be expressed as a sentence, for example
rule (T) can be stated

∀XYZ .X ⩽ Y ∧ Y ⩽ Z =⇒ X ⩽ Z .

Since we assume that a constraint system is finite the conjunction
of the constraints of a constraint system form a sentence (type
variables are mapped to logic variables and all such variables are
existentially quantified).1 Thus, the combination of the derivation
rules and a constraint system G forms a set of sentences. It should
be clear that if a constraint system is consistent, then the corre-
sponding set of sentences is also consistent.

A structure (interpretation) is a set of values with a set of symbols;
constants (that map to values), functions (that map to operations
on the set) and relation symbols over the set [24, Section 3.2]. It
should be easy to see that a type structure is also a structure. A
structure is said to be a model of a set of sentences if each of the
sentences holds in the structure [24, Section 3.4].

In the context of constraint solving, a solution to a constraint
system corresponds to a model of the constraint system. If we want
to determine whether a constraint system can be solved, but we
are not interested in the details of the solution, we can use a result
by Henkin, known as the model existence property [10], see also [24,
Section 4.1]. Henkin shows, by an explicit construction, that for a
consistent set of sentences, it is possible to construct a structure
that is a model of the set of sentences.

In other words, if a constraint system is consistent, there is some
type structure for which it has a solution. In Section 2.7 we describe
a straight-forward algorithm for checking the consistency of a
constraint system. If the algorithm finds that the constraint system
is consistent, the program types.

2.4 Lambda calculus
We first develop a system for subtype inference for lambda calculus.
We will later look at variations of lambda calculus extended with
1An alternative would be to introduce a constant symbol for each type variable and
map each type variable to the corresponding constant symbol.

important features of Erlang and discuss how they can be typed.
Lambda calculus is a simple and efficient formalism. Lambda calcu-
lus is close to functional programming, and particularly suited for
reasoning about types.

We extend lambda terms to include terms that represent atoms.
Given a set of variables x ∈ Var and a set of atoms A ∈ Atom, the
set of lambda terms is inductively defined as:

M ::= x | M1M2 | λx .M1 | A
We will let the variables M,N , P range over lambda terms. A term
which is an atom will have the atom as type.

We say that an occurrence of a variable in a lambda term is
free if it is not "bound" by a lambda. In lambda calculus, terms are
considered to be equivalent up to renaming of bound variables, for
example, the terms λx .x and λy.y represent the same function (the
identity function). Thus a lambda term may have many syntactic
representations. We will always assume that the representation of
M is chosen such that any free variable is not also bound, and no
variable is bound in more than one sub-term.

The semantics of lambda calculus can now be expressed using a
single reduction rule:

(λx .M )N −→β M [x := N ] .

A lambda term is said to be a redex if it can be on the left hand side
in this rule above, i.e., if it is of the form (λx .M )N . Clearly, for any
redex M there is a lambda term M ′ such that M −→ M ′.

We say that M −→ M ′ if there is some sub-term N of M such
that N −→β N ′, and M ′ is the result of replacing one occurrence
of N in M with N ′. We write M −↠ N if there is a sequence

M1 −→ M2 −→ . . . −→ Mn

with M = M1 and N = Mn .

2.5 Typing lambda calculus
An environment Γ is a set {x1 : t1, . . . ,xn : tn } where the xi are
distinct variables, and the ti are type expressions. For a variable x ,
an environment should contain at most one binding x : t of x .

A typing is written Γ ⊩ M : t and indicates that the lambda
term M has the type t in environment Γ. (We use the symbol ⊩ for
typings to reduce the risk of confusion between derivations in the
constraint system and typings.) If Γ is empty, we will sometimes
write ⊩ M : t .

As it is often convenient to make the constraints of a typing
explicit, we will sometimes write Γ ⊩ M : t [G] to indicate that the
typing Γ ⊩ M : t holds, provided that the constraint system G can
be solved. Naturally, whenever Γ ⊩ M : t there is some constraint
system G such that Γ ⊩ M : t [G]. For the reader’s convenience we
show the rules on this format in Figure 2.

The first three type rules are the standard rules of simply typed
lambda calculus (see for example [3, Figure 1.6]). The subsumption
rule says simply that any type can be replaced with a more general
type [17].

From a practical point of view the subsumption rule poses some
difficulties as it can be inserted anywhere in the derivation of a
typing. The other rules are associated with different ways of build-
ing terms, so that the tree shape of the derivation of a typing for
a term is given by the term. Now, since the subtyping relation is
reflexive, an application of the subsumption rule may be inserted
anywhere in the typing, and since it is transitive, two consequtive
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(x : t ) ∈ Γ
Γ ⊩ x : t [∅] (axiom)

Γ ⊩ M : t → u [G1] Γ ⊩ N : t [G2]
Γ ⊩ MN : u [G1 ∪G2] (application)

Γ ∪ {x : t } ⊩ M : u [G]
Γ ⊩ λx .M : t → u [G] (abstraction)

Γ ⊩ A : A [∅] (atom)

Γ ⊩ M : t [G]
Γ ⊩ M : u [G ∪ {t ⩽ u}] (subsumption)

Figure 2. Typing rules with explicit constraint systems.

wΓ (x ) = ⟨∅, Γ(x )⟩
wΓ (M1M2) = ⟨G1 ∪G2 ∪ {t1 ⩽ (t2 → X )},X ⟩

where X is a fresh type variable,
⟨G1, t1⟩ = wΓ (M1), and
⟨G2, t2⟩ = wΓ (M2)

wΓ (λx .M1) = ⟨G1,Y → t1⟩
where Y is a fresh type variable,

Γ1 = Γ ∪ [x : Y ], and
⟨G1, t1⟩ = wΓ1 (M1)

wΓ (A) = ⟨∅,A⟩

Figure 3. Explicit construction of constraint system

applications of the subsumption rule may be combined. Thus there
is for any derivation of a typing an equivalent derivation where
every other rule is an application of the subsumption rule. In other
words, it is always possible to find a derivation of the typing with
a shape that is given by the term. This is discussed in more detail
by Kozen et al. [12] and Palsberg and O’Keefe [18].

We use this insight in an explicit construction of the constraint
system that needs to be solved to type the term. For a type envi-
ronment Γ and a term M , the function wΓ (M ) defined in Figure 3
computes a pair of a constraint system G and a type expression t .
The constraint system G has a solution exactly in the cases M can
be typed. In other words the constraint system required to type a
lambda-term can be constructed by a straight-forward traversal of
the term. The term types exactly when the constraint system has a
solution.

2.6 Safety
A desirable property of a type system is safety. This is usually
taken to mean that if a program types, certain errors should not
occur at run time. Milner [15] shows that a program that types
is “semantically free of type violation”, i.e., that “for example, an
integer is never added to a truth value or applied to an argument”.
One way to show this property is via the subject reduction property.

The subject reduction property states an invariant for typings;
if M is a term that types, that is, Γ ⊩ M : t , for some environment
Γ and type expression t , and M reduces in one or more steps to
some other term (M −↠ N ) then that term will have the same type,
Γ ⊩ N : t . If N is a term that cannot type, for example an application

of an arithmetic operation to strings, then the subject reduction
property guarantees that no term that types can be reduced to N .
(The word “subject” refers to the term M in a typing Γ ⊩ M : t .)

Lemma 2.2. If M −↠ N and Γ ⊩ M : t [G] then Γ ⊩ N : t [G].

The original proof of the subject reduction property for lambda
calculus was given by Curry and later extended to subtyping by
Mitchell [16, 17]. See also [3, Section 1.2 and 11.1]

2.7 Checking that a program types
A lambda term M types if there is some derivation of the typing
⊩ M : t [G], where the constraint system G has a solution. By the
model existence property (Section 2.3) it is sufficient to show that
the constraint system G is consistent. We will now describe an
algorithm for checking consistency of a constraint system.

Definition 2.3. Given a constraint system G , define (G )n , for n ≥
0, to be the smallest sets that satisfy the following:

1. (G )0 = G,
2. for all n, (G )n+1 ⊇ (G )n ,
3. for all even n > 0, if the constraint (t → u) ⩽ (t ′ → u ′) is in

(G )n−1, then the constraints t ′ ⩽ t and u ⩽ u ′ are in (G )n ,
and

4. for all odd n > 0, if the constraints t ⩽ X and X ⩽ u are in
(G )n−1, then (t ⩽ u) ∈ (G )n .

Let G∗ = ⋃n (G )n .

The complexity of constructing G∗ can be determined by a sim-
ple argument [8]. First, note thatG∗ only contains type expressions
present inG . Thus if the size ofG is n, andG contains no more than
n expressions, there are less than n2 inequalities in G∗, which sets
a bound to the space used by the construction. When an inequality
t ⩽ u is added to the constraint system, the algorithm must exam-
ine inequalities of the forms t ′ ⩽ t and u ⩽ u ′ (in the odd step).
This may, at worst, require work proportional to the number of
expressions inG , thus the cost of adding one constraint isO (n) and
the worst-case complexity of the algorithm is O (n3).

The definition of G∗ might seem unnecessarily restrictive as it
would not add to the complexity of computingG∗ if Item 4 of the def-
inition was generalised to allow arbitrary expressions instead of a
variable. However, it turns out that this seemingly straight-forward
change would make the proof of Theorem 2.4 more complicated, in
particular Proposition 2.7 would need to be restated.

We say that a constraint system is locally consistent if G∗ does
not contain any immediately inconsistent constraints such as ⊥,
A ⩽ (t → U ), (t → U ) ⩽ A, or A ⩽ B, for distinct atoms A and B.
It turns out that local consistency coincides with consistency.

Theorem 2.4. A constraint system G is consistent iff G is locally
consistent.

It should be clear that a consistent constraint system is also
locally consistent. To show the converse, that a locally consistent
constraint system is consistent, we consider the proof rules of
Figure 1. The question we ask is: If we can deduce G ⊢ φ in a single
application of one of the rules, how will (G ∪ {φ})∗ differ from G∗?

Rules (∈), (WL) and (WR) are applied in the computation of G∗,
so if G ⊢ φ can be deduced using one application of one of these
rules we have φ ∈ G∗. As G is assumed to be locally consistent the
rules (AW), (WA) and (AA) can be excluded as their use implies that
G is not locally consistent.
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We next consider the remaining rules (R), (T) and (W) and show
that while they add new constraints, local consistency will not
change. We state properties of these derivation rules in the follow-
ing propositions. They can be shown by induction over n.

Proposition 2.5 (Rule R). Suppose that G is a constraint system, t
some type expression and φ an inequality. Let H = G ∪ {t ⩽ t }.

Whenever φ ∈ (H )n it holds either that
1. φ ∈ (G )n , or
2. φ = (u ⩽ u), some subexpression u of t .

Proposition 2.6 (Rule T). Suppose that G is locally consistent and
contains the constraints t ⩽ t ′ and t ′ ⩽ t ′′. Let H = G ∪ {t ⩽ t ′′}.

Whenever a constraint u ⩽ v occurs in (H )n , there are type expres-
sions w1,w2, . . . ,wm and an integer k such that w1 = u, wm = v ,
and the constraint wi ⩽ wi+1 occurs in (G )k , for i < m.

Proposition 2.7 (Rule W). Let G be a constraint system containing
the constraints t ⩽ t ′ and u ⩽ u ′. Let φ = ((t ′ → u) ⩽ (t → u ′))
and H = G ∪ {φ}. It follows that whenever a constraint ψ occurs in
(H )n , we have either

1. ψ ∈ (G )n , or
2. ψ = φ.

The proof of the theorem uses these propositions to show that
a sequence of applications of the derivation rules R, T and W to a
locally consistent constraint system always lead to a locally consis-
tent constraint system. In other words, it is not possible to derive
⊥ from a locally consistent constraint system, thus if a constraint
system is locally consistent it is also consistent.

2.8 How to extend the constraint language
In our framework, introducing new forms of type expressions is
entirely unproblematic, since without any derivation rules that op-
erate on them, it is not possible to use the new expressions to prove
new things. Adding derivation rules is a different matter. A new
derivation rule allows us to draw new conclusions, thus it could
cause a previously consistent constraint system to become inconsis-
tent. We will consider a simple example; the addition of a universal
type. We will show how universal types can be accommodated in
our framework.

We use the symbol 1 for the type expression that represents the
universal type. The additional rules are stated in Figure 4.

Rule (U) states that 1 is the greatest type according to the sub-
typing order. For any type t , we can conclude that t is a subtype
of 1. Rules (UW) and (UA) state that no type given by an atom ex-
pression or an arrow expression may be greater than the universal
type. More explicitly, if a constraint which states that the universal
type is a subtype of (for example) an atomic type is encountered a
contradiction can be derived. To handle these rules in our frame-
work, we define constraints of the forms 1 ⩽ (t → u) and 1 ⩽ A
to be immediately inconsistent. We also need to show that rule (U)
preserves local consistency.

Generally speaking our framework can be extended to accom-
modate new derivation rules, provided that they fall into one of
three categories:

1. Rules that describe situations where inconsistency follows
from a constraint. Such constraints can be included in the
set of immediately inconsistent constraints, provided that it
is possible to implement a constant-time test that recognises

them. In our example Rules (UW) and (UA) fall into this
category,

2. Rules that preserve local consistency as discussed in Sec-
tion 2.7. Our example has one such rule; Rule (U).

3. Rules that need to be expressed in the computation of G∗.
Such rules must not introduce new type expressions (as that
could affect complexity and might even cause the compu-
tation to loop). We have seen one rule that falls into this
category: Rule (W) of Figure 1.

2.9 Workflow in the design of a type system

Reduction rules

Safety

Type rules Constraint rules

Algorithm for checking consistency

The dependencies are summarised in the diagram above. If the
reduction rules (that describe the operational semantics of the
programming language) are modified or extended, the derivation
rules (of constraints) need to be sufficiently powerful to show safety
properties (in particular, the subject reduction property), thus it
may be necessary to introduce new constraint rules. A change in
the constraint rules may in turn require a change in the constraint
checking algorithm. On one hand the derivation rules need to be
sufficiently powerful to guarantee the subject reduction property,
on the other hand they must not be so expressive that they cannot
be implemented efficiently.

3 The extended lambda calculus
We extend the simple language of Section 2 to accommodate the
Erlang programming language. First, Erlang has a rich set of data
type constructors (in contrast to the simple language which only
has atoms and functions). A type can be described by a set of
constructors, each applied to a number of types. An Erlang program,
for example:
f({leaf, X}) -> ...
f(Y) -> ...

can easily distinguish between data built using a particular con-
structor and data that is not. Thus we want to be able to isolate data
that does not match a constructor, both in the extended lambda
calculus and in the constraint language. In the extended lambda
calculus we express this using a special construct, the open case
expression. The constraint language uses filters to separate the part
of a type that is built using a particular set of constructors. Filters

t ⩽ 1 (U)

1 ⩽ (t → u)

⊥ (UW)

1 ⩽ A

⊥ (UA)

Figure 4. Derivation rules for the universal types.
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are also used to reason about discriminated unions. Last, in some
cases we need to allow conversion between types created using
different constructors.

3.1 Constructors
The data types of Erlang include tuples, lists, atoms, integers and
floating point values. To make the formalization more uniform,
we model all these values and types as constructors. In the formal
development we assume a set of constructors c ∈ C, where each
constructor has an arity. Each argument of a constructor is either
covariant or contravariant (the only constructors with contravari-
ant arguments are function types). Constructors form terms in the
extended lambda calculus and type expressions in the constraint
language, thus constructors build both data and types.

For the representation of function types we reserve a constructor
cλ with arity 2 that does not occur in any term. The first argument
of cλ is contravariant, the second covariant.

We will always assume that a constructor is used with the correct
number of arguments, thus we will often omit reference to the arity
of the constructor. We will sometimes refer to a term or a type
expression of the form ⟨c . . .⟩ as a constructor term or a constructor
type expression.

The set of constructors will include constructors for the various
data types, for example atoms, lists and tuples.

3.2 Filters and unions
Erlang has a fixed set of constructors that can be used to build
recursive data types. This should be contrasted with the situation
in programming languages based on Hindley-Milner type checking,
where each data type has its own set of constructors.

Consider, for example, the following Haskell data type definition:
data Tree = Leaf Integer

| Branch Tree Tree

This type definition introduces the constructors Leaf and Branch
(and they cannot be used to build data structures of any other type).
In our system, the corresponding data type might be defined
+type tree() = {leaf, integer()}

+ {branch, tree(), tree()}.

Here, the data structure uses the tagged tuples {leaf, ...} and
{branch, ...} as constructors. They may of course be used in
other parts of the program.

The specification language can express that a type is a union of
two types, but there are limitations. Consider an inequality

⟨c1 . . .⟩ ∪ ⟨c2 . . .⟩ ⩽ X ,

where c1 and c2 are distinct constructors. A constraint of this form
could occur if one wanted to type an Erlang function that is specified
to accept the tree data type as a parameter. Expressing this in the
constraint language is easy:

⟨c1 . . .⟩ ⩽ X , ⟨c2 . . .⟩ ⩽ X .

However, sometimes we want to put the union on the right-hand
side of the inequality. An inequality of this type would take the
form:

Y ⩽ ⟨c1 . . .⟩ ∪ ⟨c2 . . .⟩ (1)
and could occur (for example) when the type checker verifies that
a function does indeed return a tree. As noted by several authors,
for example [1], the combination of union types and function types

makes the typing problem substantially more difficult. Instead, we
present a solution that handles disjoint unions.

Instead of adding union types to our constraint language, we
introduce a new form of type expressions which we will call filters.
A constraint that uses a filter takes the form

X ↾ S ⩽ t ,

where S is a set of constructors, X is a type variable and t is a
type expression. Filters may only occur on the left-hand side of
an inequality. (Applying filters to other type expressions or allow-
ing filters on the right-hand side of ⩽ would not cause any major
difficulties but would complicate the derivation rules and the con-
sistency checking algorithm.)

The idea is that a filter only lets through those subtypes ofX that
use a constructor which is a member of S . This can be expressed in
the following derivation rule:

G ⊢ ⟨c t1 . . . tn⟩ ⩽ X G ⊢ X ↾ S ⩽ u c ∈ S
G ⊢ ⟨c t1 . . . tn⟩ ⩽ u

(F)

Note that this derivation rule fits Category 3 of Section 2.8 as the
algorithm for G∗ can be easily extended to capture this rule.

It should be stressed that the meaning of filters is exactly the one
given by the derivation rule. The rule states that when a constraint
X ↾ S ⩽ u holds, and some type expression t = ⟨c . . .⟩, such that
c ∈ S , appears on the left hand side of X , i.e., t ⩽ X , we can deduce
t ⩽ u, i.e., the filter will let t pass.

Turning back to our example (1), checking that the type of Y
belongs to either of the two type expressions ⟨c1 . . .⟩ and ⟨c2 . . .⟩
can be expressed with the constraints

Y ↾ {c1} ⩽ ⟨c1 . . .⟩ and Y ↾ S ⩽ ⟨c2 . . .⟩

where S is the largest set of constructors that does not contain c12.
Thus the first filter will match only those type expressions that use
the constructor c1, but the second filter will match those that do not
use c1. (Please recall that we assumed that c1 and c2 were distinct.)

Constraints involving filters are typically generated when typing
pattern matching and for function specifications and type defini-
tions.

3.3 Open case statements
As mentioned, Erlang makes it easy to write code that performs a
case analysis on a data structure depending on whether it belongs
to one subtype or not. In the extended lambda calculus we express
this mechanism through open case terms. These take the form

case(M,

⟨c x1 . . . xn⟩ ⇒ N ,

y ⇒ P ).

The idea is that if the term M matches the pattern ⟨c x1 . . . xn⟩,
the first branch, the term N , is selected. The second branch is only
selected when the term does not match the pattern. The syntactic
form used here was first considered by Heintze [8] in the context
of set-based analysis.

2The representation of constraints allows filter expressions where either the set is
finite or the set of constructors not in the set is finite.
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Table 1. Some constructors in the Erlang type system. The variable
n ranges over non-negative integers and a over Erlang atoms.

Constructor Description Arity
tuplena tagged tuple n − 1
tuplen untagged tuple n
tuple uniform tuple 1
atoma a specific atom 0
atom any atom 0
any universal type 0

3.4 Conversion
Since Erlang was not designed as a typed language from the start,
the way constructors are used by applications, libraries and built-
in primitives sometimes makes it difficult to determine which at-
tributes of a data structure should be thought of as a constructor.
For example, while it is clear that each atom should have its own
type, there are operations that work on any atom, so one would
like a type that represented all atoms. We have seen tagged tuples,
but sometimes tuples are not tagged (different untagged tuples are
only distinguished by their length), thus one would like a type
for untagged tuples for each length. Some Erlang primitives treat
tuples as arrays, so one would also like a constructor that describes
tuples of any length.

In this section we consider the set of constructors required to
reason about Erlang programs. We give two conversion relations,
both named ◁, over terms and type expressions. These determine
when a term (or a type expression) written using one constructor
may be converted to some term (or type expression) using another.
It is straight-forward to extend the reduction relation for open case
expressions to allow conversion of terms. Subtyping can now be
defined using the ◁ relation. However, the definition of subtyping
does not fit the type checking algorithm as one inequality could
be due to the combination of several rules. Thus we give a second,
equivalent, definition in a form that fits the type checking algorithm.
Finally we consider the interaction between filters and conversion.

3.4.1 Conversion of terms and type expressions. We con-
sider the constructors listed in Table 1. (Typing Erlang requires
other constructors, but the ones listed here are the most interest-
ing.) The constructor tuplena represents a tuple of length n which is
tagged with the atom a. This constructor has arity n − 1, as the first
element of the tuple is implicit. For untagged tuples of length n we
use the constructor tuplen which of course has arity n. The con-
structor tuple (of arity 1) is used when a tuple is uniform, i.e., each
element of the tuple has the same type. For an atom a, the nullary
constructor atoma represents that atom, in other words, the term
⟨atoma⟩ is that atom. The type expression ⟨atoma⟩ gives us the
type consisting of the atom a. The type expression ⟨atom⟩ gives
the type of all atoms, and the type expression ⟨any⟩ the universal
type.

Many of these constructors, for example atoma , for some atom
a, and tuplen , for some integer n, play a role in both at run-time
and in the type checker. Others, such as any, the constructor for
the general type, are only meaningful in the type checker.

3.4.2 Conversion and subtyping. We start by specifying re-
lations ◁ over terms and type expression. We define these rela-
tions as the minimal transitive and reflexive relation which satisfies

Figure 5. Conversion over terms
⟨tuplena M2 . . . Mn⟩ ◁ ⟨tuplen ⟨atoma⟩M2 . . . Mn⟩

⟨tuplen M . . . M⟩ ◁ ⟨tupleM⟩
⟨atoma⟩ ◁ ⟨atom⟩

M ◁ ⟨any⟩

Figure 6. Conversion over type expressions
⟨tuplena t2 . . . tn⟩ ◁ ⟨tuplen ⟨atoma⟩ t2 . . . tn⟩

⟨tuplen t . . . t⟩ ◁ ⟨tuple t⟩
⟨atoma⟩ ◁ ⟨atom⟩

t ◁ ⟨any⟩

the properties stated in figures 5 and 6, for arbitrary terms M ,
M1, . . . ,Mn , type expressions t , t1, . . . , tn and atoms a. Note the
parallel-ls between the two relations.

The definition of ◁ allows conversions such as
⟨tuple2

leaf t⟩ ◁ ⟨tuple2 ⟨atomleaf⟩ t⟩.
In other words, a tagged tuple is also an untagged tuple.

We can now give a subtype rule that allows conversion:
G ⊢ t ◁ u
G ⊢ t ⩽ u

(◁)

Keep in mind that these type rules describe the manipulation of type
expressions. According to the final rule, we can show that the type
given by the type expression t is a subtype of the corresponding
type given by u whenever t can be converted to u.

However, this rule is difficult to implement directly. In Section 3.5
we discuss a formulation of this rule which is more suitable for
implementation.

3.4.3 Conversion in the extended lambda calculus. In the
extended lambda calculus, conversion comes into play in the open
case expressions. For example, if the pattern of an open case expres-
sion is an untagged tuple, and the term being matched is a tagged
tuple, the matching may succeed (if the lengths of the tuples are
the same).

In a case expression, a term may be converted to fit a pattern.
case(M, ⟨c x1 . . . xn⟩ ⇒ N ,y ⇒ P ) −→ N [x1 :=M1, . . . ,xn :=Mn] ,

where M ◁ ⟨c M1 . . .Mn⟩
For example, when the term being matched is a tagged tuple and
the pattern is an untagged tuple, we have the conversion

⟨tuple2
leaf M⟩ ◁ ⟨tuple2 ⟨atomleaf⟩M⟩.

3.4.4 Filters and conversion. We require that in all constraints
X ↾ S ⩽ t the set S is up-closed, i.e., when c ∈ S and ⟨c . . .⟩◁⟨c ′ . . .⟩
we also have c ′ ∈ S .

The intuition is that if a type can pass a filter, a more general
type can also pass the filter. For example, the constructor any is a
member of any non-empty filter.

3.5 Conversion in the type checker
Note however, that Rule (◁) does not quite fit the type checking
algorithm (Section 2.7) as a constraint t ⩽ u may need to be resolved
via a combination of the (◁) rule and a generalisation of Rule W of
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Figure 7. Derivation rules for extended constraints.

φ ∈ G
G ⊢ φ (∈)

G ⊢ t ⩽ t
(R)

G ⊢ t ⩽ u, G ⊢ u ⩽ v
G ⊢ t ⩽ v (T)

G ⊢ coerce(t ,u)
G ⊢ t ⩽ u

(Ci)

G ⊢ t ⩽ u

G ⊢ coerce(t ,u)
(Ce)

G ⊢ t ⩽ u, t = ⟨c . . .⟩, u = ⟨d . . .⟩, c 3 d

G ⊢ ⊥ (C⊥)

G ⊢ ⟨c t1 . . . tn⟩ ⩽ X G ⊢ X ↾ S ⩽ u c ∈ S
G ⊢ ⟨c t1 . . . tn⟩ ⩽ u

(F)

Figure 1. However, it is easy to define a general rule that combines
these rules. Given a constraint t ⩽ u, where both t and u are
constructor expressions, we can find a finite set S of constraints
(using only proper sub-expressions of t and u) such that for any
constraint system G, G ⊢ t ⩽ u iff G ⊢ φ, for all φ ∈ S .

We define the function coerce as follows:
1. coerce(⟨c t1, . . . , tn⟩, ⟨c u1, . . . ,un⟩) = {φ1, . . . ,φn }. where
φi = (ti ⩽ ui ), if the ith argument of c is covariant, and
φi = (ui ⩽ ti ) otherwise.

2. coerce(⟨tuplena t2 . . . tn⟩, ⟨tuplen u1 . . .un⟩) = {⟨atoma⟩ ⩽
u1, t2 ⩽ u2, . . . , tn ⩽ un },

3. coerce(⟨tuplen t1 . . . tn⟩, ⟨tuple u⟩) = {t1 ⩽ u, . . . , tn ⩽
u},

4. coerce(⟨atoma⟩, ⟨atom⟩) = ∅.
5. coerce(t , ⟨any⟩) = ∅.

For any pair of constructor expressions t and u, coerce(t ,u) pro-
vides a set of constraints that need to hold in order for the constraint
t ⩽ u to hold.

3.6 Putting everything together
Let the set of type expressions t ,u ∈ TExp be the least set such that:

1. TVar ⊆ TExp, and
2. ⟨c t1 . . . tn⟩ ∈ TExp, where n is the arity of c , and ti ∈ TExp,

for i ≤ n.
Let the set of constraints φ ∈ Constraint be formulas of the follow-
ing forms:

1. t ⩽ u, for t ,u ∈ TExp,
2. X ↾ S ⩽ t , for X ∈ TVar, t ∈ TExp, and S an up-closed set of

constructors, and
3. ⊥.

We give the derivation rules for extended constraints in Figure 7 and
the type rules for the extended lambda calculus in Figure 8. A filter
expression X ↾ c is a shorthand for X ↾ S , where S is the smallest
up-closed set containing c . Similarly, we use X \ c as a shorthand
for X ↾ S , where S is the largest up-closed set not containing c . We

Figure 8. Typing rules for extended lambda calculus.

(x : t ) ∈ Γ
Γ ⊩ x : t (axiom)

Γ [x 7→ t] ⊩ M : u
Γ ⊩ λx .M : ⟨cλ t u⟩

(abstraction)

Γ ⊩ M : ⟨cλ t u⟩ Γ ⊩ N : t
Γ ⊩ MN : u (application)

Γ ⊩ Mi : ti , 1 ≤ i ≤ n

Γ ⊩ ⟨c M1 . . .Mn⟩ : ⟨c t1 . . . tn⟩ (constructor)

Γ ⊩ M : t
t ⩽ X

X ↾ c ⩽ ⟨c u1 . . .un⟩
Γ [x1 7→ u1, . . . ,xn 7→ un] ⊩ N : w

X \ c ⩽ Z
Γ[y 7→ Z ] ⊩ P : w

Γ ⊩ case(M, ⟨c x1 . . . xn⟩ ⇒ N ,y ⇒ P ) : w (case)

Γ ⊩ M : t t ⩽ u

Γ ⊩ M : u (subsumption)

also write c ≪ c ′ if c = c ′ or there are type expressions t = ⟨c . . .⟩
and u = ⟨c ′ . . .⟩ such that t ◁u, and c 3 c ′ if c ≪ c ′ does not hold.

4 How to make Erlang statically typed
As noted by Mitchell [17], the type rules of a subtyping system are
more general than those of a Hindley-Milner type system. Thus
the subtyping system should be able to type any program typable
in Hindley-Milner by simply removing data type definitions and
using predefined constructors instead of those given in data type
definitions. Indeed, it has been our experience that if a program is
written as if it was intended for a Hindley Milner type system, it
will type under the subtyping system.

The subtyping system should in principle be able to type check
a complex program, relying only on top-level specifications and
deducing internal data types. In practice, it is a good idea to intro-
duce function specifications and data types declarations for various
intermediate function definitions and data types as this will help
locating the sources of type errors and speed up type checking.

4.1 Type definitions and function specifications
The system accepts source files containing Erlang code, type defi-
nitions and function specifications. One example:
-module(example1).
%: +type list(X) = [] + [X|list(X)].

%: +func append :: list(X) * list(X) -> list(X).
append([A | B], C) ->

[A | append(B, C)];
append([], C) -> C.

%: +func dup :: list(integer()) -> list(integer()).
dup(S) ->
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append(S, S).

(In Erlang, lower case identifiers without arguments indicate atoms,
upper case identifiers are variables.) The first type definition gives
the polymorphic and recursive type list(), which is of course
either the empty list constructor ([]) or the cons constructor applied
to the type parameter and the list type, ([X|list(X)]). It should
be stressed that nothing about the list constructors is hard-coded in
the type checker. Everything the type checker knows about lists and
the two list constructors is present in the specifications above. It is
possible to specify and use a list type based on other constructors,
or, conversely, to use the lists constructors to build other types.

The character combination “%:” is treated as white space by
the scanner of the type system while the Erlang compiler sees the
character % as the start of a comment. Thus the type definitions and
specifications in the module above will be read by the type checker
but ignored by the compiler.

Type definitions use the keyword type and give a name to a
type. Specification use the keyword spec and state that an Erlang
function should implement a certain type. The type checker will
verify that this is indeed the case. For example, the specification of
the function append simply states that the function takes two lists
as arguments, and returns a list of the same type.

In the language for types, an atom followed by an argument list
(for example: list(integer())) indicates either a type construc-
tor or a type defined in some type definition. Some constructors
use different syntax, for example the empty list [] and the list con-
structor [...|...]. Also, atoms, tagged and untagged tuples have
the same syntax as in Erlang. As Erlang allows a function to have
any number of arguments, we use a function type constructor for
each number of arguments. Examples of function types with zero,
one, or two arguments:
() -> atom(), integer() -> atom(),
integer() * float() -> atom().

Among other primitive types in the source language are atom(),
the type of atoms, and integer(), the type of integers.

Finally, we use the notation any() and none() for the universal
and empty types, respectively.

4.2 Unsafe features
4.2.1 Non-exhaustive case analysis. In some programming lan-
guages, for example Standard ML, the type system will give a warn-
ing if the case analysis is incomplete. Consider, for example, a
function that returns the last element of a list but has no clause for
the case when the list is empty. In contrast, a Haskell compiler will
accept this function without warnings. There are certainly good
arguments for either choice. In the type system described here, we
chose to follow Haskell’s approach and accept such programs.

4.2.2 Promises. Many functions in the standard library are ill-
suited for static typing. For example, there are many operations
that may return a value of any type. Among these are primitives
for process communication and functions that read data from a
file or from standard input. Such operations should be declared to
return the universal type, but typically code that uses one of these
operations expects values of a particular type.

Rather than barring programmers from using such operations,
our system includes a primitive promise that allows the program-
mer to assert that a variable has a particular type. We illustrate the
use of the primitive with a simple example.

%: +func f::() -> integer().
f() ->

{ok, X} = io:read(">"),
%: promise X :: integer(),

X.

Now, promises are unsafe in the sense that if the programmer lies to
the type system in a promise the type system will trust the promise.
A cautious programmer could of course insert code that checked
the promise, and in a more well-integrated system such tests could
be inserted automatically.

Using promises it is possible to leave one part of a program
untyped, thus it is possible to gradually introduce static typing in a
dynamically typed program.

The implementation of the type system uses promises in four
locations. Two uses occur in the module program and are associ-
ated with calls to the function get_value of the library module
proplists, which extracts a field from a property list. Since a prop-
erty list may store any value, and different types of values are
associated with different properties, there is no way to statically
determine the type of one particular field.

The two other uses of promise occur in a module which expands
records. These uses of a promise could perhaps be avoided by more
careful coding and better use of polymorphism.

4.2.3 External modules. The type system checks one module
at the time. If a second module is referenced, and specifications
are available, the type system will under default settings use the
specifications instead of analysing the second module. Naturally,
until the second module is also checked, there is no way of knowing
whether the specification in the second module really conform with
the actual code.

In the type system, there are some places where typing relies
on specifications, but the type system has not checked that the
specifications match the corresponding function definitions. For
example, the parser which is based on the standard Erlang parser
is not checked. Instead, the abstract syntax tree which is generated
by the parser is specified separately. Also, there is a module that
implements a modified version of the standard Erlang preprocessor.
The type system relies on specifications of three functions of that
module that are not checked. There are also seven functions in
standard libraries (involving IO, the file system and timers) that are
not checked. Perhaps more importantly, the module lists which
implements various operations on lists could not be checked. The
reason is that many functions in that library manipulate lists of
tuples. Consider for example keysort, which takes an integer (the
key) and a list of tuples that are sufficiently long to contain the key.
The list is sorted by the position given by the key. To type programs
that use this function, a specification should reflect not only that
the second argument and the result are both lists of tuples but also
that the tuples of the result are of the same type as the input tuples.

4.3 One feature of Erlang that the type system cannot
handle

While the type rules can reason about programs that use higher-
order functions, Erlang offers other forms of indirect function calls
are harder to analyse.

Erlang’s built in function apply allows the destination of a func-
tion call to be computed at run-time. Thus depending on input
any exported function of any module may be called. Currently, the
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type system will simply reject programs that use apply and related
primitives.

5 The Implementation
5.1 Predicates
The front end of the type checker translates function definitions (i.e.,
Erlang code), type definitions and specifications into constraints.
These constraint systems are organised in predicates.

A predicate takes the form

predicate Name [X1, ...,Xn] Body

where Name is an identifier, X1, . . . ,Xn are variables (the param-
eters of the predicate), Body is a set of constraints and calls. In
other words, a predicate is a way of associating a name and some
parameters with a constraint system. A call is of the form

call Name [Y1, . . . ,Ym]

We refer to Y1, . . . ,Ym as the arguments of the call. Free variables
of Body that are not among the parameters are treated as local
variables.. The resolution of a call is simple; the call is replaced with
the body of the predicate where every variable that occurs as a
parameter is replaced with the corresponding argument, and other
free variables are replaced with fresh variables. Thus a collection
of predicates together with a top-level call can be expanded into a
constraint system.

After the predicates have been generated, the remaining phases
of the type checker do not rely on any other information beside
the structure of the predicates and the constraint systems explicit
in the predicates.

In the examples below, we use the following format: Variables
are upper case. A constraint always takes the form t1 ⩽ t2, where
t1 and t2 are type expressions. Type expressions are variables, filter
expressions or built using a constructor. In the latter case, they
are written ⟨c t1, . . . , tn⟩ where c is a constructor and t1, . . . , tn
are type expressions. Among constructors are the nullary con-
structor atoma , for any atom a, the n-ary constructor tuplen , for
any n, the binary list constructor cons and the constructor of the
empty list nil. For functions we use a special notation and write
([t1, . . . , tn]→ u) for a type expressions that describes a function
of n arguments that takes arguments of the types t1, . . . , tn and
returns a result of type u. Thus the constructor has arity n + 1. The
reason for using multi-argument function types is of course that
Erlang distinguishes between functions with different number of
arguments. Filter expressions are either of the form X ↾ c or X \ c
where X is a variable and c a constructor.

Type definitions and specifications are used in two situations,
when generating a type according to a definition or a function
specification, and when checking that a supplied type matches.
Since these two cases require different constraints and don’t interact
we have found it convenient to separate the two cases and define
two predicates for each type definition and function specification;
a lower predicate and an upper predicate.

5.1.1 Examples. We show predicates for simple type definitions.
First, a simple type definition with two alternatives:

+type bool() = true + false.

Consider first the lower predicate for the type bool().

predicate type_lower_bool [T ]
([]→ A) ⩽ T , (2)
⟨atomtrue⟩ ⩽ A, (3)
⟨atomfalse⟩ ⩽ A. (4)

Like all predicates for type definitions, the predicate takes a single
parameter (T ). As the type bool does not take any parameters,
the predicate generates a function type without parameters (2).
The result type (A) describes the possible values of a variable or
expression of type bool(). There are two possible values, the atom
true or the atom false.

Next, the upper predicate for bool().

predicate type_upper_bool [T ]
([]→ A) ⩽ T , (5)
A ↾ atomtrue ⩽ ⟨atomtrue⟩, (6)
A \ atomtrue ⩽ ⟨atomfalse⟩. (7)

In the upper predicates for bool(), we use filters (as explained in
Section 3.2) to isolate the two cases. When filtered with the set
{atomtrue} the type of A must be a subtype of ⟨atomtrue⟩ (6). The
third line (7) uses a filter to exclude any use of the atom true. If A
is not the atom true, the type of A must be a subtype of the atom
false.

Next we consider a simple parametric type.

+type option(X) = none + {some, X}.

Both the lower and upper predicate define the type of T as a func-
tion with one parameter. In the lower predicate, the parameter X
is introduced in constraint (8) and used in constraint (10). By con-
straint (9) the result may be the atom none and by constraint (10)
the result may be a tuple, where the second element is given by the
parameter X .

predicate type_lower_option [T ]
([X ]→ A) ⩽ T , (8)
⟨atomnone⟩ ⩽ A, (9)

⟨tuple2
some X ⟩ ⩽ A. (10)

The upper predicate follows a similar pattern. The type passed to
the predicate needs to be a function type with one parameter, as
the type is parametric (11). Filters are used to distinguish between
the cases when the result of the supplied type is the atom none (12)
and when it is not (13).

predicate type_upper_option [T ]
T ⩽ ([X ]→ A), (11)
A ↾ atomnone ⩽ atomnone, (12)

A \ atomnone ⩽ ⟨tuple2
some X ⟩. (13)

We end with a (non-parametric) recursive type,

+type intlist() = [] + [integer() | intlist()].

Both the lower and upper predicate are recursive. In the lower
predicate, the recursive call supplies the type of the rest of the list
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(18).

predicate type_lower_intlist [T ]
([]→ A) ⩽ T , (14)
⟨nil⟩ ⩽ A, (15)
⟨cons ⟨integer⟩ B⟩ ⩽ A, (16)
call type_lower_intlist [U ], (17)
U ⩽ ([]→ B). (18)

In the upper predicate, constraint (23) in combination with the
call (22) gives an upper bound to the rest of the list (B). The next
section describes how recursive predicates are replaced with con-
straints.

predicate type_upper_intlist [T ]
T ⩽ ([]→ A), (19)
A ↾ nil ⩽ ⟨nil⟩, (20)
A \ nil ⩽ ⟨cons ⟨integer⟩ B⟩, (21)
call type_upper_intlist [U ], (22)
([]→ B) ⩽ U . (23)

5.2 Recursion in predicates
Let’s first look at the case where a predicate is recursive, but
there are no mutually recursive predicates. Consider the predi-
cate type_lower_intlist of the previous section. It contains a call
call type_lower_intlist [U ]. The strategy is to simply merge the
parameters with the arguments in the recursive calls, i.e., replace
all of them with a set of variables. The recursive calls can now be
removed. In the example, this gives us the following predicate:

predicate type_lower_intlist [T ]
([]→ A) ⩽ T , (24)
⟨nil⟩ ⩽ A, (25)
⟨cons ⟨integer⟩ B⟩ ⩽ A, (26)
T ⩽ ([]→ B). (27)

Now, it is possible that this approach to recursion will sometimes
be overly aggressive; one can create a recursive predicate where
merging recursive calls in this manner gives a non-recursive predi-
cate where the body is inconsistent, but where a more conservative
approach would have avoided inconsistency. However, as our ap-
proach is more general than Hindley-Milner typing (which also
treats recursive calls as monomorphic), it seems safe to assume that
it will work well in practice.

To handle mutual recursion, it is useful to view the predicates as a
directed graph where each predicate is a node and an edge connects
two predicates if there is a call in the first predicate to the second.
Mutually recursive predicates form strongly connected components.
Predicates that form a strongly connected component are combined
into a new predicate. The parameter list of this predicate is the
concatenation of the parameter lists of the predicates it replaces.

Non-recursive calls between predicates are treated as polymor-
phic. Thus each such call results in the duplication of constraints.
To reduce the cost of duplication, various constraint simplification
algorithms are applied before duplication.

5.3 The constraint solver
The constraint solver uses a graph representation where nodes
are type variables and edges are labeled with filters and represent
constraints of the formX ↾ S ⩽ Y . With each node, say for a variable
X , we associate constructor expressions t such that t ⩽ X (supports)
andX ⩽ t (covers). As suggested by Heintze [9], we do not compute
a representation of the transitive closure. Instead, when a link
X ↾ S ⩽ Y is added, a depth first search collects the direct and
indirect supports of X and a second dfs collects the covers of Y .
The covers and supports are then combined.

The solver (and the rest of the type checker) is written in a pure
functional style, with the exception of IO and calls to the timer
library.

5.4 Constraint simplification
Since our implementation of polymorphic type checking sometimes
requires a constraint system to be duplicated, it is reasonable to
use constraint simplification to (hopefully) improve performance.
We have developed two approaches to constraint simplification.

Our starting point is a constraint system G and the set of vari-
ables P which serve as an interface to the constraints in G. The
constraint system G represents a definition of a function or a type
definition. The constraint system needs to be duplicated if it is used
in different contexts.

In the first simplification, we consider reachability, i.e., the set
of constraints in G that can be reached from P . The second sim-
plification considers stability. Given a constraint system G and a
set of visible variables P it sometimes happens that a variable is
reachable, but that there is no need to duplicate the variable if the
constraint system is duplicated. Suppose, for example:

P = {X },G = {⟨cons Y Z ⟩ ⩽ X , ⟨cons Y1 Y2⟩ ⩽ Y }. (28)

Even if G is used in different contexts, there is no need to duplicate
the variables Y , Y1 and Y2. This situation occurs for example if
G is the constraint system of a function that returns a complex
data structure but the data structure does not depend on the input.
Obviously, the type of the result will always be the same.

6 Measurements
Table 2 lists modules of the type checker itself and the time required
to check the modules. In Table 3 we find a collection of modules that
were developed independently of the type checker. Module barnes
implements the Barnes-Hut algorithm, a simulation of the n-body
problem. Module smith, which implements the Smith–Waterman
algorithm for local sequence alignment, gives a clear example of
the performance impact of specifications of intermediate function
definitions; the first version (smith0) only specifies the top func-
tion, the second (smith) version which also specifies two internal
functions is several times faster. In these (smith) modules, a line of
code had to be modified to use explicit matching as the algorithm
used a more general type internally but always returned a more
restricted type.

The following four modules are part of a program that computes
the mandelbrot set. The module mandelbrot uses process commu-
nication to transmit intermediate results and as the type system
cannot reason about the types of data transmitted in messages, a
promise was needed to provide the types. Also, mandelbrot uses
an older primitive to spawn processes (that requires a function call
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Table 2. Modules in the type checker. LOC: lines of code. LOD: lines
of specifications and type definitions. Blank lines and comments
are not counted. The final column shows time (in seconds) to check
the module.

Module LOC LOD Time
agenda 200 15 0.55
coalesce 220 16 0.34
conn 181 38 0.10
convert 815 112 3.83
graph 137 13 0.06
match 130 30 0.24
poly 321 20 1.43
pos 14 7 0.01
program 310 49 2.31
reach 398 26 0.57
record_expand 88 22 0.39
rfilter 139 14 0.08
sanity 197 12 0.50
scfa_file 44 5 0.04
solver 419 65 0.48
walker 695 102 1.77
worklist 26 8 0.02

Table 3. Modules from a collection of benchmark programs. The
table is organised as Table 2.

Module LOC LOD Time
barnes 182 4 0.09
smith0 76 1 0.63
smith 76 11 0.04
complex 31 10 0.02
mandelbrot 37 8 0.02
image 59 12 0.03
render 22 2 0.03
gb_trees 303 30 0.11
gb_sets 512 31 0.21
ordsets 148 21 0.06

of the form described in Section 4.3) which was replaced by the
modern version.

The modules gb_trees, gb_sets and ordsets come from the
standard library distributed with the Erlang implementation. The
modules required only minimal changes to type. In some cases, a
function used a more general type internally but returned a value
that was of a more specific type. This was the case in the two library
modules gb_trees and gb_sets, and the smith modules. Here, an
explict matching had to be inserted to help the type system discover
that a value of a more specific type was returned. For example, in
the gb_trees module, a function definition
insert(Key, Val, {S, T}) when is_integer(S) ->

S1 = S+1,
{S1, insert_1(Key, Val, T, ?pow(S1, ?p))}.

had to be rewritten:
insert(Key, Val, {S, T}) ->

S1 = S+1,

{Key1, Value, Smaller, Bigger}
= insert_1(Key, Val, T, ?pow(S1, ?p)),

{S1, {Key1, Value, Smaller, Bigger}}.

The type checker was set to use constraint simplification and
“prefer specifications”, i.e., to use specifications of functions, when
available, when checking Erlang code containing function calls. All
measurements have been run on a 1.3 GHz Intel Core i5 (a 2013
Macbook Air). In the measurements, only one core was used. The
Erlang implementation used a BEAM byte-code emulator.

7 Related work
Kozen et al. [12] showed that the problem of checking whether a
term in lambda calculus can be typed by a subtyping system could
be determined in O (n3) time. They give an inductive definition of a
type structure and give an efficient algoritm for checking whether
a term has a type. It seems, however, that relying on an inductive
definition of the type structure makes it difficult to extend the
approach to handle programming languages and type systems with
more features.

Marlow and Wadler [14] describe an early prototype of a sub-
typing system for Erlang written in Haskell and report promising
results; the type system has been applied to thousands of lines of
library code and no difficulties are antipicated. However, Erlang has
many features that the type system should not be able to handle,
and even “nice” Erlang programs sometimes do things that should
be hard to reason about in their type system. Their constraint lan-
guage is based on one by Aiken and Wimmers [1]. However, there
are some changes, for example, their system is restricted to discrim-
inated unions that should give about the same expressiveness as
the filter concept described in Section 3.2. They implement poly-
morphism by deriving a most general type for function definitions.
This is unlike the current paper and others, for example [19] and [7]
where a constraint system represents the set of possible types. The
problem with their approach to polymorphism seems to be that a
function may be typed in many different ways and there are cases
where there is no most general type. The authors give an illustra-
tive example (Section 9.3) where the type system finds a type for a
function definition which is not the one one would expect. They
show how their type system can be extended to handle higher-order
functions (which were not part of Erlang at the time) but note that
a solution would then be incomplete [23]; the type system might
fail to prove correctness of certain programs. The problem seems
most pressing when reasoning about type definitions.

Eifrig et al. [5] present an interesting approach to subtyping.
Types are constrained, i.e., each type comes with a constraint sys-
tem which gives a rich type system, though it does not seem that
this gives any additional expressiveness compared to the approach
in this paper. Like this paper, Eifrig uses a propagation algorithm
to determine whether a constraint system is acceptable. Unlike this
paper, there is no attempt to link the propagation algorithm to a
definition of consistency using derivation rules, instead they give a
subject reduction proof where they show that each reduction step
preserves the outcome of the propagation algorithm. This is unsat-
isfactory from a theoretical point of view, a practical problem is that
it makes the type system hard to extend; any modified version of
the type system requires a new algorithm for checking constraints.
Since the proof of the subject reduction property depends on the
algorithm every new version of the algorithm needs a new version
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of the (rather tedious) proof. Any mistakes in the design of the
algorithm will become apparent at a late stage, and it will be hard
to tell whether the problem is due to a mistake in the design of the
algorithm or in the underlying type system.

Typed Scheme [22] requires that the program contains specifica-
tions of all functions and data structures. Thus, the problem of type
checking is in some regards much simpler as there is only a limited
need to deduce types for immediate values. In contrast, the system
presented here can deduce complex intermediate data structures.

There are several other recent attempts to integrate static and
dynamic typing that rely on some form of subtyping but not in
combination with type inference, for example [6, 11, 20, 21, 25, 26].
These systems rely on run-time type checks in the conversion from
dynamically typed values to values with static types.

Dolan and Mycroft [4] present a subtype system for SML, ex-
tended with a universal type, an empty type and a record concept.
Interestingly, they report that their type system has principal types.
However, as the principal types are not minimal (in fact, a function
may have an infinite set of principal types of unbounded size) the
advantage of principal types is unclear. Their implementation of
polymorphism relies on heuristic simplification of principal types,
analogous to the constraint simplification algorithms exploited in
this work.

Most type systems (including the one presented in this paper)
attempt to guarantee some degree of safety from type errors at
run-time. Lindahl and Sagonas [13] take the opposite approach and
give a type system for Erlang that that only rejects programs that
are guaranteed to fail. This allows the type system to work with
programs that were not written with static typing in mind.

8 Conclusions
Designing a static type system for a programming language that
was not designed for static typing poses many challenges. Some-
times typing a program requires some minor adjustments, some-
times there are features that seem fundamentally unsuited for static
typing. More interesting are situations that seem amenable to static
typing, if only the type system was a little bit more powerful.

The subtyping system we have developed is a generalisation of
Hindley-Milner type inference. As Hindley-Milner type inference
has been used in functional programming for decades, we expected
that a generalisation should be capable of handling most functional
programs that did not involve any exotic features of Erlang. Expe-
rience has confirmed this expectation; programs that would have
typed in, say, an SML implementation will indeed type here.

The interesting question is: which programs can be typed under
a subtyping system that cannot be typed by the Hindley-Milner
system? There are some obvious situations. For example: a com-
plex type that uses fewer constructors than another and is thus a
subtype or a type that uses the same constructors as another (but is
otherwise unrelated). The use of the subtyping system in the typing
of the implementation of the subtyping system has offered some
insight in the practical aspects of using subtyping in development.
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ABSTRACT
Constructor subtyping is a form of subtyping where two inductive
types can be related as long as the inductive signature of one is a
subsignature of the other. To be a subsignature requires every con-
structor of the smaller datatype to be present in the larger datatype
(modulo subtyping of the constructors’ types). In this paper, we de-
scribe a method of impredicative encoding for datatype signatures
in Cedille that allows for highly flexible support of constructor sub-
typing, where the subtyping relation is given by a derived notion
of type inclusion (witnessed by a heterogeneously-typed identity
function). Specifically, the conditions under which constructor sub-
typing is possible between datatypes are fully independent of the
order in which constructors are listed in their declarations. After
examining some extended case studies, we formulate generically a
sufficient condition for constructor subtyping in CDLE using our
technique.
ACM Reference Format:
Andrew Marmaduke, Christopher Jenkins, and Aaron Stump. 2020. Zero-
Cost Constructor Subtyping. In Proceedings of ACM Conference (Confer-
ence’17). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnn
nnn.nnnnnnn

1 INTRODUCTION
Inductive datatypes are the least set of terms generated by their
constructions. Constructor subtyping arises when we interpret
the subtype relation as the subset relation between the sets of
terms. Equivalently, one can interpret constructor subtyping as
the subset relation between sets of constructors treated as uninter-
preted constants. For example, the inductive datatype for natural
numbers, N, is represented by the set {0, succ} and the inductive
datatype for the (unquotiented) integers, Z, is represented by the set
{0, succ,neдate}. It is trivial to see that {0, succ} ⊆ {0, succ,neдate}
which implies N ⊆ Z.

Subtyping allows for function and proof reuse, and constructor
subtyping in particular enriches the subtype relation to include
relationships when an inductive datatype is a subset of any other
inductive datatype. Function overloading is a natural use case of
subtyping and although constructor subtyping is not required for
overloading functions, the kinds of overloads that are possible ben-
efit from the enriched relation. Additionally, constructor subtyping
yields a form of incremental definition where a datatype is extended

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

with additional constructors, implicitly inheriting the signature of
the extended datatype.

The concept of constructor subtyping is attributed to Kent Pe-
terson and (independently) A. Salvesen by Coquand [8], but was
developed by Barthe et al. [3, 4] into new calculi that directly sup-
port constructor subtyping. However, Barthe did not investigate
constructor subtyping for indexed inductive datatypes. Further-
more, his calculus has a weak notion of canonical elements in the
presence of type arguments. In this paper, we describe a highly
flexible approach to constructor subtyping in the Cedille program-
ming language, where the subtype relation is a derived notion of
type inclusion — directly analogous to the set inclusion discussed
earlier.

Precisely, our contributions are:

(1) a method of impredicative encoding of datatype signatures
in Cedille that treats datatype constructor lists as truly un-
ordered sets, allowing users or language implementors their
choice of labeling set and assignment of those labels to con-
structors;

(2) a demonstration that this method supports highly flexible
constructor subtyping, where the subtyping relation is a
derived notion of type inclusion: for two compatible con-
structors to be identified, it is necessary only that they be
assigned the same label;

(3) we examine three case studies: natural numbers as a subtype
of integers, lists as a subtype of vectors with a tree branching
constructor, and a language extension of the simply typed
lambda calculus by numeral expressions;

(4) we prove generically (for any labeling type and label-indexed
family of constructor argument types) a sufficient condition
for subtyping of datatypes, by instantiating the framework
of Firsov et al. [11] for generic (and efficient) encodings of
inductive datatypes in Cedille;

(5) finally, all presented derivations and examples are formalized
in Cedille (https://github.com/cedille/cedille-developments/
tree/master/constructor-subtyping).

In the following section we provide the necessary background of
Cedille’s core theory and describe the features that are required to
implement constructor subtyping (Section 2). Next, we present the
core idea behind the lambda encoding and describe the derivation
in Cedille (Section 3). After, we explore three case studies involving
parametric and indexed datatypes (Section ??). We then formulate
generically a sufficient condition for subtyping of datatypes for the
form of signatures produced by our method of encoding (Section 5).
The paper is concluded by remarking on related work (Section 4)
and summarizing our results (Section 5).
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Γ, x : T ⊢ t ′ : T ′ x < FV(|t ′ |)
Γ ⊢ Λx :T . t ′ : ∀x :T .T ′

Γ ⊢ t : ∀x :T ′.T Γ ⊢ t ′ : T ′

Γ ⊢ t -t ′ : [t ′/x]T

|Λx :T . t | = |t | |t -t ′ | = |t |

Figure 1: Implicit Functions

2 BACKGROUND ON CEDILLE
Cedille is a dependently typed programming language whose core
theory is Calculus of Dependent Lambda Eliminations (CDLE) [25].
It extends the extrinsically typed Calculus of Constructions (CoC)
with three additional primitives: the implicit (or erased) function
types of Miquel [22], the dependent intersection type of Kopy-
lov [17], and an equality type of erased terms. Critically, lambda-
encoded datatypes supporting an induction principle is derivable
in CDLE where it is not in CoC [14]. Moreover, efficient lambda en-
codings exist which alleviate prior concerns with lambda-encoded
inductive data [11]. In the remainder of this section we review the
three additional typing constructs that are added to CoC to form
CDLE.

2.1 Implicit Functions and Erasure
Erasure in CDLE (denoted by vertical bars, e.g. |t |) defines what is
operationally relevant in the theory. It can be understood as a kind
of program extraction that produces an untyped λ-term. Typing
information such as type abstractions or type annotations are all
erased. Implicit functions, the rules for which are listed in Figure 1,
give a way of expressing when a term should also be treated as
operationally irrelevant.

We write a capital lambda to denote abstraction by either a type
or an erased term (e.g. Λ X . Λ y. λ x . x for type X and term y), a
center dot for type-application (e.g.T1 ·T2 or t ·T ), a dash for erased-
term application (e.g. t1 -t2), and juxtaposition for term-to-term and
type-to-term application (e.g. t1 t2 and T t ). In types, we use the
standard forall quantifier symbol for both erased function types and
type quantification (e.g. ∀X :⋆.T2 and ∀x :T1.T2). For convenience,
we write an open arrow for an implicit function type that is not
dependent (i.e. T1 ⇒ T2). In contrast, relevant dependent functions
are written with the capital greek pi (i.e. Π x :T1.T2) and a single
arrow when not dependent (i.e. T1 → T2). The typing rules for
implicit functions are similar to those for ordinary ones, except for
additional concerns of erasure. To introduce an implicit function,
there is a syntactic restriction that the bound variable does not
occur free in the erasure of the body of the function; this justifies
the erasure of the elimination form, which completely removes the
given argument.

2.2 Dependent Intersections
In an extrinsically typed theory such as CDLE terms do not have
unique types. If we view all types as categorizing sets of (βη-
equivalence classes of) terms, then an intersection type is inter-
preted precisely as a set intersection. Additionally, this idea has a
dependent counterpart appropriately called a dependent intersec-
tion, the rules for which are listed in Figure 2, Syntactically, the
introduction form of a dependent intersection is a pair with the

Γ ⊢ t1 : T1 Γ ⊢ t2 : [t1/x]T2 |t1 | = |t2 |
Γ ⊢ [t1, t2] : ι x :T1.T2

Γ ⊢ t : ι x :T1.T2
Γ ⊢ t .1 : T1

Γ ⊢ t : ι x :T1.T2
Γ ⊢ t .2 : [t .1/x]T2

|[t1, t2]| = |t1 | |t .1| = |t | |t .2| = |t |

Figure 2: Dependent Intersection

FV (t t ′) ⊆ dom(Γ)

Γ ⊢ β{t ′} : {t ≃ t}

Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t ′ : [t2/x]T
Γ ⊢ ρ t @ x .T − t ′ : [t1/x]T

Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t1 : T
Γ ⊢ φ t − t1 {t2} : T

|β{t ′}| = |t ′ | |ρ t @ x .T − t ′ | = |t ′ |

|φ t − t1 {t2}| = |t2 |

Figure 3: Equality

constraint that the terms of the pair are βη-equal modulo erasure.
This equality restriction on the components of the pair allows the
erasure rule for the dependent intersection to forget one of the com-
ponents, recovering our intuition for set intersection. We write the
type of a dependent intersection with the greek iota (i.e. ι x :T1.T2),
the introduction of dependent intersections with braces (i.e. [t1, t2]),
and projections with a dot followed by a numeral for the first or
second projection (i.e. t .1 or t .2).

2.3 Equality and Top
The propositional equality type of Cedille internalizes the judge-
mental βη-conversion (modulo erasure) of theory, the rules of which
are listed in Figure 3. Reflexive equalities are introduced with the
β-axiom after a (potentially empty) series of rewrites (written with
the Greek letter rho and a type guide to specify the position of
the rewrite). The β-axiom allows for any well-scoped term to be
used as the inhabitant of the equality. This, in combination with
the fact that equality witnesses are erased from rewrites, makes the
equality type effectively proof irrelevant. This has an additional
consequence of allowing any trivially true equality type to be iso-
morphic to a top type (i.e. a type that contains all λ-terms, including
non-terminating terms). We take advantage of this, defining the
type Top as the type of proofs that λ x . x is equal to itself. Addition-
ally, the equality type has a strong form of the direct computation
rule of [2], allowing a term’s type to be changed to the type of
another term if those two terms are provably equal. The direct
computation rule is written with the Greek letter phi, typeset as φ.

The top type in particular may be considered controversial as it
allows for any well-scoped term of the untyped lambda calculus
to be well-typed, including the Y combinator and Ω. However, in
our development of constructor subtyping a top type is integral.
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Γ ⊢ f : S → T Γ ⊢ t : Π x :S . { f x ≃ x}

Γ ⊢ intrCast -f -t : Cast · S ·T

Γ ⊢ t : Cast · S ·T
Γ ⊢ cast -t : S → T

|intrCast -f -t | = λ x . x |cast -t | = λ x . x

Figure 4: Type inclusions

Indeed, the interpretation of inductive datatypes as sets of uninter-
preted constants foreshadows, in part, how Cedille is able to derive
inductive datatypes that support constructor subtyping. Moreover,
the consequence of allowing any term to be well-typed does not
cause inconsistency of the logical theory of CDLE [27].

2.4 Type inclusions
Capitalizing CDLE’s extrinsic typing, dependent intersections, and
the direct computation law of the equality type, we may now sum-
marize how type inclusions are defined (see [16] for more details).
For all types S andT , Cast · S ·T is defined as the type all functions
f which are provably equal to the identity function:

Cast · A · B = ι f :A → B. { f ≃ λ x . x}

For convenience, we present Cast axiomatically via a set of intro-
duction, elimination, and erasure rules (Figure 4). The introduction
form intrCast -f -t takes as (operationally irrelevant) arguments
a function f of type S and T and a proof t that, for all terms x : S ,
f x is provably equal to x . The direct computation rule φ provides
the justification for this rule: functions of type S → T that are
merely extensionally equal to λ x . x can be used to prove that the
latter itself has type S → T . Operationally, using a witness t of the
inclusion of a type S into T via the elimination form cast -t is then
just an application of the identity function at type S → T .

2.5 Other datatypes
Throughout the rest of the paper, we will treat as primitives the
following basic datatypes. We assume a countably infinite set L
of labels with decidable equality, whose elements are identifiers
distinct from all variable names (e.g. lzero, lsucc, lpred, . . . ). We
assume we have a finite product type (written A × B) with pro-
jections fst and snd. Additionally, we left-associate products such
that S1 × . . . × Sn is equal to S1 × (S2 × . . . Sn ) . . .). For the case
study on language extension for simply-typed lambda calculus, we
assume lists and a function for testing list membership, in, return-
ing boolean values (tt and ff). All such types, with corresponding
recursion and induction principles, are derivable in CDLE (omitted,
c.f. [26] for an explanation of the recipe for deriving datatypes with
induction).

3 ORDER-INVARIANT LAMBDA ENCODINGS
We introduce a high-level syntax to both have a convenient syntax
for defining the signature of an inductive datatype and to demon-
strate how a syntax supporting constructor subtyping might look.
The proposed syntax will follow a similar style found in many

functional languages. For example, the type of natural numbers is
defined:

data Nat : ⋆ = zero : Nat | succ : Nat → Nat

Constructor subtyping can be introduced with two operations: type
extension and constructor equality constraints. Type extension
allows a new datatype to be defined by extending a previously
defined datatype with new constructors. For example, the type of
integers defined by extending the type of natural numbers:

data Int extends Nat with pred : Int → Int

With type extension, the type Int is defined with three constructors:
zero, succ , and pred . Additionally, the corresponding constructors
between Nat and Int are equal with respect to underlying equality
of the theory. Critically, this definition makes Nat a subtype of Int .
Thus, any function argument that accepts an Int value can also
accept a Nat value.

Equality constraints on constructors allow for a more precise cor-
respondence between constructors of datatypes. These constraints
make the order the constructors appear in the type definition ir-
relevant and allow for only a subcollection of constructors to be
shared. For example, a type of natural numbers with a unique zero
but a shared successor in reverse order:

data Nat1 = succ : Nat1 → Nat1 | one : Nat1
where Nat1.succ = Nat .succ

Both of these type operations can be simulated by the other. A type
extension between two types is simulated by constructor equality
constraints by first defining the smaller type (in terms of constructor
count) and then defining the larger type with constructor equality
constraint for every constructor present in the smaller type. Con-
structor equality constraints between types is obtained by defining
intermediate types for any shared subsignatures between the inter-
acting types (e.g. a type with only a succ constructor for Nat and
Nat1).

3.1 Deriving Inductive Datatypes
Church encoded data is an appropriate testing grounds when deriv-
ing inductive datatypes. For this reason we begin with a refresher
on Church encodings and describe why constructor subtyping fails
for inductive data that are derived from this encoding. After, we
discuss how the situation can be amended to support constructor
subtyping but still with Church-style folds.

The Church encoding of an inductive datatype identifies an in-
ductive datatype with its iteration scheme. Thus, the interpretations
for the constructors of the corresponding datatype are encoded as
an ordered list of arguments to that scheme. For example, the type
of Church encoded natural numbers is

CNat = ∀X :⋆. X︸︷︷︸
zero

→ (X → X )︸    ︷︷    ︸
successor

→ X

where the first input interprets zero and the second input inter-
prets successor. The constructors are then defined by returning
the corresponding argument to the iteration scheme applied to the
arguments of the constructor. For instance, the successor function
is defined in the following way:

succ n = ΛX . λ z. λ s . s (n · X z s) (1)
3
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Suppose we wanted to define an integer type that was a super-
type of the above defined natural number type. The naive approach
would be to add a constructor for predecessor to the list:

CInt = ∀X :⋆. X︸︷︷︸
zero

→ (X → X )︸    ︷︷    ︸
successor

→ (X → X )︸    ︷︷    ︸
predecessor

→ X

succ n = ΛX . λ z. λ s . λ p. s (n · X z s p) (2)
Unfortunately, this causes the definition of successor defined by (2)
for the Church encoded integer type to be unequal to the natural
number successor defined by (1) because of the additional lambda
abstraction and application. Observe that constructors are being
disambiguated by the order they appear in the Church encoded
type definition. To implement constructor subtyping we need con-
structors to instead be disambiguated in an order-invariant way in
the type signature.

With that in mind, we first pick a type to represent constructor
labels (we use L introduced in Section 2) where the value of the
label will disambiguate constructors. Second, we attempt to package
the constructors for the type signature inside a function space
with respect to this label type. A first attempt gives the following
definition of a cs-natural number.

CSNat = ∀X :⋆. (L → ?) → X

However, there is no obvious way to split on the value of the label
to select the correct type for a given constructor. With Cedilles
equality type and a pair type we could specify the desired type for
a given label constant:

CSNat =∀X :⋆. (Π ℓ :L.
({ℓ ≃ lzero} → X )

× ({ℓ ≃ lsucc} → X → X ) → X

However, now the structure of the pair type is disambiguating the
constructors instead of the value of the label. All we have accom-
plished is an uncurried form of the original Church encoding. To
solve this problem we introduce a layer of indirection where we pick
a supertype for all possible constructor type, the top type. Addition-
ally, when the value of the label matches the constraint for a given
constructor we add an erased type that specifies how to retype the
computational content stored in Top at the desired constructor type.
In a way, this layer of indirection separates constructors into three
components: a disambiguating label, the computational content
(an erased lambda term), and the implicit permission to use that
computational content at a particular type. We are able to proceed
because the number of constructors is finite — which allows for an
enumeration of label value constraints. Before presenting the value
derivation forCSNat we first introduce two important abstractions
that capture the core idea described above: a weak sigma type and
a view type.

3.2 Weak Sigmas and Views
Sigma types are derived in Cedille like all other inductive datatypes,
but the presence of implicit functions allows for a variation on
dependent pairs where the second component is irrelevant. We
call these variations weak sigmas (written σ x : A. B). They are
presented axiomatically in Figure 5. Construction of a weak sigma
is similar to that of ordinary sigma types, except that the term t2

Γ ⊢ t1 : A Γ ⊢ t2 : B t1
Γ ⊢ (t1, -t2) : σ x :A. B

Γ ⊢ t1 : σ x :A. B Γ, x :A, y :B x ⊢ t2 : T y < FV (|t2 |)

Γ ⊢ unpack t1 as (x, -y) in t2 : T

|(t1, -t2)| = λ f . f |t1 | where f < FV (|t1 |)
|unpack t1 as (x, -y) in t2 | = |t1 | λ x . |t2 |

Figure 5: Weak Sigmas

Γ ⊢ t1 : Top Γ ⊢ t2 : T Γ ⊢ t : {t1 ≃ t2}
Γ ⊢ intrView t1 -t2 -t : View ·T t1

Γ ⊢ t1 : Top Γ ⊢ t2 : View ·T t1
Γ ⊢ retype t1 -t2 : T

|intrView t1 -t2 -t | = |t1 | |retype t1-t2 | = |t1 |

Figure 6: Type views

does not occur in the erasure of the expression (t1, -t2). Although a
first projection for weak sigmas can be given, a second projection
is not possible. Therefore, we give a positive presentation, with
the elimination form unpack t1 as (x, -y) in t2 extending the typing
context with fresh variables corresponding to the components of
the given t : σ x :A. B x , with the additional restriction that the
second component y not occur free in the erasure of the body t2.

Views represent an internalization of CDLE’s extrinsic approach
to typing, allowing to state as a proposition that an untyped term
can be given a certain type. They are defined using dependent
intersections and equality, shown below:

View · A t = ι z :A. {z ≃ t}

where A is a type and t is a term of type Top. The axiomatic pre-
sentation is given in Figure 6.

It may seem counter-intuitive that a witness of View ·A t should
contain a term of type A when thinking of views as a separation of
typing information from terms. The situation is illuminated when
considering how such witnesses are constructed and used.

We define the introduction form intrView as:

intrView · A t -a -eq = [φ eq − a {t}, β{t}]

Notice that the direct computation rule is used to ascribe to the
term t the typeA of a where only the term t remains computational
relevant. Thus, the value a at typeA need only be supplied implicitly
when constructing a view.

Witnesses v of View ·A t are proof-irrelevant, provided the term
t is safe to occur in operationally relevant positions (i.e., t contains
no free variables under erasure restrictions). This is demonstrated
by the elimination for retype ·A t-v which produces a term of type
A that is definitionally equal to t . It is defined as

retype · A t -v = φ v .2 −v .1{t}
4
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where A is a type, t is a term of type Top, and v is a view of t at A.
Again, we are only required to know the value of t relevantly, with
the view witness only required implicitly.

3.3 Finishing the Encoding
Now, with weak sigmas and views defined, we can derive CSNat
as suggested:

CSNatPack · X ℓ t = ({ℓ ≃ lzero} → View · X t)

× ({ℓ ≃ lsucc} → View · (X → X ) t)

CSNat = ∀X :⋆. (Π ℓ :L. σ t :Top.CSNatPack · X ℓ t) → X

The layer of indirection is implemented using the weak sigma type
which contains the computationally relevant information in the
first component under the type Top and the view information in
the implicit second component. The type permission information
is implemented almost exactly as the uncurried church encoding
except instead of obtaining the constructors explicitly we obtain
permission to view the computational content at the constructor
type. Notice that we have split the definition into two parts, a
type representing the constructor type permissions (as well as the
assignment of labels to a given constructor) and a type representing
the layer of indirection between the computational content and
type views. This scheme generalizes: the packaging type is any
type of nested pairs where the components are functions spaces
between a label constraint and a view of the computational data at
the desired type. Thus, any type can be defined in the same way
with only the packaging type changed.

Now the disambiguation of constructors is out of the way of
allowing casts between inductive datatypes with a different number
of constructors. However, there are two outstanding questions
about this definition: what is the overhead of the packaging type
and how should labels be assigned to constructors.

First, the packaging, via a weak sigma type, only imposes one
layer of indirection in the definition. However, it does require un-
packing the constructors when performing a fold. This unpacking
function can always be defined as a sequence of equality compar-
isons on the occurring labels. With this implementation the cost is
the same as the number of constructors times the cost of comparing
labels for equality. In our formalization, as a matter of convenience,
we use a natural number type to represent labels which has a linear
time cost to compare for equality.

This means that our choice of a label type can not be made
lightly. With lambda encoded data the cost of equality can be made
logarithmic by using a tree structure for the label types, but in a
more mature language (such as Idris, Agda, or Coq) the standard
natural number type may be internally represented more efficiently.
Additionally, a type representing bits may also be present which
would be the ideal label type (assuming that a limit of 264 construc-
tors is acceptable). If we assume that the cost of equality between
labels is a memcmp between bits then the cost of unpacking is the
same as the number of constructors for that datatype.

Second, the assignment of labels has a few variations that have
different trade-offs. The obvious assignment is to give every con-
structor a unique label except when the user specifies when two
constructors should be equal. Another variation is to assign labels
based off the order of constructors. This is precisely how subtyping

between datatypes works in Cedille as of version 1.1.2, and why
there is zero-cost reuse between certain inductive datatypes with
the same inductive structure [9]. There is no, in the authors’ opin-
ion, best choice about how labels should be assigned to constructors
as long as the selected method is coherent and predictable.

4 CASE STUDIES
4.1 Naturals and Integers
We return to our recurring example as a warmup for the exposi-
tion of our proposed encoding. Using the same definition ofCSNat
found in the last section we are able to define the successor con-
structor by picking the correct label, unpacking. and applying the
type information.

succ n =ΛX . λ f . unpack (f lsucc) as (t1, -t2) in
let s = retype t1 -(snd t2 β) (3)
in s (n f )

Note that the underlined expression is erased from the definition.
A CSInt type can be defined merely by changing the packaging

type.

CSIntPack · X ℓ t = ({ℓ ≃ lzero} → View · X t)

× ({ℓ ≃ lsucc} → View · (X → X ) t)

× ({ℓ ≃ lpred} → View · (X → X ) t)

CSInt = ∀X :⋆. (Π ℓ :L. σ t :Top.CSIntPack · X ℓ t) → X

Moreover, the definition of successor is exactly the same except
how the type information in the weak sigma is extracted.

succ n = ΛX . λ f . unpack (f lsucc) as (t1, -t2) in
let s = retype t1 -(snd (fst t2) β) (4)
in s (n f )

Like the definition in (3) the underlined section in (4) is erased, but
the two definitions are identical otherwise! Therefore, the erasures
of these definitions are α-convertible. As an aside, the predecessor
function is of course unequal because the associated label, which is
computationally relevant in the constructor, is different from any
other label used in the definition of CSNat .

4.2 Lists and Vector Trees
Zero-cost reuse between lists and vectors is already possible in
the current version (1.1.2) of Cedille [9]. However, the direction of
reuse from lists to vectors requires a dependent form of casts which
demonstrates additional difficulties that may arise with defining
constructor subtyping directly as done by Barthe [4]. Moreover,
when defining a list type using the general approached previously
described it is trivial to prove that the nil constructor for lists are
always equal regardless of the parameterized type. Unlike in Barthes
developments, type applications do not get in the way of equalities
between terms.

We define lists and vector tree using the higher level syntax
introduced at the beginning of Section 3.

data List (A : ⋆) : ⋆ = nil : List | cons : A → List → List

To handle type parameters the packaging type of the order-invariant
lambda encoding must take an additional type argument. There is
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no other changes to the general scheme aside from adding the type
parameter as an input to the type kind as is standard in CoC for
parameterized types.

A vector type is a length indexed list and because the length value
can be treated as erased it is clear from both prior work on re-use
and from earlier developments in this work that the constructors
for the types will be equal. To add a constructor subtyping flair
to the example we consider a vector-tree type which is a regular
vector type extended with a branching constructor:

data VecTree (A : ⋆) : N→ ⋆ =

| nil : VecTree 0
| cons : ∀n :N.A → VecTree n → VecTree (n + 1)
| branch : ∀a,b :N.VecTree a → VecTree b → VecTree (a + b)

where List .nil = VecTree .nil | List .cons = VecTree .cons

From an implementation perspective there are two important
considerations. First, it is not clear if the extension high-level syntax
will work in situations where a type is being extended to an indexed
type. In particular, there is no clear choice of how the indexed
values of the cons constructor for VecTree should be instantiated
via a direct extension. Thus, it seems that the constructor equality
constraint syntax may be better suited for general definitions of
inductive datatypes with constructor subtyping. Second, how is the
implementation to decide when the constructor equality constraints
are true or false. In the case of Cedille the solution is simple. The
derivation of the inductive type, indexed or not, is rote. Once the
two inductive datatypes are independently derived the equality
constraints on constructors need only be forced up-to definitional
equivalence, by checking that the two constructors are already
βη-convertible without rewrites.

To prove that there is a cast from List to VecTree we need a
dependent variant of type inclusion.

DepCast · A · B = ι f :Π a :A. B a. { f ≃ λ x . x}

Now the desired cast property can be expressed in the following
way,

DepCast · (List · A) · (λ l .VecTree · A (lenдth l))

where lenдth is a function computing the length of a List .

4.3 Language Extensions
In this subsection we study yet another example of indexed in-
ductive datatypes. In particular, we consider an indexed inductive
datatype encoding the simply typed λ-calculus and an indexed
inductive datatype encoding an extension of that calculus with
numerals and addition.

To derive an inductive type encoding the simply typed λ-calculus
we first define an auxiliary type encoding the internal types with
two constructors,

data Typ : ⋆ = base : Typ | arr : Typ → Typ → Typ

Now we are able to define the simply typed λ-calculus:

data Stlc : List ·Typ → Typ → ⋆ =

| var : Π Γ :List ·Typ.ΠT :Typ.
{in Γ T ≃ tt} ⇒ N→ Stlc Γ T

| abs : Π Γ :List ·Typ.ΠA :Typ.Π B :Typ.
Stlc (cons A Γ) B → Stlc Γ (arr A B)

| app : Π Γ :List ·Typ.ΠA :Typ.Π B :Typ.
Stlc Γ (arr A B) → Stlc Γ A → Stlc Γ B

In order to extend this language with numerals Typ must first
be extended with an encoded type of numerals:

data ETyp extends Typ with nat : ETyp

where ETyp stands for “extended-Typ”. Because extension yields a
type inclusion by construction we have Cast ·Typ · ETyp. Finally,
we extend Stlc with two constructors for numerals and a primitive
addition function.

data EStlc : List · ETyp → ETyp → ⋆ =

| var : Π Γ :List · ETyp.ΠT :ETyp.
{in Γ T ≃ tt} ⇒ N→ EStlc Γ T

| abs : Π Γ :List · ETyp.ΠA :ETyp.Π B :ETyp.
EStlc (cons A Γ) B → EStlc Γ (arr A B)

| app : Π Γ :List · ETyp.ΠA :ETyp.Π B :ETyp.
EStlc Γ (arr A B) → EStlc Γ A → EStlc Γ B

| num : Π Γ :List · ETyp.N→ EStlc Γ nat

| add : Π Γ :List · ETyp.
EStlc Γ nat → EStlc Γ nat → EStlc Γ nat

where Stlc .var = EStlc .var

| Stlc .abs = EStlc .abs

| Stlc .app = EStlc .app

Notice that every occurrence of Typ in the definition of Stlc is
replaced instead with the more general type ETyp. This allows
for numeral abstractions and higher-order numeral functions as
expected in an extension to the simply typed λ-calculus.

Moreover, there is a cast between Stlc and EStlc because there
is a cast between Type and ETyp and because every constructor of
Stlc is accounted for in EStlc . The constructors are necessary to
ensure the shape of the types are compatible, and the cast between
Typ and ETyp is necessary to show that the constructor types form
a cast as well between Stlc and EStlc . As long as all constructors
form a cast between their respective types (in the correct direction)
the types themselves will also form a cast.

5 GENERIC SUBTYPING FOR INDUCTIVE
DATATYPES

In this section, we instantiate the efficient generic impredicative en-
coding of inductive datatypes by Firsov et al. [11] with the scheme
we have proposed for defining datatype signatures to support con-
structor subtyping. We start with a review of this development
(for brevity presented axiomatically as a set of type formation, in-
troduction, and elimination rules), including a natural definition
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of covariance of a type scheme in terms of type inclusions (casts).
We then discuss the generalization of the notion of covariance of
F to the containment of F in another signature G [1, 15] (c.f. [9]
for a formulation using indexed types and type inclusions). If two
covariant type schemes F and G are in this containment relation,
it follows that the datatype µF is a subtype of µG. Finally, we in-
stantiate F and G to the general shape of our proposed encoding of
signatures, X 7→ Σa :A. σ t :Top. B · X a t (where A is the labeling
type and B is the type family of constructor argument types), and
give a sufficient condition for when two signatures of this shape
are in the containment relation.

5.1 Review: Generic Mendler-style encoding
The definitions from [11] we use for our generic result, listed in Fig-
ure 7, are: µF , the datatype given by the signature F ; in, the generic
datatype constructor; Mono, the property of type schemes that they
are covariant with respect to the chosen subtyping relation; and
induction, the generic Mendler-style induction scheme.

The generic constructor and monotonicity. The datatype µF can
be understood as the least fixedpoint of the type scheme F (a result
known as Lambek’s lemma [18]). It is well-known that unrestricted
fixedpoint types in type theory lead to non-termination and in-
consistency (when the theory is interpreted as a logic under the
Curry-Howard correspondence), c.f. [20]. To avoid such issues, the
formation, introduction, or elimination of fixedpoint types must be
restricted somehow. Here, a restriction occurs in the introduction
form in: when t is an F -collection of µF predecessors, and m is a
proof that F is covariant, then in -m t constructs a successor value of
type µF . The type ofm, Mono · F , is the definition of monotonicity
in the partial order whose underlying set is the set of CDLE types
and whose ordering relation is type inclusions, Cast.

Mendler-style induction. Mendler-style inductive types, first pro-
posed by Mendler in [20, 21], provides an alternative to the conven-
tional initial F -algebra semantics for inductive types for positive F
(c.f. [28] for the categorical account). Roughly, the key difference be-
tween the conventional and Mendler-style formulation is the latter
introduces higher-rank polymorphism and higher-order functions.
Starting simply, compare the Mendler-style encoding of naturals
below to the familiar Church encoding:

MNat = ∀X :⋆.X → (∀R :⋆. (R → X ) → R → X )︸                               ︷︷                               ︸
successor

→ X

The intended reading is that the universally quantified type vari-
able R “stands in” for recursive occurrences of the type MNat itself;
thus, the interpretation of the successor function is as a polymor-
phic higher-order function taking a handle for making recursive
calls (R → X ) on predecessors, a given predecessor of type R, and
must return the appropriate result for the successor. The polymor-
phic typing ensures that the interpretation of successor cannot
make recursive calls on arbitrary terms of type MNat, and helps to
explain why Mendler-style recursion schemes are guaranteed to be
terminating when general recursion (which has a similar shape) is
not.

For the typing rule of induction, the Mendler-style is generalized
further to dependent types. Given a type scheme F whose covari-
ance is witnesses by m, a property P : µF → ⋆ over the datatype,
and a term t whose type is read as:

• for all types R and witnesses c of a type inclusion of R into µF ;
(we may think of R as a subtype of µF containing only the
predecessors of the value being analyzed)

• and assuming an inductive hypothesis stating that P holds for
every term of type R (after inclusion into µF )

• given xs : F · R, an F -collection of R predecessors, show that
P holds for the value constructed from in of xs, after using
monotonicity of F to include xs into the type F · µF

5.2 Signature containment
We now state a precise definition of the signature containment
relation SigSub for first-order datatype signatures. This definition
is a special case of a more general notion of containment used by
Hinze [15] and Abel et al. [1] for higher-order schemes, formulated
in terms of type inclusions.

Definition 5.1 (Signature containment). Given two type schemes
F and G, we say that F is contained in G iff there is a witness of
SigSub · F ·G, defined as

SigSub · F ·G = ∀X :⋆.∀Y :⋆.Cast ·X ·Y → Cast · (F ·X ) · (G ·Y )

The signature containment relation is sufficient for establishing
Cast · µF · µG for covariant F and G.

Theorem 5.2. For two covariant type schemes F ,G : ⋆→ ⋆, if
SigSub · F ·G then Cast · µF · µG.

Proof. The proof is formalized in Cedille in the code repository
associated with this paper. It comes as a direct consequence of
the reuse combinator ifix2fix of Diehl et al. [9] (their Id and
IdMapping are equivalent to our Cast and Mono).

□

5.3 Generic constructor packing
We now generalize our scheme for defining datatype signatures sup-
porting flexible constructor subtyping so that we may instantiate
the generic framework of Firsov et al.

Definition 5.3 (Sig, the generic datatype signature). Given A : ⋆
(the labeling type) and a type family B : ⋆→ A → Top → ⋆, we
define the type family of constructor arguments indexed over labels
a : A, CtArgs, and the generic datatype signature, Sig, below as

CtArgs · A · B = λ R :⋆. λ a :A. σ t :Top. B · R a t
Sig · A · B = λ R :⋆. Σa :A.CtArgs · A · B · R a

The type family Sig over-generalizes the signatures of datatypes
CSNat and CSInt: we do not assume that A is finite (even though
the set of constructors for any datatype is), nor that B contains a
finite set of conditional typing information for its Top argument. As
discussed in Section 3.1, this is due to the lack of large eliminations
in CDLE; instead, these requirements would be treated schemat-
ically in a specification of the elaboration of syntax for datatype
declarations to impredicative encodings.
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F : ⋆→ ⋆
µF : ⋆

F : ⋆→ ⋆ m : Mono · F t : F · µF

in -m t : µF Mono · F = ∀X :⋆.∀Y :⋆.Cast · X · Y → Cast · (F · X ) · (F · Y )

F : ⋆→ ⋆ m : Mono · F P : µF → ⋆ t : ∀R :⋆.∀c :Cast · R · µF . (Π x :R. P (cast -c x)) → Π xs :F · R. P (in -m (cast (m c) xs))
induction -m t : Π x :µF . P x

Figure 7: Interface for the generic encoding of Firsov et al. [11]

Next, in order to use the generic framework we must also estab-
lish that Sig · A · B is covariant. We have this when B is covariant
in its type argument.

Lemma 5.4 (Covariance of Sig · A · B). Assume A : ⋆ and B :
⋆ → A → Top → ⋆. If, for all a : A and t : Top, the type scheme
λ R :⋆. B · R a t is Mono, then so is Sig · A · B.

Proof. The proof is straightforward, as both Σ andσ are positive
type constructors. See the Cedille code repository associated with
this paper for details. □

5.4 Signature containment for Sig
The main result of this section is a sufficient condition for signature
containment for type schemes defined using Sig. This, in combina-
tion with Thm. 5.2, in turns gives a sufficient condition for when
datatypes whose signatures are given using Sig are in the subtyping
relation.

Theorem 5.5. Assume labeling types A1,A2 : ⋆ and branch type
families B1 : ⋆→ A1 → Top → ⋆ and B2 : ⋆→ A2 → Top → ⋆

that are covariant in their resp. type arguments. If

• A1 is a subtype of A2, witnessed by c
• and for all a1 : A1 and R : ⋆, CtArgs · A1 · B1 · R a1 is a

subtype of CtArgs ·A2 ·B2 ·R (cast -c a1), witnessed by d(a1,R)

Then Sig · A1 · B1 and Sig · A2 · B2 are in the signature containment
relation SigSub (Def. 5.1)

Proof. The proof is formalized in Cedille in the code repository
associated with this paper; we give a corresponding proof in prose.
We assume

• a witness c : Cast · A1 · A2
• a family of witnesses d(R,a1) : Cast · (CtArgs ·A1 ·B1 ·R a1) ·
(CtArgs · A2 · B2 · R (cast -c a1))
over all R : ⋆ and a1 : A1.

• arbitrary types X and Y , where c ′ : Cast · X · Y (Def. 5.1)
We must produce a proof of an inclusion of Sig · A1 · B1 · X into
Sig · A2 · B2 · Y , for which it suffices to show that there exists a
function f between the two types such that, for all t : Sig ·A1 ·B1 ·X ,
f t is equal to t .

We define this function by induction on the given Sig · A1 · B1 ·
X (whose outermost type constructor is Σ). We assume arbitrary
a1 : A1 and w : CtArgs · A1 · B1 · X a1 and must exhibit some
y : Sig · A2 · B2 · Y such that (|a1 |, |w1 |) = |y |.

Now, as an intermediate step we can prove the inclusion of
CtArgs · A1 · B1 · X a1 into CtArgs · A1 · B1 · Y a1. Assuming an
arbitrary w ′

1 of the first type (whose outermost type constructor
is σ ), we proceed by induction: assume arbitrary t : Top and an

operationally irrelevant b : B1 · X a1 t . Appealing to monotonicity
of B1 and the assumed witness c′, we have that the type of b is
also B1 · Y at t . Produce the pair (t, -b) : σ x : Top. B1 · Y a1 x ,
which is equal to the given weak pair (and b does not occur in an
operationally relevant position).

Apply the inclusion c on a1. Apply both the above derived type
inclusion, then assumed inclusiond(a1,Y ) onw1, to getw1 : CtArgs ·
A2 · B2 · Y (cast -c a1). We conclude by returning the pair (a1,w1) :
Sig · A2 · B2 · Y , which is equal to the given pair. □

5.5 Example: naturals and integers
We now return to our earlier motivating example of the inclusion of
natural numbers into integers to demonstrate the use of the generic
development. Unlike the earlier formulation in which the construc-
tors themselves were packaged together in a type family, the generic
framework of Firsov et al. [11] provides a single generic constructor
in, so we pack together just the different possible argument types.

For natural numbers, we have

GNatPack · R l t =({l ≃ lzero} → View · Unit t)

× ({l ≃ lsucc} → View · R t)

× (¬ · {l ≃ lzero} × ¬ · {l ≃ lsucc} → ⊥)

GNatSig =Sig · L · GNatPack

GNat =µGNatSig

where Unit is the singleton type, ⊥ is the empty type, and ¬ ·T =
T → ⊥ — in the generic formulation, we require an additional
explicit constraint that there are no other constructors. Also, it is
clear that GNatPack is positive in its first type argument.

For integers

GIntPack · R l t =({l ≃ lzeroc} → View · Unit t)

× ({l ≃ lsucc} → View · R t)

× ({l ≃ lpred} → View · R t)

× (¬ · {l ≃ lzero} × ¬ · {l ≃ lsucc} × ¬ · {l ≃ lpred}

→ ⊥)

GIntSig =Sig · L · GIntPack

GInt =µGIntSig

where again GIntPack is positive in its first argument.

Proposition 5.6. There exists a cast from GNat to GInt

Proof. The proof is formalized in the code repository associated
with this paper. By Thms. 5.5 and 5.2, it suffices to show an inclusion
of CtArgs · L · GIntPack · R l into CtArgs · L · GNatSig · R l for all
l : L and R : ⋆ (notice that this does not require that a similar
inclusion hold for GNatPack and GIntPack). This is given by a
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straightforward proof by cases on the label l for the assumed weak
pair (t,−(z, s, e⊥))

Case l = lzero: we have (t,−(z, s, e ′⊥, e ′′⊥)) : CtArgs·L·GIntPack·
R lzero, where

• e ′⊥ : {lzero ≃ lpred} → View · R t and
• e ′′⊥ : ¬ · {lzero ≃ lzero} × ¬ · {lzero ≃ lsucc} × ¬ · {lzero ≃

lpred} → ⊥

Case l = lsucc: we have (t,−(z, s, e ′⊥, e ′′⊥)) : CtArgs·L·GIntPack·
R lsucc, where

• e ′⊥ : {lsucc ≃ lpred} → View · R t , and
• e ′′⊥ : ¬ · {lsucc ≃ lzero} × ¬ · {lsucc ≃ lsucc} × ¬ · {lsucc ≃

lpred} → ⊥

Otherwise: impossible (from e⊥ we have a proof of ⊥).
Recall that the second component of weak pairs are operationally

erased, so in each case above the produced weak pair is equal to
the assumed one. □

6 RELATED WORK
As previously mentioned, calculi with constructor subtyping and
other desirable properties have been developed and explored by
Barthe [3, 4]. However, there are many other approaches to sub-
typing that could enable similar features (i.e. function overloading)
such as coercive subtyping [19, 29], algebraic subtyping [10], and
semantic subtyping [5, 12, 13] to name a few. Research in Object
Oriented Programming (OOP) has also extensively explored the
idea of method overloading [6, 7, 24]. Indeed, method overloading
is a common feature of almost all industry OOP languages. Orna-
ments have been used for proof reuse of inductive datatypes in
Coq although they require the same inductive structure [23]. To
the authors’ knowledge there are no results about ornaments with
respect to subtyping inductive datatypes with shared inductive
substructure.

7 CONCLUSIONS
In this paper we have devised a way to derive inductive datatypes
that support constructor subtyping where the subtyping relation is
a cast. In particular, using casts as the subtyping relation allows for
computationally efficient promotion of types and program reuse.
We also proved that a similar technique does not work for sub-
typing of records. Beyond our derivation, we explored function
overloading using constructor subtyping as originally proposed by
Barthe and an indexed datatype example demonstrating language
extension. Additionally, all of our developments and examples have
been formalized in the Cedille programming language.
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Abstract
Helium is a Haskell compiler designed to provide program-
mer friendly type error messages. It employs specially de-
signed heuristics that work on a type graph representation
of the type inference process.

In order to support existentials and Generalized Algebraic
Data Types (GADTs) in Helium, we extend the type graphs of
Helium with facilities for local reasoning. We have translated
the original Helium heuristics to this new setting, and define
a number of GADT-specific heuristics that help diagnose
Helium programs that employ GADTs.

Keywords type error diagnosis, generalized algebraic data
types, type graphs, Haskell

1 Introduction
Haskell has always been a hotbed of language and type sys-
tem innovation, contributing to the popularization of many
such features. The advantage of a rich type system is that
the programmer can obtain many guarantees about the cor-
rectness of an implementation without having to resort to
testing. But advanced type system features come at a price.
One price is that when type inconsistencies arise, it is notice-
ably harder for the compiler to explain to the programmer
what the inconsistency is, where it arises, how it might be re-
solved, all without revealing internal implementation details
of the compiler. This hinders the uptake of these advanced
features, leading to programmers avoiding them, and settling
for fewer guarantees.

One such language feature is that of Generalized Algebraic
Datatypes (GADTs for short), that allows the programmer
to encode type information in the data type constructors
of an algebraic data type. It is a popular feature of Haskell,
in particular for encoding type-like properties for deeply
embedded domain-specific languages.
A simple but typical example is:

data Expr a where
LitInt :: Int → Expr Int
LitBool :: Bool → Expr Bool
Equals :: Eq a ⇒ Expr a → Expr a → Expr Bool

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

where the Equals constructor encodes that it can only com-
pare the equality of two subexpressions that have the same
type a, that moreover is an instance of the Eq type class.
The type inferencer will then forbid expressions such as
Equals (LitBool True) (LitInt 1), because the arguments to
Equals do not agree on the choice for a. Typical for GADTs, as
compared to ordinary ADTs, is that the type variable a does
not show up in the result of Equals, making it an existential
variable.

Now, if we type check the following function (note that
we have omitted the type signature),

lit (LitInt x) = x
lit (LitBool x) = x

then GHC, the standard Haskell compiler, returns the type
error message
* Couldn't match expected type 'p' with actual type 'Int'

'p' is untouchable
inside the constraints: a ~ Int
bound by a pattern with constructor: LitInt :: Int -> Expr Int,

in an equation for 'lit'
at <interactive>:18:6-13

'p' is a rigid type variable bound by
the inferred type of lit :: Expr a -> p
at <interactive>:(18,1)-(19,19)

Possible fix: add a type signature for 'lit'
* In the expression: x

In an equation for 'lit': lit (LitInt x) = x
* Relevant bindings include

lit :: Expr a -> p (bound at <interactive>:18:1)

What is wrong with this message? First of all, the message
introduces type variables such as p that are not part of the
input program. It uses terminology, e.g., ∼, rigid and un-
touchable, that are involved in the type inference process
but of which the programmer should not be aware, and it
provides an inferred type for lit, namely Expr a → p, which
is in fact not correct. Moreover, it produces a very similar
message for the other branch of lit!

Our implementation, a branch of the Helium compiler [10],
instead returns the following message in which it reports
that the problem is that a type signature is missing, and
moreover it produces a type signature for lit as a hint which
is consistent with the rest of the code:
(6,1), (7,1): A type signature is necessary for this definition
function : lit
hint : add a valid type signature, e.g. (X a) -> a

We achieve this by making the following contributions: we
have extended type graphs in Helium to deal with local rea-
soning mirroring the behavior of the OutsideIn(X) system,
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the basis of the type inference process of GHC, and we have
transferred the heuristics of Helium to the new setting. A
number of heuristics have been designed to deal with type
errors that involve GADTs, and our work has been imple-
mented as a branch of a realistic Haskell compiler, Helium.

2 Constraint-Based Type Inference
Compilers for statically-typed programming languages must
check that the input from the programmer conforms to the
type system imposed by the language. We refer to this pro-
cess as type checking – the compiler has to check that the
program is well-typed according to the rules – and infer-
ence – the compiler may have to deduce some local type
information. We use the term type inference to refer to both.

The earliest implementations of type inference for func-
tional languages use a direct approach in which type infer-
ence is implemented by traversing the Abstract Syntax Tree
(AST) and performing unifications on the fly, e.g., the clas-
sic W and M implementations of the Hindley-Milner type
system [4, 12].

Later approaches often prefer a constraint-based approach,
divided into two phases. In the first phase, the AST is tra-
versed to gather constraints which must be satisfiable for
the program to be well-typed. A dedicated solver then takes
these constraints as input, checks their validity and returns
types found for the inferred elements of the program. Pottier
and Rémy [19] is the standard reference; many compilers
like GHC [31] and Swift [28] have followed their lead.

Direct approaches to type inference usually have a bias
with respect to type error reporting, due to the fixed order in
which they traverse the AST. For example, if we are check-
ing the expression True ≡ ′a′ and we traverse arguments
from left to right, the error is found in the second argument.
For that reason, constraint-based approaches are often the
preferred approach for type error diagnosis: we can more
easily solve constraints in different orders, and it is easy to
experiment with modified sets of constraints to figure out
the best explanation for an error [5, 7, 23]. Given that the
GHC dialect of Haskell has a constraint-based specification,
constraint-based type inference is the natural choice for our
work.

In the remainder of this section we give a high-level overview
of constraint-based type inference. We describe type check-
ing for the λ-calculus with pattern matching defined in Fig-
ure 1. Our presentation is heavily influenced by OutsideIn(X)
[31]; we omit some details for the sake of conciseness. In
particular, the described λ-calculus does not have a let con-
struct for local bindings, but of course our implementation
does.

As usual in Hindley-Damas-Milner-based type systems,
the types of variables and data constructors in an environ-
ment Γ may quantify over some variables, and thus are as-
signed a type scheme. In addition to quantified variables, type

schemes may also request some constraints to hold at each
use of the corresponding variables. The syntax of constraints
is left open by the framework – hence the X in OutsideIn(X)
–, we only require X to have a notion of equality between
types, τ1 ∼ τ2. In the case of GHC, X includes the theory of
type classes and type families, so we can form type schemes
such as ∀a.Eq a ⇒ a → a → Bool.

The constraint gathering judgement takes the form Γ ⊢ e :
τ { Q , which reads: in the environment Γ the expression e
has type τ under the set of constraints Q . During constraint
gathering some of the types are yet unknown, so we intro-
duce unification variables α to represent them. Finding the
types each of these unification variables stands for, corre-
sponds to the inference part of the solver. The rules for the
judgment, given in Figure 2, are unsurprising. In the var
rule the rigid type variables quantified in a type scheme are
instantiated, that is, replaced with fresh unification variables.
Pattern matching is described by the case rule: we need to
find both the particular instantiation of the type constructor
Fγ used by the scrutinee e , and the common return type β
of all the branches.

The next step of the process is constraint solving, which
is formulated as a rewriting relation on constraints [26, 31],
turning the original constraints into a simpler solved set of
constraints. For reasons of space we provide two example
rules:
F τ1 . . . τn ∼ F ρ1 . . . ρn { τ1 ∼ ρ1 ∧ · · · ∧ τn ∼ ρn
F τ1 . . . τn ∼ G ρ1 . . . ρm { ⊥, if F . G
The former rule shows how an equality check between two
type constructors is decomposed (if they have the same name
and the same number of arguments), while the latter show
that if the heads do not match, then a type error results
(modeled by rewriting to ⊥). In Section 2.1, we shall refine
⊥ to capture some additional information.

2.1 Type graphs
If the constraint solver, applying the rules of the rewrite rela-
tion, terminates without finding any inconsistencies among
the gathered constraints, the compiler pipeline continues
with further analyses and optimizations, to eventually reach

Rigid type variables ∋ a,b, . . .
Type constructors ∋ F,G, . . .
Monotypes τ , ρ ::= a | Fτ
Constraints Q ::= ⊤ | Q1 ∧Q2 | τ1 ∼ τ2 | . . .
Type schemes σ ::= ∀a.Q ⇒ τ

Term variables ∋ x ,y, . . .
Data constructors ∋ K , . . .
Expressions e ::= x | K | λx → e | e1 e2

case e of K x → e

Figure 1. Syntactic categories of λ-calculus with pattern
matching
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Unification variables ∋ α , β, . . . Type variables υ,ω ::= a | α
Monotypes τ ::= υ | . . . Environments Γ ::= ϵ | Γ,x : σ

x : ∀a.Q ⇒ τ ∈ Γ α fresh var
Γ ⊢ x : [a 7→ α]τ { [a 7→ α]Q

α fresh Γ,x : α ⊢ e : τ { Q abs
Γ ⊢ λx → e : α → τ { Q

Γ ⊢ e1 : τ1 { Q1 Γ ⊢ e2 : τ2 { Q2 α fresh app
Γ ⊢ e1 e2 : α { τ1 ∼ (τ2 → α) ∧Q1 ∧Q2

Γ ⊢ e : τ0 { Q0 β ,γ fresh Ki : ∀a. ρi → Fa ∈ Γ Γ,xi : [a 7→ γ ]ρi ⊢ ei : τi { Qi case
Γ ⊢ case e of Ki x i → ei : β { Q0 ∧ τ0 ∼ Fγ ∧Qi ∧ τi ∼ β

Figure 2. Constraint gathering for λ-calculus with pattern matching

ι@

@

→ β

Int

@

@

→ α

#1
#2

l
r

l
r

l

l
r

r

Figure 3. With type applications

code generation. If an inconsistency is detected, we should
explain the problem to the programmer by means of a type
error message. We aim to make this message as informative
as possible, and at the same time as concise as possible to pre-
vent the programmer from being overwhelmed [33]. In that
case, we would like to know what are the original constraints
which led to the problem; we can then link those constraints
to the program positions in which they were generated to
construct an informative error message. A naïve solution
to the problem of finding the problematic constraints is to
include every constraint which has ever taken part in the
rewriting path to the constraint. However, we can easily end
up with too many constraints. Consider for example the set of
three constraints α ∼ [β] ∧α ∼ Maybeγ ∧γ ∼ Int (although
we call them sets, we combine the separate constraints with
∧). Since the order of solving is not set in advance, we can
first make the second and third constraints interact, lead-
ing to α ∼ Maybe Int, and only then discover that we have
inconsistent ideas of what α should stand for. The naïve ap-
proach would flag the three constraints as problematic, but
it is clear that the third plays no real role in the type error.

Although alternative solutions exist to omit constraints
that do not play a role in the type error (e.g., [5] to find
all minimal unsatisfiable constraint sets), in our work we
maintain a data structure with all the constraints obtained
during the solving process, that we can process later to fig-
ure out the problem. Such a data structure must be able to
represent not only consistent, but also inconsistent sets of

constraints. Type graphs [7, 11] provide that functionality
for the case of type equalities. Type graphs are part of the
TOP framework, which is the type inference engine used
by the Helium Haskell compiler [8, 9]. Figure 3 contains
two examples of type graphs and the constraint sets they
represent. Vertices can have two shapes: circular vertices
are used for (unification and rigid) type variables and type
constructors; the special square vertex tagged with @ is used
for type application. Following the usual convention, type
application associates to the left and the arrow constructor
is written infix, so β → γ is equivalent to ((→) β)γ . Each
type variable only appears once in a type graph, so different
references to α in Figure 3 point to the same node. Edges are
either directed edges marked with l and r outgoing from a
type application node @ representing the two arguments of
@, or undirected edges representing a type equality marked
with the constraint they originated from.

During the solving phase, the type graph is saturated with
derived edges, which represent those equalities which are
implied by the original set. In Figure 3 two derived edges
would be present once the solver is finished: one between β
and α , and another between Int and α .

An inconsistency in the case of type equalities arises from
a constraint which equates two distinct type constructors,
such as Int ∼ Bool, or fails the occurs check, such as a ∼ [a].
In the type graph such a problem is represented by a path
between the two problematic elements, we call them error
paths. Figure 3 does not have error paths, but it would if we
replace β by Bool.

Heuristics
An error path gives a set of constraints involved in an error,
but in order to produce a concise error message we need
to choose one of them as responsible. The choice should be
made so that if the blamed constraint is removed, the type
graph becomes consistent, as long as no other inconsistencies
are present in the type graph. This is easy to check in the
type graph by ensuring that no other path exists between
the problematic vertices. However, we do not want to check
every possible subset of constraints, and the choice may not
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be unique. For that reason, we define a set of heuristics to
guide the search in the type graph.

Different heuristics work in different ways. Some of them
filter out constraints which should not be blamed, other
heuristics select a constraint and assign it a weight, and then
the one assigned the highest weight will be blamed.

Heuristics tend to strongly differ in their specificity. Language-
independent heuristics can be applied to any type graph, re-
gardless of the programming language it represents. The
participation heuristic assigns a higher weight to those con-
straints depending on how often they are part of an error
path. Language-dependent heuristics employ knowledge of
the underlying language, and which are the more plausible
explanations for a programmer mistake. Because of their
specificity and the subsequent specificity of the error mes-
sages they can generate, they typically assign higher weights.
In the Helium compiler there are heuristics such as “miss-
ing argument in an application”, “missing components in a
tuple”, or “mistook (+) for (++) in a function call”.

2.2 Type inference for GADTs
Generalized Algebraic Data Types (or GADTs, for short)
extend ordinary ADTs, by allowing us to refine type infor-
mation for particular constructors.

For the Expr datatype defined in the introduction, we can
write a well-typed interpreter of type Expr t → t.

eval :: Expr t → t
eval (LitBool b) = b
eval (LitInt i) = i
eval (Equals x y) = eval x ≡ eval y

Note that we do not have to check at every step that the
returned expression has the correct type, because this is
statically enforced.

Following the rules in Figure 2, this code is not well-typed:
for one, the rule case requires that the types of all branches
coincide, while in this case the first branch returns a Bool
and the second an Int. Second, the type signature of eval
requires the function to be polymorphic in t. However, each
of the three branches fixes one concrete t.

The key difference with pattern matching over a GADT
is that each constructor may bring in local information. For
example, by matching on LitBool we know that t can only be
Bool in that branch. But that only works if the solver avoids
mixing information local to different branches.

The language of constraints from Figure 1 cannot encode
local information, so we extend our constraint language
with existentials, as done in Figure 4. A constraint of the
form ∃α . (Q1 ⊃ Q2) represents a local scope in which a
substitution for unification variables α should be obtained,
and where the wanted constraints Q2 may use information
from the given constraints Q1. For the eval function, the

constraint set will then be something like:
∃α . (t ∼ Bool ⊃ constraints from LitBool branch)
∧ ∃β . (t ∼ Int ⊃ constraints from LitInt branch)
∧ ∃γ . (t ∼ Bool ⊃ constraints from Equals branch)

The modified case⋆ rule is responsible for harvesting the
given constraints Q⋆

i in each existential from the types of
the data constructors matched upon. One small detail is that
the OutsideIn(X) framework insists that the return type of
each data constructor has the same form as for ADTs, that
is, a type constructor applied to distinct type variables. The
solution is to work around this restriction by using equality
constraints. In other words, for the type checker the type of
LitBool is actually:

LitBool :: ∀a.a ∼ Bool ⇒ Bool → Expr a
The constraint solver also has to be extended to deal with

local constraints. In the case of OutsideIn(X), this is done
by moving from a simple rewriting relation Q { Q ′ into
a more complex form Qд ;α ⊢ Qw { Qr , which represents
that under local (given) information Qд we can rewrite the
(wanted) constraints Qw into the simpler (residual) form Qr ,
and only the variables α should be treated as unifiable. Keep-
ing track of the unifiable (or touchable) variables is important
for maintaining scoping invariants that prevent information
from one branch to infect the other. This rewriting relation is
recursively called by the ⊢⋆ judgment from Figure 5: every-
time we go inside an existential, the set of given constraints
grows. As a technical detail, each type checker has to define
a notion of solved form: a set of constraints which is com-
pletely solved. In the case of type equalities, that means that
every constraint in the residual set is of the form α ∼ τ .

The purpose of our work is to combine type graphs, a
data structure that has been found useful for explaining type
errors, with the ability to deal with local information. The
heuristics can then work on such extended type graphs to
analyze type inconsistencies in the presence of GADTs, and
generate suitable type error messages.

3 Extended Type Graphs with Local
Constraints

This section introduces our extensions to type graphs so
that they can be used to represent a type inference pro-
cess in OutsideIn(X). From this point on we use the term
OutsideIn(X) to refer to the original design described by Vy-
tiniotis et al. [31], TOP to refer to the older implementation
in the Helium compiler based on type graphs, and Rhodium
to refer to the extended type graphs introduced in this paper.
It makes sense for Rhodium to be as backwards compatible
as possible both with OutsideIn(X) and Helium. There is
one problem: the formulation of OutsideIn(X) insists that
local definitions are not implicitly generalized, while Helium
follows the Hindley-Milner convention of generalizing every
local binding as much as possible. We follow OutsideIn(X)
in this, so we sometimes reject programs that are accepted
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Constraints Q ::= ∃α . (Qд ⊃ Qw ) where Qд contains no existentials | . . .

Γ ⊢ e : τ0 { Q0
β ,γ fresh

Ki : ∀abi .Q⋆
i ⇒ ρi → Fa ∈ Γ

Γ,xi : [a 7→ γ ]ρi ⊢ ei : τi { Qi
δ i = fuv(τi ,Qi ) − fuv(Γ,γ )

case⋆
Γ ⊢ case e of Ki x i → ei : β { Q0 ∧ τ0 ∼ Fγ ∧ ∃δi . ([a 7→ γ ]Q⋆

i ⊃ Qi ∧ τi ∼ β)

Figure 4. Constraint gathering for λ-calculus with GADT pattern matching

Qs = {Q ∈ Qw | Q is not existential}

Qд ;α ⊢ Qs { Qr

for each ∃β . (Q ′
д ⊃ Q ′

w ) in Qw :
Qд ∧Qr ∧Q ′

д ; β ⊢⋆ Q ′
w { Q ′

r
Q ′
r is in solved form

Qд ;α ⊢⋆ Qw { Qr

Figure 5. Skeleton of a solver for existential constraints

by Helium, although all can be fixed by adding the right
signatures in the right places.

3.1 Representation of extended type graphs
In this section we explain how constraints in OutsideIn(X)
are translated into Rhodium type graphs. The main exten-
sion with respect to TOP is the need to represent existential
constraints. Note that OutsideIn(X) is parametric, so each
concrete implementation may add new sorts of vertices and
edges to the type graph. In this section we focus on the
parts shared by every possible X, namely types and equality
constraints.

Variables, types, and constraints
There are multiple valid ways to represent a type in a type
graph. Take for example the type Either A B. We can choose
to represent type application as a binary operator, viewing
the type as (Either A) B, or as an n-ary application in which
the type constructor receives a list of argument types, hence
viewing the type as Either [A, B]. In Rhodium, we follow the
former design and use a special vertex for type application
@, as depicted in Figure 6. Because Rhodium also supports
type families, and these occur only in fully applied form,
Rhodium does allow a vertex that represents a type family to
have more than two children. For consistency reasons, the
labels r and l that we saw in Section 2.1 have been replaced
by the numbers 0 and 1. Apart from this detail, the treatment
of type families in Rhodium follows [31].

Type variables and constructors inherit their representa-
tion from TOP. In the case of type variables we annotate
the vertex with its touchability, which governs when a type
variable can be unified. As depicted in Figure 6, a variable
may be completely untouchable – also known as rigid or
Skolem; these arise from checking polymorphic types – or

Untouchable variable a a @ −

Variable α at group д α @ д

Type constructor C C

Type application τ1τ2

@

τ1 τ2

0
1

Equality constraint τ1 ∼ τ2 τ1 τ2
∼

Figure 6. Representation of type graphs

touchable at a given group. As we shall discuss later, groups
are used to track which constraints may interact with each
other once existential constraints enter the picture.

The last element in our type graphs are constraint edges.
This is an important design decision in Rhodium: every con-
straint in the system must be represented by an edge. In the
simplest case of only type equalities, this representation is
quite natural: we connect the two types which should be
equal. But in contrast to TOP, type equalities in Rhodium
are directional, that is, τ1 ∼ τ2 is not represented in the same
way as τ2 ∼ τ1. The reason is that OutsideIn(X) requires an
ordering to guarantee termination in a specific step of the
solving process (more concretely, during orientation). Other
than that, type equality edges are interpreted as undirected.

Relation to the type graphs of TOP
The original type graph implementation of Helium also deals
with instantiation constraints of the form τ > σ , representing
that τ is an instantiation of a type scheme σ in order to deal
with let-polymorphism. However, one of the design decisions
in OutsideIn(X) is not to implicitly generalize let definitions.
This makes instantiation constraints redundant, since we can
generate new fresh instances of the programmer-provided
type scheme during constraint gathering. In Rhodium we
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have taken an intermediate position: we do represent instan-
tiation constraints explicitly in the type graph, but we readily
turn them into equality constraints at the beginning of solv-
ing. Due to the invariants in OutsideIn(X) we can do this
once and for all. The reason for this choice is two-fold. First,
it opens the door to extensions of OutsideIn(X) such as gi
[24], which introduce higher-rank and impredicative types.
Second, future heuristics might want to return a different
message depending on whether an inconsistent constraint
arose from an instantiation constraint, or not.

Existentials
Pattern matching on GADTs introduces existential constraints
during gathering, as described in Section 2.2. Supporting
them leads to quite substantial changes to type graphs when
compared to TOP’s. The most important issue is that an ex-
istential constraint contains constraints nested into it, and
we need to represent this nesting in our type graphs. We
consider two possible choices and discuss their advantages
and disadvantages.

The first possibility is to keep free of references to exis-
tentials and nesting. In this scenario, everytime we recurse
using the ⊢⋆ judgment from Figure 5, we create a completely
new type graph with the given constraints and the new sim-
ple constraints, and then proceed to solve it. This has the
advantage of being simple, because we can be sure that all
constraints in the graph may freely interact with each other.
However, it makes type error diagnosis harder, since we
cannot look at the interaction between different existential
branches.

Consider the following example:
data Expr a where

I :: Int → X Int
B :: Bool → X Bool
A :: a → X a

f :: Expr a → Bool
f (I x) = x
f (B b) = if b then 3 else 5
f (A ) = 7

This code is ill-typed. The most probable cause is that the
type signature of f is not correct; we can fix the problem
by replacing Bool by Int. If each branch of f would lead to
a separate type graph, we would in fact find three errors,
because neither branch is consistent with the type signature.

In the interest of good error diagnosis, we prefer a rep-
resentation that allows a more holistic view. Therefore we
have chosen to integrate all constraints into a single type
graph. However, this means we have to provide a means to
decide which pairs of constraints may interact, otherwise
the local reasoning that we need to deal with existentials is
lost.

For this reason, we assign to each type variable and each
constraint edge a group, which tells us to which existential

α @ 1b @ − γ @ 3

BoolInt

∼ @ 1

∼ @ 1

∼ @ 3

∼ @ 2

Figure 7. Rhodium type graph for α ∼ Int∧α ∼ b∧∃γ . (γ ∼

Bool ⊃ α ∼ γ )

each constraint belongs, and whether a constraint is a given
or wanted constraint. In this paper we use numbers to repre-
sent groups, starting with 0 for top-level given constraints,
1 for the top-level wanted ones, increasing these numbers as
we go into existential constraints. We are careful to maintain
two invariants: (1) if an existential constraint is part of an-
other constraint, then its group identifier is higher than that
of its parent, and (2) given constraints are always assigned
an even number, and wanted constraint always have an odd
identifier.

Figure 7 depicts the extended type graph that represents

α ∼ Int ∧ α ∼ b ∧ ∃γ . (γ ∼ Bool ⊃ α ∼ γ ) .

At group 1, the top level wanted constraints, the only touch-
able variable is α , so it is marked as such. Each separate
constraint outside the existential is represented as an edge
with this group identifier. Inside the existential, γ ∼ Bool is
a given constraints, and thus it is assigned an even group 2
(higher than 1). The innermost wanted constraint is assigned
a higher, odd group, 3. Note that the group of a type variable
is not related in general to the groups of the constraint edges
that point to it, but rather to the specific existential in which
the variable is introduced.

3.2 The solving of extended type graphs
The solving process of OutsideIn(X) in which solving pro-
cesses are spawned recursively when an existential is en-
countered, has become a single iterative process in Rhodium.
We employ groups attached to the constraints to ensure
that only constraints that are allowed to, may interact with
one another. Other than that, solving is performed using
the usual rules that each implementation of OutsideIn(X)
we know of uses. However, because we apply our rules to
Rhodium type graphs instead of to constraints, below we
provide some details of the rewriting process.

Groups and accessible sets
Recall that every constraint edge is assigned to a group,
which represents the most deeply nested existential in which
that constraint lives. To emulate local reasoning, we employ
this information to decide when an interaction between two
constraints may take place. Take for example the graph in
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Figure 7: the constraint α ∼ Int should always be allowed to
interact with other constraints, since it resides at top-level.
The given constraint γ ∼ Bool (with group 2) should be
visible in the wanted part of that existential, in group 3.

To decide for a given (current) group д which constraints
may be employed during solving, we introduce the notion
of accessible set, the set of groups д may interact with. The
accessible set for a constraint is built starting with its group,
and then adding all the ancestor existential groups until we
reach top level. Take for example the set of constraints, in
which constraints in Qn are assigned group n:

Q1 ∧ ∃α1.(Q2 ⊃ Q3) ∧ ∃α2.(Q4 ⊃ Q5 ∧ ∃α3.(Q6 ⊃ Q7))

The accessible set of Q6 is {1, 4, 5, 6}: those are the other
groups (including itself) it may interact with. Note that in
particular the accessible set of Q6 does not contain 2 or 3,
since those constraints are in other existential branches. This
mechanism is similar to the scoping mechanism described
by Serrano [22].

The solving process traverses each group in a similar fash-
ion to the one described in Section 2.2 for the OutsideIn(X)
framework. We start by considering the top level constraints,
and then recurse into the existentials. The use of increasing
natural numbers as identifiers for groups gives us a simple
method to know at every point which constraints may be
considered. Since we maintain the invariant that the group
of a constraint is always higher than that of its parents in the
existential structure, it is enough to start with the constraints
at group 0 (the top level given ones), and then increase the
current group until all have been considered.

Translating solving rules to the setting of type graphs
Although organized somewhat differently, the Rhodium type
graph solver follows OutsideIn(X) faithfully, using a rewrit-
ing relation like OutsideIn(X) does. However, since we work
on Rhodium type graphs, and not on constraints, we must
reflect the result of applying a rewrite rule back into the type
graph.

In the case of a canonicalization rule, which rewrites a
single constraint, the type graph solver first selects a con-
straint edge in the current group to which a canonicalization
rule is applicable. Then it executes one step of the rewriting
relation, producing a new set of constraints which should be
added to the type graph. Special care should be taken here:
the new constraints and new touchable variables have to be
the same group as the considered constraint. The former
ensures that canonicalization rules respect the nested exis-
tential structure, the latter are necessary to deal correctly
with type families [31].

One important difference between the representation of a
set of constraints in a purely syntactic manner, as done by
the OutsideIn(X) formalization, and our type graphs, is that
in the former case a rewritten constraint is removed from the
current set, whereas in the latter all the constraints created

edge constraint created by
#0 a ∼ Int original
#1 a ∼ b original
#2 a ∼ Bool original
#3 a ∼ Int interact(#0, #1)
#4 b ∼ Int interact(#0, #1)
#5 a ∼ Bool interact(#2, #3)
#6 Bool ∼ Int interact(#2, #3)

Figure 8. Overly conservative error path

edge constraint created by
#0 a ∼ Int original, interact(#0, #1)
#1 a ∼ b original
#2 a ∼ Bool original, interact(#2, #0)
#7 b ∼ Int interact(#0, #1)
#8 Bool ∼ Int interact(#2, #0)

Figure 9. Modified error path

during the process are retained. To avoid infinite rewriting,
once a rewriting rule has been applied to a constraint, that
constraint is marked as resolved, and will not take part in
further simplification.

In the case of interaction rules, two constraints interact
with one another to create a new set of constraints. In order to
guarantee correctness, we need to ensure that the constraints
can interact safely. In particular, given a constraint Q in a
group n, it may only interact with other constraints whose
group belongs to its accessible set.

In general, an interaction rule has the form Q1,Q2 { Q3.
We insert the constraints Q3 into the type graph the same
way we did with canonicalization rules, assigning them to
the current group, and mark bothQ1 andQ2 as resolved. Due
to the way in which solving proceeds, this means that we
put the new constraints at the deepest existential level of the
two, as it should be.

One common scenario in a rewriting system for type in-
ference is that some of the constraints in Q1 and Q2 may be
returned as part of Q3. In that case we need to ensure that
only the new constraints are introduced in the type graph,
otherwise error reporting may suffer. Take, for example, the
constraints a ∼ Int ∧ a ∼ b ∧ a ∼ Bool. In Figure 8 all the
constraints from an interaction are added to the type graph,
whereas in Figure 9 only the new ones are added. The latter
describes more precisely the solving process, and thus leads
to more precise heuristics. As result, we may need to unmark
some of the constraints as resolved, if they are present again
in the new set produced by the rewriting rule.
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Errors
If a constraint rewrite returns ⊥, no constraint is added to the
type graph. Instead, the edge is marked as inconsistent pre-
venting it from taking part in any further solving, although
the solving process will continue. In addition, we may at-
tach an error label to each inconsistent edge. For example,
Int ∼ Bool may be labelled with incorrect constructors,
or a ∼ [a] with infinite type. These labels can be em-
ployed by the heuristics used for type error diagnosis later
on (Section 4).

Residual constraints
Once we have finished applying rewriting rules to the con-
straints in a group there might be some constraint edges
which remain unmarked as resolved. However, a non-empty
set of leftover constraints does not necessarily mean that the
original program contains an error, we need some further
post-processing. This additional process may be either per-
formed at the end of the simplification of each group, or at
the very end of the solving process.

First of all, there are constraints such as Eq α which we
always expect to mark as resolved. In this case, not hav-
ing done so means that an instance for α was not found in
the given constraints or the axioms, and we should report
this fact as a type error. The error label we assign to these
constraints is residual constraint.

For the case of equality constraints like α ∼ Int the distinc-
tion is subtler. Some of those equality constraints correspond
to parts of the final substitution that the solving process pro-
duces; those are the ones of the form α ∼ τ which satify
that (1) its group д correspond to a wanted set, and (2) the
type variable α is also introduced in that same group. If con-
dition (1) is not satisfied, the constraint is simply ignored,
but if (1) holds but (2) does not, the constraint represents
inconsistent information and it is marked as an error with
label variable escape. Note this pair of conditions is a safe
over-approximation of when a set of equality constraints
represent a correct substitution; real implementations such
as GHC implement a “variable floating” rule which is less
strict yet still safe [24].

We close this section with an elaborate example to illus-
trate the solving process. Consider the wanted constraint

Num α ∧ α ∼ Bool ∧ ∃β . (β ∼ Int ⊃ α ∼ β)∧

∃γ . (γ ∼ Bool ⊃ α ∼ γ ),

where the variable α is touchable at top level and no ax-
ioms or given constraints are present. (1) Rhodium makes
a type graph of all the constraints, based on the constraint
solver X that is specified. Groups are assigned as usual: even
for given constraints, odd for wanted constraints. (2) We
start the solving process for group 1. There we allow two
constraints, Num α and α ∼ Bool , to interact with one an-
other. This results in the constraints Num Bool and α ∼ Bool ,

but only the former is added to the type graph, since the
latter was already there. As these constraints can not be
simplified further, we mark Num Bool as residual, and we
increase the current group to 2. (3) With a current group
of 2, we consider the given constraints of the first existen-
tial. These constraints can interact with the constraints of
group 1, but not with one another. Because of their particu-
lar shape of the constraints, no interaction rule applies, and
we increase the current group to 3. (4) Within group 3, the
constraint α ∼ β is considered wanted. There are no more
constraints in that group, but the constraint may interact
with both α ∼ Bool (group 1) and β ∼ Int (group 2), leading
to Bool ∼ Int. This is an inconsistent constraint, and it is
marked as such. (5) We repeat the process with the other
existential constraint. In this case the wanted constraint is
first turned into Bool ∼ Bool, which them disappears by a
canonicalization rule. Thus, we have no residual constraints
in this group.

4 Heuristics for GADTs
In this section, we focus on the heuristics defined specifically
for diagnosing type incorrect code that involves GADTs,
and provide examples of type error messages provided by
our implementation. We have also re-implemented many
heuristics that were present in Helium previously and that
worked on the simpler type graphs in TOP [1].

4.1 How heuristics are applied
After constraint solving within Rhodium has terminated,
some constraints may have been marked as an error (using
a specific error label). For example, a constraint Int ∼ Bool
will have the label incorrect constructors, and a ∼ Int
may have the label variable escape.

Given a single error constraint Q and the simplified type
graph, we then determine the error slice associated with
Q . This error slice consists of all the constraints that may
have contributed to the problem. As mentioned previously,
every constraint keeps track of how it was created: either
it was generated from the program directly – an original
constraint – or it is the result of a constraint solving step
applied to some constraints, each of which keeps track of how
it was created. By iteratively traversing the history of each
constraint we construct the set all the constraints involved
in the simplification process that led to the creation of Q .
From this error slice we consider only those which were
generated directly from the program, that is, the original
ones. These constraints come with additional information
obtained during gathering, e.g., the syntactic construct that
generated the constraint, and the source location for that
construct.

The input to the next step of this process is composed
of pairs, where each pairs consists of an error constraint
edge (which includes the error label attached to it) and the
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corresponding error slice. Each of these pairs is considered
one by one. In each case, the goal is to reduce the error slice
to a single original constraint, which is then blamed for the
particular error. We do so by applying heuristics to the error
slice. Even though heuristics consider only one error slice
as target for reduction, they may query all the other error
slices for additional information.

Rhodium provides quite a number of heuristics that are
applied in sequence. Every application of a heuristic may
reduce but never increase the error slice. If after running all
heuristics more than one constraint remains, we choose the
first constraint.

As in Helium, Rhodium supports two kinds of heuris-
tic: filter heuristics and voting heuristics. A filter heuristic
deletes constraints from the error slice, implying that those
original constraints should not be blamed. An example of
such a constraint is one that models that the condition of
an if-expression should have type Bool. For the expression
if 3 then 2 else 1 we expect a message that blames the
use of 3 where a Bool is expected, and not a message that
insists we should not demand an expression of type Bool in
the condition.

A filter heuristic may delete any number of constraints
from the slice, as long as the outcome is not the empty set,
implying that no constraint can be blamed. Typically, if a
filter heuristic observes that all constraints in the slice have
the property it is designed to remove, it will in fact not delete
any constraints in the hope that other heuristics can make a
better choice.

The voting heuristic is essentially a collection of selectors.
A selector is especially designed to recognize certain well-
known error patterns, for example that the components of a
pair occur in the wrong order. If it recognizes such a pattern,
it returns the constraint to be blamed for the mistake, and
a weight that indicates how likely it is that this is the cause
of the inconsistency. If it does not recognize such a pattern,
the heuristic will not participate in the voting heuristic.

After all selectors have made their choice, if any, all con-
straints with the highest weights assigned to them by a
selector remain in the error slice and all others are deleted.
The process then continues, if necessary, by considering any
further heuristics.

The choice for a constraint to blame is not the only output
of the process. Whenever a heuristic assigns the blame to a
constraint, it also attaches a so-called graph modifier to that
constraint that describes how the graph needs to be adapted
to continue with the solving process. The default graph mod-
ifier is to delete the edge to which the blamed constraint was
attached; this is the only graph modifier present in TOP, but
we found we had to supply other options.

For example, a common type error is forgetting to add a
particular constraint to the type signature of a function:

g :: a → a → String
g x y = show x ++ show y
In this case, we have two residual constraints of type

Show a. If we may only remove constraints, we have to
remove both show x and show y resulting in two very similar
error messages. However, in Rhodium we employ a heuristic
that blames a constraint that was found to be missing, and
employs a graph modifier that adds the missing predicate
Show a to the type signature of g, so that inference may
continue. The type error message will come with a hint to
the programmer to add the predicate to the type of g.

Our implementation provides a number of graph modifiers
that we found useful. Beyond the default modifier, and the
modifier that adds a residual constraint, Rhodium employs
two others. Consider the example of True + 3. In that case,
we have the constraints α ∼ β → γ → δ∧α > ∀a.Num a ⇒

a → a → a, where α represents the type of the function (+).
If we only remove α ∼ β → γ → δ , we are still left with the
instantiation constraint, which then causes an error as it has
a residual constraint Num a. This graph modifier therefore
removes both the application edge, as well as the accom-
panying type signature. The final modifier can add a type
signature to a function. Indeed, every function that pattern
matches on a GADT must have a type signature. When a
type signature is missing, we produce a type error. In certain
cases, we can recommend a type signature computed from
the GADT pattern matches, and this modifier essentially al-
lows us to add this recommended type signature to the type
graph so that inference may continue.

4.2 Heuristics for GADTs
We now consider the type errors that can occur whenever
GADTs are introduced. We describe a number of heuristics
which deal with new error scenarios introduced by this lan-
guage feature.

Missing constraint in GADT constructor
One of the main features of GADTs is the ability to introduce
existential variables which do not exist outside of the scope
of that constructor:

data X where
A :: b → X

f :: X → String
f (A x) = show x
The type of the variable x is not mentioned in the data

type X , so in this case we cannot add the constraint to type
signature of the function. The missing constraint heuristic is
aware of this fact, and produces the following error message:1

1Some error messages have been re-formatted to fit withing the page
limits, but no text has been changed from the produced output of our
implementation.
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data Expr a where
LitInt :: Int → Expr Int
LitBool :: Bool → Expr Bool

g :: Expr Int → Int
g (LitInt x) = x
g (LitBool y) = y

Figure 10. Unreachable pattern example

(5,11): Missing class constraint in type signature
function : show

declared type : Show a => a -> String
class constraint : Show b
hint : add the class constraint to the type signature

from the GADT constructor, defined at (2,4)

As part of the type error we provide the constraint that needs
to be added, in this case the type class constraint Show b,
and the location of the constructor to which the constraint
should be added.

More generally, the “missing constraint” heuristic works
in two phases. The heuristic tries first to introduce the miss-
ing constraint as part of the local definition, like the type
signature. For example, a type signature of the function
Y a → String would not be incorrect if the predicate Show a
were to be added, so we prefer this over adding a constraint
to the constructor. The main reason for this choice is that
changing a constructor has arguably a larger impact than
modifying a type signature, as the latter only requires the
constraint to be satisfied whenever the function is called, not
every single time the constructor is used. Only if the heuristic
detects that it is impossible to add the constraint in a local
definition, it suggests changing the constructor itself.

Unreachable pattern
Within a GADT, knowing the type of the scrutinee of a pat-
tern match can make certain pattern matches inaccessible.
Take for example the function g defined over a simplified
version of the data type in the introduction in Figure 10.
In this case, the type signature of g only allows values of
type Expr Int as argument. As a result, the case of construc-
tor LitBool can never happen, since it requires a value of
type Expr Bool. This causes an inconsistent constraint of the
shape Int ∼ Bool in the type inferencer.

The unreachable pattern heuristic detects that the inconsis-
tency is caused due to a pattern match that does not match
the provided type signature and provides an appropriate
error message:
(7,4): Pattern is not accessible
Pattern : LitBool y

constructor type : Bool -> Expr Bool
defined at : (3,4)
inferred type of : a -> Expr Int
pattern

hint : change the type signature, remove the branch
or change the branch

possible type signature : (Expr b) -> b

The error message specifies the type of the constructor, the
inferred type of the branch, as well as the location of the
definition of the constructor. Note that the heuristic also sug-
gests a type signature that would allow the pattern match
to be kept. This type signature is based on the most general
type that can be derived from all of the individual branches.
After this, the type signature is tested against the type graph
to verify that it indeed resolves the error and does not in-
troduce any other problems. Only when the type signature
would resolve the error, it is recommended to the program-
mer. In all other cases, only the hint is provided, without
mentioning the possible type signature.

Missing GADT type signature
As discussed by Vytiniotis et al. [31], once GADTs are intro-
duced in the language, the principal types property is lost.
This means that there could be multiple valid type signatures
no two of which are instances of each other. As a result,
functions dealing with GADTs require a type signature.

A very strict policy would require providing a type sig-
nature for every usage of a GADT, making the detection of
not providing a GADT type signature a static check, but we
decided against that. The reason is that in many cases we
can use the information in the type graph to infer a possible
type for the function. The process to determine this type sig-
nature is very similar to the process described for inferring
type signatures for unreachable patterns.

If we take the code from Figure 10 and drop the type
signature for g, then a type signature that would resolve the
error is inferred and reported to the programmer:
(5,1), (6,1): A type signature is necessary for

this definition
function : g
hint : add a valid type signature, e.g. (Expr a) -> a

The error message provides the possible type (Expr a) → a
as a suggestion, but other type signatures might also be pos-
sible. Therefore, we keep the type signature as a hint, since
we cannot guarantee it to be the programmer’s intention.

Non-unifiable GADT variables
As discussed earlier, one key issue to sound checking and
inference of code using GADTs is keeping track of which
type variables can be unified at each moment. In fact, some
of those are rigid and may never be unified with another
type unless a given constraint assumes so.

Consider the following example, where we unify the vari-
able x of type b with the type Bool, but the variable b is an
existential introduced by the constructor A, hence forbidding
b to unify with anything:
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data X where
A :: b → X

f :: X → Bool
f (A x) = x | | True

Our implementation produces the following error message,
stating that the variable cannot be unified. In addition to the
error message itself, it also gives the original constructor, as
well as the location at which it is defined:
(5,1): Cannot unify variable in function binding
function binding : f (A x) = x

existential type : b
cannot be unified with : Bool
constructor : b -> X
defined at : (2,4)

This heuristic works on residual constraints of the shape
a ∼ b where a is a non-touchable variable (be it rigid or
coming from a different group) and b can be any type. We
can tell from the type graph whether a is coming from a
pattern match and whether that variable shows up in the
result of the pattern match. For example, the variable d is
not an existential in a constructor of type c → d → Z d, so
in that case this heuristic does not apply.

4.3 Interaction between heuristics
Consider the following example, in which two errors are
present: ( | | ) is applied to 3 instead of a boolean, and the
type signature of f is too general:

f :: a → b
f x = 3 | | True

In the error message given by Rhodium, only the inconsis-
tency is indicated:
(2,7): Type error in infix application
expression : 3 || True
operator : ||

type : Bool -> Bool -> Bool
left operand : 3

type : Int
does not match : Bool

The “type signature is too general” heuristic did not con-
tribute to the type error diagnosis process, as it could not
do anything with the constraint Bool ∼ Int . The inferencer
detected also the residual constraint b ∼ Bool , but this error
was implicitly resolved by blaming Bool ∼ Int , showing that
the type inferencer, in combination with the heuristics, is ca-
pable of resolving multiple problems with a single message.

The following program exhibits two type errors, and since
they are unrelated, two error messages are shown below:

f :: a → (Bool, a)
f x = let y = 3 | | True

in (y, “a”)
Note that the original TOP only produces the second error,

because the “type signature is too general” check is imple-
mented in a post-processing phase, and not as part of the
heuristics.

data Expr a where
LitInt :: Int → Expr Int
LitBool :: Bool → Expr Bool
Equals :: Eq a ⇒ Expr a → Expr a → Expr Bool
Max :: Expr Int → Expr Int → Expr Int

eval :: Expr a → a
eval (LitInt x) = x
eval (LitBool b) = b
eval (Equals x y) = eval x y
eval (Max x y) = maximum (eval x) (eval y)

Figure 11. A small expression language with its evaluation
function

(1,1): Type signature is too general
function : f

declared type : a -> (Bool , a )
inferred type : b -> (c , String)

hint : try removing the type signature

(2,14): Type error in infix application
expression : 3 || True
operator : ||

type : Bool -> Bool -> Bool
left operand : 3

type : Int
does not match : Bool

For our next example, consider the code in Figure 11. There
are two unrelated errors, one in the branch that checks the
equality of expressions and the other is the confusion be-
tween the functions max :: Ord a ⇒ a → a → a, which
takes two arguments, and maximum :: Ord a ⇒ [a] → a,
which takes one argument which is a list. The following
error messages are reported by Rhodium:
(12,21): Type error in application
expression : eval x y
term : eval

type : Expr a -> Expr a -> Bool
does not match : Expr b -> b

because : too many arguments are given

(13,18): Type error in variable
expression : maximum

type : Ord a => [a] -> a
expected type : Int -> Int -> Int

probable fix : use max instead

The error message identifies both errors correctly and is not
confused about the presence of a predicate in the constructor
of Equals. It also correctly identifies the return type of the
incorrect usage of eval which is reported as Bool, due to the
type signature of eval.

Compare these messages to those in Figure 12 that GHC
produces. In the first message, GHC blames a1 ∼ (Expr a1 →

Bool). We would argue that this error message is worse than
11
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Comparison2.hs:12:21: error:
* Could not deduce: a1 ~ (Expr a1 -> Bool)

from the context: (a ~ Bool, Eq a1)
bound by a pattern with constructor:

Equals :: forall a. Eq a =>
Expr a -> Expr a -> Expr Bool,

in an equation for 'eval'
at Comparison2.hs:12:7-16

'a1' is a rigid type variable bound by
a pattern with constructor:

Equals :: forall a. Eq a => Expr a -> Expr a -> Expr Bool,
in an equation for 'eval'
at Comparison2.hs:12:7-16

Expected type: Expr a1 -> a
Actual type: a1

* The function 'eval' is applied to two arguments,
but its type 'Expr a1 -> a1' has only one
In the expression: eval x y
In an equation for 'eval': eval (Equals x y) = eval x y

* Relevant bindings include
y :: Expr a1 (bound at Comparison2.hs:12:16)
x :: Expr a1 (bound at Comparison2.hs:12:14)

|
12 | eval (Equals x y) = eval x y

| ^^^^^^^^
Comparison2.hs:13:27: error:

* Couldn't match type 'Int' with 't0 (Int -> Int)'
Expected type: t0 (Int -> a)

Actual type: Int
* In the first argument of 'maximum', namely '(eval x)'

In the expression: maximum (eval x) (eval y)
In an equation for 'eval':

eval (Max x y) = maximum (eval x) (eval y)
|

13 | eval (Max x y) = maximum (eval x) (eval y)

Figure 12. The type error message produced by GHC for
the eval function

ours: it introduces new type variables, like a1, and mentions
a context (a ∼ Bool, Eq a1) which we never had to provide.
In the second error message, GHC says that it could not
match Int with t0 (Int → Int), and then goes on to say that
the expected type is in fact t0 (Int → a). Nowhere in the
error message is the type variable t0 introduced, neither
is it mentioned that maximum should have gotten fewer
arguments.

5 Related Work
Type error slicers present the programmer with information
about all possible program points which contribute to the
detected inconsistency. Skalpel [20] (a continuation of Haack
and Wells [6]) implements type error slicers for Standard
ML, supporting advanced SML features like modules, which
are somewhat related to GADTs in Haskell. Schilling [21]
adapts this idea to Haskell 98, but lacks support for local
reasoning. The advantage of slicing is that the actual location
that causes the problem is highlighted, a disadvantage is that
many others locations are highlighted as well.

Because type error slices can be large, many researchers
prefer to blame one or maybe a few constraints. For example,
SHErrLoc [34] uses a graph-based structure to encode the
solving process, and then ranks the likeness of a constraint
being to blame using a Bayesian model. Their work con-
siders type error reporting for modern Haskell, including

local hypotheses. Chen and Erwig [2] explains type errors in
Haskell programs using counter-factual typing, a version of
variational typing in which they keep track of the different
types that an expression may take. Although computation-
ally somewhat costly, they can propagate type inconsisten-
cies from one binding group to another. Pavlinovic et al. [16]
achieves something similar by using an iterative deepening
approach, in which the body of a binding is inlined in its
usage site if a conflict is detected between both. This allows
the inferencer to blame a location in the body of a (type
correct) function if an application of that function is type
incorrect, at the expense of repeatedly calling an SMT solver
with a growing set of constraints. These papers perform only
error localization.

In our work, we define specialized heuristics that recog-
nize type error patterns, by examining a type graph. When
we detect such a pattern, we not only know the location, but
we can also explain about the pattern we detected, and for
some patterns, even give a clue on how to fix the problem. A
major influence on our work is [7] that introduces the type
graphs we have extended in this paper, transplanting their
heuristics and addding a number of GADT-specific ones.

Whenever the type system is extended, e.g., with type
class information, extensions typically need to be made to the
type graphs to represent these faithfully. The main technical
contribution of this paper, is the design of a type graph
structure that can represent constraint sets generated by
OutsideIn(X), allowing us to represent local reasoning in
type graphs. Type graphs were extended with type classes
and row types in the setting of Elm [17], and Weijers et al.
[32] uses heuristics to diagnose security type errors.

Some authors use a more complicated structure to di-
agnose type errors: [18] and [29] expose the trace of the
type checker to the programmer (for Scala and OCaml, re-
spectively), and Chitil [3] defines an explanation graph for
Hindley-Miler type systems, which summarizes the infor-
mation involved in type checking. LiquidHaskell [30] uses
SMT solving as part of type checking. In those cases, reverse
interpolation [15] can be used to derive a simpler explanation.

For the case that we have no control over the compiler in-
frastructure, Lerner et al. [13] presents an approach in which
the compiler is iteratively queried for the well-typedness
of modified versions the program, which are then ranked
to present a solution to the type error. Pointwise GADTs
[14] have been developed with better type error reporting
in mind, by excluding pathological cases which are hard to
explain. Others have used abduction to infer a common type
for all branches in a GADT [25, 27]. In this case, reasoning
is performed within a more complex framework, which is
harder to explain to the programmer.
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6 Conclusion and Future Work
We have extended Helium with GADTs and achieving good
error diagnosis for a number of classes of inconsistent pro-
grams, as compared to GHC. We have extended Helium type
graphs in order to model local reasoning in the type graph
and defined GADT specific heuristics to help diagnose prob-
lems that involved GADTs. We have also transplanted all
heuristics on vanilla type graphs to extended type graphs, so
that for programs without GADTs we can expect to obtain
the same type error messages [1]. This work is a major step in
our endeavour to achieve good error diagnosis for advanced,
but often used Haskell language extensions, including type
class extensions, type families and higher-ranked types.
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ABSTRACT
This paper describes the design and implementation of a new back-
end for the Standard ML of New Jersey (SML/NJ) system that
is based on the LLVM compiler infrastructure. We first describe
the history and design of the current backend, which is based on
the MLRISC framework. While MLRISC has many similarities to
LLVM, it provides a lower-level, policy agnostic, approach to code
generation that enables customization of the code generator for non-
standard runtime models (i.e., register pinning, calling conventions,
etc.). In particular, SML/NJ uses a stackless runtime model based on
continuation-passing style with heap-allocated continuation closures.
This feature, and others, pose challenges to building a backend using
LLVM. We describe these challenges and how we address them in
our backend.
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1 INTRODUCTION
Standard ML of New Jersey is one of the oldest actively-maintained
functional language implementations in existence [1, 7]. Much like
the proverbial “Ship of Theseus,” every part of the compiler, runtime
system, and libraries has been reimplemented at least once, with
some parts having been reimplemented half a dozen times or more.

The backend of the compiler is one such example. The origi-
nal code generator translated a direct-style 𝜆-calculus intermediate
representation (IR) to Motorola 68000 and DEC VAX machine
code [7]. Inspired by Kranz et al.’s work on the ORBIT compiler
for Scheme [22, 23], Appel and Jim converted the backend of the
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compiler to use what they called a “Continuation-Passing, Closure-
Passing Style” [3, 6].1

At the same time, additional machine-code generators were writ-
ten for the MIPS and SPARC architectures, but with the proliferation
of Reduced-Instruction-Set Computers (RISC) in the early 1990’s,
there was a need for more backends. These code generators also
suffered from the problem that they did not share code, each was
a standalone effort, and that they did not support many machine-
code-level optimizations. These problems lead to the development
of MLRISC [20] as a new, portable machine-code generator for
SML/NJ. MLRISC defined an abstract load-store virtual-machine
architecture that could sit between the language-specific parts of
the code generator and the target-machine-specific parts, such as
instruction selection, register allocation, and instruction scheduling.
Over the past 25 years, MLRISC has been used to support roughly
ten different target architectures in the SML/NJ system. It has also
been used by several other compilers [14–16] and as a platform for
research into advanced register allocation techniques [5, 19] and
SSA-based optimization [27].

Unfortunately, MLRISC is no longer under active development,2

so we need to consider alternatives. An obvious choice is the LLVM
project, which provides a portable framework for generating and
optimizing machine code [24, 25]. LLVM takes a language-centric
approach to code generation by defining a low-level SSA-based [11]
language, called LLVM IR, for describing code. LLVM IR has a
textual representation, which we refer to as LLVM assembly code,
as well as a binary representation, called bitcode, and a procedural
representation in the form of a C++ API for generating LLVM IR
in memory. The LLVM framework includes many analysis and
optimization passes on both the target-independent LLVM IR and
on machine-specific code. Most importantly, it supports the operating
systems and architectures that SML/NJ supports, as well as some
that we want to support in the future. While LLVM was originally
developed to support C and C++ compilers, it has been used by a
number of other functional-language implementations [12, 13, 26,
31, 36, 37].

Therefore, we are undertaking a project to migrate the backend
of SML/NJ to use the LLVM infrastructure. This paper describes
the challenges faced by this migration and how these challenges are
being met. While there are many similarities between this effort and
previous applications of LLVM to functional-language compilers,

1This CPS IR, with modifications to support multiple precisions of numeric types [17]
and direct calls to C functions [9], continues to be used in the backend of the SML/NJ
compiler.
2The last significant work was the addition of support for the amd64 (a.k.a., x86-64)
architecture.
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there are also a number of novel aspects driven by the SML/NJ
runtime model and compiler architecture.

2 STANDARD ML OF NEW JERSEY
The Standard ML of New Jersey (SML/NJ) system provides both in-
teractive compilation in the form of a Read-Eval-Print Loop (REPL)
and batch compilation. In both cases, SML source code is compiled
to binary machine code that is either loaded into a heap-allocated
code object for execution or written to a file. Linking is handled in
the elaborator, which wraps the compilation unit with a 𝜆-abstraction
that closes over its free variables; this code is then applied to the
dynamic representation of the environment to link it. Dynamically,
a compilation unit is represented as a function that takes a tuple of
bindings for its free variables and returns a tuple representing the
bindings that it has introduced. Thus, the SML/NJ system does not
need to understand system-specific object-file formats or dynamic
linking.

In the remainder of this section, we first describe SML/NJ’s
runtime conventions at an abstract level, then discuss the existing
backend implementation, and the MLRISC-based machine-code
generator.

2.1 Runtime Conventions
As described by Appel [2, 3], SML/NJ has a runtime model that can
be described as a simple abstract machine (called the CMACHINE).
The CMACHINE defines a small set of special registers to represent
its state; these are:

• alloc is the allocation pointer, which points to the next word
to allocate in the nursery.

• limit is the allocation-limit pointer, which points to the upper
limit of the nursery minus a buffer of 1024 words. This buffer,
which is called the allocation slop, allows most heap-limit
tests to be implemented as a simple comparison.

• store is the store-list pointer, which points to a list of locations
that have been modified since the last garbage collection (i.e.,
it implements a write barrier).

• exnptr is the current-exception-handler pointer, which points
to a closure representing the current exception handler.

• varptr is the var pointer, which is a global mutable location
that can be used to implement features such as thread-local
storage [28].

• base is the base-pointer register, which points to the begin-
ning of the code object that holds the currently executing
function. It is used to compute code addresses in a position-
independent way.3

The alloc register is always mapped to a hardware register, the
other special registers are either mapped to dedicated hardware
registers or else represented by stack locations. For example, on
the amd64 target, which has 16 general-purpose registers, the alloc,
limit, and store registers are mapped to hardware registers, but the
exnptr and varptr are represented by stack locations. The first five
of these registers (alloc, limit, store, exnptr, and varptr) are live
throughout the execution of SML code and, thus, are implicitly

3Some architectures, such as the amd64, support PC-relative addressing, which can also
be used for this purpose, but the SML/NJ backend currently does not take advantage of
such addressing modes.

Table 1: CMACHINE general purpose registers

std-link holds address of function for standard calls
std-clos holds pointer to closure object for standard calls
std-cont holds address of continuation
std-arg first general-purpose argument register
misc𝑖 miscellaneous argument registers (including callee-

save registers)

passed as parameters across calls. The base register is recomputed
on entry to a function (since the caller and callee may be in different
modules), and is threaded through the body of the function.

In addition, the compiler assumes that intermediate results, ar-
guments to primitive operations, and arguments to function calls
are always held in registers. The CMACHINE registers are assigned
specific roles in the calling conventions as described in Table 1.
Function calls come in three forms:

(1) Standard function calls are calls to “escaping” functions that
use a standard calling convention; i.e., functions where at least
some call sites or targets are statically unknown.4 The first
three arguments of a standard function call are the function’s
address (std-link), its closure (std-clos), and return contin-
uation address (std-cont). Following these arguments are 𝑘
callee-save registers [8] (typically 𝑘 = 3), which are assigned
to the first 𝑘 miscellaneous registers (misc0, . . . ,misc𝑘−1).
The remaining arguments correspond to the user arguments to
the function and are mapped to registers by type; i.e., pointers
and integers are assigned to std-arg, misc𝑘 , misc𝑘+1, etc.,
and floating-point arguments are assigned to floating-point
registers.

(2) Standard continuation calls are calls to “escaping” continu-
ations. The first argument is the continuation’s address and
is assigned to the std-cont register; it is followed by the 𝑘

callee-save registers, some of which are used to hold the con-
tinuation’s free variables. The remaining arguments to the
continuation are mapped to registers in the same way as for
standard functions.

(3) Known function calls are “gotos with arguments” [34] that
represent the internal control flow (loops and join points) in a
standard function or continuation. Because the code generator
knows both the entry and call sites for known functions, it is
able to arrange for arguments to be passed in registers without
unnecessary copying [19].

To illustrate how these conventions are realized in the CPS IR,
consider the following trivial SML function:

fun f x = if (x < 1) then x else f (x-1);

The first-order CPS is a single cluster consisting of two CPS func-
tions as shown below.

fun f (link, clos, k, cs1, cs2, cs3, arg) =

lp (arg, k, cs1, cs2, cs3)

and lp (arg, k, cs1, cs2, cs3) =

4It should be noted that SML/NJ does not do any kind of sophisticated control-flow
analysis, so escaping functions are quite common.
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if i63.>=(arg, 1) then
let val tmp = isub63(arg, 1)

in lp (tmp, k, cs1, cs2, cs3) end
else

k (k, cs1, cs2, cs3, arg)

Here we have taken the liberty of using meaningful variable names
and an SML-like syntax for readability. The function f is a standard
function, so its first three parameters are held in the std-link, std-
clos, and std-cont CMACHINE registers. The next three parameters
are the three callee-save registers followed by the function’s actual
argument (arg) in the std-arg register. The lp function is internal
to the cluster, so the compiler is free to arrange its parameters in any
order. The loop terminates by invoking the return continuation (k)
using a standard continuation call. Here the first argument to the call
(k) will be held in the std-cont register, then come the callee-saves,
followed by the function’s result in the std-arg register.

The code generator must support one other calling convention,
which is the convention used to invoke the garbage collector (GC) [18].
This convention is a modified version of the standard function con-
vention that uses a fixed set of registers (link, clos, cont, the callee-
saves, and arg) as garbage-collection roots. Any additional live data,
including all non-pointer register values (e.g., untagged integer and
floating-point registers), are packaged up in heap objects that are
referred to by the arg register.

When a heap-limit check fails, control jumps to a block of code
to invoke the GC. This code sets up the fixed set of root registers
(as described above), fetches the address of an assembly-language
shim from the stack and then does a standard call to the shim code,
which, in turn, transfers control to the runtime system. After the GC
finishes, control is returned back to the GC-invocation code, which
restores the live variables and resumes execution of the SML code.
Note that the return from the GC involves the exact same set of fixed
registers that are passed as arguments, which is how the updated
roots are communicated back to the program.

2.2 The Backend
The SML/NJ backend takes a higher-order continuation-passing-
style (CPS) IR and, via a sequence of optimizing and lowering
steps, produces a first-order CPS IR.5 Unlike most other compilers,
including other CPS-based compilers, SML/NJ foregoes use of a
stack to manage calls and returns. Instead, all return continuations
are represented by heap-allocated closures. The first-order CPS IR
makes these closures explicit in the form of records and record
selection operations. Because the runtime model uses heap-allocated
continuation closures to represent function returns, the stack is not
used in the traditional way. Instead, the runtime system allocates
a single large frame that is used for register spilling and holding
additional runtime values.

Along with this first-order IR, the compiler computes additional
metadata about where heap-limit checks are needed and about which
calling conventions should be used. This metadata is stored in auxil-
iary hash tables.

A program in the CPS IR is a collection of functions that represent
both user functions and continuations. The body of a function is a

5Note that while the invariants for the IR change with lowering, the actual representation
as SML datatypes does not.
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CPS expression (cexp), where the leaves of an expression are ap-
plications. Thus, a cexp in the first-order CPS IR, where functions
are not nested, can be viewed as an extended basic block [29].

The phases of this backend are illustrated in Figure 1. We describe
those passes that are directly affected by the design and implementa-
tion of the new backend.

• The CPS Lowering phase is responsible for expanding certain
primitive operations (primops) into lower-level code.

• The Literal Lifting phase lifts floating-point and string lit-
erals (as well as data structures formed from these literals)
out of the code and replaces them with references to a per-
compilation-unit tuple of literal values.

• The Spilling phase ensures that the number of live variables
never exceeds the fixed-size spill area (1024 words).6

• The Limit Checks and GC Info phases are responsible for
determining where heap-limit checks should be added and de-
termining the live variables at those points. Allocation checks
are placed at the entry to functions (both escaping and known)

6Appel’s original code generator used the spilling phase to ensure that the number
of live variables did not exceed the available machine registers [3], but the switch to
MLRISC, which had a proper register allocator, relaxed this constraint.

64



IFL 2020, September 2–4, 2020, Online Kavon Farvardin and John Reppy

and continuations. As discussed above, most functions allo-
cate less than 1024 words, so the allocation slop allows us
to simply compare the allocation and limit pointer for these
checks.

• The Clustering phase groups CPS functions into clusters,
which are connected graphs of CPS functions where the edges
correspond to known function calls. The entry nodes for a
cluster are escaping functions and continuations; note that a
cluster may have more than one entry.

2.3 MLRISC
The final step of the backend is to generate machine code using the
MLRISC framework. MLRISC was designed to address many of the
same problems as LLVM; it provides an low-level virtual machine
based on a load-store (i.e., RISC-like) model. More so than LLVM,
MLRISC is a “mechanism, not policy,” design leaving ABI issues
such as calling conventions, stack layout, register usage, etc., up
to the compiler writer.7 It makes heavy use of SML’s functors to
support specialization for both the target architecture and the source
language. For example, the register allocator is defined by a functor
that is parameterized over the spilling mechanism, which gives the
compiler writer control over stack layout.

MLRISC’s policy agnostic approach was heavily influenced by
the needs of SML/NJ’s runtime model. SML/NJ’s stackless execu-
tion model meant that calling conventions could not be baked into
the design. Likewise, use of dedicated registers for the allocation
pointer, etc., and in the standard calling conventions meant that ML-
RISC had to support some form of register pinning. The MLRISC

register allocator is also able to handle the multi-entry functions
that can arise from the clustering phase. Lastly, the need to generate
binary machine code meant that MLRISC required an integrated
assembler to resolve local branch offsets, but that it did not require a
direct mechanism for generating object files.

3 CHALLENGES TO USING LLVM
LLVM was originally designed to support C and C++ compilers
and, as such, maintains a significant architectural bias toward con-
ventional runtime models. Furthermore, because it embeds signifi-
cant policy decisions about calling conventions, exception-handling
mechanisms, garbage collection support, etc., using it as a backend
for a non-standard language runtime is challenging. In this section,
we enumerate some of the mechanisms that our MLRISC backend
uses that do not have direct analogues in LLVM. We also discuss
the challenges of incorporating a code generator implemented in C++

into a compiler written in SML. In this discussion, we are focusing
on the vanilla LLVM IR; as we describe in the next two sections,
LLVM does provide ways to work around these limitations.

3.1 Comparing MLRISC and LLVM
MLRISC and LLVM are both designed to provide support for
portable compilers. They are both based on a load-store model with
an infinite supply of pseudo registers and a fairly standard set of
basic instructions.A major difference, however, is that MLRISC ab-
stracts over the instruction-set architecture, but not over the system

7It does provide some higher-level mechanisms, such as implementations of various
C-language calling conventions;

ABI or runtime conventions. LLVM, on the other hand, has built
in support for calling conventions, object-file formats, exception-
handling mechanisms, garbage-collection metadata, and debugging
information. Another major difference is in how they are used. While
both systems define a virtual machine that a code generator can
target, MLRISC only supports a procedural interface for code gener-
ation, whereas LLVM provides LLVM assembly, LLVM bitcode,
and a procedural interface for code generation. The combination of
builtin runtime conventions plus a textual representation of LLVM
IR means that the only way to support different runtime models is to
make changes to the LLVM implementation itself.

3.2 Limitations of the LLVM Model
Many of the issues that we face are a consequence of the fact that
LLVM abstracts away from the runtime model to a much greater
degree than MLRISC.

No direct access to hardware registers. Ths SML/NJ runtime
model relies on being able to map key CMACHINE registers, such as
the allocation pointer, to dedicated hardware registers for efficient ex-
ecution. Unlike MLRISC, LLVM does not provide any mechanism
for mapping variables to specific hardware registers.

No direct access to the stack. SML/NJ uses specific slots in the
stack frame to communicate information from the runtime system
to the SML execution (e.g., the address of the callGC function).
Some CMACHINE registers on some targets are also represented by
stack locations. In LLVM, however, the layout of a function’s stack
frame is largely opaque at the LLVM IR level and there is no way
to specify access to specific locations in the stack.

Builtin calling conventions. As described in Section 2.1, SM-
L/NJ defines its own register-based calling conventions that do not
involve the stack in any way, as well as a stack-based convention
for invoking the garbage collector. The call instruction in LLVM
is a heavyweight operation that embodies the policy defined by its
calling convention. While LLVM has a number of predefined call-
ing conventions, including several language-specific ones, there is
not a good match for the SML/NJ runtime. Defining a different
convention requires modifying the LLVM source and recompiling
the LLVM libraries.

Multi-entry-point functions. The clustering phase of the SML/NJ
backend produces clusters that can have multiple entry points. For
example, compiling the following function that walks over a binary
tree

fun walk Lf = ()

| walk (Nd(l, r)) = (walk l; walk r)

will produce a cluster for f with two entries: a standard function for
calling f on the root or left subtree and a second continuation entry
for calling f on the right subtree. While it is natural to think of map-
ping clusters to LLVM functions; LLVM functions are restricted to
a single entry point.

Tail-call overhead. Efficient tail calls are critical to performance,
since all calls in CPS are tail calls. While LLVM provides a tail-call
optimization (TCO), its primary purpose is to avoid stack growth.
Even when TCO is applied to a function call, the resulting code
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incurs the overhead of deallocating the caller’s frame and then allo-
cating a fresh frame for the callee.

No trapping arithmetic. The semantics of integer arithmetic in
SML require that the Overflow exception be raised when the re-
sult exceeds the representable range of the type [17]. MLRISC sup-
ports this requirement by defining trapping versions of the arithmetic
operations, with the semantics that an appropriate trap is signaled on
overflow. The runtime system handles this trap by mapping it to a
control transfer to the exception handler continuation. While LLVM
provides intrinsic functions for integer arithmetic with overflow, it
does not provide a mechanism for generating an appropriate trap.
While we could generate the control transfer to the exception handler
in LLVM, we do not have access to the Overflow exception at
that point.

Support for position-independent code. The machine code that
SML/NJ uses must be position independent. We achieve this prop-
erty by using the base pointer to compute absolute addresses from
relative offsets, both for evaluating labels and for jump tables. While
LLVM also supports position independent code, it does so by relying
on a dynamic linker to patch code when it is loaded.

3.3 Integrating LLVM into the Compiler
There are two ways that one might use LLVM as a backend for a
compiler. The first, which is most common, is to generate LLVM as-
sembly code into a text file and then use the command-line toolchain
to convert that to a target-machine object file.8 This approach has
the advantage that it does not require a foreign-function mechanism
to communicate between the compiler and LLVM. The downside,
however, is that it adds significant overhead in the form of formatting
textual output, parsing said output, and running subprocesses. For an
interactive compiler, such as SML/NJ’s REPL, this approach also
requires using system-specific dynamic linking to load and execute
the code that was just generated.

The other way to use LLVM, which is used by industrial com-
pilers like the clang C/C++ compiler, is to use LLVM’s C++ APIs to
construct a representation of the program directly, which can then be
optimized and translated to machine code. This approach is similar
to what we currently do with MLRISC, but it poses its own chal-
lenges. First of all, the C++ API for LLVM relies heavily on inline
functions, which cannot be called from foreign languages. As an
alternative, there is a C language wrapper for the C++ API that can
be used, but it is less efficient than the C++ API and has a reputation
of lagging behind changes in the C++ API. Another problem is the
sheer volume of foreign calls that would be required for code gener-
ation. Given that foreign function calls in many functional-language
implementations, including SML/NJ, are relatively expensive, this
volume can add measurable overhead to code generation. Thus, the
problem of efficient communication between the compiler and the
code generator is a challenge for using LLVM as a library.

The last challenge to using LLVM for SML/NJ is that it produces
object files (the specific object-file format depends on the system).
For implementations that use traditional linking tools, this property

8Typically, this toolchain involves using llc to generate native assembly code and then
running an assembler to produce object code.

is not an issue, but for a system like SML/NJ that works with raw
code objects, it is necessary to extract the code from the object file.

4 DESIGN OF THE NEW BACKEND
In order to use LLVM in the SML/NJ system, we need to solu-
tions to the two broad challenges described above: how to support
the SML/NJ runtime model in LLVM (Section 3.2) and how to
integrate a LLVM-based backend into a compiler written in SML
(Section 3.3).

4.1 Runtime conventions
Function entries and call sites are the key places where we need to
guaranteed that our register conventions are being followed, else-
where in the function we can let the register allocator dictate where
information is held. Thus, by modifying LLVM to add a new calling
convention, we can dictate the register usage at those places. In
previous work for the Manticore system [12], we described a new
calling convention for LLVM, called Jump With Arguments (JWA),
that can be used to support the stackless, heap-allocated-closure
runtime model used by both Manticore and SML/NJ. The JWA
calling convention has the property that it uses almost all of the
available hardware registers for general-purpose parameter passing.9

The convention also has the properties that no registers are preserved
across calls and that the return convention uses exactly the same
register convention as calls.

We furthermore mark every function with the naked attribute,
which tells LLVM to omit generating the function prologue and
epilogue.10 Thus the function will run in whatever stack frame exists
when it is called, which fits the SML/NJ model of a single frame
shared by all SML code.

There is one minor complication, which is that we actually have
several different conventions to support (i.e., escaping and known
functions, continuations, and GC invocation). While we could define
multiple LLVM conventions, we can make them all fit within the
JWA convention by careful ordering of parameters and by using
LLVM’s undefined values for registers that are not part of a particu-
lar convention (e.g., the link and clos registers when throwing to a
STD_CONT fragment).

4.2 Integrating LLVM into SML/NJ
Replacing MLRISC with LLVM raises the question of how to con-
nect the SML/NJ compiler, written in SML, with an LLVM code
generator, written in C++. Previous functional-language implementa-
tions have generated LLVM assembly code and used a command-
line toolchain to translate that into object code, but we decided that
this approach was not a good fit for SML/NJ. Specifically, we were
concerned about compilation latency, since the interactive REPL is
a central part of the SML/NJ system, and about the extra dependen-
cies on executables that we would have to manage. Therefore, we
decided to integrate the LLVM libraries into the runtime system.

Having decided to directly generate LLVM code in memory,
there was the question of how to do that efficiently. Fortunately,
9For SML/NJ, we use the same register convention that is used in the existing MLRISC
backend. On the amd64, we omit the stack pointer and one scratch register from the
convention, which leaves 14 registers available for parameter passing.
10The function prologue and epilogue is where the function’s stack frame is allocated
and deallocated.
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the problem of how to connect compiler components that are im-
plemented in different languages was addressed many years ago
as part of the Zepher Compiler Infrastructure Project [38]. Zepher
defined the Abstract Syntax Description Language (ASDL) for spec-
ifying compiler intermediate representations and a tool (asdlgen)
for generating picklers and unpicklers in multiple languages. The
original asdlgen tool does not support modern C++, so we built a new
implementation of the tool that generates code that is compatible
with LLVM.11

Our plan then was to use an asdlgen pickler to serialize the CPS
IR, which would be passed to the runtime system to be the input to a
LLVM-based code generator that would essentially be a C++ rewrite
of the existing MLRISC code generator. The resulting machine code
would then be returned to the SML code as an array of bytes. As
we began work on this approach, however, we discovered that the
CPS IR was not necessarily the right IR for connecting to LLVM.
First, the MLRISC code generator depended heavily on metadata
that was external to the CPS IR. Second, the CPS primops were
designed to model the corresponding SML operations (e.g., addition
on tagged integers), which added a lot redundancy and extra work to
the code generation process. Thus, we decided to introduce a new,
lower-level IR, that would be the vehicle for communicating with
the LLVM-based code generator. This new IR, which we call the
CFG IR, is described in detail in the next section, but its key features
are that it is self-contained and that its semantics are much closer to
both the semantics of LLVM and MLRISC. The latter is important,
because we decided to support a second code-generation path that
uses MLRISC as both a way to validate the translation to CFG and
to support legacy systems, such as the 32-bit x86, for which we do
not plan to provide an LLVM-based backend.

4.3 The New Backend Pipeline
We conclude this section with a description of the new backend
pipeline, which is illustrated in Figure 2. We have greyed out the
labels of those passes from Figure 1 that are unchanged, but, for
some passes, changes were required.

• The CPS Lowering phase is has been expanded to lower
more CPS primops than before. These changes were made to
avoid some primops that were difficult to translate directly to
LLVM.

• The Clustering phase was modified to avoid multi-entry-point
clusters, which requires introducing new CPS functions.

• The tracking of information about GC invocations was modi-
fied to work with the CFG code generator (discussed below
in Section 6.5).

• The CFG Codegen phase replaces the old MLRISC Codegen
phase.

Once we have produced the CFG IR, there are two paths to
machine code. The legacy path (on the left) compiles the CFG to
MLRISC and then uses the existing MLRISC backend to produce
machine code.

The new code generation path first pickles the CFG IR and then
passes the linearized representation to the runtime system where it

11The original implementation is still available at http://asdl.sourceforge.net; the new
implementation, which currently only supports SML and C++ is included in the SML/NJ
distribution.
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Figure 2: The new backend. Components represented by or-
ange boxes are implemented in C++.

is unpickled into a C++ representation of the CFG IR. We then gen-
erate LLVM IR code using a version of LLVM (currently 10.0.1)
extended with the JWA calling convention. For the new code gen-
erator, the GC Info pass is part of the LLVM Codegen pass, where
we use the function’s calling convention and parameter signature to
determine the live variables. The next two sections describe the CFG
and LLVM code generator in detail.
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5 THE CFG REPRESENTATION
A major part of the new backend is the new CFG IR that sits between
the existing first-order CPS IR and the MLRISC and LLVM code
generators. The CFG IR encodes many of the invariants of the CPS
IR into its representation and makes the metadata required for code
generation explicit. The main datatypes used to represent the CFG
IR are shown in Figure 3; we omit the primitive operators and have
simplified the types slightly for space and presentation reasons.

Each unit of compilation (e.g., declarations or expressions typed
into the REPL or a source file) is mapped to a CFG compilation
unit, which consists of a list of clusters. The first cluster in the list
is the entry cluster, which handles linking the new code with the
existing dynamic environment. CFG clusters roughly correspond
to the clusters used in the MLRISC backend; each cluster consists
of a list of fragments, which are extended basic blocks. Clusters
also have attributes, which capture some basic information about the
code in the cluster, such as does it require the base pointer register.

In the LLVM backend, clusters map to LLVM functions, which
means that they must have a single entry point (unlike the clusters
used in the MLRISC backend, which can have multiple entry points).
Because of this restriction, we have modified the clustering phase
to optionally split multi-entry-point clusters into several clusters.12

The one complication for this splitting is that the new clusters may
require access to the base pointer in order to compute label values.
The original calls to these new clusters are unlikely to have the
cluster’s address as a parameter, since they are not standard calls.
Thus, we have to change the calling convention slightly in these
cases by adding the base pointer as an additional parameter. In the
rare case that the original function uses all of the available general-
purpose registers, we pass the base pointer using a dedicated stack
location.

5.1 Expressions and Statements
CFG expressions (exp) and statements (stm) are used to define
the computations that make up the body of fragments. While the
constructors of these datatypes are in close correspondence to the
CPS IR, there are some important differences.

First, pure expressions are represented as trees (the exp type),
instead of having each primitive operation be bound to a lvar. Shar-
ing of common expressions is made explicit by the LET constructor.
Using expression trees has a couple of advantages: it reduces the size
of CFG terms, which speeds pickling, and expression trees match the
procedural code-generation interfaces of both LLVM and MLRISC.

Operations in the CFG IR are closer to machine level than those
of the CPS IR. For example, the default integer type in SML is
represented by a tagged value that has its lowest bit set (i.e., the
integer 𝑛 is represented as 2𝑛 + 1). Arithmetic on tagged integers
requires various additional operations to remove and add tags. In the
old backend, these were added when generating MLRISC code; we
now generate these operations as part of the translation to CFG. The
CFG IR also replaces many specialized CPS operations for memory
allocation and access with a few lower-level mechanisms.

Figure 3 also shows the representation of types in the CFG IR.
The types LABt (code addresses), PTRt (pointers or tagged values),
and TAGt (tagged values) describe values that the garbage collector

12When using the MLRISC backend, this splitting is not necessary.

datatype ty

= LABt | PTRt | TAGt

| NUMt of {sz : int} | FLTt of {sz : int}

type param = lvar * ty

datatype exp

= VAR of {name : lvar}

| LABEL of {name : lvar}

| NUM of {iv : IntInf.int, sz : int}

| LOOKER of {oper : looker, args : exp list}

| PURE of {oper : pure, args : exp list}

| SELECT of {idx : int, arg : exp}

| OFFSET of {idx : int, arg : exp}

datatype stm

= LET of exp * param * stm

| ALLOC of alloc * exp list * lvar * stm

| ARITH of arith * exp list * param * stm

| SETTER of setter * exp list * stm

| APPLY of exp * exp list * ty list

| THROW of exp * exp list * ty list

| GOTO of lvar * exp list

| SWITCH of exp * stm list

| BRANCH of branch * exp list * stm * stm

| CALLGC of exp list * lvar list * stm

datatype frag_kind

= STD_FUN | STD_CONT | KNOWN

| INTERNAL

datatype frag = Frag of {

kind : frag_kind,

lab : lvar,

params : param list,

allocChk : word option,

body : stm

}

type attrs = { ... }

datatype cluster = Cluster of {

attrs : attrs, frags : frag list

}

type comp_unit = cluster list

Figure 3: The main CFG types

can parse and thus can be in a GC root. The other two types represent
raw numeric data (integer and floating-point) of the specified size
in bits. We map the LABt and PTRt types to the LLVM i64*
type (i32* on 32-bit machines). The TAGt type is mapped to i64,
while the INTt and FLTt types are mapped to the LLVM integer
and float types of the specified size. We do not try to use LLVM’s
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aggregate types to model heap allocated objects, since we usually
only have that level of type information at the point of allocation.

5.2 Metadata
The other major difference between the CPS and CFG IRs is that
the metadata for calling conventions and GC support has been in-
corporated into the CFG IR, instead of being held in external tables.
This change makes transferring the information to the LLVM code
generator much simpler, since we do not have to define a pickle
format for the hash tables used to track the data.

The calling-convention metadata is represented by three aspects
of the IR:

(1) Fragments are annotated with a frag_kind; STD_FUN
for escaping functions, STD_CONT, for continuations, and
INTERNAL for internal known function calls. The KNOWN
kind is used for the functions that are introduced to avoid
multiple entry-points during clustering.

(2) We use three different application forms: APPLY for func-
tions, THROW for continuations, and GOTO for internal jumps.
Calls to KNOWN functions are represented by an APPLY
where the function is specified by a LABEL value.

(3) The APPLY and THROW constructs include the type signature
of their arguments.

As seen in Figure 3, each fragment is annotated with an allocChk
field that contains an optional unsigned integer. A value of SOME 𝑛

signifies the need for a heap limit check at the beginning of the
fragment. The most common case is where the fragment’s allocation
is less than the allocation slop, in which case 𝑛 = 0. For fragments
that can allocate more than the allocation slop amount, 𝑛 is the upper
bound on their allocation requirements.

5.3 C++ Representation
The CFG IR is defined using the ASDL specification language [30],
which provides mechanisms for inductive types similar to those
found in most functional programming languages. From this speci-
fication, we generate both the SML and C++ representations of the
IR, as well as the pickling/unpickling code needed to communicate
CFG values from SML to our LLVM code generator. As would be
expected, the mapping from ASDL to SML types is straightforward.
For C++, most types are represented as classes, but enumerations
(e.g., frag_kind in Figure 3) are mapped to C++ enum types. Sum
types are represented with an abstract base class for the type and
subclasses for the constructors.

6 IMPLEMENTATION DETAILS
In this section, we describe the LLVM code generator (i.e., the
orange boxes in Figure 2) in more detail. Our current prototype
targets the amd64 architecture, but is almost entirely machine in-
dependent, so we expect that porting to other architectures will be
straightforward.

6.1 LLVM Code Generation
As described above, the exp and stm types in the CFG IR are
represented as abstract classes in C++, with each constructor its own
subclass. Code generation is implemented as a two-pass walk over

the CFG IR. The first pass collects information, such as a mapping
from labels to clusters and fragments, and allocates placeholder
objects, such as LLVM functions for clusters, LLVM 𝜙-nodes for
INTERNAL fragments, and LLVM basic blocks for the arms of
BRANCH and SWITCH statements. The second pass walks the repre-
sentation generating LLVM code.

ASDL provides a mechanism for adding methods to the generated
classes. For the cluster, frag, and stm classes, we define a
virtual init method for the initialization pass. We also define a
virtual codegen method for these classes and for the exp and
various primitive operator classes. Dispatching on the constructor
of a sum type is implemented using the standard object-oriented
pattern of virtual-method dispatch.

The code generation process requires keeping track of a signifi-
cant amount of state, such as the current LLVM module, function,
and basic block, and maps from lvars to their LLVM representa-
tions. We define the code_buffer class to encapsulate the current
state of the code generator as well as target-specific information. The
code_buffer class also contains the implementation of various
utility methods to support the calling conventions and GC invocation.
We create a single object of this class, which is passed by reference
to the init and codegen methods. Code generation for most of
the CFG IR is straightforward, but we explain how we address the
challenges of Section 3 in the sequel.

6.2 𝜙 Nodes
LLVM’s language is a Static-Single-Assignment (SSA) IR [11]. As
the name suggests, variables (a.k.a. pseudo registers) in SSA are
assigned to only once. When control flows into a block from multiple
predecessors, it is necessary to introduce 𝜙 nodes, which make
explicit the merging of values from multiple sources. Generating
the SSA form from the CFG IR is quite straightforward.13 During
the initialization pass, we preallocate 𝜙 nodes for each INTERNAL
fragment in a cluster. We define one 𝜙 node per fragment parameter
plus additional nodes for those special registers that are mapped to
hardware registers (e.g., alloc, limit, etc.). When compiling a GOTO
statement, we record the current values of the special registers and
the values generated for the GOTO’s arguments in the 𝜙 nodes of the
target fragment.

6.3 Stack References
As discussed in Section 3.2, we need to be able to generate references
to specific locations in the stack frame. We have experimented with
several possible mechanisms for accessing stack locations. Our first
attempt was the @llvm.frameaddress intrinsic, but it requires
using a frame pointer, which burns an additional register. We then
took the approach of defining native inline assembly code for reading
and writing the stack. This approach produced the desired code, but
also introduced target-dependencies in the code generator. We finally
settled on using the @llvm.read_register intrinsic to read the
stack pointer.

One change that we had to make to our runtime model is the
layout of the frame used to host SML execution. In the existing
MLRISC code generator, the spill area is in the upper part of the

13As has been observed by others [4, 10, 21], there are strong similarities between
𝜆-calculus IRs (especially CPS) and SSA form.
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frame and the locations used to represent special registers, etc. are in
the lower part of the frame. For the LLVM code generator, we have
to swap this around to match LLVM’s frame layout conventions.
Fortunately, MLRISC makes it easy to specify the location of the
spill area, so we can modify the MLRISC backend to be compatible
with LLVM.

6.4 Position-independent Code
As described in Section 2.1, we generate code to explicitly maintain
a pointer to the beginning of the current module as a mechanism to
support position-independent code. For example, if the first function
in a module has label 𝑙0 and we have a standard function 𝑓 with label
𝑓𝑙 , then we can compute the base pointer by base = link − (𝑙𝑓 − 𝑙0),
where (𝑙𝑓 − 𝑙0) is a compile-time constant. While at first glance, it
seems easy to encode this computation in the LLVM code generator,
but it turns out that LLVM, by default, leaves the computation of
(𝑙𝑓 − 𝑙0) to link time. We were able to work around this problem by
defining LLVM aliases for the compile-time constant expressions.

In practice, we only need to generate code for the base pointer
when the cluster requires it (i.e., when a LABEL is used in a non-
application position or if the code contains a SWITCH). We record
this information in the attrs record associated with each cluster.

6.5 Invoking GC
As described in Section 2.1, invoking the GC requires a fair amount
of bookkeeping to preserve live data across the invocation. What
makes it complicated is the combination of different cases that have
to be managed. For example, a STD_CONT fragment does not use
the std-link or std-clos registers, so these are either used to hold
excess parameters or else must be nullified before the collection. Our
original implementation put the generation of this bookkeeping code
in the C++ code generator, but the resulting code was both lengthy
and complicated. While the MLRISC code generator also dealt with
this complexity, it is a problem that is much easier to solve in SML
than C++. We subsequently realized that a better strategy is to encode
the GC invocation code in the CFG IR. To this purpose, we added a
heap-limit check as a branch primop and the CALLGC statement
form. The translation from CPS to CFG handles the generation of
code to invoke the GC, as well as inserting the limit checks into the
IR. In addition to moving complexity out of the C++ code generator,
this approach also allows us to share the implementation of the
GC invocation protocol between the LLVM and legacy MLRISC

machine-code generators.
We also implement a feature of the MLRISC code generator that

shares implementations of the GC invocation code between multiple
STD_FUN and STD_CONT fragments. Because the parameters of
these fragments are in known locations and the code address of these
fragments are in known registers (i.e., std-link or std-cont), we can
move the invocation code into a function that can then be shared.
Measurements done when the GC API was originally designed show
that over 95% of STD_FUN GC invocations can be covered by five
different functions, while almost 95% of STD_CONT invocations
can be covered by just one invocation function [18].

The actual invocation of the GC uses a non-tail JWA call. We use
the JWA calling convention so that the GC roots are in predictable
registers and we mark the call as a non-tail call so that the runtime

can return to the GC invocation code. The return type of the call is a
struct with fields for each of the GC roots (recall that the JWA call
uses the same register assignment for calls and returns). These are
then bound to the variables specified by the CALLGC statement.

6.6 Trapping arithmetic
To implement trapping arithmetic, we use LLVM’s “arithmetic with
overflow” intrinsic functions. These functions return a pair of their
result and an overflow bit. In the generated LLVM code, we test the
overflow bit and jump to a per-cluster piece of code that forces a
hardware trap to signal the overflow. As with the MLRISC version,
the runtime system handles the trap by dispatching an Overflow
exception to the current exception handler. The need for this con-
ditional control flow is one of the reasons why trapping arithmetic
is represented as a stm in the CFG IR. LLVM does not provide a
mechanism to generate the particular trap instruction that we need on
the amd64, so we use its inline native assembly code mechanism to
inject an “int 4” instruction into the generated code. For example,
the SML function

fun f (x : Int64.int) = x + 42

results in the LLVM code shown in Figure 4.

6.7 Just-in-Time Compilation
LLVM provides rich support for just-in-time (JIT) compilation,
but the JIT infrastructure is primarily focused on the problems of
multi-threaded compilation, compilation on demand, and dynamic
linking. While multi-threaded compilation is a feature that we might
want to explore in the future, we already address the problems of
compilation on demand and linking in SML/NJ. Therefore, we
use the batch compilation infrastructure, but specify an in-memory
output stream for the target of the machine-code generator, which
produces an in-memory object file. While the actual format of the
object file (e.g., ELF vs. COFF vs. MACH-O), depends on how
the LLVM TargetMachine object is configured, we can use
generic operations provided by LLVM to identify and extract the
code from the in-memory representation. We copy the code into a
heap-allocated code object, which is returned to the SML side of
the compiler.

7 EVALUATION
Since we are still in the process of shaking out the bugs in our
implementation, we have not yet been able to evaluate the approach
for either compile time, or the quality of the generated code. Based
on the performance differenced between our LLVM and MLRISC

backends for Manticore [12], we expect to see some improvement
in the performance of generated code.

We will include a detailed evaluation of the new backend in the
final version of the paper.

8 RELATED
The PURE programming language14 appears to have been the first
functional language to use LLVM in its implementation (starting
in 2008). The implementation of the PURE interpreter is in C++ and
LLVM is described in the documentation as being used as a JIT

14See https://agraef.github.io/pure-lang.
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define private jwa void @fn207 (i64** %allocPtr, i64** %limitPtr, i64** %storePtr,

i64* %0, i64* %1, i64* %2, i64* %3, i64* %4, i64* %5, i64 %6) naked
{

%8 = call { i64, i1 } @llvm.sadd.with.overflow.i64 (i64 %6, i64 42)

%9 = extractvalue { i64, i1 } %8, 1

br i1 %9, label %13, label %10

10:

%11 = extractvalue { i64, i1 } %8, 0

%12 = bitcast i64* %2 to void (i64**, i64**, i64**, i64*, i64*, i64*, i64*, i64*, i64*, i64)*
tail call jwa void %12 (i64** %allocPtr, i64** %limitPtr, i64** %storePtr,

i64* undef, i64* undef, i64* %2, i64* %3, i64* %4, i64* %5, i64 %11)

ret void

13:

call void asm sideeffect "int $$4", ""() #2

ret void
}

Figure 4: Example of LLVM code for trapping arithmetic

compiler, but there is no published description of the implementa-
tion.

Terei and Chakravarty’s LLVM-based code generator for the
Glasgow Haskell Compiler (GHC) [35, 36] is probably the earliest
attempt to use LLVM for a language with a non-standard runtime
model. As such, they were the first to confront and solve a number
of the technical issues we describe here. In particular, they faced the
problem of how to map logical registers in their runtime model to
specific machine registers. It appears that Chris Lattner, the creator
of LLVM, suggested defining a new calling convention to implement
this mechanism.15 The GHC calling convention is now a supported
convention in LLVM.

The ErLLVM pipeline is an LLVM-based backend for the HiPE
Erlang compiler [31]. As with GHC, and our system, the problem
of targeting specific machine registers is solved with a new call-
ing convention; the HiPE convention is also part of the official
LLVM distribution. Unlike GHC and SML/NJ, ErLLVM uses, with
some adaptation, LLVM’s builtin mechanisms for garbage collection
support and exception handling. The ErLLVM pipeline generates
LLVM assembly and then uses the LLVM and system tools to
produce an object file. They then parse the object file to extract a
representation that is compatible with the HiPE loader, which is
similar to what we do in SML/NJ.

We know of two other ML implementations that have LLVM
backends. The SML# system generates fairly vanilla LLVM as-
sembly code and uses LLVM’s existing fastcc calling conven-
tion [37]. To ensure that tail recursion is efficient, they added loop
detection to their compiler and generate branches in these cases,
instead of relying on LLVM’s tail-call optimization.16

The MLton SML compiler also has a LLVM backend [26]. Their
LLVM compiler is modeled on their backend that generates C code,

15See http://nondot.org/sabre/LLVMNotes/GlobalRegisterVariables.txt.
16Recall from Section 3 that LLVM’s tail-call optimization does not avoid the overhead
of allocating/deallocating stack frames.

so they do not have the problems of mapping specialized runtime
conventions onto LLVM. As with GHC and ErLLVM, they generate
LLVM assembly code; one difference, however, is that they stack
allocate all variables and then rely on LLVM’s mem2reg pass to
convert to SSA.

Our work reported here has as its roots the development of the
JWA calling convention for use in Manticore’s Parallel ML (PML)
compiler [12]. As with the other examples above, the PML compiler
generates LLVM assembly and uses the llc tool to generate native
assembly code. Because PML programs are linked using standard
tools, the compiler does not require special handling of position-
independent code or global addresses, such as the code to invoke the
GC. It also does not require access to specific locations in the stack.
While PML is a dialect of SML, it has a different semantics for
arithmetic (i.e., no Overflow exceptions), so it was not necessary
to use LLVM’s arithmetic with overflow intrinsics.

Recently, we have used the PML compiler to explore performance
and implementation tradeoffs between different runtime strategies
for representing continuations and the call stack [13]. The imple-
mentation of heap-allocated continuations in that study was the
version from our previous work [12], which lacks the more sophis-
ticated closure optimizations implemented by the SML/NJ com-
piler [8, 32, 33]. It will be interesting to revisit the experiments using
our new LLVM backend for SML/NJ.

9 CONCLUSION
We have described our ongoing effort to port the SML/NJ system
to a new backend based on LLVM. The code generator that takes
pickled CFG IR and generates LLVM code using the C++ API is
complete and we are currently testing it as a standalone program that
generates code for the 64-bit amd64 architecture. The other major
components of the new backend are also complete and being tested.

For the final paper, we expect to have the code generator incor-
porated into the SML/NJ runtime system and plan to report on the
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compile and runtime performance of the new backend. We are also
planning a 64-bit ARM port of the system, which would be a new ar-
chitecture for SML/NJ. Since the code generator is largely machine
independent, we expect that this port should be fairly smooth.
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A Compiler Approach Reconciling Parallelism and
Dense Representations for Irregular Trees
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Abstract
Recent work showed that compiling functional programs
to use dense, serialized memory representations for recur-
sive algebraic datatypes can yield significant constant-factor
speedups for sequential programs. Adding parallelism in
such a scenario is an open problem which we address in
this work. Serializing data in a maximally dense format con-
sequently serializes the processing of that data, yielding a
natural tension between density and parallelism. We show
that a practical compromise is possible, presenting an exten-
sion of the Gibbon compiler that exceeds the performance
of existing compilers for purely functional programs that
process recursive algebraic datatypes (trees).

1 Introduction
Most modern programming languages and their compilers
treat tree-like data in the same way: each node and leaf is
an individual heap object, and nodes connect to sub-trees
via fields containing pointers. This is a simple and effective
representation that is appropriate for a wide range of use
cases (applicable to both functional and object-oriented pro-
gramming styles, and both dynamic and static typing), and
it has not changed significantly since the days of early LISP
systems. The rare deviations from this consensus are found
mostly within limited high-performance scenarios where
complete trees can be laid out using address arithmetic with
no intermediate nodes.

Of course, as HPC programmers know, one cannot treat
the numbers in an array as individual heap objects, and ide-
ally the same should be true of programs that process trees
in bulk, reading or writing them in one pass. Representing
tree-like data as pointer-less, serialized byte arrays can be ex-
tremely efficient for such traversals, as it minimizes pointer-
chasing and maximizes locality. Such a representation also
has the benefit of unifying the on-disk and in-memory repre-
sentation of tree data, allowing programs to rapidly process
large recursive tree-like data without the overhead of dese-
rialization. Prior work has explored this approach, and in
particular the Gibbon compiler [Vollmer et al. 2019, 2017]
automatically transforms functional programs to operate on
serialized data.

While this data representation strategy works well for
sequential programs, there is an intrinsic tension if we want

IFL’20, September 2–4, 2020, Virtual.
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to parallelize these tree traversals. As the name implies, effi-
ciently serialized data must often be read serially. To change
that, first, enough indexing data must be left in the represen-
tation in order for parallel tasks to “skip ahead” and process
multiple subtrees in parallel. Second, the allocation areas
must be bifurcated to allow allocation of outputs in parallel.

In this paper, we propose a solution to these challenges. We
propose a strategy where form follows function: where data
representation is random-access only insofar as parallelism
is needed, and both data representation and control flow “bot-
tom out” to sequential pieces of work. That is, granularity-
control in the data mirrors traditional granularity-control
in parallel task scheduling. We demonstrate our solution by
extending the Gibbon compiler with support for parallel com-
putation. We also extend LoCal, Gibbon’s typed intermediate
language, and give an updated formal semantics.

Ultimately, we believe that this shows one path forward
for high-performance, purely-functional traversals of trees.
Parallelism in functional programming has long been re-
garded as theoretically promising, but has a spottier track
record in practice — due to problems in runtime systems,
data representation, and memory management. The parallel
version of Gibbon we demonstrate in this paper directly ad-
dresses these sore spots, showing how a purely functional
program operating on fine-grained irregular data can also
run fast and parallelize efficiently.

In this paper, we make the following contributions:
● We introduce the first compiler that combines paral-

lelism with automatic dense data representations for
trees. While dense data [Vollmer et al. 2019] and ef-
ficient parallelism [Westrick et al. 2019] have been
shown to independently yield large speedups on tree-
traversing programs, our system is the first to combine
these sources of speedup, yielding the fastest known
performance generated by a compiler for this class of
programs.● We formalize the semantics of a parallel location cal-
culus (Section 3), which underpins this novel imple-
mentation strategy. To do so we extend prior work
on formalizing LoCal [Vollmer et al. 2019], which in
turn builds on work in region calculi [Tofte and Talpin
1997].● On a single core, our implementation is 2.18× and
2.79× faster than MLton and GHC respectively—two
of the most mature and performant implementations of
general purpose typed functional programming. When
utilizing 18 cores, our geomean speedup is 1.87× and
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3.16× over parallel MLton and GHC, meaning that the
use of dense representations to improve sequential pro-
cessing performance coexists with scalable parallelism
(Section 6).

2 Overview
We give a high-level overview of the ideas presented in this
paper using a simple example program given in Figure 1.
It constructs a small binary tree (N L (N L L)), and uses Lo-
Cal (short for location calculus) as its syntax. While Gibbon
ultimately compiles regular functional programs (a subset
of Haskell), LoCal is Gibbon’s intermediate language that
makes explicit the manipulation of memory regions and
locations. We will use LoCal to introduce concepts and ter-
minology that will be used in the rest of the paper.

1 data Tree = Leaf ⋃︀ Node Tree Tree

2
3 letregion r in

4 letloc l r = start r in

5 letloc lar = l r + 1 in

6 let a : Tree @ la r = (Leaf lar ) in

7 letloc lb
r = after(Tree @ la r ) in

8 let b : Tree @ lb
r =

9 letloc lc r = lb
r + 1 in

10 let c : Tree @ lc r = (Leaf lc r ) in

11 letloc ld
r = after(Tree @ lc r ) in

12 let d : Tree @ ld
r = (Leaf ld

r ) in

13 (Node lb
r c d)

14 in (Node l r a b)

Figure 1. A LoCal program that constructs a small binary
tree, (N L (N L L)).

2.1 A Primer on Location-Calculus
LoCal is a type-safe language that represents programs oper-
ating on (mostly) serialized values. All serialized values live
in regions, which are growable memory buffers that store
the raw data, and all programs make explicit not only the
region to which a value belongs to, but also a location at
which that value is written, where locations are fine-grained
indices into a region. Unlike pointers in languages like C,
arbitrary arithmetic on locations is not allowed—locations
are only introduced relative to other locations.

In the program given in Figure 1, the location lr is at the
start of the region r , la

r is right after the location lr , and lb
r is

after every element of the value rooted at la
r . Any expression

that allocates takes an extra argument: a location-region pair
that specifies where the allocation should happen. The types
of such expressions are decorated with these location-region
pairs. For example, a (Leaf lr 1) data constructor allocates at a
location l in region r and has type (Tree@lr ). Functions may
be polymorphic over any of their input or output locations,

and the concrete locations are expected to be passed in at
call-sites.

Only allowing fully-serialized values in a language means
that they must be accessed in the same order in which they
were serialized. While this restriction leads to efficient ac-
cesses when values are traversed in the order they are se-
rialized, it can be inefficient in other cases because it takes
away the random-access capabilities afforded by a pointer-
based representation. In pointer-based C code, accessing b

in (Node a b) is a constant time operation. But if all values
are fully serialized, the only way to read the second value
in a region is to scan over the first one; hence accessing
b requires scanning over a first, which adds O(n) amount
of extra work! Vollmer et al. addressed this problem by al-
lowing some offset information — such as pointers to some
fields of a data constructor — to be included in the serial-
ized representation [Vollmer et al. 2019]. Offsets can hence
grant serialized datatypes random-access capabilities, but
are only useful if the program consuming the data needs
random access. The choice of how much or how little offset
information to include is an optimization problem for the
Gibbon compiler, or, at the level of LoCal, can be explicitly
specified by annotating the datatype declarations.

2.2 Running LoCal Programs Sequentially
LoCal has a dynamic semantics which runs programs se-
quentially [Vollmer et al. 2019]. In this model, regions are
represented as serialized heaps, where each heap is an array
of cells that can store primitive values (data constructor tags,
numbers, etc.) A write operation, such as the application of
a data constructor, allocates to a fresh cell on the heap, and a
read operation reads the contents of a cell. Performing multi-
ple reads on a single cell is safe, but the type-system ensures
that each cell is written to only once. At run time, locations
in the source language translate to heap indices that specify
the cells where reads/writes happen. And expressions that
manipulate these locations allow a program to use different
cells of the heap by performing limited arithmetic on the
underlying indices. Such expressions are called “location
expressions” in the language.

There are three different location expressions: (start r)
returns the index of r’s first cell, (lr + 1) returns an index
that points to a cell one after the cell pointed to by lr , and
(after τ@lr ) returns an index that is one after every cell
occupied by the value rooted at lr . An end-witness judgement
is used to evaluate an after expression. A naive computa-
tional interpretation of this judgement is to simply scan over
a value to compute its end, but in practice this linear scan can
be avoided by tracking end-witnesses, for example, having
every write return the index of the cell after it.

Intuitively, we can imagine there being a single allocation
pointer that is used to perform all writes in the program. It
always points to the next available cell on heap, and each
write advances it by one. When the program starts executing,
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Figure 2. (a) Sequential, step-by-step execution of the program from Figure 1, and (b) the corresponding heap operations.
Each step is named after its line number in the program and only shows the changes relative to the previous step. AP is the
allocation pointer.

the allocation pointer starts at the beginning of the heap and
it chugs along in a continuous fashion performing writes
along the way, as illustrated in Figure 2b. Consuming a seri-
alized value can be thought of in a similar way—that there
is a single read pointer that starts at the beginning of the
heap and moves along its length performing reads. (Note
that offsets eliminate the need for computing end-witnesses
when performing reads, but not writes.)

Figure 2a gives a step-by-step trace of the sequential se-
mantics executing the program from Figure 1. The store S
maps regions to their corresponding heaps, and the location
map M maps symbolic locations to their corresponding heap
indices. In the first two steps, a fresh region r is created and
location lr is initialized to point to r ’s 0th cell. Then the loca-
tion of the first sub-tree, la

r , is defined to be one after lr . Step
6 constructs the first sub-tree by writing a tag L (short for
leaf) on the heap. Then the location of the second sub-tree,
lb

r , is defined to be after every element of the first sub-tree.
Since there is only a single leaf before it, lb

r gets initialized
to point to the 2nd cell by the end-witness judgement. Note
that the allocation pointer AP is already at the correct cell.
Following similar steps, the second sub-tree is constructed at
lb

r . Finally, Step 12 writes the tag N (short for Node) which
completes the construction of the full tree, (N L (N L L)).

2.3 Parallelism in LoCal
In this section, we outline the various opportunities for par-
allelism that exist in LoCal programs. The first kind of paral-
lelism is available when LoCal programs access the store in

a read-only fashion, such as the program that calculates the
size of a binary tree.
size : ∀ l r . Tree @ l r → Int

size [l r ] t = case t of

Leaf → 1

Node (a : Tree @ lar ) (b : Tree @ lb
r )→ (size [lar ] a) + (size [lb

r ] b)

However, even though the recursive calls in the Node case
can safely evaluate in parallel, there is a subtelty: parallel
evaluation is efficient only if the Node constructor stores offset
information for its child nodes. If it does, then the address
of b can be calculated in constant time, thereby allowing the
calls to proceed immediately in parallel. If there is no offset
information, then the overall tree traversal is necessarily
sequential, because the starting address of b can be obtained
only after a full traversal of a. As such, there is a tradeoff
between space and time, that is, the cost of the space to store
the offset in the Node objects versus the time of the sequential
traversal (e.g., of a) forced by the absence of offsets.

Programs that write to the store also provide opportuni-
ties for parallelism. The most immediate such opportunity
exists when the program performs writes that affect different
regions. For example, the writes to construct the leaf nodes
for a and b can happen in parallel because different regions
cannot overlap in memory.
letregion ra in

letregion rb in

letloc lara = start ra in

letloc lbrb = start rb in
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let a : Tree @ lara = Leaf lara in

let b : Tree @ lbra = Leaf lbrb in

. . .

There is another kind of parallelism that is more challenging
to exploit, but is at least as important as the others: the
parallelism that can be realized by allowing different fields
of the same constructor to be filled in parallel. This is crucial
in LoCal programs, where large, serialized data frequently
occupy only a small number of regions, and yet there are
opportunities to exploit parallelism in their construction.
Consider the buildtree program, which creates a binary tree
of a given size n in a given region r.
buildtree : ∀ l r . Int → Tree @ l r

buildtree [l r ] n =

if n == 0 then (Leaf l r 1)

else letloc lar = l r + 1 in

let left : Tree @ la r =

buildtree [lar ] (n - 1) in

letloc lb
r = after(Tree @ la r ) in

let right : Tree @ lb
r =

buildtree [lb
r ] (n - 1) in

(Node l r left right)

If we want to access the parallelism between the recursive
calls, we need to break the data dependency that the right
branch has on the left. The starting address of the right
branch, namely lb

r , is assigned to be end witness of the left
branch by the letloc instruction. But the end witness of the
left branch is, in general, known only after the left branch is
completely filled, which would effectively sequentialize the
computation. One non-starter would be to ask the program-
mer to specify the size of the left branch up front, which
would make it possible to calculate the starting address of the
right branch. Unfortunately, this approach would introduce
safety issues, such as incorrect size information, of exactly
the kind that LoCal is designed to prevent. Instead, we ex-
plore an approach that is safe-by-construction and efficient,
as we explain next.

2.4 Fully-Parallel Semantics
To address the challenges of parallel evaluation, we start
by presenting a high-level execution model that can utilize
all potential parallelism in LoCal programs. This execution
model functions as a reference for the space of possible im-
plementation strategies. In particular, the model formalizes
all possible valid parallel schedules and all valid heap layouts.
In this model, the surface language of LoCal is unchanged
from the original, sequential language. That is, there are
no new linguistic constructs needed to, e.g., spawn paral-
lel tasks or synchronize on task completion. Parallelism in
our fully-parallel model is generated implicitly, by allowing
every let-bound expression to evaluate in parallel with the
body.

To demonstrate the model, let us consider a trace of the
fully-parallel evaluation of the program from Figure 1. We

Figure 3. Fully parallel, step-by-step execution of the pro-
gram from Figure 1. Each step is named after its line number
in the program and only shows the changes relative to the
previous step.

are going to first examine the trace corresponding to the
schedule shown in Figure 3, where the let expressions that
bind a and for c are both parallelized. The parallel fork point
for the first let expression (the one corresponding to a) occurs
on the fourth step of the trace. At this point, the evaluation of
the let-bound expression results in the creation of a new child
task, and the continuation of the body of the let expression
in the parent task. Each task has its own private view of
memory, which is realized by giving the child and parent
task copies of the store S and location map M . These copies
differ in one way, however: each sees a different mapping for
the starting location of a, namely la

r . The child task sees the
mapping la

r ↦ ∐︀la, 1̃︀, which is the ultimate starting address
of a in the heap.

The parent task sees a different mapping for la
r , namely∐︀la, before i○ã︀. This location is a before index: it behaves

like an I-Var [Arvind et al. 1989], and, in our example, stands
in for the completion of the memory being filled for a, by the
child task. Any expression in the body of the let expression
that tries to read from this location blocks on the completion
of the child task. The reason this placeholder value is pre-
fixed by “before” is that the variable i○a attached to it refers
to the end witness of the object starting at a. The end witness
of a is needed by the letloc expression at line 7, just after the
parent continues after the fork point. At this point, the par-
ent task uses the letloc expression to assign an appropriate
location for the starting address of b, which is lb

r ↦ ∐︀la, i○ã︀.
This placeholder variable, i○a , is used by the parent task as a
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Figure 4. Parallel, step-by-step execution of the program from Figure 1 such that parallel allocations happen only in separate
regions (a), and the corresponding heap operations (b). Each step is named after its line number in the program and only
shows the changes relative to the previous step. AP and AP2 are the allocation pointers.

temporary allocation pointer, from which it can continue to
allocate new objects. The next object allocated by the parent
task is c, for which the starting address is ∐︀la, i ○a +1̃︀, the
address one cell past the end of b in the parent task.

The use of a on line 14 forces the parent task to join with
its child task. This particular join point eliminates both the
before index and the placeholder variable in the parent task,
thereby removing all occurrences of i○a , and allowing the
parent task to continue evaluating. In particular, the before
index ∐︀la, before i○ã︀ is substituted for ∐︀la, 1̃︀, the starting
address of a, and the addresses starting with the placeholder
variable i○a in the store and location map of the parent task
are substituted for ∐︀la, 2̃︀, the end witness of a. Finally, all the
new entries in the location map M and store S of the child are
merged into the corresponding environments in the parent
task. Join points in LoCal are, in general, deterministic, be-
cause they only increase the information held by the parent
task. Moreover, the layout of the heap after the join point
is equivalent to the one that would be constructed in the
sequential execution: all heap layouts, and the corresponding
heap addresses in the environments, end up being the same
for all schedules. This property is the main abstraction that
is provided by the fully parallel semantics, but it does not
lend itself well to efficient implementation. The problem is
the complication of the addressing of objects in regions.

2.5 Region-Parallel Semantics
We now present a lower-level semantics that treats parallel
allocations in the same region in a way that can be imple-
mented efficiently, with simple, linear addressing for regions,
while retaining the ability to take all possible parallel sched-
ules. In this region-parallel semantics, unlike the fully par-
allel semantics, there can be at most one task allocating
in a given region at a time. To realize single-region alloca-
tions, the semantics introduces fresh, intermediate regions
as needed, that is, when the schedule takes a parallel eval-
uation step for a given let-bound expression, and the body
expression tries to allocate in the same region.

Let us consider how our region-parallel semantics differs
from our fully parallel version by following the trace in
Figure 4 of our example program. After the first five steps,
we reach the outer let binding, where the schedule forks a
child task, as in our previous trace. The let-bound expression
proceeds at this point to evaluate in a parallel task with the
original region r . Like before, the parent and child tasks see
a different mapping for la

r , i-var 1 and ∐︀r, 1̃︀ respectively.
At step seven, the body of the let expression continues in the
parent task, and uses a letloc expression to compute the end-
witness of la

r . In such a situation the fully parallel semantics
uses a placeholder index as the end witness. Here, instead
of a placeholder index, a fresh region r2 is created, and the
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starting address of b now becomes an indirection, lb
r ↦∐︀r, (r2, 0)̃︀, and the parent task uses r2 for allocations instead

of r . The parent and child tasks have, in effect, two different
allocation pointers for the same logical region. When the
tasks reach the join point, the merging of their respective
memories is handled by merging the stores with a simple
set union operation, and then linking together the regions r
and r2 by pointers. To link the regions, the program writes
an indirection pointer at the end of the region allocated
by the child task, which points to beginning of the fresh
region r2 of the parent task. This linking is cheap, and in
our implementation it replaces the merging of the store S
and location map M performed at the join point in the fully
parallel semantics.

3 Formal Semantics for Fully-Parallel
LoCal

In this section, we present the formal semantics of our fully
parallel LoCal. This semantics has also been mechanically
tested in PLT Redex [Felleisen et al. 2009]. The grammar
for the language is given in Figure 5. All parallelism in this
model language is introduced implicitly, by evaluating let

expressions. There is no explicit syntax for introducing par-
allelism in our fully parallel language, and consequently the
language is, from the perspective of a client, exactly the same
as the sequential language [Vollmer et al. 2019].

The parallel LoCal semantics does, however, differ from
the sequential semantics, most notably from the introduction
of a richer form of indexing in regions. Whereas in sequential
LoCal a region index consists of a non-negative integer and a
concrete location of a pair of a region identifier and an index,
the region index and concrete location are more complex in
parallel LoCal. The enriched forms support parallel construc-
tion of the fields of the same data constructor application by
functioning as placeholders for heap indices that are not yet
known. The region index i now generalizes to a region-index
expression, which consists of either a concrete index i●, a
placeholder index i○, or an index, plus an offset i + i●. A
concrete index is a non-negative integer that specifies the
final index of a position in a region. A placeholder index is a
synchronization variable that is used to coordinate between
parallel tasks. For example, the placeholder index i○a in the
sample trace in Figure 3, is used by the child task to commu-
nicate to its parent task the end witness of the object starting
at a, which is the final result generated by the child task. All
indices allocated by a parent task allocate heap values at
indices on an offset from the placeholder index. For example,
the tree node c in the sample trace is allocated at the index
i ○a +1, that is, one cell past the end of a. A concrete location
cl is enriched from its simpler definition in the sequential
semantics to be a pair ∐︀r, i◇̃︀ of a region r and an extended
region index i◇. The extended region index i◇ is either a
region-index expression or a before index. A before index

K ∈ Data Constructors, τc ∈ Type Constructors,
x,y, f ∈ Variables, l, lr ∈ Symbolic Locations,
r ∈ Regions, i●, j● ∈ Concrete Region Indices,
i○, j○ ∈ Placeholder Region Indices

Top-Level Programs top ∶∶=Ð⇀dd ;
Ð⇀
fd ; e

Datatype Declarations dd ∶∶= data τc =ÐÐ⇀K Ð⇀τ
Function Declarations fd ∶∶= f ∶ ts; fÐ⇀x = e

Located Types τ̂ ∶∶= τ@lr

Types τ ∶∶= τc

Type Scheme ts ∶∶= ∀Ð⇀
l r
.
Ð⇀̂
τ → τ̂

Region Indices i, j ∶∶= i ● ⋃︀ i ○ ⋃︀ i + i●
Extended Region Indices i◇, j◇ ∶∶= i ⋃︀ before i○

Concrete Locations cl ∶∶= ∐︀r, i◇̃︀l
Values v ∶∶= x ⋃︀ cl

Expressions e ∶∶= v

⋃︀ f (︀Ð⇀lr ⌋︀Ð⇀v
⋃︀ K lr Ð⇀v
⋃︀ let x ∶ τ̂ = e in e

⋃︀ letloc lr = le in e

⋃︀ letregion r in e

⋃︀ case v of
Ð⇀pat

Pattern pat ∶∶= K (ÐÐ⇀x ∶ τ̂) → e

Location Expressions le ∶∶= start r

⋃︀ lr + 1
⋃︀ after τ̂

Store S ∶∶= { r1 ↦ h1, . . . , rn ↦ hn }
Heap Values hv ∶∶= K

Heap h ∶∶= { i1 ↦ hv1, . . . , in ↦ hvn }
Location Map M ∶∶= { lr1

1 ↦ cl1, . . . , l
rn
n ↦ cln }

Sequential States t ∶∶= S; M; e

Parallel Tasks T ∶∶= (τ̂ , cl, t)
Figure 5. Grammar of LoCalpar.

before i○ denotes a field in some constructor application,
such that the index i○ denotes the end witness of the field.

The state configurations of LoCalpar appear at the bottom
of Figure 5. Just like in the sequential LoCal, a sequential
state of LoCalpar, t, contains a store, location map, and an
expression. We generalize a sequential state to a parallel task
T by adding two more fields: a located type and a concrete
location, which together describe the type and location of
the final result written by the task. A parallel transition
in LoCalpar takes the form of the following rule, where a
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number of tasks step together.

T1, . . . ,Tn Ô⇒ T ′1, . . . ,T ′n, . . . ,Tm
In each step, a given task may make a sequential transition,
it may fork a new parallel task, it may join with another
parallel task, or it may remain unchanged.

A subset of the sequential transition rules are given in
Figure 6. The rules are close to the sequential rules, except for
minor differences in three rules. For the rule D-LetLoc-Tag,
we need to handle the case where a before index is assigned
to the source symbolic location l′r . For this purpose, we use
the metafunction that either increments its parameter, if it
is a region index, or advances to the end witness, if it is a
before index.

Incr(i) = i + 1
Incr(before i○) = i○

With respect to the rule D-Par-LetLoc-After, we now allow
the concrete location assigned to the source location l1

r to
hold a before index. The purpose of this relaxation is to allow
an expression downstream from a parallelized let binding to
continue evaluating in parallel with the task that is produc-
ing the value of the let-bound variable. The task evaluating
the letloc expression continues by using a temporary alloca-
tion pointer based on the before index. That is, if the letloc

encounters a before index in its source location, before i○,
then the index j that results from our end witness judgment
yields i○. The effect is to make i○ the setting for the allocation
pointer for the task.

For the rule D-Case, there is a new metafunction Ŝ(r, i)
that is needed to handle the complicated indexing in LoCalpar.

Ŝ(r, i) = hv where (i′ ↦ hv) ∈ S(r) and Nf (i) = Nf (i′)
Nf (i○) = i ○ +0
Nf (i●) = i●
Nf (i + i●) = i ●′ +i● where i●′ = Nf (i)
Nf (i + i●) = i ○ +(i ●′ +i●) where i ○ +i●′ = Nf (i)

The reason this metafunction is needed relates to the compli-
cated indexing structure of LoCalpar. In order to resolve an
index in the store, the store-lookup metafunction needs to
resolve each index to a normal form, where a region index
evaluates to either an integer value i● or to a placeholder
index, plus an integer offset i ○ +i.

The parallel transition rules are given in Figure 7. In these
rules, we model parallelism by an interleaving semantics.
Any of the tasks that are ready to take a sequential step may
make a transition in rule D-Par-Step. A parallel task can be
spawned by the D-Par-Let rule, from which an in-flight let

expression breaks into two tasks. The child task handles the
evaluation of the let-bound expression e1 and the parent the
body e2. To represent the future location of the let-bound
expression, the rule creates a fresh placeholder index i○1, and
from it, builds a before index before i○1, which is passed
to the body of the let expression. A task can satisfy a data

[D-LetLoc-Start]
S; M;letloc lr = start r in e⇒ S; M′; e

where M′ = M ∪ { lr ↦ ∐︀r, 0̃︀ }
[D-LetLoc-Tag]
S; M;letloc lr = l′r + 1 in e⇒ S; M′; e

where M′ = M ∪ { lr ↦ ∐︀r, Incr(i◇)̃︀ }; ∐︀r, i◇̃︀ = M(l′r)
[D-LetLoc-After]
S; M;letloc lr = after τ@l1

r in e⇒ S; M′; e

where M′ = M ∪ { lr ↦ ∐︀r, j̃︀ }; ∐︀r, i◇̃︀ = M(l1r)
τ ; ∐︀r, i◇̃︀; S ⊢ew ∐︀r, j̃︀

[D-LetRegion]
S; M;letregion r in e⇒ S; M; e

[D-DataConstructor]
S; M; K lr Ð⇀v ⇒ S′; M; ∐︀r, ĩ︀lr

where S′ = S ∪ { r ↦ (i ↦ K) }; ∐︀r, ĩ︀ = M(lr)
[D-Case]

S; M;case ∐︀r, ĩ︀lr
of (︀. . . ,K (ÐÐÐÐ⇀x ∶ τ@lr) → e, . . .⌋︀⇒

S; M′; e(︀∐︀r,Ð⇀w ̃︀Ð⇀lr ⇑Ð⇀x ⌋︀
where M′ = M ∪ {Ð⇀lr

1 ↦ ∐︀r, i + 1̃︀, . . . ,Ð⇀lr
j+1 ↦ ∐︀r,ÐÐ⇀w j+1̃︀ }Ð⇀τ1 ; ∐︀r, i + 1̃︀; S ⊢ew ∐︀r,Ð⇀w1̃︀Ð⇀τj+1; ∐︀r,Ð⇀w j̃︀; S ⊢ew ∐︀r,ÐÐ⇀w j+1̃︀

K = Ŝ(r, i); j ∈ { 1, . . . , n − 1}; n = ⋃︀ÐÐ⇀x ∶ τ̂ ⋃︀
[D-Let-Expr]

S; M; e1 ⇒ S′; M′; e′1 e′1 ≠ v

S; M;let x ∶ τ̂ = e1 in e2 ⇒ S′; M′;let x ∶ τ̂ = e′1 in e2

[D-Let-Val]
S; M;let x ∶ τ̂ = v1 in e2 ⇒ S; M; e2(︀v1⇑x⌋︀

[D-App]

S; M; f (︀Ð⇀lr ⌋︀Ð⇀v ⇒ S; M; e(︀Ð⇀v ⇑Ð⇀x ⌋︀(︀Ð⇀lr ⇑Ð⇀l′r′⌋︀
where fd = Function(f )

f ∶ ∀Ð⇀
l′r′
.
Ð⇀̂
τf → τ̂f ; (fÐ⇀x = e) = Freshen(fd)

Figure 6. Dynamic semantics (sequential transitions).

dependency in a rule, such as D-Par-Case-Join, where a case

expression blocked on the value located at before i○c joins
with the task producing the value. Although there are several
other rules in addition to D-Par-Case-Join that handle joins,
we omit them, because they are similar. Because each task
has a private copy of the store and location map, the process
of joining two tasks involves merging environments. Before
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[D-Par-Step]
S; M; e⇒ S′; M′; e′

T1, . . . , (τ̂ , cl, S; M; e), . . . Tn Ô⇒
T1, . . . , (τ̂ , cl, S′; M′; e′), . . . Tn

[D-Par-Let]
T1, . . . , (τ̂ , cl, S; M; e), . . . Tn Ô⇒
T1, . . . , (τ̂1, cl′1, S; M; e1), . . . Tn, (τ̂ , cl, S; M2; e′2)
where e = (let x ∶ τ̂1 = e1 in e2); τ̂1 = τ1@l1

r1

i ○1 fresh; cl′1 = ∐︀r1, before i○1̃︀
M = { l1

r1 ↦ cl1 } ∪M′
M2 = { l1

r1 ↦ cl′1 } ∪M′
e′2 = e2(︀cl′1⇑x⌋︀

[D-Par-Case-Join]
T1, . . . , (τ̂c , clc , Sc ; Mc ; ec), . . . ,Tn Ô⇒
T1, . . . , (τ̂c , clc , S′c ; M′c ; e′c), . . . Tn
where ec = case ∐︀r, before i○c ̃︀lc of

Ð⇀pat
Tp ∈ {T1, . . . ,Tn }
Tp = (τp@lp

r, ∐︀r, before i○c ̃︀, Sp ; Mp ; ∐︀r, ip̃︀)
τp ; ∐︀r, ip̃︀; Sp ⊢ew ∐︀r, ie ̃︀
S′c = MergeS(Sp, Sc (︀i ○c ⇑ie ⌋︀)
M′c = MergeM(Mp,Mc (︀i ○c ⇑ie ⌋︀)
e′c = case ∐︀r, ip̃︀lp of

Ð⇀pat(︀ip⇑before i○c ⌋︀
Figure 7. Dynamic semantics (parallel transitions).

merging the environments, all occurrences of the placeholder
index i○c and the before index before i○c are eliminated in
the location map and the continuation. These occurrences
are replaced by the index ip and the end witness ie , that
represent the starting index and the end witness produced
by the task Tp respectively.

The merging of the task memories is performed by the
metafunctions given in the Appendix A.1.

4 Formal Semantics for Region-Parallel
LoCal

In this section, we present the formalism for the lower-level
calculus, LoCalregpar. Figure 8 shows the changes made to
the grammar for the language. We make a return to the sim-
pler, integer-based scheme for indexing the heap used in the
sequential LoCal. Whereas in sequential LoCal and LoCalpar,
only data constructor tags were allowed to be written to
the heap, in LoCalregpar heap values are extended to support
indirections. An indirection (q, j) that is written in the heap
at ∐︀r, ĩ︀, is a pointer from ∐︀r, ĩ︀ to ∐︀q, j̃︀. Similar to LoCalpar,
a concrete location is enriched to be a pair ∐︀r, i◇̃︀ of a region
r and an extended region index i◇. But instead of having
before indices, an extended region index is either a concrete
region-index or an i-var i, which is used to synchronize be-
tween parent and child tasks. Like heap values, the concrete

locations used in the location map are further enriched to
support indirections.

Like in LoCalpar, our LoCalregpar machine transition steps
a collection of parallel tasks using an interleaving semantics.

T1, . . . ,Tn Ô⇒rp T ′1, . . . ,T ′n, . . . ,Tm
The sequential transition steps are similar, except that since
LoCalregpar’s location map can also contain indirections, a
map lookup function that can de-reference indirections, M̂ ,
has to be used.

M̂(l) = ∐︀r, i◇̃︀ where (l ↦ cl◇) ∈ M(l) and∐︀r, i◇̃︀ = DerefM(M, cl◇)
DerefM(M, ∐︀r, i◇̃︀) = ∐︀r, i◇̃︀
DerefM(M, ∐︀r, (q, i)̃︀) = ∐︀q, ĩ︀

Other meta functions operating on LoCalpar’s enriched re-
gion indices, namely Nf , Incr , and Ŝ are no longer required
since LoCalregpar uses simple integer based region indices.
Some parallel transitions are given in Figure 9. Others, and
synchronization between parallel and child tasks is also simi-
lar to LoCalpar, but they use an I-Var instead of a placeholder
index to manage the joining of parallel tasks. In the rest of
the section we focus on the primary challenge in LoCalregpar

which relates to computing end witnesses of I-Var’s, and
merging of memories at join points.

In order to efficiently compute the end-witness of an I-Var,
we give a different treatment to the parallel transition for
a letloc-after expression. If the letloc’s source location is
not an I-Var, D-RegionPar-LetLoc-After computes the end
witness just like sequential LoCal. If it is an I-Var, the D-
RegionPar-LetLoc-After-New-Reg transition creates a fresh
region r′, and maps lr to r′’s 0th cell by adding an indirection
to the location map, lr ↦ ∐︀r, (r′, 0)̃︀. Now, the entity allo-
cating at lr will use the fresh region r′. Effectively there are
two different allocation pointers for the same logical region,
thus respecting the single-threaded-regions invariant. Since
certain allocations use fresh regions, some fields of a data
constructor may be written to different regions (depending
on the schedule of parallel execution), and they have to be
reconciled to simulate a single region.

In LoCalregpar, merging of region memories occurs when
a task Tb blocks at an I-Var, just like LoCalpar. The meta
functions used to merge the task memories are similar (Ap-
pendix A.1), but are slightly modified since we don’t need to
compute normal forms of region indices, and the grammar
uses i-var’s instead of before indices. However we still
need to bring together into a single region the fields of data
constructors which were written to different regions. The
D-RegionPar-DataConstructor-Link transition accomplishes
this. When a task is evaluating a constructor application and
has already merged the memories of all its fields, it stitches
together fields of the constructor with the help of indirec-
tions. This stitching together is achieved by attaching an
indirection pointer to the end of a field, if it’s neighboring
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Region Indices i, j ∶∶= i●
Extended Region Indices i◇, j◇ ∶∶= i ⋃︀ i-var i

Concrete Locations cl ∶∶= ∐︀r, i◇̃︀l
Types τ ∶∶= τc ⋃︀ ind τc

Indirections hr ∶∶= (r, i)
Heap Values hv ∶∶= K ⋃︀ hr

Extended Concrete Locations cl◇ ∶∶= cl ⋃︀ ∐︀r,hr̃︀l
Location Map M ∶∶= { lr1

1 ↦ cl◇1, . . . ,

lrn
n ↦ cl◇n }

Figure 8. Updated grammar for Region-Parallel Semantics.
The syntactic forms not shown here remain the same as
Figure 5.

field resides in a separate region. We use a meta function
LinkFields for this purpose.

LinkFields(S, (τ1,τ2,τ ...), (∐︀r1, i1̃︀, ∐︀r2, i2̃︀, v...)) = S′′
where S′ = LinkFields(S, (τ2,τ ...), (∐︀r2, i2̃︀, v...))

S′′ = Tie(S′,τ1, ∐︀r1, i1̃︀, ∐︀r2, i2̃︀)
LinkFields(S, (τ1), (v1)) = S

Tie(S,τ1, ∐︀r1, i1̃︀, ∐︀r2, i2̃︀) = S ∪ { r1 ↦ (ie ↦ (r2, i2)) }
where r1 ≠ r2 and τ1; ∐︀r1, i1̃︀; S ⊢ew ∐︀r1, ie ̃︀

Fortunately, in sequential LoCal, there is already an in-
direction pointer mechanism that is sufficient for our pur-
poses. In sequential LoCal, indirection pointers support un-
bounded allocation in a region by representing a region as
a linked list of byte arrays, linked by indirection pointers.
We briefly discuss the aspects relevant to LoCalregpar. For
indirections, LoCalregpar uses a type-directed program trans-
formation which adds a single indirection constructor I to
every datatype. For example, the binary tree datatype be-
comes:
data Tree = Leaf ⋃︀ Node Tree Tree ⋃︀ I (Ind Tree)

where an Ind Tree is a pointer to a value of type Tree. Every
case expression that operates on a Tree is updated during com-
pilation to have an additional clause that dereferences the
indirection pointer, and then re-executes the whole case ex-
pression with that value. This clause essentially introduces a
loop since the dereferenced value can itself be an indirection.
With this approach, the overall changes to the program are
minimal, and, it offers maximum flexibility because any Tree

value can now be written to a separate region and pointed
to by an indirection.

Discussion A consequence of LoCalregpar introducing fresh
regions is that the schedule of evaluation dictates the way
a value is laid out on the heap. Every choice to parallelize a
single-region allocation implies the creation of a new region

and a new indirection, thereby introducing fragmentation.
If a schedule is picked carelessly the heap might become
very fragmented, similar to a full pointer-based represen-
tation, and the benefits of using a serialized representation
will be lost. All the subsequent traversals will have to chase
indirection pointers which will slow them down. In the imple-
mentation we study in the sequel, we give users control over
picking a schedule suitable for the problem at hand by allow-
ing them to perform manual granularity control. In future
work, we plan to consider adopting automatic techniques
for granularity control, such as Heartbeat Scheduling [Acar
et al. 2018] or Oracle-Guided Scheduling [Acar et al. 2019].

5 Implementation
We implement our techniques in the open source Gibbon
compiler. It serves as a good starting point since it provides
us all the infrastructure required to compile LoCal programs
to C code, and a small runtime system that handles memory
management and garbage collection.

Gibbon is a whole-program micropass compiler that com-
piles a polymorphic, higher-order subset of Haskell. Using
standard whole-program compilation and monomorphiza-
tion techniques [Chlipala 2015], the Gibbon front-end lowers
input programs to a first-order monomorphic representation.
On this first-order representation, Gibbon performs location
inference to convert it into a LoCal program, which has re-
gion and location annotations. Then a big middle end of
the compiler is a series of LoCal->LoCal compiler passes
that perform various transformations. Finally, it generates C
code.

Our extension that adds parallelism operates in the middle
end with minor extensions to the backend code generator.
We add a collection of LoCal->LoCal compiler passes that
transform the program so that reads and allocations can
run in parallel. At run time, we make use of the Intel Cilk
Plus language extension to realize parallel execution. Our
implementation follows the design described in Section 4,
but we make one important change. Instead of extracting
parallelism from a program implicitly, we ask the program-
mers to provide explicit spawn and sync annotations, which
mark a computation that can be executed in parallel and a
computation that must be synchronized with respectively.
As a result, unlike the semantics which can exploit all avail-
able parallelism, our implementation only supports nested
fork/join parallelism. While this is restrictive than the mod-
els presented before, it is sufficiently expressive for writing
a large number of parallel algorithms.

Explicit spawn and sync annotations enable a fundamental
optimization in parallel programs — granularity control. Im-
plicit parallelism is elegant in theory, but the overheads of
parallelism often outweigh the benefits in practice. In our
system, a schedule that parallelizes too many allocations also
leads to fragmentation, and in the worst case the heap might
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[D-RegionPar-Case-Join]
T1, . . . ,Tc , . . . ,Tn Ô⇒rp T1, . . . ,T ′c , . . . Tn
where Tc = (τ̂c , clc , Sc ; Mc ; ec); ec = case ∐︀r, i-var ic ̃︀lc of

Ð⇀pat
Tp ∈ {T1, . . . ,Tn } = (τp@lp

r, ∐︀r, i-var ic ̃︀, Sp ; Mp ; ∐︀r, ip̃︀)
M3 = MergeM(Mp,Mc); S3 = MergeS(Sp, Sc)
e′c = case ∐︀r, ip̃︀lp of

Ð⇀pat(︀ip⇑i-var ic ⌋︀; T ′c = (τ̂c , clc , S3; M3; e′c)
[D-RegionPar-LetLoc-After]
T1, . . . , (τ̂ , cl, S; M; e), . . . ,Tn Ô⇒rp T1, . . . , (τ̂ , cl, S; M′; e), . . . ,Tn
where e = letloc lr = after τ@l0

r in e; ∐︀r, ĩ︀ = M̂(l0r)
τ ; ∐︀r, ĩ︀; S ⊢ew ∐︀r, j̃︀; M′ = M ∪ { lr ↦ ∐︀r, j̃︀ }

[D-RegionPar-LetLoc-After-new-reg]
T1, . . . , (τ̂ , cl, S; M; e), . . . ,Tn Ô⇒rp T1, . . . , (τ̂ , cl, S′; M′; e′), . . . ,Tn
where e = letloc lr = after τ@l0

r in e1; ∐︀r, i-var ĩ︀l0 = M̂(l0r)
r′ fresh; S′ = S ∪ { r′ ↦ { }}; M′ = M ∪ { lr ↦ ∐︀r, (r′, 0)̃︀ }

[D-RegionPar-DataConstructor-join]
T1, . . . , (τ̂ , cl, S; M; e), . . . ,Tn Ô⇒rp T1, . . . ,T ′, . . . ,Tn
where e = K lr Ð⇀v ; ∐︀rj, i-var ij̃︀ ∈Ð⇀v

Tp ∈ {T1, . . . ,Tn } = (τp@lp
r, ∐︀r, i-var ij̃︀, Sp ; Mp ; ∐︀r, ip̃︀)

M′ = MergeM(Mp,M); S′ = MergeS(Sp, S)
e′ = K lr Ð⇀v (︀ip⇑i-var ij⌋︀; T ′ = (τ̂ , cl, S′; M′; e′)

[D-RegionPar-DataConstructor-link]
T1, . . . , (τ̂ , cl, S; M; e), . . . ,Tn Ô⇒rp T1, . . . , (τ̂ , cl, S′′; M; ∐︀r, ĩ︀), . . . ,Tn
where e = K lr Ð⇀v ;

ÐÐ⇀∐︀r, ĩ︀ =Ð⇀vÐ⇀τ = GetTypes(K); S′ = LinkFields(S,Ð⇀τ ,Ð⇀v )
S′′ = S′ ∪ { r ↦ (i ↦ K) }; ∐︀r, ĩ︀ = M̂(lr)

Figure 9. Dynamic semantics (region parallel transitions).

degenerate to a full pointer-based representation. To control
these overheads, we let the programmers perform manual
granularity control i.e. they can mark computations to run in
parallel when they predict that the benefits (speedup) would
outweigh the costs (overheads), and use a sequential variant
of their algorithm on small sized inputs.

5.1 Parallel Reads
Using static analysis, the Gibbon compiler can infer if a
dataype requires offsets, and it can transform the program
to add offsets to datatypes that need them. In sequential
LoCal, these are used to preserve asymptotic complexity of
certain functions. For example, rightmost on a binary tree
would be linear instead of logarithmic without offsets. In our
implementation, we use these offsets to enable parallel reads.
We update that static analysis and have it add offsets if a
program performs parallel reads, i.e. via a clause in a case
expression that accesses its fields in parallel.

5.2 Parallel Allocations
The implementation of single-region parallel allocations
closely follows the design described in Section 4. Automati-
cally generating code that creates fresh regions and writes
indirections at appropriate places is accomplished by a pro-
gram transformation pass. But there still exists an issue with
fragmentation. Ideally, if a parallel program runs on a sin-
gle core, the heap it constructs should be identical to one
constructed by its sequential counterpart. But granularity
control alone cannot accomplish this. It allows us to control
the grain in order to restrict excessive creation of fresh re-
gions, but the number of regions created will always be equal
to the number of spawn’s in the program. This still causes frag-
mentation because all spawned tasks might not actually run
in parallel. The key insight is to make the number of fresh
region allocations equal to the number of steals, not spawns.
That is if a work-stealing scheduler is being used, but the
general idea applies to other schedulers as well.
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buildtree : ∀ l r . Int → Tree @ l r

buildtree [l r ] n =

if n < GRAIN

then buildtree_seq [l r ] n

else if n == 0 then (Leaf l r 1)

else letloc lar = l r + 1 in

let left : Tree @ la r = spawn (buildtree [lar ] (n - 1)) in

if continuation_stolen

then letregion r2
letloc lp r2 = start r2 in

let right : Tree @ lp r2 = buildtree [lp r2 ] (n - 1) in

let _ : () = sync in

letloc lb
r = after(Tree @ la r ) in

let _ : Tree @ lb
r = tie lb

r lp r2 in

(Node l r left right)

else letloc lb
r = after(Tree @ la r ) in

let right : Tree @ lb
r = buildtree [lb

r ] (n - 1) in

let _ : () = sync in

(Node l r left right)

Figure 10. Parallel buildtree transformed by the compiler such that it allocates in parallel, and also avoids fragmentation.

Our implementation transforms buildtree as shown in Fig-
ure 10. In this version, a fresh region is created only if the
let-bound expression runs in parallel. Otherwise the body
expression allocates in the parent region, like a sequential
buildtree would. This enables parallel allocations without
excessive fragmentation. The continuation_stolen primitive
is implemented in Gibbon’s runtime system using the Cilk
Plus API.

6 Evaluation
In this section we evaluate our implementation using a va-
riety of benchmarks from existing literature. To measure
the overheads of compiling parallel allocations using fresh
regions and indirection pointers we compare our single-core
performance against the original, sequential LoCal imple-
mentation. The original LoCal is also the best sequential base-
line for performing speedup calculations since its programs
operate on serialized heaps, and as shown in prior work, are
significantly faster than their pointer-based counterparts.
Note that prior work [Vollmer et al. 2017] compared sequen-
tial constant factor performance against a range of compilers
including GCC and Java. Since Gibbon outperformed those
compilers in sequential tree-traversal workloads, we focus
here on comparing against Gibbon for sequential perfor-
mance.

We also measure the scaling properties of Gibbon by com-
paring its performance to other programming languages and
systems that support efficient parallelism for recursive, func-
tional programs — MPL 1 [Westrick et al. 2019] and GHC.
MPL is extension of MLton 2, which is a whole program

1https://github.com/MPLLang/mpl
2http://www.mlton.org/

optimizing compiler for the Standard ML [Milner et al. 1997]
programming language. MPL supports nested fork/join par-
allelism, and generates extremely efficient code, and hence
serves as a baseline for comparing against a system that is
pointer-based. We compare against GHC as the most opti-
mized existing implementation of a general purpose, purely
functional language Haskell.

The experiments in this section are performed on a 18 core
single socket Intel Xeon E5-2699 CPU with 64GB of memory.
Each benchmark is run 5 times, and the median is reported.
To compile the C programs generated by our implementation
we use GCC 7.4.0 with all optimizations enabled (option
-O3), and the Intel Cilk Plus extension (option -fcilkplus) to
realize parallelism. To compile sequential LoCal programs,
we use the Gibbon compiler but disable the changes that add
parallelism with appropriate flags. For MPL, we use version
20200220.150446-g16af66d05 compiled from its source code. For
GHC, we use its version 8.6.5 (with options -threaded -O2)
along with the monad-par[Marlow et al. 2011] library (v
0.3.5) to realize parallelism.

6.1 Benchmarks
We use the following set of of 10 benchmarks to evaluate per-
formance. For GHC, we use strict datatypes in benchmarks
which generally offers the same or better performance and
avoids problematic interactions between laziness and paral-
lelism.

● fib: Compute the 45th fibonacci number with a sequen-
tial cutoff at n=18.● buildFib: This is an artificially designed benchmark
that performs lot of parallel allocations, and has enough
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LoCal Ours MPL GHC
Benchmark Ts T1 O T18 S Ts T1 O T18 S Ts T1 O T18 S

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
fib 4.3 3.7 -12.9 0.34 12.5 16 16.2 1 1.14 14 7 7.2 3 0.6 11.7

buildFib 6.8 5.9 -13.6 0.52 13.1 25 25.1 0.2 1.8 13.9 12.7 12.7 0 1 12.7
buildTree 0.77 0.78 0.54 0.11 7.1 1.4 1.9 31.3 0.4 3.6 4 4.4 9.2 0.57 7
add1Tree 0.91 1.1 25.8 0.11 8.1 2.2 2.9 30.5 0.58 3.8 4 4.5 9.7 0.67 6
sumTree 0.24 0.29 19.1 0.03 8.5 1.04 1.03 -0.3 0.07 14.1 0.54 0.6 11.1 0.07 7.9

buildKdTree 5.3 5.3 0 2.6 2 12.6 13.5 7.1 2.2 5.7 326.9 334 2.2 118.3 2.8
pointCorr 0.14 0.14 0 0.014 10.1 0.62 0.62 0 0.05 12.9 0.16 0.18 18.1 0.014 11.1
barnesHut 16.3 16.1 -1.4 1.4 11.7 41.8 30.6 -26.9 2.2 18.9 106.5 109.5 2.8 16.2 16.6

coins 10.3 9.3 -9.7 4.7 2.18 1.9 1.3 -30.7 0.96 2.03 0.89 0.9 12.5 0.74 4.8
countnodes 0.035 0.039 11.4 0.007 4.9 0.06 0.05 -16.7 0.006 10 0.16 0.18 12.5 0.033 4.8

Figure 11. Benchmark results. ColumnTs shows the run time of a sequential program.T1 is the run time of a parallel program
on a single core, andO the percentage overhead relative toTs , calculated as ((T1 −Ts)⇑Ts)∗ 100.T18 is the run time of a parallel
program on 18 cores and S is the speedup relative to Ts , calculated as Ts⇑T18. The overhead (Column 3) and speedup (Column
5) for Ours are computed relative to sequential LoCal (Column 1). For MPL and GHC, the overheads (Columns 8 and 13) and
speedups (Columns 10 and 15) are self-relative — parallel MPL and GHC programs are compared to their sequential variants.
All timing results are reported in seconds.

work to amortize their costs. It constructs a balanced bi-
nary tree of depth 18, and computes the 20th fibonacci
number at each leaf. This benchmark is embarrassingly
parallel, and it is included here to measure the over-
heads of parallel allocations under ideal conditions.
The sequential cutoff is at depth=8.● buildTree and add1Tree and sumTree: These bench-
marks are taken from LoCal’s benchmark suite. buildTree
constructs a a balanced binary tree of depth 26 with
an integer at the leaf, and add1Tree and sumTree operate
on this tree. add1Tree is a mapper function which adds
1 to all the leaves and sumTree is a reducer which sums
up all leaves in the tree. The sequential cutoff for each
of these benchmarks is at depth=18.● buildKdTree and pointCorrelation: buildKDTree con-
structs a kd-tree containing 4M 3-d points in the Plum-
mer distribution. Each node in the tree stores the split
axis, split value, the number of elements contained in
all of its subtrees, and the minimum and maximum
bounds on each dimension. pointCorrelation takes as
input a kd-tree and then calculates the 2-point correla-
tion for an arbitrary point in it. The sequential cuttoff
for both these benchmarks is at a node which contains
less than 500K elements.● barnesHut: This benchmark is taken from the Prob-
lem Based Benchmark Suite [Shun et al. 2012]. It con-
structs a quad-tree containing 4M 2-d point-masses
distributed uniformly within a square, and then uses
it to run an nbody simulation over the given point-
masses. The sequential cuttoff for constructing the

tree is when the input list contains less than 65K el-
ements. In this case, we implemented optimizations
that go beyond the race-free, purely functional style
of the other benchmarks. For all three compilers, we
apply point forces by updating an array in parallel, us-
ing potentially-racy mutation operations. With library
support these unsafe operations can be hidden behind
a pure interface.● coins This benchmark is taken from GHC’s NoFib 3

benchmark suite. It is a combinatorial search prob-
lem that computes the number of ways in which a
certain amount of money can be paid by using the
given set of coins. It uses an append-list to store each
combination of coins that adds up to the amount, and
counts the number of non-nil elements in this list later.
Only the time required to construct this list is mea-
sured. The input set of coins and their quantities are
[(250,55),(100,88),(25,88),(10,99),(5,122),(1,177)], and
the amount to be paid is 999.● countNodes This benchmark is also taken from Lo-
Cal’s benchmark suite. It operates on ASTs used inter-
nally in the Racket compiler, and counts the number of
nodes in them. The ASTs are a complicated datatype
(9 mutually recursive types with 36 data constructors)
and are stored on disk as text files. The GHC and MPL
implementations parse these text files before operating
on them. For our implementation, we store the serial-
ized data on disk in its binary format, and the program
reads this data using a single mmap call. To ensure an

3https://gitlab.haskell.org/ghc/nofib
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apples-to-apples comparison, we do not measure the
time required to parse the text files for GHC and MPL,
and for our implementation, we run the mmap’d file
through an identity function to ensure that it is loaded
into memory. The size of the input file used for MPL
and GHC is 150M, and that same file serialized for our
implementation is 44M.

6.2 Results
Figure 11 shows the benchmark results. The quantities in
both figures can be interpreted as follows. ColumnTs shows
the run time of a sequential program. T1 is the run time of
a parallel program on a single core, and O the percentage
overhead relative toTs , calculated as ((T1−Ts)⇑Ts)∗100.T18
is the run time of a parallel program on 18 cores and S is the
speedup relative to Ts , calculated as Ts⇑T18. The overhead
(Column 3) and speedup (Column 5) for Ours are computed
relative to sequential LoCal (Column 1). For MPL and GHC,
the overheads (Columns 8 and 13) and speedups (Columns 10
and 15) are self-relative — parallel MPL and GHC programs
are compared to their sequential variants.

Overhead (%) Speedup (×)
Ours -5.1 8.04
MPL 0.16 9.89
GHC 4.93 8.54

Figure 12. Average overheads and speedups.

Ts T1 T18

MPL 2.18× 2.58× 1.87×
GHC 2.79× 3.8× 3.16×

Figure 13. Geomean speedups of Ours relative to MPL and
GHC. Higher is better for Ours.

Our experiments show that in most cases, parallelism in
a serialized representation performs as well as in a pointer-
based representation. As Figure 12 shows, the overheads and
speedups for Ours are comparable to those of MPL and GHC.
Moreover, if we compare absolute run times (Figure 13), our
implementation is significantly faster than both MPL and
GHC. When utilizing 18 cores, our geomean speedup is 2.13×
and 3.6× over MPL (parallel MLton) and GHC, meaning
that the use of dense representations to improve sequential
processing performance coexists with scalable parallelism.

6.2.1 Overheads
To compare overheads, we inspect Columns 3, 8 and 13 in
Figure 11. Across all the benchmarks that measure the per-
formance of allocations, namely buildFib, buildTree, add1Tree,
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Figure 14. Speedups relative to sequential LoCal.

buildKdTree, and coins, only add1Tree has a high overhead of
25.8%; all others are under 1%.

6.2.2 Speedups
To compare speedups, we inspect Columns 5, 10 and 15 in
Figure 11, and Figure 15 shows the scaling results for Ours on
a 18 core machine for some selected benchmarks. For most
benchmarks, speedup results for Ours are comparable to
MPL’s and GHC’s. For barnesHut, our implementation’s lim-
ited scaling is due to a reason unrelated to parallel allocations.
While constructing each node in tree, the algorithm needs
to pick point-masses that lie within a certain bounding box,
and we use a standard filter function to implement this step.
Unfortunately, the filter function in our vector library is not
parallelized yet. We believe that parallelizing that will make
this benchmark perform much better. If we leave out the
time required to construct the tree and just measure the time
required to run the nbody simulation, we observe that our
implementation is 15× faster than sequential LoCal, which
is much closer to MPL’s scaling factor. countnodes is another
benchmark for which both Ours and GHC don’t scale very
well. In our experiments, we observed that they both scale
better on bigger inputs but we do not include those results
here because SML/NJ’s s-expression parsing library that we
used for our MPL version runs out of memory while trying
to parse those inputs.

7 Related Work
The most closely related work to this paper is, obviously,
Vollmer et al.’s LoCal [Vollmer et al. 2019], which was sum-
marized in Section 2.1. As discussed there, while LoCal’s
syntax is identical to Parallel LoCal, Vollmer et al.’s treat-
ment only provided sequential semantics, while this paper
extends those semantics to parallelism, both fully parallel
semantics and region parallel semantics.
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Figure 15. Self-relative scaling results for Ours on 18 cores. X axis is number of cores, Y axis is speedup.

This work, and LoCal, are related to several HPC ap-
proaches to serializing recursive trees into flat buffers for effi-
cient traversal [Goldfarb et al. 2013; Makino 1990; Meyerovich
et al. 2011]. Notably, these approaches must maintain the
ability to access the serialized trees in parallel, despite the
elimination of pointers internal to the data structure, or
risk sacrificing their performance goals. The key distinction
that makes enabling parallelism in the HPC setting “easier”
than in our setting is that these approaches are application-
specific. The serialized layouts are tuned for trees whose
structure and size are known prior to serialization, and the
applications that consume these trees are specially-written
to deal with the application-specific serialization strategies.
Hence, offsets are either manually included in the necessary
locations, or are not necessary as tree sizes can be inferred
from application-specific information.

Work on more general approaches for packing recursive
structures into buffers include Cap’N Proto [Varda 2015],
which attempts to unify on-disk and in-memory representa-
tions of data structures and Compact Normal Form (CNF) [Yang
et al. 2015]. Neither of these approaches have the same de-
sign goals as LoCal and LoCalpar: both Cap’N Proto and CNF
preserve internal pointers in their representations, eliding
the problem of parallel access by invariably paying the cost
(in memory consumption and lost spatial locality) of main-
taining those pointers. We note that Vollmer et al. showed
that LoCal’s representations enable faster sequential tra-
versal than either of those two approaches [Vollmer et al.
2019], and Section 6 shows that our approach is comparable
in sequential performance to LoCal despite also supporting
parallelism.

There is a long line of work on flattening and nested
data parallelism, where parallel computations over irreg-
ular structures are flattened to operate over dense struc-
tures [Bergstrom et al. 2013; Blelloch 1992; Keller and Chakravarty
1998]. However, these works do not have the same goals as

ours. They focus on generating parallel code and data lay-
outs that promote data parallel access to the elements of the
structure, rather than selectively trading off between parallel
access to structures and efficient sequential access.

Efficient automatic memory management is a longstand-
ing challenge for parallel functional languages. Recent work
has addressed scalable garbage collection by structuring the
heap in a hierarchy of heaps, enabling task-private collec-
tions of [Guatto et al. 2018], there is work proposing a split-
heap collector that can handle a parallel lazy language [Mar-
low et al. 2009] and a strict one [Sivaramakrishnan et al.
2020], and there is work on a scalable, concurrent collec-
tor [Ueno and Ohori 2016]. All of these designs focus on
a conventional object model for algebraic data types that,
unlike LoCal, assumes a uniform, boxed representation. We
plan to investigate how results in these collectors relate to
the model used by LoCal, where objects may be laid out in a
variety of different ways.

8 Conclusions and Future Work
We have shown how a practical form of task parallelism can
be reconciled with dense data representations. We demon-
strated this result inside a compiler designed to implicitly
transform programs to operate on such dense representa-
tions. For a set of tree-manipulating programs we considered
in Section 6, this experimental system yielded better perfor-
mance than existing best-in-class compilers.

To build on what we have presented in this paper, we plan
to explore automatic granularity control [Acar et al. 2019,
2018]; this would remove the last major source of manual
programmer tuning in Gibbon programs (which already sub-
stantially automate data layout optimizations). A parallel
Gibbon with automatic granularity control would represent
the dream of implicitly parallel functional programming with
good absolute wall-clock performance.
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So far we have emphasized purely functional programs
processing irregular data (trees). To continue to scale this ap-
proach up to a general purpose programming environment,
we plan in the future to incorporate more well-studied data-
parallel capabilities for sparse and dense multi-dimensional
data. Finally, starting from the currently purely functional
Gibbon language, we plan to incorporate efficient muta-
tion of (dense) heap data, not by incorporating a standard,
monadic approach, but through adding mutation primitives
based on linear types, which we expect to mesh well with
the implicitly parallel functional paradigm.
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A Metafunctions
This section contains definitions of metafunctions used in the operational semantics.

A.1 Merging task memories

MergeS(S1, S2) = { r ↦ MergeH(h1, h2) ⋃︀ (r ↦ h1) ∈ S1, (r ↦ h2) ∈ S2 }∪ { r ↦ h ⋃︀ (r ↦ h) ∈ S1, r ⇑∈ dom(S2) }∪ { r ↦ h ⋃︀ (r ↦ h) ∈ S2, r ⇑∈ dom(S1) }
MergeH(h1, h2) = {Nf (i1)↦ hv ⋃︀ (i1 ↦ hv) ∈ h1, (i2 ↦ hv) ∈ h2,Nf (i1) = Nf (i2) }∪ {Nf (i)↦ hv ⋃︀ (i ↦ hv) ∈ h1,Nf (i) ⇑∈ {Nf (i′)⋃︀i′ ∈ dom(h2) } }∪ {Nf (i)↦ hv ⋃︀ (i ↦ hv) ∈ h2,Nf (i) ⇑∈ {Nf (i′)⋃︀i′ ∈ dom(h1) } }
MergeM(M1,M2) = { lr ↦ ∐︀r,Nf (i1)̃︀ ⋃︀ (lr ↦ ∐︀r, i1̃︀) ∈ M1, (lr ↦ ∐︀r, i2̃︀) ∈ M2,

Nf (i1) = Nf (i2) }∪ { lr ↦ ∐︀r,Nf (i1)̃︀ ⋃︀ (lr ↦ ∐︀r, i1̃︀) ∈ M1, lr ⇑∈ dom(M2) }∪ { lr ↦ ∐︀r,Nf (i2)̃︀ ⋃︀ (lr ↦ ∐︀r, i2̃︀) ∈ M2, lr ⇑∈ dom(M1) }∪ { lr ↦ ∐︀r,Nf (i2)̃︀ ⋃︀ (lr ↦ ∐︀r, i2̃︀) ∈ M2, (lr ↦ before i○1) ∈ M1 }∪ { lr ↦ ∐︀r,Nf (i1)̃︀ ⋃︀ (lr ↦ ∐︀r, i1̃︀) ∈ M1, (lr ↦ before i○2) ∈ M2 }∪ { lr ↦ ∐︀r, before i○2̃︀ ⋃︀ (lr ↦ ∐︀r, before i○2̃︀) ∈ M1, lr ∉ dom(M2) }∪ { lr ↦ ∐︀r, before i○1̃︀ ⋃︀ (lr ↦ ∐︀r, before i○1̃︀) ∈ M2, lr ∉ dom(M1) }
Figure 16. Metafunctions for merging task memories.

We merge two stores by merging the heaps of all the regions that are shared in common by the two stores, and then by
combining with all regions that are not shared. We merge two heaps by taking the set of the all the heap values at indices
whose normal forms are equal, and all the heap values at indices in only the first and only the second heap. The merging of
location maps follows a similar pattern, but is slightly complicated by its handling of locations that map to before indices. In
particular, for any location where one of the two location maps holds a before index and the other one holds a region index,
we assign to the resulting location map the region index, because the region index contains the more recent information.

A.2 End-Witness judgement
The end witness provides a naive computational interpretation of the process for finding the index one past the end of a

given concrete location, with its given type. This rule is mostly the same as the one given for the original, sequential LoCal,
but additionally includes a new case for handling before indices.

Case (A) τc ; ∐︀r, is ̃︀; S ⊢ew ∐︀r, ie ̃︀:
1. Ŝ(r, is) = K ′ such that

data τc =ÐÐÐÐ⇀K1
Ð⇀τ 1 ⋃︀ . . . ⋃︀ K ′ Ð⇀τ ′ ⋃︀ . . . ⋃︀ÐÐÐÐ⇀Km

Ð⇀τ m
2. Ð⇀w0 = is + 1
3.
Ð⇀
τ ′1 ; ∐︀r,Ð⇀w0̃︀; S ⊢ew ∐︀r,Ð⇀w1̃︀∧Ð⇀
τ ′j+1; ∐︀r,Ð⇀w j̃︀; S ⊢ew ∐︀r,ÐÐ⇀w j+1̃︀
where j ∈ { 1, . . . ,n − 1};n = ⋃︀Ð⇀τ ′ ⋃︀

4. ie =Ð⇀wn

Case (B) ind τc ; ∐︀r, is ̃︀; S ⊢ew ∐︀r, ie ̃︀:
1. ie = is + 1
2. (r′, i′s) = Ŝ(r, is)
3. τc ; ∐︀r′, i′s ̃︀; S ⊢ew ∐︀r′, i′e ̃︀

Case (C) τ ; ∐︀r, before i○̃︀; S ⊢ew ∐︀r, i○̃︀
Figure 17. The end-witness rule.
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Abstract
NVidia’s CUDA programming environment provides several
options on how to orchestrate the management of host and
device memory as well as the transfers between them. This
paper looks at how the choices between these options affect
the performance of applications on a set of different GPU
architectures.

We provide a code generation scheme that translates mem-
ory-agnostic programs into different CUDA variants and
present some initial performance evaluations based on a con-
crete implementation in the context of the SaC compiler: for
a simple compute kernel we see 30% runtime improvements
when switching from the default options to a more suitable
combination of allocations and memory transfers.

1 Introduction
NVidia’s CUDA framework and CUDA-compatible GPUs are
an industrial standard for most GPU-based computations.
The favourable performance price ratio of GPUs combined
with their suitability for many data intensive applications has
led to a very quick evolution of new GPU hardware. Besides
improvements in the GPU designs themselves, particular
effort has been spent on improvements for managing the
data transfers between hosts and GPUs. These novelties have
led to extensions in the CUDA standard. While such exten-
sions typically allow for a better utilisation of new hardware
features, they pose challenges to code portability and code
maintenance. Some of the newer features are not supported
for older hardware, others introduce a vast overhead. Even if
code is specifically constructed to be used on one particular
hardware, figuring out which part of the CUDA standard
is most suitable for a given task is not easy. NVidia’s docu-
mentation at https://docs.nvidia.com/cuda/ alone provides
different tuning guides for the latest five different architec-
tures.
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
IFL ’20, September 2–4, 2020, Online
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

This need for architecture-specific tuning and its quickly
evolving, volatile nature suggests that generative program-
ming can provide the desired application stability while re-
ducing the burden of rewrites for performance portability to
a minimum. Indeed, several approaches exist [7, 8, 10, 15? ]
that demonstrate how systematic code re-writes can substan-
tially improve GPU performance using either annotations,
heuristics, or machine learning to guide the rewriting pro-
cess. While the preexisting work mainly focuses on kernel
construction and interplay, this paper is concerned with the
memory management on host and device as well as the or-
chestration of the communication between them after the
kernels have been decided upon. CUDA 10.1 offers several
mechanisms to manage memory and to orchestrate data
transfers between different memories:

• Memory on host and device can be allocated separately
or in a unified fashion;

• Host memory allocations can be done through the
operating system or CUDA itself;

• Transfers can be made synchronously or asynchronously;
• Depending on the choices above, transfers need to be

explicit or can be triggered implicitly; synchronisa-
tions are being done implicitly or need to be inserted
explicitly into the code.

The choices between these options depend on the capabilities
of the executing architecture as well as the characteristics of
any given application.

In this paper we present our experiences when investi-
gating how to best leverage these options when compiling
a functional language down into GPU kernels. Our main
contributions are:

• An overview of the memory allocation and memory
transfer mechanism currently available in CUDA and
how they need to be orchestrated to avoid race condi-
tions.

• A bandwidth comparison between CUDA’s different
memory transfer options for a set of different GPUs. It
shows that there are differences of up to a factor of 2
in bandwidth between the different transfer methods.
The comparison also shows that the differences in
bandwidth are dependent on the hardware being used.

• A code generation scheme that enables the generation
of five different CUDA code variants from a single
source program. This includes provisions for safely
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overlapping GPU activity and host code executions in
the presence of asynchronous communications com-
munications between them and asynchronous kernel
launches.

• Some initial performance analyses of the different ver-
sions based on a full-fledged implementation in the
context of the SaC compiler.

2 CUDA and its Memory Management
NVIDIA’s CUDA is a software framework and driver to im-
plement and run applications on NVIDIA’s GPU devices. Like
other many-core architectures, GPUs build on the follow-
ing design: the GPU has its own memory, data needs to be
transferred from the CPU-based host system to the GPU and
back, and computations on the GPU are captured in so-called
kernels. CUDA provides various API’s to interact with the
GPU device. Here, we only introduce those variants relevant
to the presented work. For a full account we refer the reader
to the most recent CUDA manual [14].

CUDA kernels are always launched from the host and
are then executed asynchronously on the GPU [18]. For
that purpose, the GPU has its own scheduler that non-pre-
emptively executes the kernel [9].

In practice, there are three communication models pro-
vided by CUDA, synchronous communication, asynchronous
communication, and managed communication. We use a sim-
ple example which can be seen as a canonical example for
most GPU codes to explain the differences between these
communication models. Listing 1 presents our canonical
example using the standard, synchronous communication.

In lines 1-5 we define a kernel function increment_kernel

which performs an element-wise increment of the argument
array a. The main function essentially consists of five phases:
memory allocation (lines 9 and 10) for the host and the de-
vice (GPU), transfer of the kernel argument from host to
device (lines 12 and 13), kernel invocation (line 15), transfer
of the result back from the device to the host (lines 17 and
18) and finally memory deallocation in lines 20 and 21. We
assume further host code to exist between these phases as
indicated by ...s. These code snippets perform the actual
host operations including the initialisation of the host array
and the interpretation of results that have come back from
the GPU. However, since we are only interested in mem-
ory management and communication, we leave out these
particulars here.

Figure 1 provides a comparison of how our canonical ex-
ample is executed using the different memory and transfer
options of NVIDIA’s CUDA. For each model, we demonstrate
how host and device interact over time. Our time axis evolves
from top to bottom and each handshake between host and
device is indicated by a horizontal arrow. In the sequel, we
discuss each model separately and relate them to our canon-
ical example from Listing 1. We discuss the required code

1 __global__ void increment_kernel(int *a)

2 {

3 int i = blockIdx.x * blockDim.x + threadIdx.x;

4 a[i] = a[i] + 1;

5 }

6
7 int main () {

8 int *a, *d_a;

9 a = (int *)malloc(1024*sizeof(int));

10 cudaMalloc(&d_a, 1024*sizeof(int));

11 ... / / A
12 cudaMemcpy(d_a, a, 1024*sizeof(int),

13 cudaMemcpyHostToDevice);

14 ... / / B
15 increment_kernel <<<16, 64>>> (d_a);

16 ... / / C
17 cudaMemcpy(a, d_a, 1024*sizeof(int),

18 cudaMemcpyDeviceToHost);

19 ... / / D
20 cudaFree(d_a);

21 free(a);

22 return 0;

23 }

Listing 1. Canonical Example CUDA Code with Synchro-
nous Communication

adjustments for implementing the different models in the
corresponding sub-sections.

2.1 Synchronous Communication
In Figure 1a we show the timeline of events that occur when
running our code example with the default, i.e., synchronous
transfers. The first events perform an allocation of mem-
ory, both on the host and device. In the case of the device,
the allocation is communicated through the CUDA driver
and this operation blocks any further execution, causing
the application to wait until the operation is completed. In
block A we perform some host-side work on a, and continue
to the next event. At this stage we now transfer the data
from the host to the device using cudaMemcpy. Notice in the
code example that among its parameters is a flag indicating
the direction of the communication, in this instance we use
cudaMemcpyHostToDevice. Each call to cudaMemcpy blocks fur-
ther work from happening on the host, which must wait till
the operation is done. In block B we do some more host-side
work, and finally we launch our kernel. The kernel launch is
the only host device interaction here which is asynchronous
in nature. Since both, the host and the GPU operate on sepa-
rate memory no further synchronisation is needed until the
results of the kernel execution are needed, i.e., the host can
execute block C completely independent of the kernel execu-
tion on the GPU. When the host eventually calls cudaMemcpy
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Figure 1. Diagram of CUDA Communication Models: Here we show the differences in synchronisations that happen between
host and device for the three main communications models available through CUDA. Within each of the three models, we
show host-side executions of CUDA operations in orange boxes on the left and GPU executions in green boxes on the right.
Blue boxes indicate host side activities that require the insertion of explicit synchronisations or other host code modifications
to avoid race conditions or erroneous results. Horizontal arrows indicate handshake events. Red lines indicate CUDA-initiated
handshakes. Note that H2D stands for host-to-device and D2H stands for device-to-host.

with cudaMemcpyDeviceToHost in order to transfer the result
back, this ensures synchronisation of the two activities: The
host waits for the kernel and the memory transfer to com-
plete before continuing with block D on the host side. Finally,
we deallocate our host and device memories.

Overall, we can observe that the synchronous setup in
this model ensures a tight synchronisation. Possible latency
hiding that could be gained from the DMA (direct memory
access) capabilities of modern GPUs can not be leveraged
here.

2.2 Asynchronous Communication
Figure 1b shows the timeline of events for the canonical
example when using asynchronous communication. It allows
for overlapping device transfers with further operations on
the host: While the GPU performs DMA operations on the
host, the host itself can proceed. On the software side, CUDA

implements this through the introduction of a queue-like
structure into which device-side operations, like transfers
and kernel launches, can be staged. This so-called stream
moves the scheduling of device operations away from the
host application and into the CUDA driver. In this way, the
staged operations are being executed one after the other by
the GPU, but independently of the execution on the host.

The main modification of the source code is the use of the
asynchronous transfer function cudaAsyncMemcpy instead of
its synchronous counterpart cudaMemcpy in lines 12 and 17 of
our canonical example in Listing 1. As shown in Figure 1b,
we now can overlap the execution of block B on the host
with the memory transfer from the host to the device and the
execution of block D with the memory transfer back. While
this may seem an easy gain by simply replacing cudaMemcpy

by cudaAsyncMemcpy, this can not be done without extra pre-
cautions. The challenge here is that it is no longer clear
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when a transfer is completed. For the transfer to the GPU,
this means that we no longer know until when the reference
to the host memory a is being needed for the transfer; for the
transfer back it means that we actually do not know when
we can start using the result. Consequently, If the host code
within block B wants to re-use the memory of a in any which
way, we need to inject an explicit synchronisation, i.e., a call
to cudaDeviceSynchronize, before that use. In Figure 1b, this
is indicated by the upper blue box and the synchronisation
that precedes it. Likewise the lower blue box indicates the
first use of the result which needs to be preceeded by an
explicit synchronisation as well. Failure to do so may result
in a transfer of wrong data to the device or in erroneous
result values.

Besides changing the transfer function, the asynchronous
model also requires some extra provisions for the host mem-
ory to enable effective DMA transfers. CUDA offers two
different ways of allocating such host memory. One variant
builds on CUDA’s own memory allocator for host memory,
the other variant uses the system allocator via malloc but
requires a special registration with the device driver.

CUDA Host Allocator. Through CUDA we have access
to the cudaHostAlloc function, which is analogous to the
system malloc. By using it, we allocate host memory that
is marked as page-locked. Additionally we register it with
the CUDA driver and provide properties that affect how
the memory is used. The resulting pointer can be passed
to either cudaMemcpy or cudaAsyncMemcpy. As the pointer is
handled by CUDA, we can only free it by using cudaFreeHost.
Use of this allocator comes with higher overheads as, un-
like with the system allocator which can delay allocating
physical memory, we need a physical memory address in
order to page-lock the memory. Modifying our code example,
we replace our malloc on line 10 and the free in line 21 as
follows:

10 cudaHostAlloc(&a, 1024*sizeof(int),

11 cudaHostAllocDefault);

12 cudaMalloc(&d_a, 1024*sizeof(int));

| ...

19 cudaFree(d_a);

20 cudaFreeHost(a);

The pointer to the allocated memory is returned through
the first parameter of the function cudaHostAlloc, which is
followed by the number of bytes to allocate.

CUDA Host Register. Instead of using CUDA’s host al-
locator, we can register memory allocated by the system
allocator. The effect is identical to using CUDA’s allocator,
but provides one key advantage — we can delay the pinning
of the memory. Furthermore, as the operation itself does not
allocate physical memory, we can leverage the system alloca-
tors delayed allocation. This could reduce the overheads that

happen with using CUDA’s allocator. Staying with our exam-
ple code, pinning by calling cudaHostRegister can be done
at any point between the initial allocation and the transfer
call. In our example we do this directly after malloc, and we
unpin the memory after the last transfer. When calling the
register function, we pass the allocated pointer and a flag
indicating what properties the returned pointer should have.
The cudaHostRegisterDefault is sufficient, ensuring that the
pointer is treated the same in all contexts. This leads to the
following changes of our example from Listing 1:

10 a = (int *)malloc(1024*sizeof(int));

11 cudaHostRegister(a, cudaHostRegisterDefault);

12 cudaMalloc(&d_a, 1024*sizeof(int));

| ...

19 cudaFree(d_a);

20 cudaHostUnregister(a);

21 free(a);

2.3 CUDA Unified Memory
With CUDA version 4.0, the memories of the host system
and GPU device were combined into a single virtual address
space, called Unified Virtual Addressing (UVA). This allows
for pointers created by the CUDA API to be used on both the
host and the device. Additionally, the concept of zero-copy
memory was introduced, which allows the GPU to access
pinned host memory without an explicit transfer operation.

Later in CUDA version 6.0, UVA was extended by the uni-
fied memory (UM) model, which introduced the concept of
managed memory [13]. Managed memory departs from the
idea of two explicit memories and explicit transfers between
them completely. Memory on both sides, the host and the
device, is being allocated in a single call to a CUDA specific
memory allocator. The function cudaMallocManaged allocates
memory using UM. The resulting pointer is tracked and if it is
accessed from a non-local context (e.g. GPU device accessing
host memory), the data is transferred implicitly.

Depending on what version of CUDA is used, and even
what generation of CUDA device is used, the underlying
behaviour of UM can vary. For versions of CUDA older than
8.0, and CUDA devices architectures before than Pascal, the
implicit transfer of data happens as part of the kernel launch,
where the entire memory associated with a managed pointer
is transferred. Because of this, explicit synchronisations after
the kernel launch are needed to keep the view of memory
consistent in all contexts.

In versions of CUDA after 8.0, and device architectures
like Pascal and newer, the transfers are initiated by demand-
paging. Here an access to some host-based memory from
the GPU device causes a page-fault, which the CUDA driver
reacts to by sending the missing page. The driver actually
send several consecutive pages, in varying quantities, when-
ever a page-fault occurs [12]. Here, host-side accesses to
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data located in device memory are resolved implicitly by the
CUDA driver without an explicit synchronisation.

We depict this behaviour in the timeline for the canon-
ical example when using the managed model in Figure 1c.
The first observation is that there is only one allocation for
a. It triggers allocations on the host and device. However,
when exactly these are being actually performed is beyond
the programmers control. The explicit transfers have been
elided from the host. Transfers from the host to the device
are being triggered through memory accesses in the kernel.
This is indicated by the green “Memcpy” box after the “Ker-
nel” box and the red double-sided arrows which indicate
the interleaving of kernel executions and memory transfers.
Similarly, the transfer back is happening implicitly when the
host starts reading the results.

As in the asynchronous model, the managed model re-
quires a synchronisation before the first read of the results
so that we can make sure all computation on the GPU has
terminated before data transfers back to the host happen.

To implement the managed model in our canonical ex-
ample, we replace both memory allocations by a single call
to cudaMallocManaged. Additionally we can elide our device
memory allocations from line 11 as we no longer have a
notion of host or device memory. In this way we update the
parameter of our kernel to be a. We also remove the explicit
transfer operations and insert a synchronisation before the
results are being used, resulting in the following code:

10 cudaMallocManaged(&a, 1024*sizeof(int),

11 cudaMemAttachGlobal);

| ...

15 increment_kernel <<<16, 64>>> (a);

16 ...

18 cudaDeviceSynchronize();

| ...

20 cudaFree(a);

One more aspect worth mentioning here is that the use of
a unified view on a and a_dev has consequences if the canon-
ical example makes further use of a while the data resides in
the device. In the asynchronous model we already noticed
that in such cases additional synchronisation is required to
ensure that the data has been transferred completely to the
GPU. In the managed model, such a synchronisation is not
possible at all as there is no way to enforce the data to reside
on either the host or the GPU only. If such a case arises,
separate host memory needs to be allocated and the data of
a may need to be copied. We indicate this in Figure 1c by the
white box preceding the upper blue box.

Memory Prefetch. The UM system’s reliance on demand
driven transfers can make it less efficient in communication
in comparison to the explicit communication orchestration
described previously. Explicit prefetching can be triggered

by using cudaMemPrefetchAsync function which in our exam-
ple could be injected in those positions where the explicit
transfers in the original example are placed.

2.4 Summary
With these different CUDA host memory models, we identify
five distinct methods for performing transfers: (1) synchro-
nous communication, (2) asynchronous communications us-
ing host allocation (which implicitly pins memory), (3) asyn-
chronous communications with separately registered host
memory, (4) implicit communication using CUDA managed
memory and, finally, (5) implicit communication with ex-
plicit prefetch. For the rest of this paper we will refer to
these respectively as sync, async_alloc, async_reg, man,
and man_prefetch.

3 Memory Transfer Performance
From the previous section, we can see that switching the
memory model of a CUDA application has the potential
to lead to improved overlapping of host and GPU activity.
We can also see that such a switch requires several subtle
changes beyond just switching the allocation and transfer
functions.

In this section, we investigate whether we can expect gains
in transfer bandwidth when switching the memory model.
We use a synthetic workload very similar to the canonical ex-
ample of the previous section as test vehicle. We allocate and
transfer a single array, of differing lengths, to the GPU device
and perform a simple computation like element-wise incre-
mentation. After this we transfer the array back to the host.
In these workloads we intentionally use large arrays, taking
up to half of GPU global memory, making the computation
IO-bound.

Due to the simplistic nature of the benchmark we restrict
ourselves to the models sync, async_reg, and man. We run
these on two GPU devices, an NVidia K20 (Kepler architec-
ture from 2012) and an NVidia RTX 2080 Ti (Turing archi-
tecture from 2018)1 We use NVidia’s profiling tool nvprof
to measure the bandwidth of the memory transfers that is
being achieved. The results of our experiments are shown in
Figure 2 and 3.

For each memory model, we distinguish between host to
device (HtoD) and device to host (DtoH ) communication as
the corresponding bandwidths differ significantly.

For the older Kepler architecture of the K20 in Figure 2,
we can see that the asynchronous communication achieves
the highest throughput at over 6 GB/s followed closely by
managed memory communication. The default synchronous
communication lags behind at just under 4 GB/s.

In the more recent Turing architecture of the RTX 2080
Ti in Figure 3 we have a different picture. Here, asynchro-
nous communication is the best at a throughput of about

1Further details of these systems can be found in the table in Section 6.
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Figure 2. Data throughput to/from NVidia K20 GPU
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Figure 3. Data throughput to/from NVidia RTX 2080 Ti GPU

13 GB/s. Synchronous and managed memory communica-
tion lag significantly behind, with peak throughput of about
9 GB/s.

It is not surprising that asynchronous communication
achieves the highest throughput on both systems, as it makes
use of the DMA, avoiding CPU IO overheads. The behaviour
of managed memory on both systems is different, with the
measurements for the RTX 2080 Ti showing a large amount
of variance in throughput as we change the size of the input
array. Given that both synchronous and managed memory
rely on the CPU for memory IO, the variance can be attrib-
uted to the dynamically changing clock-rate of the CPU for
the given system. Additionally this can lead to slowdowns
in general, explaining why managed memory communica-
tion in particular does not peak as high as asynchronous
communication.

From these results, we draw several conclusions. Firstly,
the differences in bandwidth can be significant. For both
architectures, we see up to a factor of 2 difference between
the smallest and largest bandwidth. Secondly, the relative
behaviour depends not only on the GPU architecture but also
on the host capabilities as well as on the host configuration
(e.g. frequency scaling). Finally, while asynchronous transfer
bandwidths seem to be almost agnostic to the amount of
data that is being transferred, this is less so for the other two.
In particular on the Turing architecture, it seems that the
bandwidths for managed transfers outperform synchronous

transfers while data less than 400MB is being transferred
while this picture reverses for larger transfers.

With these results, it seems inevitable to adjust the mem-
ory model to a given combination of algorithm, host and
GPU when trying to achieve the best possible overall runtime
performance.

4 Generating CUDA from SaC
SaC is a functional array programming language that ex-
poses no notion of hardware to the programmer: the use of
GPUs, threads or even the notion of memory, be it on the
host or the GPU-device, is hidden completely2. Our incre-
ment example from Section 2, in SaC, reduces to the purely
computational aspects. Looking at the parts shown in Sec-
tion 2 and inlining the increment function leads to a SaC
code snippet of the form:

1 int main () {

2 ...

3 a = { iv -> a[iv] + 1;};

4 ...

5 return 0;

6 }

Note here, that not only are all memory related operations
gone; the notion of a kernel has disappeared too, along with
any indication that the variable a on the left hand side of
line 3 can denote the same memory location as the variable
a on the right hand side of that line.

This completely implicit notion of memory and memory
transfers makes SaC an ideal starting point for generating
CUDA code variants for the different memory models, ad-
hering to all the synchronisation particulars as discussed in
Section 2.

Several techniques have already been developed and im-
plemented in the context of SaC which transform, optimise
and eventually generate target architecture and resource-
aware codes for efficient executions on a wide range of plat-
forms [3, 7, 11, 16]. This includes a back-end for generating
CUDA code from SaC programs.

In the sequel, we sketch the major stages of the compi-
lation into CUDA that are relevant if we want to generate
code for the different memory models explained in Section 2.
As described in [7], the CUDA back-end during compile time
introduces the notions of host-memory and device-memory,
as well as explicit transfers between them. It also tries to
minimize memory transfers between the two. For our given
example, most likely, it would fuse the initial computation of
the array a, i.e., whatever happens in the code represented
by the three dots in line 2, with the increment in line 3. Fur-
thermore, it would also fuse that computation with whatever
happens with the incremented version of the array a in the
three dots of line 4.

2More details on SaC can be found elsewhere, e.g. in [4, 17].
6
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For the sake of presentation, let us assume here that such a
fusion is not performed and that there is no way of producing
or consuming a directly on the GPU. Consequently, the code
generator described in [7] would generate some intermediate
code of the form:

1 int main () {

2 ...

3 a_dev = _host2device_(a);

4 b_dev = { i-> a_dev[i] + 1;}@CUDA;

5 b = _device2host_(b_dev);

6 ...

7 return 0;

8 }

Here, we see how the compiler has introduced the notion
of two different memories (host and device), explicit trans-
fers between them, and has identified the kernel itself as the
array computation in line 3 (denoted by the postfix @CUDA).
For readability, we have postfixed all device-allocated mem-
ories with _dev, and left all host allocated memories without
postfixes. It should be noticed though, that, at this level of
abstraction, the identifiers still do not refer to memory loca-
tions. The notion of memory is introduced at a later stage;
it comes with the notion of references and operations for
dynamic reference counting. At that stage, the code roughly
looks like this:

1 int main () {

2 ...

3 a_dev = _dev_alloc_(1024, int);

4 a_dev = _host2device_(a);

5 b_dev = _dev_reuse_(a_dev);

6 b_dev = { i-> a_dev[i] + 1;}@CUDA;

7 b = _alloc_or_reuse_(1024, int, a);

8 b = _device2host_(b_dev);

9 _dev_decrc_(b_dev);

10 ...

11 return 0;

12 }

On this level of abstraction, we have explicit operations for
allocating memory (_alloc_), reusing pointers (_reuse_), po-
tentially reusing pointers (_alloc_or_reuse_), freeing mem-
ory (_free_) and potentially freeing memory (_decrc_). All
these operations have two variants depending on whether
they pertain to device memory (prefixed by _dev_) or to host
memory. The uncertainty in some of the operations stems
from the fact that aliasing analyses are undecidable in prin-
ciple. As a consequence, dynamic inspections of reference
counters are necessary, to determine whether some mem-
ory can be reused or needs to be freed. Details on reference
counting in general and the specifics of the SaC compiler
can be found in [1] and in [5], respectively.

Once explicit memory operations have been introduced,
the SaC compiler moves to generating C code. Primitives

like _alloc_ are transformed into intermediate code macros
(ICMs), which are latter resolved by the C compiler. These
allow for variants of code to materialise at compile-time,
depending on parameters set by the SaC compiler (and the
user). Additionally certain statically determined properties
for our array variables are set, these include shape informa-
tion and the reference count. This information is stored as
adjacent variables that share the same name as the array but
are postfixed indicating their purpose. This information is
used by the runtime system to, for instance, determine if a
variable can be freed, or even reused, at a particular point.
With that we get the following C source code:

1 __global__

2 void sac_cuda_knl_1024(int * a) {

3 int i = blockIdx.x * blockDim.x + threadIdx.x;

4 a[i] = a[i] + 1;

5 }

6 int main () {

7 ...

8 SAC_CUDA_ALLOC (a_dev, 1024, int)

9 SAC_CUDA_MEM_TRANSFER (a, a_dev, 1024, int,

10 cudaMemcpyHostToDevice)

11 SAC_ND_REUSE (b_dev, a_dev);

12 dim3 block(16);

13 dim3 grid(1024/16);

14 sac_cuda_knl_1024<<<block, grid>>>(b_dev);

15 SAC_ND_ALLOC_OR_REUSE (b, 1024, int, a)

16 SAC_CUDA_MEM_TRANSFER (b_dev, b, 1024, int,

17 cudaMemcpyDeviceToHost)

18 SAC_CUDA_DEC_RC_FREE (b_dev)

19 ...

20 return 0;

21 }

At this stage, the generated code now looks similar to our ex-
ample code in Listing 1. All of the ICMs are direct translations
from the SaC primitives, the only difference is the explicit
computation of the grid and block sizes, where the compiler
has set the block size to 16. When this source code is passed
to the C compiler, the ICMs will resolve into a sequence of
C function calls. For instance, SAC_ND_ALLOC_OR_REUSE will
resolve into something similar to:

1 b = a_refcnt == 1 ? a : malloc(1024*sizeof(int));

Through the definition of the ICMs, we can change what
code materialises, for instance the SAC_CUDA_MEM_TRANSFER

in Jing’s version resolves into a cudaMemcpy. If we want
to change this into an asynchronous transfer, it suffices to
change that macro expansion into cudaAsyncMemcpy. Simi-
larly, we can change this expansion into an empty expansion
when targeting managed memory.

In the next section we will present the compiler transfor-
mations we have developed to switch between five CUDA
code variants. This also includes a transformation introduce
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managed memory and a transformation to add synchronisa-
tions at optimal positions in the code for the asynchronous
code variants.

5 Generating Code for CUDA Transfer
Mechanisms

In the previous section we introduced some parts of the
SaC compiler code generation to synthesise different code
variants from a single SaC source file. In this section we
present a code generation scheme for creating program vari-
ants that make use of the one of the five CUDA memory
models. Concretely, we present:

• an extension of the EMR optimisation [19] to deter-
mine memory reuse candidates for functions calls such
as the CUDA transfer methods, i.e. cudaMemcpy,

• a compiler transformation that inserts at optimial posi-
tions in the code explicit synchronisations when using
one of the asynchronous memory models,

• a compiler transformation to unify the memory mod-
els used by the compiler to generate CUDA managed
memory code, and

• changes to ICMs definitions to make switching be-
tween the CUDA memory models at compile-time pos-
sible.

5.1 Extension to the Extended Memory Reuse
Optimisation

The Extended Memory Reuse (EMR) optimisation [19] elides
memory allocations for with-loops by reusing memory. It
builds on top of other reuse techniques, such as in-place
reuse [2] and reuse through polyhedral analysis [6], by in-
ferring a pool of candidates from all preceding allocations,
including those which are out of scope. These extended candi-
dates need only be of the same type and shape, and must not
be referenced after the with-loop being inspected. The effect
of this on runtime is particularly effective when dealing with
GPU device memory. Unlike memory allocated on the host,
the allocation to GPU memory cannot be delayed till first
write.

Though this is effective when generating CUDA code, it
misses out on the additional memory operations that hap-
pen when performing transfers over the PCIe bus. In general,
we must always allocate one buffer to store the data being
transfers. This buffer may be allocated on the host or device,
depending on the transfer direction. Once the buffer has been
filled, its counterpart on the host or device is typically freed
at this point. When dealing with an asynchronous memory
model, we additionally need to pin the host-side memory be-
fore transferring. For a simple application like our example in
Listing 1, this allocation and freeing of buffers does not have
a large effect on runtime. If the code becomes more complex,
for instance by iteratively on the host checking the status

of some device computation, then memory operations and
pinning before the transfer can significantly impact runtime.

In order to better explain this, we provide an example
based on our working example in Listing 1. The difference
here is that we launch the kernel iteratively and check on
each iteration if the sum of the device-side array has reached
some limit. This check occurs on the host, meaning on each
iteration we transfer the current state of the array back to
the host. The SaC code for this:
1 ...

2 do {

3 a = { i -> a[i] + 1 };

4 } while (sum (a) < LIMIT);

5 ...

As it currently stands, the EMR optimisation would result
in the following intermediate representation. Note that we
have not included any memory operations:
1 ...

2 a_dev = _host2device_(a);

3 do {

4 a_dev = { i -> a_dev[i] + 1; }@CUDA;

5 a_tmp = _device2host_(a_dev);

6 } while (sum (a_tmp) < LIMIT);

7 b = _device2host_(a_dev);

8 ...

There are two operations here that we would like to remove.
The first is the allocation (and free) due to the transfer in
the loop. The other is the redundant transfer after the loop,
which could equally well be replaced with an alias to a_tmp.
There are no clear reuse candidates within scope. The so-
lution here is to force an allocation before the loop, that is
we allocate a_tmp outside the loop, avoiding the additional
memory operations in the loop. As we are not dealing with
memory yet within the compiler, we instead choose to create
an assignment of a to a_tmp, which will eventually create a
copy of a. The redundant transfer after the loop can now be
updated to be an assignment of a_tmp to b. This results in
our new code:
1 ...

2 a_tmp = a;

3 a_dev = _host2device_(a);

4 do {

5 a_dev = { i -> a_dev[i] + 1; }@CUDA;

6 a_tmp = _device2host_(a_dev);

7 } while (abs (a_tmp) < LIMIT);

8 b = a_tmp;

9 ...

5.2 Inserting Explicit Synchronisations
When generating multithreaded code, the orchestration of
threads becomes critical in preventing race conditions and
other unwanted behaviours. Similarly, when dealing with a
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heterogeneous platform, communication between host and
device need to be managed. In the CUDA backend such syn-
chronisation is not necessary when generating code for the
default memory model as all host and device actions happen
in sequence. By introducing the other models into the SaC
compiler, explicit synchronisation is necessary. In particular,
as is shown in Figure 1, we need to synchronise anytime
we try to modify an array which is also being transferred,
otherwise we may corrupt the data.

In the context of code generation, determining when such
a situation might occur is non-trivial, due in part to aliasing
of variables. We instead only know when we will initiate a
transfer and where it needs to be completed by. If we have
some transfer from the host to the device, we know the
transfer with start at the call of the transfer function. It
will need to be completed before the first reference of the
transferred array. This gives us a kind of window in which
we must at some point synchronise.

With this intuition, we designed a transformation which
introduces the notion that there is a distinct start and end
position within the syntax tree for a given transfer. The first
stage of the transformation replaces all transfer primitives
with a paired primitive, e.g.:

1 ...

2 a_tmp_dev = _host2device_start_(a);

3 a_dev = _host2device_end_ (a_tmp_dev, a);

4 ...

Notice that we have an intermediate variable a_tmp_dev. We
do this to maintain static single-assignment form, and to
also ensure that optimisations like dead-code removal don’t
elide the _end_. We do this by making the new variable a
parameter of the _end_ primitive.

From here, the optimisation then tries to create the syn-
chronisation window, by pushing the transfer primitives
apart. In general, we try to move _host2device_start_ up
and _device2host_end_ down. Typically, the initial transfer
primitives are placed before and after a kernel launch, but
can be placed further up (or down) in the syntax tree depend-
ing on references to its parameters. Given this, we want to
move a host to device transfer to just after the assignment
of its host array. Similarly we want the device to host to be
finished before its first reference of its host array.

With managed memory, there is no need to synchronise
on each transfer. Instead we need to synchronise on all array
references after a kernel launch were the array were param-
eters to the kernel. We do this by adding a synchronisation
after the kernel launch immediately before such a reference.

5.3 Generating CUDA Managed Memory Code
With CUDA managed memory, there is no concrete distinc-
tion between host and GPU device memory any more. Point-
ers to memory are reachable in both the host and device

context, meaning that the SaC compiler’s use of explicit host
and device types is redundant.

We implementation a transformation to elide all transfers
and change all device types to host types. We define two
variants of the transformation, one for the general case and
other for managed memory with prefetching. The first one
scans through the syntax tree and replaces all occurrences of
a device type (postfixed with _dev) with its equivalent host
type. Additionally, as managed memory implicitly moves
data over the PCIe bus, explicit memcpys are not needed so we
remove these and replace them with assignments. The other
compilcation scheme performs the same transformation, but
additionally replaces memcpys with calls to prefetch memory.
When using managed memory with prefetching, instead of
removing transfers we replace these with the intermediate
representation from our code example in Listing 1. Based
upon are example code in Listing 1, the transformation with
prefetching would result into the follow:
1 ...

2 a_tmp = _prefetch2device_(a);

3 b_tmp = { i-> a_tmp[i] + 1;}@CUDA;

4 b = _prefetch2host_(b_tmp);

5 ...

Notice that in either case, once a device typed variable is
replaced, we also change its name in order to maintain static
single-assignment form. At the compilation stage where we
generate C code, these assignments with be treated as aliases.

5.4 Extending the Runtime System
In Section 4 we described the code generation of the SaC
compiler, resulting in C code with most SaC primitives re-
placed with intermediate code macros (ICMs). The ICMs are
part of the runtime system of the compiler. Here variants
of code are stored and at the time when the C compiler is
called, the ICMs are expanded to actual code. We will use
these to introduce the CUDA functions necessary to make
use of the different transfer operations and memory models.
Which CUDA transfer operations is ultimately generated
is set by supplying the compiler “-target” flag with a par-
ticular target, for instance cuda uses synchronous transfers,
cuda_reg and cuda_alloc use asynchronous transfers, and
finally cuda_man uses the managed memory model. This com-
mandline flag sets a macro flag, which affects what the ICMs
resolve into.

We have through previous examples introduced a few
of the ICMs that appear in our generated code. We now
introduce ICMs which are used only for the CUDA backend
of the compiler:
1 SAC_CUDA_ALLOC (var, size, type)

2 SAC_CUDA_FREE (var)

3 SAC_CUDA_DEC_RC_FREE (var, count)

4 SAC_CUDA_MEM_TRANSFER (src, dst, size,

5 type, direction)

9
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The ALLOC and FREE ICMs resolve into the CUDA allocator
and free functions for GPU device memory. The RC_DEC ICM
extends on this by additionally checking the reference count,
and if it is 1, freeing the device memory. The TRANSFER ICM re-
solves into a memory transfer functiona call, e.g. cudaMemcpy.

The three transfer methods are reasonably different that
we must extend the existing runtime system in order to fully
make use of them. We do this by introducing some new ICMs
and changing the code generation to correctly place these. In
general, we either need to extending existing allocation and
free ICMs, or replace them entirely. The latter case is for in-
stance important for using managed memory. The following
are the new ICMs we introduce into the runtime system:

1 SAC_CUDA_HOST_ALLOC (var, size, btype)

2 SAC_CUDA_HOST_FREE (var)

3 SAC_CUDA_HOST_DEC_RC_FREE (var, count)

4 SAC_CUDA_REGISTER (var, size, btype)

5 SAC_CUDA_UNREGISTER (var)

The CUDA_HOST ICMs are used for both the CUDA alloc and
managed methods, where we need to replace the normal host
allocation ICM. Similarly we create an ICM to decrement the
reference count and free if it’s 1. Finally we have ICMs for
explicitly pinning and unpinning host memory. We know go
into further details for each of the transfer methods.

CUDA Registered Method. For the asynchronous case
with explicit pinning, we only change the transfer ICM to
use cuda-Async-Memcpy. As part of the code generation, when-
ever we’re about to print an allocation of a pinned array, we
append to the allocation ICM our new REGISTER ICM; similar-
ity, at the point of freeing we prepend the UNREGISTER ICM.
We need to take special care with the host DEC_RC_FREE and
REUSE ICMs, as these are generically applicable to all arrays.
In the first case we extend the ICM to additionally check if
the array is pinned, and if we are freeing we unpin the mem-
ory before. In the latter case this becomes more tricky — in
instances such as this it might not be clear if the new array is
meant to be pinned or not. We could check its pinned status,
as this is statically set, but as previously mentioned may not
be accurate. We therefore conservatively assume that the
new array is meant to be pinned as well. If the reference
count is 1, then its a straight assignment; if we are allocating
new memory, we pin the memory after allocating. Staying
with our code example from Section 4, we get the following
output:

1 SAC_ND_ALLOC(a, 2014, int)

2 SAC_CUDA_REGISTER (a)

3 ...

4 SAC_CUDA_MEM_TRANSFER (a, a_dev, 1024, int,

5 cudaMemcpyHostToDevice)

6 SAC_ND_REUSE (b_dev, a_dev);

7 ...

8 SAC_ND_ALLOC_OR_REUSE (b, 1024, int, a)

9 SAC_CUDA_MEM_TRANSFER (b_dev, b, 1024, int,

10 cudaMemcpyDeviceToHost)

11 SAC_CUDA_DEC_RC_FREE (b_dev)

12 ...

13 SAC_CUDA_UNREGISTER (a)

14 SAC_ND_FREE (a)

CUDA Alloc and Managed Methods. Both the CUDA
alloc and managed methods result in the same code gener-
ation at the level of ICMs, as such we group them together
here. For CUDA alloc, we replace the SaC host ALLOC and
FREE ICMs with the CUDA host ICMs whenever we have
an allocation of a pinned array. For the ALLOC_OR_REUSE ICM
we make the same assumption as before, and propagate the
pinned state. As before, the transfer ICM resolves into cuda-

AsyncMemcpy. With this we generate the following code:

1 SAC_CUDA_HOST_ALLOC (a, 2014, int)

2 ...

3 SAC_CUDA_MEM_TRANSFER (a, a_dev, 1024, int,

4 cudaMemcpyHostToDevice)

5 SAC_ND_REUSE (b_dev, a_dev);

6 ...

7 SAC_ND_ALLOC_OR_REUSE (b, 1024, int, a)

8 SAC_CUDA_MEM_TRANSFER (b_dev, b, 1024, int,

9 cudaMemcpyDeviceToHost)

10 SAC_CUDA_DEC_RC (b_dev)

11 ...

12 SAC_CUDA_HOST_FREE (a)

CUDA Managed Method. For the managed method, we
make use of the CUDA host allocation and free ICMs. A
major difference through from the other methods is that we
do not have to create GPU buffers to communicate data from
or to the host. As such, ICMs for allocating and freeing GPU
device memory resolve to no-operation. We still declare the
GPU device memory array, but do not allocate. We use is as
part of the transfer ICM, which performs an assignment. The
same holds also for array REUSE ICMs, which does a simple
assignment. The allocate or reuse ICM poses a challange as
we cannot be sure that the new array is part of the managed
memory model or not. Similarly with the CUDA registered
method, we can check the reuse candidate arrays for the
pinned attribute and decide this way. We conservatively
choose to use managed memory to create the new array
— even if it never is referenced by a kernel it can still be
referenced by other host contexts. NOT GOOD!
1 SAC_CUDA_HOST_ALLOC (a, 2014, int)

2 ...

3 SAC_CUDA_MEM_TRANSFER (a, a_dev, 1024, int,

4 cudaMemcpyHostToDevice)

5 SAC_ND_REUSE (b_dev, a_dev);

6 ...

7 SAC_ND_ALLOC_OR_REUSE (b, 1024, int, a)
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Table 1. Details of Systems used for Experiments

System Hardware Software

A 4× AMD Opteron 6376
— 64-cores @ 2.3 GHz
1 TB RAM
NVIDIA K20 (driver v. 418.87)

Scientific Linux 7.6
GCC 7.2.0
HWLOC 1.11.8
CUDA 10.1

B 4× AMD Ryzen 7 2700
— 8-cores @ 1.5 GHz to 3.5 GHz
32 GB RAM
NVIDIA RTX 2080 Ti (driver v. 418.39)

CentOS 7.6
GCC 7.4.0
HWLOC 1.11.13
CUDA 10.1

8 SAC_CUDA_MEM_TRANSFER (b_dev, b, 1024, int,

9 cudaMemcpyDeviceToHost)

10 SAC_CUDA_DEC_RC (b_dev)

11 ...

12 SAC_CUDA_HOST_FREE (a)

6 Evaluation
In Section 3 we show our results of measuring data through-
put using the three memory models on two GPU devices,
with synthetic workloads. In this section we present further
measurements, looking at FLOPs of two benchmarks. Both
perform a relaxation of a 2-dimensional array, but one does
this in a fixed number of iterations, and the other does this
to some convergence point (e.g., epsilon).

We use these benchmarks to showcases two communi-
cation scenarios. For fixed-iteration, we only perform com-
munication immediately before and after the loop. This is
similar to our synthetic workloads example. The other per-
forms communication within the loop, in order to perform
the convergence check.

Our systems setup is shown in Table 1. We use version
1.3.3-482 of the SaC compiler on both systems. We run our
experiments with both the Extended Memory Reuse (EMR)
optimisation [19] on and off, we do this in order to see the
overhead of the memory models themselves when it comes
to memory managed. Recall that asynchronous and managed
memory affect host memory in addition to device memory,
to for instance pin the memory. Our measurements are taken
from running each benchmark five times on each platform
for each memory model. Additionally we measure sequential
execution on the CPU. Runtime measurements are derived
from the median value of the five runs.

6.1 Results
Our results are show in Figures 4 to 7, with the left plot show-
ing are measurements with the EMR optimisation activated
and the right plot showing them with EMR off.

Our measurements in general show that for both bench-
marks we achieve peak FLOPs with the EMR optimisation
on. This is unsurprising as we avoid extra overheads through
extra memory operations. If we look more closely, we can
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Figure 4. FLOP/s for Relaxation with Fixed Iteration on K20

see that for some memory models we achieve better FLOP
then others. For instance, in left plot of Figure 4 we can see
that for all the memory models we achieve about 15 Gflop/s.
If we look to the right side plot this changes. For the syn-
chronous and asynchronous models we factor 4 performance
over sequential but for managed we only achieve a factor 2.
This comes from the overhead of allocating further arrays
within the loop, and immediately freeing these after their
single reference.

In Figure 5 we can see that on the left plot the asynchro-
nous model (using registered pinning) performs the best,
and does so also in the right side plot as well. Asynchronous
using host allocation suffers in both cases, especially in the
right side plot where it is significantly less performant then
sequential execution. Here the overheads of host allocation
can be clearly seen. Similarly for managed memory, the right
side plot shows that we are slightly slower then sequential
execution. The communication within the loop of the relax-
ation adds an additional overhead, and in the case where
EMR is off, also introduces further host memory operations.
With asynchronous with host allocations this is deadly, and
the managed memory case suffers as well. As mentioned in
Section 2.2, the cudaHostAlloc function allocates physical
memory immediately in order to pin it. This takes additional
time and is compounded by the fact that the resulting pointer
to memory is tracked by the CUDA device driver.

For the RTX 2080 Ti, we can see in Figure 6 shows the
same performance pattern as in Figure 4, though with higher
achieved FLOPs. For Figure 7 we see that in the left plot
asynchronous with host allocations now performs better
that with asynchronous with registered pinning. The results
become even more divergent in the right side plot where
synchronous trumps all other memory models and sequen-
tial execution. As before though, asynchronous with host
allocation is the least performant together with managed
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Figure 5. FLOP/s for Relaxation with Epsilon Conditional
K20
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Figure 6. FLOP/s for Relaxation with Fixed Iteration on RTX
2080Ti

memory without prefetching. The demand driven transfer
of the managed case is already inefficient and is made worse
by the transfer within the loop. In the prefetched case, we
avoid some of this overhead as the CUDA driver knows it
must transfer the entire array back to the host.

A key observation is that the performance of one mem-
ory model is not the same for both systems. Given certain
conditions, it is clear that one memory model is superior
to another in peak performance. On the K20 system with
EMR on or off, the asynchronous case with registered pin-
ning performs best for both benchmarks. On the RTX 2080
Ti system, asynchronous with host allocation works better
with EMR on, but where we don’t have memory reuse, the
synchronous memory model is preferred.
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Figure 7. FLOP/s for Relaxation with Epsilon Conditional
RTX 2080Ti

7 Related Work
To be done.

8 Conclusion
This paper looks into the performance potential that the
different memory allocation and memory transfer options
of CUDA have. Some memory transfer bandwidth investiga-
tions show that these can differ by a factor of two depending
on the memory sizes being transferred, the GPU being used,
and the host as well. Whether these bandwidths benefits
can be translated into application performance depends on
the structure of the code. In particular memory allocation
frequencies but also the overall code structure can favour
different memory transfer orchestrations on one and the
same hardware.

We identify five different memory allocation and trans-
fer models and show what it takes to adjust code genera-
tion from the functional high-level array language SaC into
these models. Even for very simple relaxation kernels we
can demonstrate that the choice between these models is
non-trivial. The overall performance can easily differ by a
factor of 2 between the lowest and the fastest choice. Unfor-
tunately, different hardware setups require different choices.
To make matters even more challenging, it turns out that the
memory organisation introduced by the compiler can impact
the overall performance very severely as well. If memory
allocations are not carefully optimised away as much as pos-
sible, yet another factor of 2 in performance can be lost and
the preferable choice may change from one memory model
to another.

The lesson to be taken here is that a careful choice between
the memory models is crucial for applications with frequent
transfers if utmost performance is the goal. Whether this
choice can be automated by some sophisticated performance
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model or requires some form of smart adaptation is left as
future research.
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Abstract
Property testing is the cheapest and most precise way of
building up a test suite for your program. Especially if the
datatypes enjoy nice mathematical laws. But it is also the
easiest way to make it run for an unreasonably long time.
We prove connection between deeply recursive data struc-
tures, and epidemic growth rate, and show how to fix the
problem, and make Arbitrary instances run in linear time
with respect to assumed test size.

1 Introduction
Property testing is the cheapest and most precise way of
building up a test suite for your program. Especially if the
datatypes enjoy nice mathematical laws. But it is also the
easiest way to make it run for an unreasonably long time.
We show that connection between deeply recursive data struc-
tures, and epidemic growth rate can be easily fixed with
a generic implementation. After our intervention the Arbi-
trary instances run in linear time with respect to assumed
test size. We also provide a fully generic implementation, so
error-prone coding process is removed.

2 Motivation
Typical arbitrary instance just draws a random constructor
from a set, possibly biasing certain outcomes.

Generic arbitrary instance looks like this:
data Tree a =

Lea f a
| Branch [ Tree a ]
deriving (Eq , Show , Gener i c . Gener i c )

instance Ar b i t r a r y a
=> Ar b i t r a r y ( Tree a ) where

a r b i t r a r y = oneof [ Lea f <$> a r b i t r a r y
, Branch <$> a r b i t r a r y
]

Assuming we run QuickCheck with any size parameter
greater than 1, it will fail to terminate!

List instance is a wee bit better, since it tries to limit max-
imum list length to a constant option:
instance Ar b i t r a r y a

=> Ar b i t r a r y [ a ] where
l e s s A r b i t r a r y = s i z e d $ \ s i z e do

l e n <− choose ( 1 , s i z e )
v e c t o rO f l en l e s s A r b i t r a r y

GPCE, November, 2020, Illinois, USA
2020.

Indeed QuickCheck manual[7], suggests an error-prone,
manual method of limiting the depth of generated structure
by dividing size by reproduction factor of the structure1 :

data Tree = Lea f Int | Branch Tree Tree

instance Ar b i t r a r y Tree where
a r b i t r a r y = s i z e d t r e e '

where t r e e ' 0 = Lea f <$> a r b i t r a r y
t r e e ' n | n>0 =

oneof [ Lea f <$> a r b i t r a r y ,
Branch <$> s u b t r e e <∗> s u b t r e e ]

where s u b t r e e = t r e e ' ( n `div ` 2 )

Above example uses division of size by maximum branch-
ing factor to decrease coverage into relatively deep data struc-
tures, whereas dividing by average branching factor of ~2
will generate both deep and very large structures.

This fixes non-termination issue, but still may lead to un-
predictable waiting times for nested structures. The depth
of the generated structure is linearly limited by dividing the
n by expected branching factor of the recursive data struc-
ture. However this does not work very well for mutually re-
cursive data structures occuring in compilers[1], whichmay
have 30 constructors with highly variable2 branching factor
just like GHC’s HSExpr data types.

Nowwe have a choice of manual generation of these data
structures, which certainly introduces bias in testing, or aban-
doning property testing for real-life-sized projects.

3 Complexity analysis
We might be tempted to compute average size of the struc-
ture. Let’s use reproduction rate estimate for a single rewrite
of arbitrary function written in conventional way.

We compute a number of recursive references for each
constructor. Then we take an average number of references
among all the constructors. If it is greater than 1, any non-
lazy property test will certainly fail to terminate. If it is
slightly smaller, we still can wait a long time.

What is an issue here is not just non-termination which
is fixed by error-prone manual process of writing own in-
stances that use explicit size parameter.

The much worse issue is unpredictability of the test run-
time. Final issue is the poor coverage for mutually recursive
data structure with multitude of constructors.

1We changed liftM and liftM2 operators to <$> and <∗> for clarity and
consistency.
2Due to list parameters.
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Given a maximum size parameter (as it is now called)
to QuickCheck, would we not expect that tests terminate
within linear time of this parameter? At least if our compu-
tation algorithms are linear with respect to input size?

Currently for any recursive structure like Tree a, we see
some exponential function. For example 𝑠𝑖𝑧𝑒𝑛 , where 𝑛 is a
random variable.

4 Solution
We propose to replace implementation with a simple state
monad[4] that actually remembers how many constructors
were generated, and thus avoid limiting the depth of gener-
ated data structures, and ignoring estimation of branching
factor altogether.

newtype Cost = Cost Int
deriving (Eq ,Ord ,Enum , Bounded ,Num)

newtype CostGen a =
CostGen {

runCostGen : : S t a t e . S t a t eT Cost QC . Gen a }
deriving ( Functor , A pp l i c a t i v e , Monad , S t a t e . MonadFix )

We track the spending in the usual way:

spend : : Cost −> CostGen ( )
spend c = CostGen $ S t a t e . modify (− c +)

To make generation easier, we introduce budget check op-
erator:

( $$$ ? ) : : CostGen a
−> CostGen a
−> CostGen a

cheapVa r i an t s $$$ ? c o s t l y V a r i a n t s = do
budget <− CostGen S t a t e . g e t
i f | budget > ( 0 : : Cost ) −> c o s t l y V a r i a n t s

| budget > −10000 −> cheapVa r i an t s
| otherwise −> error $

” R e cu r s i v e ␣ s t r u c t u r e ␣ with ␣ no ␣ loop ␣ b r e ake r . ”

In order to conveniently define our budget generators, we
might want to define a class for them:

c l a s s L e s sA r b i t r a r y a where
l e s s A r b i t r a r y : : CostGen a

Then we can use them as implementation of arbitrary that
should have been always used:

f a s t e r A r b i t r a r y : : L e s sA r b i t r a r y a => QC . Gen a
f a s t e r A r b i t r a r y = s i z e dCo s t l e s s A r b i t r a r y

s i z e dCo s t : : CostGen a −> QC . Gen a
s i z e dCo s t gen = QC . s i z e d ( ` withCost ` gen )

Then we can implement Arbitrary instances simply with:

instance _
=> Ar b i t r a r y a where

a r b i t r a r y = f a s t e r A r b i t r a r y

Of course we still need to define LessArbitrary , but after
seeing how simple was a Generic defintion Arbitrary we have
a hope that our implementation will be:
instance L e s sA r b i t r a r y where

That is - we hope that the the generic implementationwill
take over.

5 Introduction to GHC generics
Generics allow us to provide default instance, by encoding
any datatype into its generic Representation:
instance Gene r i c s ( Tree a ) where

t o : : Tree a −> Rep ( Tree a )
from : : Rep ( Tree a ) −> Tree a

The secret to making a generic function is to create a set
of instance declarations for each type family constructor.

So let’s examine Representation of our working example,
and see how to declare instances:

1. First we see datatype metadata D1 that shows where
our type was defined:

type instance Rep ( Tree a ) =
D1
( ' MetaData ” Tree ”

” Te s t . A r b i t r a r y ”
” l e s s − a r b i t r a r y ” ' False )

2. Then we have constructor metadata C1:
( C1

( ' MetaCons ” Lea f ” ' P r e f i x I ' False )

3. Then we have metadata for each field selector within
a constructor:

( S1
( ' MetaSe l

'Nothing
' NoSourceUnpackedness
' NoSou r c e S t r i c t n e s s
' DecidedLazy )

4. And reference to another datatype in the record field
value:

( Rec0 a ) )

5. Different constructors are joined by sum type opera-
tor:

: + :

6. Second constructor has a similar representation:
C1

( ' MetaCons ” Branch ” ' P r e f i x I ' False )
( S1

( ' MetaSe l
'Nothing
' NoSourceUnpackedness
' NoSou r c e S t r i c t n e s s

2
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' DecidedLazy )
( Rec0 [ Tree a ] ) ) )
i gno r ed

7. Note that Representation type constructors have addi-
tional parameter that is not relevant for our use case.

For simple datatypes, we are only interested in three con-
structors:

• :+: encode choice between constructors
• :∗: encode a sequence of constructor parameters
• M1 encodemetainformation about the named construc-

tors, C1, S1 and D1 are actually shorthands forM1 C,M1 S
and M1 D

There are more short cuts to consider: * U1 is the unit type
(no fields) * Rec0 is another type in the field

5.1 Example of generics
This generic representation can then be matched by generic
instances. Example of Arbitrary instance from [3] serves as a
basic example3

1. First we convert the type to its generic representation:

g e n e r i cA r b i t r a r y : : ( Gener i c a
, A r b i t r a r y ( Rep a ) )

=> Gen a
g e n e r i cA r b i t r a r y = to <$> a r b i t r a r y

2. We take care of nullary constructors with:

instance Ar b i t r a r y G . U1 where
a r b i t r a r y = pure G . U1

3. For all fields arguments are recursively calling Arbitrary
class method:

instance Ar b i t r a r y c => Ar b i t r a r y (G . K1 i c ) where
gA r b i t r a r y = G . K1 <$> a r b i t r a r y

4. We skip metadata by the same recursive call:

instance Ar b i t r a r y f
=> Ar b i t r a r y (G .M1 i c f ) where

a r b i t r a r y = G .M1 <$> a r b i t r a r y

5. Given that all arguments of each constructor are joined
by :∗: , we need to recursively delve there too:

instance ( A r b i t r a r y a ,
, A r b i t r a r y b )

=> Ar b i t r a r y ( a G . : ∗ : b ) where
a r b i t r a r y = (G . : ∗ : ) <$> a r b i t r a r y <∗> a r b i t r a r y

6. In order to sample all constructorswith the same prob-
ability we compute a number of constructor in each
representation type with SumLen type family:

type f am i l y SumLen a : : Nat where
SumLen ( a G . : + : b ) = ( SumLen a ) + ( SumLen b )
SumLen a = 1

3We modified class name to simplify.

Now that we have number of constructors computed, we
can draw them with equal probability:
instance ( A r b i t r a r y a

, A r b i t r a r y b
, KnownNat ( SumLen a )
, KnownNat ( SumLen b )
)

=> Ar b i t r a r y ( a G . : + : b ) where
a r b i t r a r y = f r equency

[ ( l f r e q , G . L1 <$> a r b i t r a r y )
, ( r f r e q , G . R1 <$> a r b i t r a r y ) ]
where

l f r e q = fromIntegral
$ na tVa l ( Proxy : : Proxy ( SumLen a ) )

r f r e q = fromIntegral
$ na tVa l ( Proxy : : Proxy ( SumLen b ) )

Excellent piece of work, but non-terminating for recur-
sive types with average branching factor greater than 1 (and
non-lazy tests, like checking Eq reflexivity.)

5.2 Implementing with Generics
It is apparent from our previous considerations, that we can
reuse code from the existing generic implementation when
the budget is positive. We just need to spend a dollar for
each constructor we encounter.

For the Monoid the implementation would be trivial, since
we can always use mempty and assume it is cheap:
gene r i c L e s sA rb i t r a r yMono i d : : ( Gener i c
a

, GLe s sA rb i t r a r y ( Rep a )
, Monoid

a )
=> CostGen

a
gene r i c L e s sA rb i t r a r yMono i d =

pure mempty $$$ ? g e n e r i c L e s sA r b i t r a r y

However we want to have fully generic implementation
that chooses the cheapest constructor even though the datatype
does not have monoid instance.

5.2.1 Class for budget-conscious
When the budget is low, we need to find the least costly
constructor each time.

So to implement it as a type class GLessArbitrary that is im-
plemented for parts of the Generic Representation type, we
will implement two methods:

1. gLessArbitrary is used for normal random data genera-
tion

2. cheapest is used when we run out of budget

c l a s s GLe s sArb i t r a r y da t a t yp e where
gL e s sA r b i t r a r y : : CostGen ( d a t a t yp e p )
ch e ape s t : : CostGen ( d a t a t yp e p )

g e n e r i c L e s sA r b i t r a r y : : ( Gener i c a
3
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, GLe s sA rb i t r a r y ( Rep a ) )
=> CostGen a

g e n e r i c L e s sA r b i t r a r y = G . to <$> gL e s sA r b i t r a r y

5.2.2 Helpful type family
First we need to computeminimum cost of the in each branch
of the type representation. Instead of calling it minimum
cost, we call this function Cheapness.

For this we need to implement minimum function at the
type level:
type f am i l y Min m n where

Min m n = ChooseSmal l e r ( CmpNat m n ) m n

type f am i l y ChooseSmal l e r ( o : : Ordering )
(m : : Nat )
( n : : Nat ) where

ChooseSmal l e r 'LT m n = m
ChooseSmal l e r 'EQ m n = m
ChooseSmal l e r 'GT m n = n

so we can choose the cheapest^[We could add instances
for :
type f am i l y Cheapness a : : Nat where

Cheapness ( a : ∗ : b ) =
Cheapness a + Cheapness b

Cheapness ( a : + : b ) =
Min ( Cheapness a ) ( Cheapness b )

Cheapness U1 = 0
<< f l a t − types >>
Cheapness ( K1 a o the r ) = 1
Cheapness ( C1 a o the r ) = 1

Since we are only interested in recursive types that can
potentially blow out our budget, we can also add cases for
flat types since they seem the cheapest:
Cheapness ( S1 a ( Rec0 Int ) ) = 0
Cheapness ( S1 a ( Rec0 S c i e n t i f i c ) ) = 0
Cheapness ( S1 a ( Rec0 Double ) ) = 0
Cheapness ( S1 a ( Rec0 Bool ) ) = 0
Cheapness ( S1 a ( Rec0 Text . Text ) ) = 1
Cheapness ( S1 a ( Rec0 o the r ) ) = 1

5.2.3 Base case for each datatype
For each datatype, we first write a skeleton code that first
spends a coin, and then checks whether we have enough
funds to go on expensive path, or we are beyond our alloca-
tion and need to generate from among the cheapest possible
options.
instance GLe s sArb i t r a r y f

=> GLe s sArb i t r a r y ( D1 m f ) where
gL e s sA r b i t r a r y = do

spend 1
M1 <$> ( ch e ape s t $$$ ? g L e s sA r b i t r a r y )

ch e ape s t = M1 <$> cheape s t

5.2.4 Skipping over other metadata
First we safely ignore metadata by writing an instance:
instance GLe s sA rb i t r a r y f

=> GLe s sA rb i t r a r y (G . C1 c f ) where
gL e s sA r b i t r a r y = G .M1 <$> gL e s sA r b i t r a r y
che ape s t = G .M1 <$> cheape s t

instance GLe s sA rb i t r a r y f
=> GLe s sA rb i t r a r y (G . S1 c f ) where

gL e s sA r b i t r a r y = G .M1 <$> gL e s sA r b i t r a r y
che ape s t = G .M1 <$> cheape s t

5.2.5 Counting constructors
In order to give equal draw chance for each constructor, we
need to count number of constructors in each branch of sum
type :+: so we can generate each constructor with the same
frequency:
type f am i l y SumLen a : : Nat where

SumLen ( a G . : + : b ) = SumLen a + SumLen b
SumLen a = 1

5.2.6 Base cases for GLessArbitrary
Now we are ready to define the instances of GLessArbitrary
class.

We start with base cases GLessArbitrary for types with the
same representation as unit type has only one result:
instance GLe s sA rb i t r a r y G . U1 where

gL e s sA r b i t r a r y = pure G . U1
che ape s t = pure G . U1

For the product of, we descend down the product of to
reach each field, and then assemble the result:
instance ( GLe s sA rb i t r a r y a

, GLe s sA rb i t r a r y b )
=> GLe s sA rb i t r a r y ( a G . : ∗ : b ) where

gL e s sA r b i t r a r y = (G . : ∗ : ) <$> gL e s sA r b i t r a r y
<∗> gL e s sA r b i t r a r y

che ape s t = (G . : ∗ : ) <$> che ape s t
<∗> che ape s t

We recursively call instances of LessArbitrary for the types
of fields:
instance L e s sA r b i t r a r y c

=> GLe s sA rb i t r a r y (G . K1 i c ) where
gL e s sA r b i t r a r y = G . K1 <$> l e s s A r b i t r a r y
che ape s t = G . K1 <$> l e s s A r b i t r a r y

5.2.7 Selecting the constructor
We use code for selecting the constructor that is taken af-
ter[3].
instance ( GLe s sA rb i t r a r y a

, GLe s sA rb i t r a r y b
, KnownNat ( SumLen a )
, KnownNat ( SumLen b )
, KnownNat ( Cheapness a )

4
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, KnownNat ( Cheapness b )
)

=> GLe s sArb i t r a r y ( a Gener i c . : + : b ) where
gL e s sA r b i t r a r y =

f r equency
[ ( l f r e q , L1 <$> gL e s sA r b i t r a r y )
, ( r f r e q , R1 <$> gL e s sA r b i t r a r y ) ]

where
l f r e q = fromIntegral

$ na tVa l ( Proxy : : Proxy ( SumLen a ) )
r f r e q = fromIntegral

$ na tVa l ( Proxy : : Proxy ( SumLen b ) )
ch e ape s t =

i f l c h e ap <= rcheap
then L1 <$> cheape s t
e l se R1 <$> cheape s t

where
l cheap , r cheap : : Int
l c h e ap = fromIntegral

$ na tVa l ( Proxy : : Proxy ( Cheapness a ) )
r cheap = fromIntegral

$ na tVa l ( Proxy : : Proxy ( Cheapness b ) )

6 Conclusion
We show how to quickly define terminating test generators
using generic programming.Thismethodmay be transferred
to other generic programming regimes like Featherweight
Go or Featherweight Java.

We recommend it to reduce time spent on making test
generators.
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ABSTRACT
We present a template-based extension of the Theory Exploration
tool QuickSpec. QuickSpec uses testing to automatically discover
equational properties about functions in a Haskell program. These
properties can help the user understand the program or be used as
a source of possible lemmas in proofs of the program’s correctness.

In our extension, the user supplies templates, which describe
families of laws such as associativity and distributivity, and we
only consider properties that match the templates. This restriction
limits the search space and ensures that only relevant properties are
discovered. In this way, we sacrifice broad search for more direction
towards desirable property patterns, which makes theory explo-
ration tractable and scalable. We demonstrate theory exploration
using our tool and compare it to the QuickSpec tool.

KEYWORDS
Theory exploration, QuickSpec, Functional programming, Alge-
braic properties, Program understanding, Property-based testing
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1 INTRODUCTION
One strength of functional programming is that programs are easy
to reason about. Pure functions often obey simple formal specifica-
tions which, as long as the programmer writes them down, are a
great help in programming. A formal specification can be proved
correct, automatically tested with a tool such as QuickCheck [4] or
SmallCheck [15], or simply read in order to understand a codebase.

Many functional programmers already specify their code, by
writing e.g. QuickCheck properties, but many do not. Can those
who do not specify their code also reap the benefits of formal
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specification? The answer is yes: given a piece of code, we can
automatically infer properties about it.

A tool that infers properties from code is called a theory ex-
ploration system. Two theory exploration systems for Haskell are
QuickSpec [16] and Speculate [1]. These tools take as input a col-
lection of Haskell functions and, through testing, discover formal
properties which can be expressed using those functions. For ex-
ample, given the list functions ++, reverse, and map, QuickSpec
discovers a total of five laws, all of them well-known and useful:

reverse (reverse xs) = xs
map f (reverse xs) = reverse (map f xs)
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
reverse xs ++ reverse ys = reverse (ys ++ xs)
map f xs ++ map f ys = map f (xs ++ ys)

Both tools work in a similar way. Very roughly, they (1) consider
all possible properties, up to some size limit, which can be built
from the given functions (and some variables), (2) test which of
those properties are true, (3) remove any redundant properties (a
true property is redundant if it can be derived from other true prop-
erties), and (4) report all the non-redundant true properties. Because
they explore all possible properties, the generated specification is
complete (up to the size limit).

This approach works well on small sets of functions. Complete-
ness means that we get an expressive specification, and discarding
redundant properties keeps the specification short. When given
only a few functions, QuickSpec and Speculate typically produce
clear, crisp and useful specifications, like the one above. We have
found that reading the output of QuickSpec is a great help in un-
derstanding an unfamiliar API.

Unfortunately, this approach breaks down when exploring large
APIs: a complete theory exploration system simply finds too many
laws. In a benchmark running QuickSpec on about 30 list functions
[16], over 500 laws were found! The QuickSpec user is unlikely to
bother reading all these laws. Many of them are unenlightening,
for example:

map (f x) (take (succ 0) xs) = zipWith f (scanl g x []) xs

This law is found, not because it was interesting, but because it was
true and because QuickSpec did not consider it to be redundant.
When we explore large APIs, we often get huge numbers of unin-
teresting laws. Furthermore, the search space is huge so the tools
often take a while to run: exploring the 30 list functions took about
two hours. These problems arise because QuickSpec and Speculate
are complete.
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1.1 RoughSpec
We have developed a new theory exploration system, RoughSpec.
Like QuickSpec and Speculate, it takes as input a set of Haskell
functions (which we call the signature), and uses testing to find
properties that seem to hold. The difference is that RoughSpec is
incomplete: it does not try to find all true properties.

Instead, the user gives a set of templates, expressions which
describe a family of laws such as associativity or distributivity.
RoughSpec searches only for instances of these templates. In this
way, the user can specify what kind of properties they would find
interesting, and RoughSpec searches only for these properties.

A template is a Haskell equation containing functions, variables
and metavariables. For example, here is a template which represents
commutativity (note that in our syntax, variables are written in
uppercase, and a metavariable is written as a variable with a leading
question mark):
?F X Y = ?F Y X

When a template contains a metavariables, RoughSpec instantiates
that metavariable with functions drawn from the signature, and
reports any instances that make the equation hold. In this case,
RoughSpec will search for functions ?F such that ?F X Y = ?F Y X
for all X and Y—that is, for commutative functions.

Here are some more examples of templates. They describe: (1)
associativity, (2) an invertible function; (3) distributivity; (4) and (5)
a function having an identity element:
(1) ?F (?F X Y) Z = ?F X (?F Y Z)
(2) ?F (?G X) = X
(3) ?F (?G X) (?G Y) = ?G (?F X Y)
(4) ?F X ?E = X
(5) ?F ?E X = X

In (4) and (5), ?E will be replaced by constants drawn from the
signature.

When we run RoughSpec on a signature of five list functions ++,
reverse, map, sort and nub, using the templates (1)–(3) above as
well as commutativity, we get the following output:
Searching for commutativity properties...

1. sort (xs ++ ys) = sort (ys ++ xs)
Searching for associativity properties...

2. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
3. sort (sort (xs ++ ys) ++ zs) =

sort (xs ++ sort (ys ++ zs))
4. nub (nub (xs ++ ys) ++ zs) =

nub (xs ++ nub (ys ++ zs))
Searching for inverse function properties...

5. reverse (reverse xs) = xs
Searching for distributivity properties...

6. map f xs ++ map f ys = map f (xs ++ ys)
7. sort (sort xs ++ sort ys) = sort (xs ++ ys)
8. nub (nub xs ++ nub ys) = nub (xs ++ ys)

Each property is tagged with the name of the template that gen-
erated it. For example, the first law is an instance of commutativity,
?F X Y = ?F Y X, with ?F = \xs ys -> sort (xs ++ ys).
(Section 2 describes how RoughSpec chooses how metavariables are
instantiated.) We see that ++ is associative, that reverse is its own
inverse, that map distributes over ++, and that appending two lists

and then sorting or nubbing the result is a well-behaved operation
in its own right.

By adding more templates, we can find more laws. For exam-
ple, adding the template ?F (?G X) = ?G (?F X) produces
the law map f (reverse xs) = reverse (map f xs). We
have not found all of the important list laws (for example, the law
reverse (xs++ys) = reverse ys ++ reverse xs), but have
produced a useful and short subset.

The templates we have used so far represent well-known prop-
erties and apply to a wide range of APIs. The goal of RoughSpec is
that the user can start with a “standard” set of templates, and find
an incomplete, but useful set of properties for their program. Then
they can find more detailed properties by adding templates that are
tailored to their domain. By putting the user in charge of choosing
templates, we aim to keep the output small and easy to understand.

In the next sections, we describe how RoughSpec works, and
then show it in action on some larger examples.

2 HOW IT WORKS
To use RoughSpec, the user inputs the templates they are interested
in, along with the functions they want to explore, in a signature [16].
See an example of a simple signature in Figure 1. As described in
Section 1, the templates are expressed in a simple term language
containing metavariables representing holes to be filled with a
function symbol (written as a question mark followed by a string
label), variables (written as names starting with a capital letter)
and the function symbols occurring in the signature. In our current
implementation, functions are written uncurried. For example the
template ?F(?G(X,Y)) = ?F(?G(Y,X)) describes the nested com-
position of two functions (?𝐹 and ?𝐺) being commutative in two
variables.

s i m p l e S i g = [
con " r e v e r s e " ( reverse : : [A] −> [A ] ) ,
con " ++ " ( ( + + ) : : [A] −> [A] −> [A ] ) ,
con " l e n g t h " ( length : : [A] −> Int ) ,
t e m p l a t e " nes t −commute " " ? F ( ?G( X , Y ) ) = ? F ( ?G( Y , X ) ) "
]

Figure 1: A signature containing some list functions and a
template for nest-commutative properties.

Candidate properties are generated by attempting to fill the
holes in a template using the function symbols in scope of the
exploration, making sure the generated equations are well typed.
For example, filling the holes in the template above using func-
tions length, reverse, and ++ on lists gives the candidate prop-
erties length (xs ++ ys) = length (ys ++ xs) (𝑐𝑝1) and
reverse (xs ++ ys) = reverse (ys ++ xs) (𝑐𝑝2).

The generated candidate properties are then tested using QuickCheck [4].
If no counterexamples are found the property is presented to the
user as a law. In our example, 𝑐𝑝1 passes this phase and is presented
to the user, while 𝑐𝑝2 fails and is discarded.
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2.1 Expanding templates
Note that in the algorithm described above, each hole in a template
can be filled only with precisely one of the function symbols in
scope. This is rather limiting and requires us to use multiple dif-
ferent templates to discover properties that we might intuitively
want to place in the same category, as we shall see in the examples
below.

We have implemented some automated “expansion” of user input
templates in an attempt to make the results of exploration more
general, and to help the user avoid the tedious work of typing up a
set of nearly-identical templates.

2.1.1 Nested functions. Consider the property
length (xs ++ ys) = length (ys ++ xs) (𝑐𝑝1)
discovered in our example above. We discovered this property using
a template that specifically described the composition of two func-
tion symbols being commutative. Suppose we had a more general
template for commutativity, i.e. ?F X Y = ?F Y X. What if we want
such a template to cover properties like 𝑐𝑝1, rather than having to
type up more than one commutativity template?

In order to do this we have implemented an extension allowing
a hole to be filled by a nested composition of two function symbols.
We replace a given hole in our template with two holes representing
an outer function applied to an inner function which is in turn
applied to the original hole’s arguments. That is, a hole of the form
?F e1...en turns into ?G (?F e1...en). This allows us to discover
the property 𝑐𝑝1 using the commutativity template ?F X Y = ?F Y X.
It also allows us to use a general template for identity functions,
?F X = X, to discover the property reverse (reverse xs) = xs.

2.1.2 Partial application. Suppose we extend our example signa-
ture from Figure 1 by adding the function map and a distributivity
template
?F (?G X Y) = ?G (?F X) (?F Y) (𝑑1),
describing a function ?F distributing over a two-argument function
?G.

We would like to discover the property
map f (xs ++ ys) = map f xs ++ map f ys (𝑑𝑚𝑎𝑝),
describing how map distributes over ++. However, since our template
holes can only be filled using precisely one function symbol or two
nested function symbols, this template does not cover the desired
property. Instead we would need a more complex template like
?F X (?G Y Z) = ?G (?F X Y) (?F X Z),
with an extra variable X for the function argument to map.

In order to avoid needing a variety of complicated templates
when our signatures contain functions with varying numbers of
arguments, we allow a template hole to be filled with a partially
applied function. We replace a given hole in our template with a
hole applied to a number of fresh variables, limited by the maximum
arity of the functions in scope. By doing so our desired property
𝑑𝑚𝑎𝑝 is now covered by the template 𝑑1.

In combination with our nested function expansion described
above, this also allows us to discover properties such as
map f (concat (xss ++ yss)) =
map f (concat xss) ++ map f (concat yss)

using the same template 𝑑1 and adding the concat function to our
signature.

This method considers all possible partially-applied functions
when filling a hole. In practice we found this to give rise to some
rather confusing properties when binary operators were involved.
For instance, suppose we extend our example signature with a
template ?F (?G X) = ?F X meant to discover pairs of functions
?F and ?G where the result of ?F is preserved when we apply ?G to
its argument. This gives rise to properties such as
length (reverse xs) = length xs and
length (map f xs) = length xs.

We also discover properties such as
length (xs ++ reverse ys) = length (xs ++ ys),
where the hole ?F has been filled by the function length . (xs ++).

We find properties about partially applied functions such as
xs ++ rather confusing and uninteresting., and therefore decided
to limit this expansion such that if a function is a binary operator
(that is to say the function has two arguments and those arguments
have the same type) we do not allow it to fill a hole.

2.1.3 Limiting expansion. Expanding templates automatically is
a delicate balance. In moderation, it produces interesting proper-
ties that users want to see, and that intuitively match the given
template. If we expand templates too much, we may generate ir-
relevant properties, overwhelm the user with output or increase
the running time of our tool. As can be seen from the special treat-
ment of binary operators in 2.1.2, we have implemented some ad
hoc limitations to our expansions to prevent them from produc-
ing properties we found less interesting. Perhaps the appropriate
expansions and when to use them most effectively is dependent
on the context, what kinds of functions are being explored and
the user’s priorities. In order to make this expansion tractable we
want to make the language for inputting functions and templates
in the signature more expressive, for example, allowing the user to
describe which functions they want to be partially applied and in
how many arguments.

2.2 Pruning
Suppose we now run RoughSpec on our example signature contain-
ing some list functions and the templates for identity and preserva-
tion mentioned in 2.1 (see Figure 2).

s i m p l e S i g = [
con " r e v e r s e " ( reverse : : [A] −> [A ] ) ,
con " ++ " ( ( + + ) : : [A] −> [A] −> [A ] ) ,
con " l e n g t h " ( length : : [A] −> Int ) ,
con " map " (map : : (A −> B ) −> [A] −> [ B ] ) ,
t e m p l a t e " i d " " ? F (X)=X" ,
t e m p l a t e " p r e s e r v e " " ? F ( ?G(X ) ) = ? F (X) "
]

Figure 2: Our updated example signature.

We are presented with the following output:
== Laws ==
Searching for id properties...

1. reverse (reverse xs) = xs
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Searching for preserve properties...
2. length (reverse xs) = length xs
3. length (map f xs) = length xs
4. length (reverse (reverse xs)) = length (reverse xs)
5. length (reverse (map f xs)) = length (reverse xs)
6. length (map f (reverse xs)) = length (map f xs)
7. length (map f (map g xs)) = length (map f xs)
8. reverse (reverse (reverse xs)) = reverse xs
9. (++) (reverse (reverse xs)) = (++) xs

10. length (reverse (reverse xs)) = length xs
11. length (reverse (map f xs)) = length xs
12. length (map f (reverse xs)) = length xs
13. length (map f (map g xs)) = length xs
14. map f (reverse (reverse xs)) = map f xs

Some of these properties appear to be redundant. For instance,
property 4 is an instance of property 2, with xs replaced by reverse xs.
Surely our user isn’t interested in seeing a property that’s just a
more specific instance of a previously discovered property?

To solve this, RoughSpec includes a pruning phase, which dis-
cards any discovered properties that are instances of previous prop-
erties. In this case, properties 4 and 8 will be pruned away, as they
are instances of properties 2 and 1, respectively. We also remove
any properties that can be found by applying the same function
to both sides of a previous property. For example, property 10 is
equivalent to applying the length function to both sides of prop-
erty 1. In our example, we will discard properties 4, 8, 9, 10, and 14,
and will discover 9 properties in total.

This still leaves us with some rather redundant properties. Notice
that property 5 above is a consequence of properties 2 and 3, and
can be proved by rewriting using 2 and 3. If we were also to prune
away properties that can be proved via rewriting using previous
properties, we would be left with only three properties, namely
properties 1, 2 and 3 above.

Through pruning we both avoid cluttering the output with re-
dundant properties and avoid spending time testing such redundant
properties. However, as our user has presumably input templates
describing the exact shapes of properties they are interested in
seeing output, we want to be careful not to go too far in pruning
away properties matching those desired patterns. We therefore only
use the pruning by rewriting in the case of properties that were
found by expanding a given template and not properties that pre-
cisely match one of the input templates. For instance, property 11
is pruned away as it can be proved by rewriting and was generated
from an expanded template. However, if we added the template
?F (?G (?H F X)) = ?F X to our signature in Figure 2, we would
no longer prune away property 11 as it would precisely match an
input template, and can only be pruned by rewriting.

As properties discovered earlier are used to prune away ones
that are discovered later, the order in which the templates are input
makes a difference to which properties we output. To optimize
pruning it seems good to start with smaller and/or more general
templates and move on to larger and/or more specific ones, as
smaller properties are more likely to be applicable to pruning larger
ones, but our user can also toggle this and make sure to put the
templates they find most relevant first.

3 CASE STUDIES
The following examples demonstrate theory exploration using
our template-based approach and discuss what kinds of templates
we’ve found to be useful. We compare our results to theory ex-
ploration with QuickSpec on the same sets of functions. The code
is available at https://github.com/solrun/quickspec, in the
template-examples directory.

3.1 Pretty Printing
This case study shows how RoughSpec can be useful in under-
stand an unfamiliar library. Suppose we are using Hughes’s pretty-
printing library [9] for the first time. We are presented with an
intimidating array of combinators:
empty :: Doc
text :: String -> Doc
nest :: Int -> Doc -> Doc
(<>) :: Doc -> Doc -> Doc
(<+>) :: Doc -> Doc -> Doc
($$) :: Doc -> Doc -> Doc
hcat :: [Doc] -> Doc
hsep :: [Doc] -> Doc
vcat :: [Doc] -> Doc
sep :: [Doc] -> Doc
fsep :: [Doc] -> Doc

The library documentation explains that Doc represents a pretty-
printed document, empty is an empty document, text prints a
string verbatim, and nest indents an entire document by a given
number of spaces. The remaining functions combine multiple doc-
uments into one:

• <>, <+> and $$ typeset two documents beside one another,
beside one another with a space in between, or one above
the other, respectively.

• hcat, hsep and vcat are variants of <>, <+> and $$ that take
a list of documents.

• sep and fsep choose whichever of <+> and $$ gives the
prettiest output.

We may now feel happy going off and writing some pretty print-
ers. But there are still questions unanswered:

• What is the difference between empty and text ""?
• If I am indenting a multi-line document, should I apply nest

to each line individually or to the whole document?
• Does it matter if I use <> or hcat, <+> or hsep, $$ or vcat?
• Why is there no analogue of <> for sep and fsep?

These are the kinds of questions a formal specification of the pretty-
printing library would answer. Let us see if RoughSpec can help
us.

We start with the same list of ten templates as in 3.3. We re-
produce RoughSpec’s output verbatim. It finds the following 41
laws:
Searching for identity properties...

1. hcat (unit x) = x
2. hsep (unit x) = x
3. vcat (unit x) = x
4. sep (unit x) = x
5. fsep (unit x) = x
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Searching for fixpoint properties...
6. nest x empty = empty

Searching for cancel properties...
7. length (unit (nest x y)) = length (unit y)

Searching for left-id-elem properties...
8. nest 0 x = x
9. empty <> x = x

10. empty $$ x = x
11. empty <+> x = x
12. hcat [] <> x = x
13. hsep [] <> x = x
14. vcat [] <> x = x
15. sep [] <> x = x
16. fsep [] <> x = x
17. hcat [] $$ x = x
18. hsep [] $$ x = x
19. vcat [] $$ x = x
20. sep [] $$ x = x
21. fsep [] $$ x = x
22. hcat [] <+> x = x
23. hsep [] <+> x = x
24. vcat [] <+> x = x
25. sep [] <+> x = x
26. fsep [] <+> x = x
Searching for right-id-elem properties...
27. x <> empty = x
28. x $$ empty = x
29. x <+> empty = x
30. x <> text [] = x
Searching for commutative properties...
Searching for commuting-functions properties...
31. nest x (nest y z) = nest y (nest x z)
Searching for distributivity properties...
32. nest x (y <> z) = nest x y <> nest x z
33. nest x (y $$ z) = nest x y $$ nest x z
34. nest x (y <+> z) = nest x y <+> nest x z
Searching for analogy-distributivity properties...
35. text xs <> text ys = text (xs ++ ys)
36. hcat xs <> hcat ys = hcat (xs ++ ys)
37. vcat xs $$ vcat ys = vcat (xs ++ ys)
38. hsep xs <+> hsep ys = hsep (xs ++ ys)
Searching for associative properties...
39. (x <> y) <> z = x <> (y <> z)
40. (x $$ y) $$ z = x $$ (y $$ z)
41. (x <+> y) <+> z = x <+> (y <+> z)

Laws 12–26 are curious. They are all rather similar, and do not look
very interesting. In fact, each of these laws contains a term (such
as hsep [] or vcat []) which is actually equal to empty. Once we
know that, we see that these laws are trivial restatements of laws
9–11. The problem is that there was no template which allowed
RoughSpec to discover laws such as hsep [] = empty.

To fix this, we add the template ?F ?X = ?Y. This template finds
10 laws, including hsep [] = empty and its companions, and now
laws 12–26 are pruned away as they follow from laws 9–11. We are
left with a total of 26 laws: 1–11 and 27–41 above.

Together, these laws answer most of the questions we posed
above. The difference between empty and text "" is that empty
acts as an identity for the other operators:
empty <> x = x x <> empty = x
empty <+> x = x x <+> empty = x
empty $$ x = x x $$ empty = x

On the other hand, text "" mostly does not, only satisfying one
identity law:
x <> text "" = x

Of course, we could use QuickCheck (or indeed read Hughes [9])
to find out just why text "" is not an identity element.

As for whether one should indent each line separately or the
whole document at once, it doesn’t matter, because nest distributes
over $$:
nest x (y $$ z) = nest x y $$ nest x z

Another distributivity law tells us that we can freely choose to
typeset a long string in one go, or split it up into smaller pieces:
text xs <> text ys = text (xs ++ ys)

The <>, <+> and $$ operators are associative:
(x <> y) <> z = x <> (y <> z)
(x <+> y) <+> z = x <+> (y <+> z)
(x $$ y) $$ z = x $$ (y $$ z)

and hcat, vcat and hsep appear to be those operators folded over
a list:
hcat xs <> hcat ys = hcat (xs ++ ys)
vcat xs $$ vcat ys = vcat (xs ++ ys)
hsep xs <+> hsep ys = hsep (xs ++ ys)

Therefore, it doesn’t matter whether one uses e.g. <> or hcat—they
are equivalent.

Associativity of course means that we can write e.g. x <> y <> z
without worrying about bracketing. We might wonder whether the
same applies to sequences of mixed operators, e.g. x <> y <+> z.
To find out we can add another template:
mixed-associativity: ?G (?F X Y) Z = ?F X (?G Y Z)
-- in infix notation: (X `?F` Y) `?G` Z = X `?F` (Y `?G` Z)

This reveals that, indeed, a whole host of expressions can be
freely rebracketed:
nest x y <> z = nest x (y <> z)
(x $$ y) <> z = x $$ (y <> z)
(x <+> y) <> z = x <+> (y <> z)
nest x y <+> z = nest x (y <+> z)
(x <> y) <+> z = x <> (y <+> z)
(x $$ y) <+> z = x $$ (y <+> z)

Finally, we come to the question of why there is no two-argument
version of sep and fsep. Given what we learnt above, we might
suspect that these operators are not associative. To test this, we can
add two new functions to the signature:
sep2, fsep2 :: Doc -> Doc -> Doc
sep2 x y = sep [x, y]
fsep2 x y = fsep [x, y]
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Indeed, no new associativity law appears.1 Nor is it the case that
e.g. fsep2 (fsep xs) (fsep ys) = fsep (xs ++ ys). In fact,
no interesting laws of any kind appear.

The laws that hsep and family satisfy are very useful when
programming. When we want to typeset a list of documents hori-
zontally, we can either use hsep, <+> or a mixture (e.g. we may write
hsep xs <+> hsep ys instead of hsep (xs++ys). By contrast,
when using sep or fsep, we must carefully collect all documents
into a list and only then combine them. In this case, the lack of a
nice specification is itself useful information: it warns us that we
should take care when using these combinators!

Summary. RoughSpec performed well on the pretty-printing li-
brary. It produced a manageable number of equations, all of them
simple and easily understood. Despite their simplicity, they an-
swered important questions about how to use the library—the ques-
tions listed at the top of this section. We believe that even simple
properties, such as associativity and distributivity laws, are a great
help in understanding how to use a new library. Finally, we got
good results from a “standard” set of templates and were able to
improve the output by adding our own.

The one hiccup in RoughSpec’s performance was laws 12–26.
We were forced to add a template specifically to prune away these
laws. In fact, another instance of the same problem occurred: sep
and fsep only differ on lists of at least three elements, which means
that sep2 = fsep2. QuickSpec discovers this law instantly, but
RoughSpec failed to find it as there was no template of the form
?X = ?Y. Instead, laws about this function appear twice—once with
sep2 and once with fsep2.

In both cases, we have two laws containing syntactically different
terms that are actually equal—for example, hcat [] and hsep [].
RoughSpec ought to detect that the terms are equal, and avoid
generating duplicate laws. One option is to gather all the terms used
to instantiate metavariables, divide them into equivalence classes
by testing, and keep only the representative of each equivalence
class.

Comparison with QuickSpec. As reported in [16], QuickSpec does
well given the combinators text, nest, <>, <+> and $$, finding a
complete specification that matches the one given by Hughes [9].
Unfortunately, when we add hcat and friends, QuickSpec finds
many complicated, unimportant-looking laws, for example:
40. fsep (xs ++ [empty] ++ ys) = fsep (xs ++ ys)
41. hcat (xs ++ [empty] ++ ys) = hcat (xs ++ ys)
42. hsep (xs ++ [empty] ++ ys) = hsep (xs ++ ys)
43. hcat (xs ++ [hcat ys] ++ zs) = hcat (xs ++ ys ++ zs)
44. hsep (xs ++ [hsep ys] ++ zs) = hsep (xs ++ ys ++ zs)
45. fsep (xs ++ [x $$ (y $$ z)]) = fsep xs $$ (x $$ (y $$ z))
46. fsep (xs ++ [x $$ x] ++ ys) = fsep xs $$ ((x $$ x) $$ fsep ys)

3.2 Model-based properties
In [10], Hughes compares different methods of defining properties
for QuickCheck testing, and finds that model-based testing is the
most effective of the five methods he compares, revealing all the
bugs in the test programs with a small number of properties to test.

1Exercise to the reader: reading the documentation of the pretty library, it seems
reasonable that fsep2 could be associative. Why is it not?

Model-based testing is based on the approach to proving the
correctness of data representations introduced by Hoare in [8].
The data representation is related to an appropriate abstract rep-
resentation using an abstraction function. For each operation both
a concrete and an abstract implementation are defined and the
following diagram is proven to commute:

𝑋 𝑋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

𝐴𝑡 𝐴

𝑜𝑝𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

abstraction

abstraction

𝑜𝑝𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

We can then obtain correctness proofs for the data represen-
tation and operations in question based on (presumably simpler)
correctness proofs for the abstract data and operations.

In model-based testing we define an abstract model of the data
structure being tested and define test properties relating the con-
crete operations under test to the corresponding abstract ones us-
ing an abstraction function. In [10], bugs in the implementation of
concrete operations are found to cause counterexamples to such
properties.

Since we can include specific function symbols from the explo-
ration scope in our templates, we can use RoughSpec to search only
for properties that relate two operations via a given abstraction
function, with a template along the lines of
?F (abstraction X) = abstraction (?G X).

3.2.1 Binary trees. In [10], Hughes uses binary trees as an example
and defines five model-based properties relating the tree operations
to operations on a list of key-value pairs with 𝑡𝑜𝐿𝑖𝑠𝑡 as an abstrac-
tion function.

1. find x t = findList x (toList t)
2. insertList x (toList t) = toList (insert x t)
3. deleteKeyList x (toList t) = toList (delete x t)
4. toList nil = []
5. toList (union t t1) =

sort (unionList (toList t) (toList t1))

Running RoughSpec on a signature containing the relevant func-
tions and three templates describing model-based properties, we
discover precisely these five properties in just under 0.3 seconds.

?F(Y,toList(X)) = ?G(Y,X)
toList(?X) = ?Y
toList(?H(X,Y)) = ?F(toList(X),toList(Y))

Due to the different shapes of the desired properties we need
three different templates to discover them all. With a more expres-
sive term language for our signatures, as discussed in 2.1, we may
get away with using fewer such templates.

Comparison with QuickSpec. QuickSpec discovers 28 properties
about the functions in our signature, among them the five model-
based properties. This takes between 10 and 11 seconds, signifi-
cantly longer than RoughSpec.

3.3 A large library of list functions
Section 4.2 in [16] describes a stress-test where QuickSpec was used
to find properties about a set of 33 Haskell functions on lists. This
took standard QuickSpec 42 minutes and resulted in 398 properties
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when limited to terms of size 7 or less, and hit a time limit of 2 hours
when the size was increased to 8. As described in the Introduction,
many of the laws found by QuickSpec were not interesting. This
illustrates how running QuickSpec on larger theories scales poorly
with regard to run-time and may produce an overwhelming amount
of output. When we ran the most recent version of QuickSpec on
this set of functions it ran out of memory and did not manage to
produce any properties.

length :: [A] -> Int
sort :: [Int] -> [Int]
scanr :: (A -> B -> B) -> B -> [A] -> [B]
(>>=) :: [A] -> (A -> [B]) -> [B]
reverse :: [A] -> [A]
(>=>) :: (A -> [B]) -> (B -> [C]) -> A -> [C]
(:) :: A -> [A] -> [A]
break :: (A -> Bool) -> [A] -> ([A], [A])
filter :: (A -> Bool) -> [A] -> [A]
scanl :: (B -> A -> B) -> B -> [A] -> [B]
zipWith :: (A -> B -> C) -> [A] -> [B] -> [C]
concat :: [[A]] -> [A]
zip :: [A] -> [B] -> [(A, B)]
usort :: [Int] -> [Int]
sum :: [Int] -> Int
(++) :: [A] -> [A] -> [A]
map :: (A -> A) -> [A] -> [A]
foldl :: (A -> A -> A) -> A -> [A] -> A
takeWhile :: (A -> Bool) -> [A] -> [A]
foldr :: (A -> A -> A) -> A -> [A] -> A
drop :: Int -> [A] -> [A]
dropWhile :: (A -> Bool) -> [A] -> [A]
span :: (A -> Bool) -> [A] -> ([A], [A])
unzip :: [(A, B)] -> ([A], [B])
[] :: [A]
partition :: (A -> Bool) -> [A] -> ([A], [A]))
take :: Int -> [A] -> [A])
background [
(,) :: A -> B -> (A, B),
fst :: (A, B) -> A,
snd :: (A, B) -> B,
(+) :: Int -> Int -> Int,
0 :: Int,
succ :: Int -> Int]

Figure 3: A library of list functions.

In contrast, running RoughSpec on this set of functions we can
tailor the templates we use to properties we are interested in dis-
covering and produce a more manageable amount of output in a
much shorter time. The list of functions is shown in Figure 3. The
last six functions are declared as background functions. Background
functions may appear in properties, but a discovered property must
contain at least one non-background function.

We start with the following templates, all representing well-
known patterns of laws:

identity: ?F X = X
fixpoint: ?F ?X = ?X
cancel: ?F (?G X) = ?F X
left-id-elem: ?F ?Y X = X
right-id-elem: ?F X ?Y = X
commutative: ?F X Y = ?F Y X
commuting-functions: ?F (?G X) = ?G (?F X)
distributivity: ?F (?G X Y) = ?G (?F X) (?F Y)
analogy-distributivity: ?F (?G X) (?G Y) = ?G (?H X Y)
associativity: ?F (?F X Y) Z = ?F X (?F Y Z)

Running RoughSpec on this set of functions with the above
templates, we discover 164 properties in just under 4 minutes. The
properties include many useful laws, such as distributivity-like
properties:
length xs + length ys = length (xs ++ ys)
concat xss ++ concat yss = concat (xss ++ yss)
sum xs + sum ys = sum (xs ++ ys)

Template expansion results in more complex properties. The
second property below has size 11, much larger than QuickSpec
was able to discover:
take x (takeWhile p (zip xs ys)) =

takeWhile p (zip (take x xs) (take x ys))
take x (zipWith f xs (zipWith g ys zs)) =

zipWith f xs (zipWith g (take x ys) (take x zs))

These two properties are given as examples of distributivity (take
is distributed over the rest of the expression). The user may not
consider these laws interesting, which suggests that having a more
expressive template language is important. Nonetheless, the laws
discovered are better than those found by QuickSpec, and we are
able to discover them in a fraction of the time. This demonstrates
that RoughSpec is much better suited than QuickSpec to exploring
large libraries of functions, and that it makes theory exploration
tractable on such libraries that were previously infeasible to explore.

4 COMPARISON TO QUICKSPEC
RoughSpec and QuickSpec’s approaches seem to be complemen-
tary. For large APIs, QuickSpec is slow, and often produces an
overwhelming amount of output. By contrast, RoughSpec runs
quickly, and produces a moderate number of laws. The laws it finds
are easy to understand, because they follow standard patterns, and
can be targeted to the user’s interests.

On the other hand, RoughSpec does not usually find a complete
specification. Even when testing lists, RoughSpec failed to find the
law reverse (xs ++ ys) = reverse ys ++ reverse xs. This is
by design but is nonetheless a weakness. We believe that a hybrid
approach could work, where QuickSpec is used to find all small
laws, running with a low size limit, and RoughSpec is used to find
interesting laws beyond that.

We also ran into problems when our templates are too general, as
in that case our premise of limiting the search space may no longer
hold. For example, consider a template ?F(X) = ?G(X) searching
for equivalent functions. This template could produce interesting
and useful properties, for instance stating that different sorting
functions produce the same output for a given input. However, if
our signature contains many functions that have the same type we
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will produce a large number of candidate properties and testing
them will take a long time (and probably most will be falsified).
Meanwhile, QuickSpec will discover relevant properties of this
shape much more quickly. With a hybrid approach, we could leave
QuickSpec to find properties of this shape.

5 RELATED WORK
Apart from QuickSpec [16] and Speculate [1], which we described
in the Introduction, there are also theory exploration tools for
mathematics. Below we describe several which support templates
or schemas.

Buchberger [2] introduced the idea of schema-based theory ex-
ploration and his team implemented it in the Theorema [3] system.
Theorema provides tools to assist the user in their theory explo-
ration but does not automate the process. The user must provide the
schemas (but can store them in a schema library for easier reuse),
manually perform substitutions to instantiate the schemas with
terms, and conduct proofs interactively.

IsaScheme [14] is a schema-based theory exploration system for
Isabelle/HOL. Users provide the schemas as well as a set of terms
to instantiate the schemas with, but the instantiation is performed
automatically. The conjectures generated by instantiation are then
automatically refuted using Isabelle/HOL’s counter-example find-
ers, or proved using the IsaPlanner [5, 6] prover.

MATHsAiD [13] is an automated theorem-discovery tool which
has mainly been applied in the context of abstract algebra. It uses a
combination of several exploration techniques, one of them being
schema instantiation, which is used for a limited set of lemmas/the-
orems. The schemas used by MATHsAiD are predefined and built-in
to the system and include, for example, reflexivity and transitivity.

6 FUTURE WORK
There are many avenues of future work we would like to explore.

Our tool could be made more user-friendly by not requiring the
user to explicitly type up a signature. A default signature for a given
set of functions could be automatically generated using Template
Haskell.

QuickSpec has been used to discover lemmas in a theorem prov-
ing context, see [12], and we believe our extension could also be
useful in such a context, using templates relevant for the theorem
we would like to prove.

In the experiments described in this paper we have used hand-
written templates provided by the user or by a library of default
templates. We would like to further explore what kinds of templates
are useful in a given context and how to automatically discover
useful templates, using data-driven methods to learn good templates
for a given context. We will explore using machine learning to
extract common patterns from proof libraries, learning common
lemma shapes given properties of the theorem we want to prove
(c.f. [7]), as well as exploiting type-class laws and other algebraic
properties. We will also investigate extracting templates from failed
proof attempts, similar to critics in proof planning [11].

RoughSpec currently supports only equations as templates, but
many applications require conditional equations. We are currently
extending RoughSpec to discover conditional equations. In our
approach, the user specifies a set of equational templates and a set

of condition templates, and the tool discovers which conditions
fit each equation. We believe this will make for a more practically
useful tool.

As described in Section 4, QuickSpec is more efficient at dis-
covering smaller properties with generic shapes while our tool
can discover larger properties fitting more specific patterns much
more quickly. A hybrid tool combining our extension with standard
QuickSpec, i.e. using standard QuickSpec to discover properties
up to a certain size and then switching to a template-based search,
seems promising. This requires experiments to identify the “sweet
spot” and develop a heuristic for when to switch approaches.

We currently use a set of heuristics to expand templates. Tem-
plate expansion is important in order to capture a wide variety of
laws, but it sometimes goes too far. For example, given the template
?F (?G X) = ?G (?F X), both ?F and ?G can be replaced by a
nested function, resulting in laws of the form f (g (h (i x))) =
h (i (f (g x))). To reduce the use of heuristics, we would like to
define an expressive template language, in which the user can say
precisely what sort of laws they want, for example, to forbid the
use of nested functions in the template above. As another example,
it should be possible to define a template that capture a general
distributivity law f (g x1) (g x2)...(g xn)) = g (f x1...xn)
for 𝑛-ary functions, without specialising it to a particular 𝑛. Do-
ing so requires designing a small set of combinators for building
templates.

7 CONCLUSION
We have presented RoughSpec, a theory exploration tool in which
the user specifies which properties are interesting. It generates
specifications which are short, and easy to understand, but not
complete. It can be used both to produce a rough specification
of how a set of functions behaves, and to target specific families
of laws that the user is interested in. It also scales well to large
APIs. We believe that, together with QuickSpec, the two tools form
a convincing theory exploration system for both small and large
APIs.
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Abstract
To describe the behaviour of programs in a programming
language we can define a formal semantics for the language,
formalising it in a proof assistant. From this semantics we
can derive the behaviour of each particular program in the
language. But there remains the question of validating the
formal semantics: have we got the semantics right?

In this paper, we present our approach, property-based
cross-testing of formal semantics, which is based on the com-
bination of existing approaches to semantics validation. In
particular, we present a prototype implementation for ex-
isting Erlang and Core Erlang formalisations. We describe
the necessary adjustments needed to be made to execute
these semantics, and then briefly summarise the technical
details of the components of our prototype. Finally, we eval-
uate our preliminary results in the context of our short- and
longer-term goals.

CCS Concepts: • Theory of computation→Operational
semantics; Program verification; Functional constructs; •
General and reference → Validation.

Keywords: formal semantics, validation, property-based test-
ing, Coq, K framework
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1 Introduction
This work is part of a wider project that aims to reason
about the correctness of refactoring. Our goal requires a
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rigorous, formal definition of the programming language
under refactoring: in our case, Erlang. In earlier work, we
have defined and implemented executable formal semantics
for the sequential parts of both Erlang and Core Erlang.
Initially we developed a reduction semantics for a subset
of Erlang implemented in the K framework [19], while more
recently we have defined a natural semantics for a subset of
Core Erlang, implemented in the Coq proof assistant [1, 2].

In this paper, we investigate the validation of these se-
mantic definitions by combining a number of techniques
ranging from grammar-based and property-based testing to
advanced proof tactics that are used to make big-step seman-
tics executable. As Core Erlang is an intermediate language
between Erlang and BEAM code [27], Erlang can be com-
piled to both Core Erlang and BEAM, and the semantics of
these three languages can be contrasted. The presence of any
discrepancies between these point to inconsistencies in the
different semantics, whereas their absence provides evidence
that the definitions are valid relative to each other.

There is not a complete, up-to-date and precise language
specification available for any of the above languages. We
therefore decided to take the Erlang/OTP compiler and the
BEAM interpreter – i.e. the reference implementation – as
the frame of reference for reasoning about correctness. This
means that the compilation from Erlang to Core Erlang and
from Core Erlang to BEAM, along with the BEAM inter-
pretation, are trusted (Figure 2). The formal semantics of
Erlang is said to be correct if and only if the BEAM code
obtained by trusted translation from the Erlang program
exhibits the same behaviour on the BEAM interpreter as the
Erlang program exhibits according to the formal semantics;
we investigate the correctness of the formal semantics of
Core Erlang in a similar way.

Although the main idea is to test both semantics against
the reference implementation on the BEAM, the cross-testing
may come with extra benefits beyond the results of testing a
single one, namely,

• If both formal semantics show the same (or similar) in-
correct behaviour, that may indicate a generic miscon-
ception about the behaviour of a particular language
feature, rather than an error in the formalisation,

• If one is correct and the other is incorrect, the correct
definition can be used to assist the debugging of the
incorrect one by exploiting the translation definition
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used when transforming programs from Erlang to Core
Erlang.

Beside hand-written test cases, we use property-based test-
ing with randomly generated programs to validate the seman-
tics. It is worth noting that the general idea of property-based
cross-testing of (executable) semantics can be generalised
for any two languages provided that one can be translated
to the other.

The main contributions of this paper are:
• An approach to validation of formal semantics defini-

tions by property-based random comparative testing.
• A validation architecture gluing both of the semantics

(given in different systems) and the reference imple-
mentation.

• A method of making an inductive big-step semantics
executable by means of advanced proof tactics in Coq.

• Extensive validation of a Core Erlang semantics imple-
mented in Coq and an Erlang semantics given in the
K framework.

The rest of the paper is structured as follows. In Section 2
we summarise the most common approaches to test a formal
semantics, then in Section 3 we describe the general idea
of our approach. In Section 4 we overview the semantics
definitions to be validated, and in Section 5 we explain in
detail how the prototype implementation performs the vali-
dation of the semantics. Section 6 presents and evaluates the
findings, and finally Section 7 summarises future work and
concludes.

2 Related Work
Although most programming languages lack a fully formal
definition and are mainly defined by their reference imple-
mentation, there is an ever increasing effort on equipping
mainstream languages with formal definitions. To mention
but a few: C, Java, OCaml, Scheme, Haskell, PHP, EVM are
being formalised in the K framework [18], while semantics
for C [3], Javascript [5], R [6] and WebAssembly [17], among
others, are being developed in the Coq proof assistant.

As other authors have pointed out [4, 15, 28], it is crucial
to validate these formal definitions against the language
specifications and the reference implementation; otherwise,
the formal statements that hold in them could not be used
to argue about the run-time behaviour of programs in the
language. According to Blazy and Leroy [4], there are five
basic methods to validate formal semantics:

1. Manual review and debugging
2. Proving properties of the semantics, such as type pres-

ervation and determinism
3. Using verified translations and trusted semantics
4. Validating executable semantics, e.g. testing against

test suites and experimental testing
5. Using equivalent, alternate versions of the semantics

These methods, and the combinations thereof, are com-
monly used when a formal semantics definition is to be
validated. The semantics of Lolisa [28] was validated with
methods 2, 4 and 5, while CompCert [3, 4] apparently uses
all five methods.

Yet, the most common way of validating a formal seman-
tics is the 4th method: developing an executable version of
the semantics and testing it agains the reference implemen-
tation. This method is used on the executable semantics for
PHP [13], the semantics of SQL queries [15] and the seman-
tics of Erlang [19], as well as in the work by Politz et al. on
JavaScript [25] and in the work by Roessle et al. [26] on the
big-step semantics of x86-64 binaries.

3 Formal Semantics Validation Approach
Our approach is a combination of the fundamental semantics
validation techniques outlined by Blazy and Leroy [4]. In
particular,

• We adapt method 3 by using verified translation (i.e.
the official Erlang/OTP compiler) from Erlang to Core
Erlang, and from Core Erlang to BEAM. Our trusted
semantics component is the executable definition of
BEAM (i.e. the official Erlang/OTP interpreter).

• We adapt method 4 by using a test suite as well as
randomly generated programs to test our semantics
against the reference implementation (i.e. the official
Erlang/OTP interpreter). For this, we needed to make
both the small-step semantics for Erlang and the big-
step semantics for Core Erlang executable. Rather than
investigating the definition of equivalent denotational
semantics (or definitional interpreters), we sought to
gather execution information from the big-step se-
mantics, namely the final configurations and the cor-
responding proofs in the operational semantics. This
approach is explained in detail in Section 4.

• Last but not least, we adapt method 5 by having se-
mantics in two different styles (even though for two
slightly different languages): the Erlang semantics is in
small-step (reduction style with evaluation contexts),
while the Core Erlang semantics is given as an induc-
tive big-step (natural style) semantics.

We believe that this combination (as opposed to simple
composition) of methods results in an even more effective
formal semantics validation technique.

3.1 Property-based testing of formal semantics
In addition to the combination of well-understood tech-
niques, our approach also proposes a novel feature: it em-
ploys property-based testing (PBT) for validating the for-
mal semantics with randomized data (random programs exe-
cuted with random parameters). For the testing of the Coq
semantics we could have used QuickChick [11] as PBT im-
plementation, but with the multiple semantics implemented
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in different systems, we opted for the Erlang QuickCheck [9]
when designing our test bed. Note that PBT not only allows
us to test with random data, but it can also control data distri-
bution and it can assist comprehending errors by shrinking
counterexamples.

Property-based testing of meta-programming tools (or
programming language processors in general) requires a data
generator for well-formed program terms. Horpácsi et al. [12]
developed an attribute grammar based generator generator
for Erlang QuickCheck (EQC), and they have formalised
a subset of Erlang as an attribute grammar, which can be
employed to synthesise a data generator for random Erlang
programs. We took this result and tailored the generated
programs (i.e. revised the grammar in order to modify the
generated language) for semantics testing.

3.2 Architecture
Figure 1 shows an overview of the general idea. We consider
two programming languages with reference implementa-
tions and executable formal semantics (possibly in different
semantics frameworks), as well as a translator between the
two languages. We use an EQC generator to synthesise ran-
dom programs in the first language and translate it to the
second language. Then we feed the original and translated
programs into the corresponding implementations and se-
mantics, and finally we compare the results. This latter step
is of interest mainly from the technical point of view; in
general, it is a structural equality check on the resulting
values.

4 Executable Semantics for Erlang and
Core Erlang

If an operational semantics (especially big-step semantics)
is to be tested, therefore to be executed, one approach is to
(re)define it in a computable style, such as the functional
big-step semantics by Owens et al. [24]. Another option is
to define a definitional interpreter as “equivalent alternate
semantics” [4], but the denotational re-definition and the
equivalence proof requires significant effort.

If one does not want to redefine the language, but the
already defined operational semantics is not computable —
either because it is not syntax-directed or it is not terminat-
ing — automatic execution is not trivial as it is essentially a
proof search on the transition relation with existential vari-
ables. In Erlang and in Core Erlang, both exceptions and
divergence are present, thus in our semantics definitions
there can be several derivation rules applicable to a particu-
lar configuration.

In case of natural semantics, using pretty-big-step style [8]
can reduce the number of applicable rules, but it cannot
eliminate all decision points: for instance, executions may
terminate either normally or with an exception, and even
if the semantics is deterministic, we cannot tell in advance

which branch leads to the normal form. The proof search
is a depth-first search trying all of the evaluation paths one
after another, which may have performance issues; in Sec-
tion 4.2 we explain in detail how we managed to execute our
traditional, inductive big-step semantics definition in Coq.

4.1 Erlang Semantics
The Erlang definition used in this project is given as reduc-
tion semantics with evaluation contexts. It is defined in the
K framework1, a language workbench that supports simple
and effective syntax and semantics definitions, and gener-
ates various execution and analysis tools based on a single
definition. One of the greatest features of this framework is
that it has a reasonably effective search technique for finding
small-step derivations, basically it synthesises an interpreter
for the semantics definition. This means that the small-step
semantics of Erlang is inherently executable with the help
of K and does not need any special care in this regard. For
the details of this language definition, we refer to previous
work by Kőszegi [19].

4.2 Core Erlang Semantics
In our former work, we formalised sequential Core Erlang
in Coq2 considering exceptions and side effects too [1, 2, 20].
Unfortunately, this big-step semantics is an inductive type,
which cannot be simply executed, as Blazy and Leroy also
mentions [4].

Making it executable. In order to create an executable
semantics for Core Erlang, we had make to some modifica-
tions in our description to enable simple pattern matching
for the evaluation goals. Coq was not able to apply pattern
matching on derivation rules which contained auxiliary func-
tion calls in their consequences (e.g. the derivation rule for
variables and the use of append operation on side effect logs
in our semantics [1]). This problem was avoided by introduc-
ing a new variable which replaced the auxiliary call, and the
addition of a premise which states that this variable holds
the result of the call in question.

On the other hand, in case of the side effect traces (and
the mentioned append operations) to avoid the introduction
of several new variables, we changed the use of these traces.
Instead of handling only the additional side effects of an
expression evaluation step, we rather consider using always
the whole initial and final side effect traces (i.e. not only
the difference). This way we could dispose of the append
operations in the consequences of the derivation rules.

1K framework version 3.6
2Coq version 8.11.2
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Figure 1. The general design of our approach

In our case, the evaluation of the Core Erlang semantics
without exceptions is syntax-driven3. This means that a tac-
tic [10] can be designed to evaluate any expression in any
context based on pattern-matching on the expression to be
evaluated.

However, after introducing exceptions, several derivation
rules are applicable for evaluating an expression. We ex-
tended the evaluation tactic by applying one of the rules
and if this fails, trying the next one. This can also be seen
as a depth-first search for the successful evaluation path as
mentioned before.

Thereafter, we introduced notations for the result in or-
der to easily extract it to the corresponding Erlang value to
enable comparison with the Erlang semantics and BEAM
results.

Optimisation. Unfortunately, our evaluation tactic in
Coq is quite slow and its memory usage is high. To speed up
the execution of our semantics, we have also designed some
helper functions and lemmas about specific expressions (e.g.
the evaluation of tuple expressions which contain only lit-
erals), so that the evaluation tactic can apply these lemmas
before trying to evaluate an expression with the mentioned
depth-first search (if the helpers were not applicable). These
lemmas can significantly speed up the evaluation of expres-
sions which contain such specific sub-expressions.

In addition, it is also an interesting topic to compare this
solution to other executable semantics styles. Our approach
shares similarities with functional big-step semantics [24];
to ensure the termination of the tactic we use a time limit,
which is similar to the “clock” in functional big-step seman-
tics4, moreover, the mentioned functions for optimisation
can be seen as the functional big-step semantics of specific
expressions.

3Our semantics is deterministic, however, Core Erlang itself is not [7],
but we followed the footsteps of the reference implementation, which em-
ploys a leftmost-innermost evaluation strategy according to Neuhäußer and
Noll [21].
4Alternatively, we could use the same concepts of recursion depth limit in
the tactic too.

4.3 Notes on Language Coverage
In the setting of testing the two formal semantics with the
same input, it is important to ensure that the language fea-
tures covered by the Erlang definition translate to features
covered by the Core Erlang definition. This is an issue to
be taken account as our definitions do not cover the entire
languages.

As a matter of fact, both the Erlang and Core Erlang for-
mal definitions support most sequential constructs, such as
arithmetic and boolean expressions, simple compound types
(e.g. tuples, lists, maps), pattern matching, and control ex-
pressions (e.g. sequencing, case, if, subroutine calls). Beside
these, both semantics define the behaviour of exceptional
evaluation and tracing of simple side-effects (read and write
to standard I/O).

Core Erlang has an official but out-of-date specification [7]
against which we can measure the coverage, as well as both
languages have formal syntax definitions ([22, 23]) which can
be interpreted as a catalogue of language features. We have
decent coverage of sequential language elements, although
some parts were intentionally left out as we aimed at only
formalising a representative set of basic constructs and types.
Missing features include binaries, bitstrings, annotations, as
well as float, char and string expressions. It should be noted
too that the current definitions lack the definition of the
concurrent programming features, but there is extensive
literature on the definition thereof [14, 16] and we plan to
extend our semantics in this regard.

Interestingly enough, full coverage of Erlang does not
ensure full coverage on Core Erlang. In fact, Core Erlang is a
richer language than that covered as the compiler is applied
to Erlang, according to our testing. For instance, we could not
generate case expressions with a non-empty “ValueList” [7].
Core Erlang language features not used by the object code
of the Erlang compiler shall be validated separately.

5 Testing the Semantics of Erlang and
Core Erlang

In this section, we give an overview on the structure and the
behaviour of our prototype implementation of the semantics

4
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Figure 2. The components of our prototype

validation system. Basically, it compares the behaviour of
the above-mentioned small-step semantics of Erlang imple-
mented in the K framework and the big-step semantics of
Core Erlang implemented in the Coq proof assistant with
each other and with the behaviour of the reference imple-
mentation, by using randomly generated test programs. The
structure of the prototype can be seen in Figure 2.

5.1 Random Program Generator
By default, the validation process uses a test suite, but it can
also be instrumented to use random test data. For this, we use
QuickCheck generators, which define a (weighted) set from
which the testing chooses elements randomly. In previous
work on validating refactoring tools [12] we implemented
an attribute grammar based generator for syntactically and
static semantically valid sequential Erlang programs. In order
to use this for testing the Erlang semantics, we needed to
match the generator grammar to the language coverage of
the semantics, such that we only generate programs that
we can evaluate in the formal definition. It is important to
note that the generated programs are not only (syntactically)
well-formed, but they adhere to the static semantics of the
language (do not refer to unbound names) and are free of
trivial type errors — this is supposed to dramatically improve
the efficiency of fully randomised testing.

5.2 The Erlang/OTP Compiler
The Erlang/OTP compiler and interpreter (i.e. the reference
implementation of Erlang5) is a trusted component and ref-
erence for reasoning in our solution. It plays four different
roles:

• Pretty-prints randomly generated Erlang syntax trees
• Translates Erlang to Core Erlang and emits the abstract

syntax tree (AST)
• Translates Erlang to BEAM and interprets the bytecode

(i.e. executes the program to be tested and provides
the result expected from the semantics definitions)

• Compares the results emitted by the semantics to the
expected result

5Erlang/OTP version 22.0

Worth noting that in the Erlang to Core Erlang translation,
we disable optimisation in order not to reduce the original
code complexity. We plan to refine this solution and perform
the validation with both the optimised and the unoptimised
versions of the Core Erlang object code.

5.3 Conversions
Beside using the Erlang/OTP compiler for converting be-
tween abstract syntax trees (i.e. for parsing and pretty-print-
ing), we needed to develop a glue component that helps feed
the Core Erlang program into the Coq implementation of the
semantics. As we ought to avoid developing a Core Erlang
parser in Coq, we opted for pretty-printing the Core Erlang
AST into Coq text defining the very same AST within Coq.

In particular, we have written an algorithm based on the
official Core Erlang parser [22], which pretty-prints the Core
Erlang AST (represented in Erlang) into a Coq proof goal
and proof command that evaluates the AST and extracts the
evaluation result.

While implementing this component, we encountered
some difficulties when handling value lists and try expres-
sions. In case of value lists, the Coq semantics needs adjust-
ment, while in case of try we handle only three variable
bindings in the catch clause, whereas the syntax allows the
binding of any number of variables. This behaviour was
based on informal semantics of try expressions described in
the language specification [7]. Moreover, the official parser
handles tuple and list expressions that contain only literals
separately from other tuples and lists, which caused addi-
tional technical difficulty while implementing this compo-
nent.

5.4 Orchestration
In our prototype implementation, the validation process is
controlled by a shell script that coordinates and glues the
rest of the components. In particular, it uses the QuickCheck
generator to synthesise random programs, invokes the ref-
erence implementation to obtain the expected result, does
the conversions to obtain representations to be fed into the

5
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formal semantics inK and Coq, invokes the semantics, and fi-
nally, uses the Erlang interpreter to compare the results. The
test system can be parametrized to use hand-written tests or
randomly generated tests, and produces statistics that char-
acterise failing cases by labelling them (e.g. errors/incorrect
results in either semantics). In the long term we want to
implement the entire orchestration to provide full support
for property-based testing, including thoroughly designed
shrinking for random programs and a refined correctness
property on the comparison of results.

6 Evaluation
This style of testing pointed out errors in the Core Erlang
semantics, which were not encountered before by using only
our test suite. Specifically, the most serious error we discov-
ered, is that value lists are only partially supported (only in
let, case and try expressions). This error was highlighted
specifically by using unoptimised translated Core Erlang
code (from Erlang).

Moreover, in case of try expressions in Core Erlang, al-
though the language specification [7] explicitly states that
three variables are bound in the catch clause in Erlang im-
plementations, this was not always the case; sometimes only
two handler variables were present. However, the language
specification was written in 2004, so this information can be
outdated, thus we need to investigate this issue.

In addition, we also found some minor faults in both of
the semantics, e.g. some essential built-in functions were
missing or their names were spelled wrongly, and some list
operations worked on improper lists too, which they should
not.

In terms of execution speed, while validating the seman-
tics, the evaluation with our Coq tactic had the longest exe-
cution time (the three most complex examples were executed
over four minutes in our test suite, even with the optimisa-
tion mentioned in Section 4.2). As Blazy and Leroy [4] men-
tioned, Coq is not the most efficient tool for executing speci-
fications written using inductive types, even with our tactic.
To simplify the Coq execution (i.e. the depth-first search), we
could modify our semantics in a pretty-big-step way [8] to
reduce the number of applicable constructors while we could
design an equivalent interpreter or a functional big-step se-
mantics [24] to increase the evaluation speed. Alternatively,
to speed up our tactic, additional helper functions and theo-
rems about evaluating specific expressions can be introduced,
as mentioned in Section 4.2.

6.1 Coverage
The efficiency of our testing can be measured by the coverage
of the semantics; the greater the code (rule) coverage, the
more efficient the testing can be considered.

Currently, we measure the code coverage of our testing
approach only informally with our hand-written test suites

and the language elements supported by the random pro-
gram generation (and the corresponding attribute grammar).
Therefore, before writing a final paper about this research
we will measure the line and rule coverage of our semantics
with dedicated tools.

We also plan to investigate the coverage of the translated
code from Erlang in the Core Erlang semantics, i.e. which
Core Erlang expressions cannot be generated by the trans-
lation from Erlang. To tests these expressions, we plan to
extend our test suite for the Core Erlang semantics.

7 Conclusion and Future Work
In conclusion, in this paper, we described an approach of val-
idating formal semantics by testing them against each other
and the reference implementation in a property-based way
which is based on the combination of well-known semantics
validation approaches. We also discussed our prototype im-
plementation of testing Erlang and Core Erlang semantics
including the necessary adjustments we made to execute our
semantics (especially, the big-step semantics of sequential
Core Erlang in Coq). Then we briefly summarised the tech-
nical details of our prototype, and evaluated our preliminary
results.

In the near future, before submitting a full paper about
this research, we will further increase and formally measure
the coverage of our testing approach. We also plan to design
an alternate semantics in Coq, which can be executed more
efficiently.

Apart from these short-term goals, we also have some
medium-term goals:

• Simplifying the evaluation tactic in Coq
• Shrinking incorrectly evaluated input programs
• Comparing the side effects produced by the semantics

and the reference implementation beside the result
values

• The adjustment of the value list concepts in the Core
Erlang semantics

• Implementing the orchestration in a concurrent way,
to shorten execution time

Our long term plans also include the formalisation of Erlang
and the concurrent parts of Core Erlang in Coq.
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ABSTRACT
ScottCheck is a verifier for text adventure games based on symbolic
execution. Its implementation is based on an idiomatic concrete
interpreter written in Haskell. Even though Haskell is a general-
purpose functional language, the changes required to transform it
into a symbolic interpreter turned out to be fairly small.
ACM Reference Format:
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1 INTRODUCTION
Interactive fiction is a format of computer programs that can broadly
be described as a textual back-and-forth between a human player
and an automated world simulation. A subset of them, text adven-
ture games, are characterized by having explicit win and failure
states, tracing their lineage back to 1976’s Colossal Cave Adventure.
The usual implementation strategy of text adventure games is to
use a domain-specific language for describing the specifics of indi-
vidual game worlds, and then create interpreters for this language,
targeting whatever platforms the game is to be released on.

An adventure game is essentially a puzzle, and a puzzle that has
no solution can be a frustrating experience for the player. Starting
from the initial state, there should always be a way to get to a
winning state.

We can use symbolic execution of the game world description
to check if there is a sequence of player inputs that result in a win-
ning end state. One approach is to take an off-the-shelf interpreter,
and compile it into symbolically executed code: our interest in this
topic was sparked by previous work[3] in which the scottfree
interpreter, itself is written in C, is compiled with SymCC[6] into
symbolic form. Another possible approach would be to implement
the interpreter in an environment with ambient symbolic evalua-
tion, such as Rosette[8].

Our work explores the low-tech approach of using the general-
purpose functional programming language Haskell, implementing a
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concrete interpreter idiomatically, and then changing it just enough
to be able to execute it symbolically and pass it to an SMT solver
to find input that satisfies the winning condition.

2 STRUCTURE AND INTERPRETATION OF
ADVENTURE GAMES

Following previous work in [3], we focus on the format of Scott
Adams’s text adventure games, originating from his first game,
1978’s Adventureland. The game world is modeled as a space of
discrete rooms, connected with each other in the six cardinal direc-
tions. Each room comes with a textual description to present to the
player. The rooms also contain items, which are objects the player
can manipulate. Most notably, items can be moved around either
directly by the player (by taking them, moving to another room
and dropping them), or by various world simulation events.

Beside the data describing rooms, their connections, items, and
their starting locations, the game files also contain scripts in a
simple language. Each script line consists of a set of conditions (e.g.
is item #4 currently in the same room as the player character?) and a
sequence of instructions (e.g. swap locations of items #5 and #2).

Player input is processed by parsing against two small dictio-
naries of verbs and nouns. Script lines can either be automatic,
executing in every turn regardless of user input; or keyed to some
combination of a verb and a noun index.

Unlike more elaborate winning conditions in other games, the
Scott Adams adventure games all uniformly use the concept of
collecting treasure items as the goal. One room is marked as the
treasury; the SCORE command shows the current number of trea-
sures in the treasury, and finishes the game if it is equal to the
number of all treasure items in the game.

3 MONAD TRANSFORMERS FOR CONCRETE
INTERPRETERS

The concrete interpreter is based on the traditional stack of monad
transformers[4]: a Reader giving access to the world description,
a Writer collecting the output messages, and a State consisting of
the current item locations, including the location of the player-
controlled avatar:
type GameData = ...

data St = St
{currentRoom :: Int16
, itemLocations :: Array Int16 Int16
}

type Engine = ReaderT GameData (WriterT [String ] (State S))
Each turn of the game takes three steps: world simulation, user

input, then response to the player input. This means the interaction
model itself is monadic as well: the player can see all previous
output before deciding on their next input. We implement this
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structure by doing the first and the third step inside Engine. This
means we have a purely functional core, with an external, thin layer
of IO only to take care of showing output and getting input.

4 SYMBOLIC EXECUTION AND PUZZLE
TESTING

To turn the interpreter into a solver, we change it from concrete to
symbolic execution. SBV[2] is a Haskell library providing types that
support symbolic evaluation. The resulting symbolic constraints are
then passed to an SMT solver; in our case, we use the open-source
solver Z3[1].

This code transformation is surprisingly straightforward and
painless. The solver-specific parts begin only after the game data has
been read and parsed; we can keep the parser as-is. The interpreter
state is changed to use SBV’s symbolic types (prefixed with an S):

data S = S
{currentRoom :: SInt16
, itemLocations :: Array Int16 SInt16
} deriving (Generic,Mergeable)

Here, SInt16 is SBV’s 16-bit integer type. itemLocations is still
a static array of symbolic values, since the set of items remains
constant during play-through for a given game: only the locations
of items (i.e. the elements of the array) change. We let data-generic
instance deriving[5] write the instance for SBV’s Mergeable type-
class; this typeclass enables branching in symbolic results, which
is crucial when interpreting conditions that check item locations.

Arithmetic works without change, since SBV types implement
the Num typeclass. Because in standard Haskell, operators like ==

are not overloaded in their return type, the Boolean operators have
SBV-specific versions.

This takes care of data. For control, we can write Mergeable
instances for ReaderT , WriterT and State since these are all just
typed wrappers around bog-standard function types. This allows
us to define symbolic versions of combinators like when, or case
with literal matches. Thus, we can build up the kit that enables
writing quite straightforward monadic code, just by replacing some
combinators with their symbolic counterpart. Here’s an example of
the code that runs a list of instruction codes in the context of their
conditions; even without seeing any other definitions, it should be
fairly straightforward what it does:

execIf :: [SCondition] → [SInstr ] → Engine SBool
execIf conds instrs = do
(oks, args) ← partitionEithers ⟨$⟩mapM evalCond conds
let ok = sAnd oks
sWhen ok (exec args instrs)
return ok

5 NOTIONS OF ADVENTURING AND
MONADS

At this point, we have a symbolic interpreter which can consume
user input line by line:

stepPlayer :: (SInt16, SInt16) → Engine (SMaybe Bool)
stepPlayer (verb, noun) = do

perform (verb, noun)
isFinished

The question then is, how do we keep turning the crank of this
and let the state evolve for more and more lines of symbolic input,
until we get an sJust sTrue result, meaning the player has won the
game? SBV’s monadic Query mode provides a way to do this incre-
mentally: at each step, fresh free symbolic variables standing for
the next input line are fed to the state transition function, yielding
a new symbolic state and return value. Then, satisfiability of this
new return value being sJust sTrue is checked with the SMT solver;
if there’s no solution yet, we keep this process going, letting the
next stepPlayer call create further constraints. Furthermore, since
the Query monad allows IO, we can recover the behavior of our
original, concrete interpreter. Instead of using free variables for the
input at each step, we read and parse the player’s input into SInt16
variables containing concrete values. Since the only potentially
symbolic arguments to the Engine are the player inputs, if those are
concrete, everything further downstream will also be concrete. In
particular, the output messages, while their type is SString, contain
concrete values which can be extracted into the standard String
type for printing. This allows the same interpreter implementation
to be used for both solving and interactive playing.

6 CONCLUSION
The full code of our symbolic Scott Adams adventure game in-
terpreter is available under the terms of the MIT license from
https://github.com/gergoerdi/scottcheck.

The combination of Haskell, a general-purpose functional lan-
guage, and SBV, a library for SMT-based verification, allowed rapid
development of a symbolic interpreter with acceptable real-world
performance: ScottCheck was written from scratch in a single week,
by an author previously unfamiliar with symbolic execution tech-
niques. In terms of performance, with the Z3 SMT solver backend,
it can successfully find a solution (consisting of 14 steps) for the
fourth tutorial adventure from the ScottKit suite[7] in three and a
half minutes. Further testing with more complicated adventures
remains future work.
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ABSTRACT
This article presents the implementation of a visualization tool for
designing and debugging state machines in FSM—a domain specific
language for the automata theory classroom. The FSM visualization
tool is implemented in Racket. At the heart of the implementation
is the use of object-oriented design patterns employing hallmarks of
functional programming such as pattern matching and higher-order
functions. The use of the Builder pattern to implement buttons and
input fields, the use of the Factory Method pattern to implement
scroll bars, and the use of the Builder and Adapter patterns to
implement a foreign library interface are described. The implemen-
tation of each of these design patterns is summarized to enable
their adoption by programmers at large.

CCS CONCEPTS
• Software and its engineering→ Integrated and visual devel-
opment environments; • Theory of computation→ Formal
languages and automata theory; • General and reference→
Design.
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1 INTRODUCTION
It is not uncommon for Computer Science students to feel apathy
towards the material covered in an Automata Theory and Formal
Languages course. Computer Science students, trained to program,
find such a course very challenging and sometimes even overwhelm-
ing. This occurs because Automata Theory courses are typically
taught in a manner that goes against the grain of what students
learned. That is, students are asked to solve problems without being
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able to test and get immediate feedback on their solutions–typically
provided by a compiler or an interpreter. Such immediate feed-
back is not received when students are asked to develop a state
machine by pencil and paper. More often than not, this leads to
buggy solutions, low grades, and frustration.

To reduce apathy and frustration, a domain-specific language
(DSL), FSM (Functional State Machines), was developed [14]. This
DSL (embedded in Racket) allows students to implement finite-state
machines. It provides students with:
• Constructors for deterministic finite state machines, non-

deterministic finite state machines, pushdown automatons,
and Turing machines.
• Selectors to access the states, alphabet(s), starting state, final

states, and transition rules.
• Random testing facilities that provide students (and instruc-

tors) with immediate feedback.
• A tailor-made error-messaging system that provides students

with clear feedback messages [15].
By using FSM, a student is able to debug a machine before submit-
ting it for grading. Furthermore, it allows a student to implement
the machine-building algorithms they develop as part of their con-
structive proofs. In this manner, students can test their algorithms
before attempting to complete a formal proof. The result has been
that students experience less frustration and earn higher marks.

Although apathy towards Automata Theory is reduced, many
students feel that they need a tool to visualize machine execution.
Students quickly started using visualization tools like JFLAP [22],
jFAST [26], and FSA [9]. They find these tools too distracting given
that these tools require students to create their own state diagrams.
Furthermore, they found themselves having to create two imple-
mentations: one in FSM and one for the foreign visualization tool.
This led to the development of the FSM visualization tool. The FSM
visualization tool is seamlessly integrated into the DSL and allows
students to immediately visualize and edit any defined machine.
Instead of focusing on developing state diagrams, the FSM visualiza-
tion tool allows students to focus on the design of their machines.

The development of the FSM visualization tool proved to be an
interesting exercise that led to the extensive use of design patterns
typically associated with object-oriented (OO) programming. This
article describes how design patterns are used in the implementa-
tion of the visualization tool. It is, however, not an implementation
manual. Instead, this article describes how different design patterns
were used and implemented aiming to avoid the need for future FSM
developers to perform major code rewrites. The article is organized
as follows. Section 2 provides a brief overview of the OO design
patterns discussed in this article. Section 3 provides an overview of
FSM and the FSM visualization tool. Section 4 describes the design of
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buttons using the Builder pattern. Section 5 describes the implemen-
tation of input fields using the Builder pattern. Section 6 describes
the implementation of scroll bars using the Factory Method pattern.
Section 7 describes the implementation of the interface with the
Graphviz library (to automatically create state diagrams) using the
Builder and Adapter patterns. Section 8 summarizes the pattern im-
plementations developed. Section 9 discusses related work. Finally,
Section 10 presents concluding remarks and directions for future
work.

2 OVERVIEW OF OO DESIGN PATTERNS
Design patterns are used to write code that is easy to maintain and
refine [10]. They are commonly associated with OO programming,
but exist in other paradigms. In essence, a design pattern captures
a recurring design problem and its solution. Design patterns are
popular because they provide programmers with flexibility, reusabil-
ity, a shared vocabulary, and capture best practices. In addition,
using design patterns help improve program documentation and
maintenance.

Design patterns are generally categorized as creational, struc-
tural, or behavioral. Creational patterns are used to design the
creation of objects. Structural patterns use inheritance to com-
pose implementations or interfaces. Behavioral patterns are used
to design patterns of communication between objects. This article
focuses on the use of 2 creational patterns and 1 structural pattern
in a functional programming setting. The creational patterns are
the Factory Method pattern and the Builder pattern. The structural
pattern is the Adapter pattern.

The Builder pattern is used when object creation is complex
and the objects created may have different representations. It sepa-
rates object construction from its implementation. A class delegates
the construction of an object to a Builder object, and each possi-
ble representation of an object is captured by a different Builder.
For example, the Builder pattern is used to create an RTF (Rich
Text Format) document converter. This design pattern allows the
programmer to add new conversion types to the builder without
affecting the original class structure [5]. In Scala, the Builder pat-
tern is integrated into the language and is used to allow combiner
methods to build new collections such as map [25].

The Factory Method pattern defines an interface for creating
an object and defers instantiation to subclasses. In essence, it en-
capsulates the instantiation of concrete types. The Factory Method
selects a class based on the application context and then instanti-
ate the selected class. It returns this instantiation as an instance
of the parent class type. The Factory Method pattern is used, for
example, to create an abstraction over DAOs (Data Access Objects)
in an ORM (Object Relational Mapping System) [18] to manage
database connections. The Factory Method pattern is also used in
java.net.URLStreamHandlerFactory, which abstracts over the
protocol type (e.g., http, ftp) [16].

The Adapter pattern is used to convert what a class exposes to
what is expected by another class. In essence, it adapts an interface
into another (expected) interface. This allows classes to work to-
gether despite interface incompatibilities. These classes are able to
work together without modifying the original classes [5]. Without
taking the analogy too far, one may say that incompatible objects

are fooled into thinking that they are directly working together. For
example, an adapter is used to bridge a graphical-based program
support and a third-party text program [5].

3 FSM OVERVIEW
FSM is a DSL for programming state machines and grammars. It is ex-
tensively used in Seton Hall’s upper-level undergraduate automata
theory and formal languages course. This section first briefly out-
lines the classical definitions of finite-state automatons, pushdown
automatons, and Turing machines. After this, the language support
for state-based machines is outlined. To make the use of FSM con-
crete a small example is presented. Finally, the FSM visualization
tool is outlined.

A finite-state automaton (fsa), M, is a quintuple:
K𝑀: The set of states
Σ𝑀: The set of input symbols
S𝑀: The starting state ∈ K𝑀
F𝑀: The set of final states ⊆ K𝑀
𝛿𝑀: The set of transitions: (P 𝜎 Q),

where 𝜎 ∈ {Σ𝑀 ∪ {𝜖}} ∧ P, Q ∈ K𝑀

We say that M is deterministic if 𝛿M is a function. Otherwise, M is
nondeterministic. Each transition rule, (P 𝜎 Q), moves M from state
P to state Q by consuming 𝜎 from and moving right on the input
tape.

A pushdown automata (pda), P, is a sextuple:
K𝑃: The set of states
Σ𝑃: The set of input symbols
Γ𝑃: The set of stack symbols
S𝑃: The starting state ∈ K𝑀
F𝑃: The set of final states ⊆ K_𝑀
𝛿𝑃: The set of transitions: ((R 𝜎 𝜌) (Q 𝜚)),

where 𝜎 ∈ {Σ𝑃 ∪ {𝜖}} ∧ R, Q ∈ K𝑃 ∧ 𝜌, 𝜚 ∈ Γ∗

Unlike an fsa, P has a stack that is used as memory. Each transition
rule, ((R 𝜎𝜌) (Q 𝜚 )), moves P from state R to state Q by consuming
𝜎 , popping 𝜌 , pushing 𝜚 , and moving right on the input tape.

A Turing machine (tm), T, is a quintuple:
K𝑇 : The set of states
Σ𝑇 : The set of input symbols
S𝑇 : The starting state ∈ K𝑀
F𝑇 : The set of final states ⊆ K_𝑀
𝛿𝑇 : The set of transitions: ((P 𝜎) (Q 𝜐)),
where 𝜎 ∈ Σ𝑇 ∪ 𝜖 ∧ P, Q ∈ K𝑇 ∧ 𝜐 ∈ {𝜎 | → | ←}

Unlike a pda, T does not have a stack. Each transition rule, ((P 𝜎) (Q
𝜐)), moves T from state P to state Q by consuming 𝜎 and performing
action 𝜐. The action is either moving left on the tape, moving right
on the tape, or writing to the current position on the tape.

The input tape of a state machine, N, starts with, w, a word to
process consisting of zero or more elements in Σ𝑁 . We say that N
accepts w if there exists a sequence of transitions that take N from
S𝑁 to f ∈ F𝑁 . For an fsa and a pda all the input must be consumed.
In addition, for a pda the stack must be empty. Otherwise, N rejects
w.

FSM uses the definitions displayed in Figure 1 to represent ma-
chines. Briefly, states are represented by symbols and letters are
represented by the lowercase characters in [a..z]. Input and stack
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state → symbol

lttr → [a..z]

alphabet → (lttr∗)

word → (lttr∗)

trans → fsa-rule | pda-rule | tm-rule

fsa-rule → (state {symbol | 𝜖} state)

pda-rule → ((state letter (lttr∗))(state (lttr∗)))

tm-rule → ((state lttr) (state action))

action → lttr | ← | →

config → fsa-config | pda-config | tm-config

fsa-config → (word state)

pda-config → (word (word∗) state)

tm-config → (word natnum state)

result → accept | reject | 𝜖

trace → (append (config∗) (result))

sm → fsa-interface | pda-interface | tm-interface

Figure 1: FSM Definitions for Machine Representation.

alphabets, as well as input words, are represented using a list of
letters. A transition is any type of machine rule. A finite state au-
tomaton (deterministic or nondeterministic) rule is a triple with a
source state, a consume item (a lttr or, 𝜖 , empty), and a destina-
tion state. A pushdown automaton rule is a triple and a double.
The triple contains a source state, a consume item, and a list of
letters to pop off the stack. The double contains a destination state
and a list of letters to push onto the stack. A Turing machine rule
consists of two doubles. The first double is a source state and a con-
sume item. The second double is a destination state and an action.
An action represents either a write, a move head left one space, or a
move head right one space. A machine configuration, config, is a
list representing a machine’s state. For an fsa, it is a list containing
the unconsumed input and a state. For a pda, it is a list containing
the unconsumed input, the stack, and a state. For a Turing ma-
chine, it is a list containing the input tape, the head’s position on
the tape, and a state. The result of applying a machine to a word
is either accept, reject or 𝜖1. The trace of a computation is a list
of configurations ending with a result. Finally, a state machine,
sm, is an interface.
1The result is empty only for Turing machines that do not decide a language.

Based on these definitions, the FSM’s state machine interface is
described as follows2:
• make-dfa: (state+) alphabet state (state∗) transitions ['no-

dead]→ dfa
Purpose: To construct a deterministic finite-state automaton.
• make-ndfa: (state+) alphabet state (state∗) transitions→

ndfa
Purpose: To construct an nondeterministic finite-state au-
tomaton.
• make-pda: (state+) alphabet alphabet state (state∗)) transi-

tions→ pda
Purpose: To construct a Pushdown Automaton.
• make-tm: (state+) alphabet state (state∗) transitions→ tm

Purpose: To construct a Turing machine.
• sm-getstates: sm→ (state+)

Purpose: To access the given machine’s set of states
• sm-getalphabet: sm→ alphabet

Purpose: To access the given machine’s alphabet
• sm-getstart: sm→ state

Purpose: To access the given machine’s starting state
• sm-getfinals: sm→ (state∗)

Purpose: To access the given machine’s set of final states
• sm-getrules: sm→ transitions

Purpose: To access the given machine’s transitions
• sm-apply: sm Word→ Result

Purpose: To apply the given machine to the given word
• sm-showtransitions: sm Word→ trace

Purpose: To return the trace of applying the given sm to the
given word
• sm-test: sm natnum→ (word result)∗

Purpose: To return the results obtained from applying the
given machine to the given number of randomly generated
words
• sm-visualize: sm [(state predicate)∗]→ (void)

Purpose: To visualize the execution of the given machine
and the value of the optional invariant state-predicates as a
computation progresses.

To illustrate the use of FSM consider implementing a pda to
decide:

L = {wcw𝑟 | w ∈ (a, b)∗}

The FSM code for such a pda is3:
(define P (make-ndpda '(S M N F)

'(a b c)
'(a b)
'S
'(F)
‵(((S ,EMP ,EMP) (M ,EMP))

((M a ,EMP) (M (a)))
((M b ,EMP) (M (b)))
((M c ,EMP) (N ,EMP))
((N a (a)) (N ,EMP)
((N b (b)) (N ,EMP))
((N ,EMP ,EMP) (F ,EMP)))))

2The dfa constructor takes an optional symbol, 'no-dead, to prevent the automatic
addition of a dead state.
3EMP is FSM’s constant for empty.
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(a) Control View of P. (b) Graph View of P.

Figure 2: Visualization Views for P.

(check-expect (sm-apply P '(c)) 'accept)
(check-expect (sm-apply P '(a b c b a)) 'accept)
(check-expect (sm-apply P '()) 'reject)
(check-expect (sm-apply P '(a b c a a)) 'reject)

P has four states: (S M N F). Its input alphabet is (a b c) and its
stack alphabet is (a b). The starting state is S and the only final state
is F. The transitions rules move the machine nondeterministically
from S to M. In M, P pushes the read as and bs onto the stack until
it encounters a c and moves to N. In N, P pops an element off the
stack as long as it matches the read element. Nondeterministically,
P moves from N to F. Upon reaching F, P accepts if all the input is
consumed and the stack is empty. Otherwise, P rejects. The unit
tests illustrate the expected behavior of P.

To invoke the FSM visualization tool on P, we may use:
(sm-visualize P)

The FSM visualization tool is launched with P preloaded with no
state invariants specified. Snapshots of P in the visualization tool are
displayed in Figure 2. In Figure 2a, the control view of P is displayed.
In Figure 2b, the state diagram view of P is displayed. Regardless of
the view, the right column has input fields and buttons that allows
the user to add to or remove elements from each component of the
sextuple. The left column displays the input and stack alphabets and
allows users to run the machine one step at a time using forward and
backwards buttons, to render their edited machine as executable
FSM code using code generation button, and to provide input to the
machine using an input field and buttons to add to or clear the input
tape. In the center, the top displays the input tape. The consumed
input is faded out while the unconsumed input is not faded out.
The bottom center displays the transition rules and highlights the
last rule used. The center displays the machine and the stack. In
Figure 2a, the states are organized in a circle, a solid arrow indicates
the current state, and a dashed arrow indicates the previous state.
The label of the solid arrow is the last consumed input element. The
starting state is contained in a single circle while final states are
contained in double circles. In Figure 2b, the states are organized
as a graph or state diagram. The edges represent the transition
relation. In both views the top-left corner has three circle buttons.
The ? button takes the user to the FSM documentation page. The

CB button toggles the colors for colorblind users. The DGR button
flips the view from control view to graph view and vice versa.

Users find the Gen Code button extremely useful. This button
generates the constructor code in FSM for that machine currently
visualized. This constructor is saved in a separate file. In this manner,
users can save the current state of their work and return to it later.
This includes machines that do not build successfully. In this case,
the constructor code contains a comment indicating that the defined
machines does not successfully build.

Depending on the type of machine being visualized, different
features are added to the graphic. When visualizing a pushdown
automaton, for example, the stack that is rendered on the right hand
side of the screen and the stack alphabet, Γ, is displayed in the left
column as shown in Figure 2b. Neither of these are displayed when
visualizing a finite state automaton or a Turing machine. When a
Turing machine is visualized, the tape displays the position of the
head and an optional set tape position button and input field are
made available to set the starting position on the tape.

Finally, in the graph view of a machine, each edge is an arrow
that may have one or more labels. Each label represents a transition
rule between the two nodes. For example, the arc on N in Figure 2b
has two labels. The label [a (a) 𝜖] corresponds to the rule ((N a
(a)) (N 𝜖)). If invariants are provided, in either view, an arrow
indicating the current state turns green when the invariant holds
and turns red when the invariant does not hold.

Figure 3a displays the control view of a finite state automaton.
Observe that there is no stack nor stack alphabet displayed. The
arrow indicating the current state, A, is green indicating that A’s
invariant holds in the current machine’s configuration. Figure 3b
displays the control view of a Turing machine. Observe that there is
no stack nor stack alphabet displayed. Instead, the right column has
the input field and the button to set the head’s position on the tape
in the TAPE POSN section. There is also an input field and a button
to set the accept state when a Turing machine decides a language.
Further observe, that the current position of the head is displayed
by highlighting in red the contents in the input tape at the current
position (an a in position 3 in this case). The tape position is also
displayed TAPE POSN section. This is especially useful when the
current tape position is blank. Finally, it is worth noting that when
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(a) Control View of a Finite State Machine with A’s Invariant Holding. (b) Control View of a Turing Machine with S’s Invariant Failing.

Figure 3: Finite State Automaton and Turing Machine Visualizations.

a Turing machine decides a language, the accept state is displayed
inside a triple circle. When a Turing machine does not decide a
language there is no final state enclosed in a triple circle.

4 BUTTONS
4.1 General Design
Buttons are an important aspect of many visualization GUIs because
they allow the user to interact with the screen. Buttons in the FSM
visualization tool are designed to behave like HTML5 buttons [12].
This means that buttons are responsive and have a color, text, size,
position, and an on-click function. Being responsive means that
the button must alert the user when an action is preformed. For
instance, a button changes its shade on mouse events. There is an
on-click function that defines the behavior of the button. This
function is invoked when the button is clicked. For instance, an
ADD button may add the contents of a input field to an internal data
structure.

In the FSM visualization tool, a button is represented using the
following structure:

(struct
button (width height text mode

color clickColor fontSize rounded?
active location onClick))

The structure definition automatically provides the programmer
with a constructor, button, and with selectors for each field (e.g.,
button-onClick returns the function that is invoked when the
button is clicked). The width and the height fields define the dimen-
sions of the button. The text field is the label of the button, and mode
is a symbol used to decide if the button is rendered outlined, solid,
or transparent. The color field represents the color that is assigned
to the button, while the clickColor is used to briefly highlight the
button pressed, similar to how SCSS’s4 lighten function works [23].
The fontSize field specifies the size of the text displayed on the
button, while the rounded? field is a Boolean that determines if
the button should be a rectangle or a circle. The active field is a
Boolean used to determine if the button is in an active state and
the location field specifies the position on the screen at which
4Sassy CSS or Sassy Cascading Style Sheets is a scripting language.

to render the button. Last, the onClick field is the function that
defines the behavior of the button. A button to add a state to a
machine may (initially) be implemented as follows:

(define ADD-STATE
(button 70

25
"Add"
"solid"
CONTROLLER-BUTTON-COLOR
CONTROLLER-BUTTON-COLOR
18
#f
#f
(posn (- WIDTH 150) (- CONTROL-BOX-H 25))
NULL-FUNCTION))

The NULL-FUNCTION performs no action and returns (void). This
(default) value for the onClick field allows a programmer to ex-
periment with the other features of a button before detailing its
behavior.

A button to remove a state from a machine may be implemented
as follows:

(define REMOVE-STATE
(button 70

25
"Remove"
"solid"
CONTROLLER-BUTTON-COLOR
CONTROLLER-BUTTON-COLOR
18
#f
#f
(posn (- WIDTH 110) (- CONTROL-BOX-H 25))
NULL-FUNCTION))

Observe that many of the arguments to the constructor are the same
as those used for the ADD-STATE button. This strongly suggests that
an abstraction is needed.
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4.2 A Specialized Builder Pattern
In many GUIs, as exemplified above, the fields of different buttons
are the same. This is a problem, because mundane repetitions are
error-prone. This is a situation where an abstraction is ideally em-
ployed. The abstraction needs to identify the required and optional
fields. When a button is constructed, the programmer only needs
to provide the values for the required fields and for the optional
fields to customize. A default value is used for every optional value
not provided. This is precisely well-suited for the Builder pattern
[5].

The classical builder pattern in an OO language creates a builder
object. This object has a build method that allows you to create
complex objects by separating the construction from its represen-
tation. Simplifications are achieved by allowing for the reduction
of arguments that need to be provided. Default values are used
for arguments not provided. The details of the default values are
hidden by the implementation. Polymorphism allows to distinguish
between different constructors to specialize different subsets of
fields.

This section describes a variant of the Builder pattern developed
for use with buttons and input fields. In contrast to the classical
Builder pattern, this variant takes advantage of keywords, a Racket
feature not present in many OO languages, to define a constructor
that allows the programmer to choose which fields to specialize
and which fields are initialized to default values.

A keyword argument is a function parameter that consists of
an identifier followed by a expression [4]. One of the benefits of
using keyword arguments is that they do not define a total ordering
for the arguments provided. For instance, consider the following
function:

(define (builder #:param1 [param1 #t]
#:param2 [param2 #f])

(and param1 param2))

This builder function has two keyword parameters: param1 and
param2. Their default values, respectively, are true and false. A
programmer may use builder, for example, in the following ways:

(builder #:param2 #f
#:param1 #f)

This expression provides false as the argument for both parameters
and returns false.

(builder #:param2 #t)

This expression provides true as the argument for param2 and uses
the default value for param1. The expression evaluates to true.

(builder)

This expression provides no arguments and both parameters are
initialized to their default values. The expression evaluates to false.

Keyword arguments provide programmers with the ability to
define constructors that only require values for fields that have
to be specialized. This is useful to construct GUI buttons. In the
FSM visualization tool, buttons only require the dimensions and the
position of the button. All other button fields have default values
that a programmer may customize. Using keyword arguments, the
button builder may be defined as follows:
(define (button-builder

width height loc

#:text[text ""]
#:color[color CTRL-BUTTON-COLOR]
#:fntsize[size 18]
#:round?[round #f]
#:func[func NULL-FUNCTION]
#:style[style "solid"])

(button width height text style
color color size round
#f loc func))

This definition states that the width, height, and loc are required
and do not have a default value. All the other parameters are op-
tional and have default values.

The job of an FSM developer is now simplified. For example, the
ADD-STATE and REMOVE-STATE buttons above may now be defined
as follows:

(define ADD-STATE
(button-builder

70
25
(posn (- WIDTH 150) (- CONTROL-BOX-H 25))
#:text "Add"))

(define REMOVE-STATE
(button-builder

70
25
(posn (- WIDTH 110) (- CONTROL-BOX-H 25))
#:text "Remove"))

Observe that only 1, not 6, customizable button characteristics need
are provided.

5 INPUT FIELDS
Like buttons, input fields have a similar representation to input
fields in HTML. This means that they have a background color, width,
height, and position [13]. Like buttons, they are also reactive to
allow for user interaction and contain two color fields in order to
accommodate the tint factor. A textbox for an input field is defined
as follows:
(struct textbox (width height color orColor

text charLength loc active func)

Using the builder pattern is a good design option for representing
the above object in a OO language. Using our keyword-based builder
pattern we can achieve the same effect. The textbox Builder is:
(define (textbox-builder

width height loc
#:text[text ""]
#:color[color CTRL-TBOX-COLOR]
#:orColor[orColor CTRL-TBOX-COLOR]
#:limit[limit 18]
#:active[round #f]
#:func[func NULL-FUNCTION])

(textbox width height color
orColor text limit
loc active func))

A sample text box may be constructed as follows:
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(make-textbox 150
25
(posn (- WIDTH 100) (- CONTROL-BOX-H 70))

#:limit 5
#:func addState)

Only two of six fields are customized: limit and func. The rest use
default values for text boxes.

It is worth noting that input-field text boxes contain a procedure.
This allows for an input field to respond to specified key strokes.
For instance, a user may simple hit Enter when done typing in an
input field.

6 SCROLL BARS
6.1 General Design
Scroll bars look deceptively simple, but do have some complexity
behind them. The scroll bar code, for example, needs to create an
appropriate rendering function. For example, the scroll bar for the
rules of a machine needs to create a rendering function for either
fsa, pda, or tm rules. This rendering function varies from one type
of machine to another given that rule types vary among machine
types.

Indeed, the most complex scroll bar in the FSM visualization tool
is the one that displays the machines rules. The complexity rises
from the varieties in machine rules. Recall that there are 3 types of
machine rules:

FSA: (_ _ _)
PDA: ((_ _ _) (_ _))
TM: ((_ _) (_ _))

The goal here is to build an interface that decouples the creation of
the rendering function from the type of machine rules and that is
scalable to new types of machines.

6.2 The Factory Pattern
The Factory Pattern is a good fit for this task. In an object oriented
setting, a programmer creates a scroll bar rendering factory that
returns the appropriate scroll bar rendering object. The appropriate
object is dependent on the type of machine rule. By exploiting
inheritance, the subclasses decide which type of scroll rendering
object to create.

In a functional programming setting pattern matching may be
used to achieve the same result. We may use pattern matching
as a substitute to implement a factory method and functions as a
substitute for child objects. Each branch in the pattern matching
function is responsible for constructing the appropriate rendering
function. Such a function looks like this:

(define (Scroll-Bar-factory lst-of-rules)
(match (car lst-of-rules)
[(list _ _ _)
(FSA-Scroll-Bar lst-of-rules)]
[(list (list _ _ _) (list _ _))
(PDA-Scroll-Bar lst-of-rules)]
[(list (list _ _) (list _ _))
(TM-Scroll-Bar lst-of-rules)]
[else (error "Invalid scroll bar factory")]))

Observe that the creation of the rendering function is decoupled
from the type of rules being processed. A programmer may now
call SB-rendering-factory regardless of the types of rules that
may be displayed. Furthermore, this design is scalable. When a
new machine type with a new transition rule type is added to FSM
the above factory function is easily refined with a new pattern
matching stanza.

To illustrate how our implementation mirrors a factory imple-
mentation in Java, the following is an outline of a scroll bar imple-
mentation:
abstract class ScrollBar {

abstract void render(RuleList rules); }

class FsaScrollBar extends ScrollBar {
void render(RuleList rules) { ... } }

class PdaScrollBar extends ScrollBar {
void render(RuleList rules) { ... } }

class TmScrollBar extends ScrollBar {
void render(RuleList rules) { ... } }

class ScrollBarFactory {
enum mType { DFA, NDFA, PDA, TM, LR }
public ScrollBar makeScrollBar(mType type) {
switch (type) {
case DFA:
case NDFA:

return new FsaScrollBar();
case PDA:

return new PdaScrollBar();
case TM: return new TmScrollBar();
default:

throw new InvalidFactoryType(type);}}

To call the scroll bar factory the user writes code like this:
ScrollBarFactory factory = new ScrollBarFactory();
ScrollBar s = factory.makeScrollBar(mType.DFA);
s.render(rules);

This example shows how functions may be used in lieu of classes to
achieve the same effect. In FSM, the factory returns a rule rendering
function.

7 GRAPHVIZ LIBRARY
7.1 General Design
The creation of the graph-based rendering of a machine (i.e., a state
diagram), as in Figure 2b, is implemented by interfacing with the
C-based Graphviz library [1, 6, 24]. Interfacing with Graphviz is
chosen because it is an open source visualization library that has
been successfully used by other DSLs in Racket language family
(e.g., [2]).

Graphviz uses the DOT language to represent graphs [8]. The fol-
lowing is a subset of the DOT language abstract grammar. Keywords
are in bold font. Square brackets indicate optional items.

graph ::= (graph | digraph) [ID] stmt-list
stmt-list ::= [ stmt [;] stmt-list ]
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Figure 4: dfa for L = (bb)∗.

stmt ::= node-stmt | edge-stmt | attr-stmt
attr-stmt ::= (graph | node | edge) attr-list

The machine graphic displayed in Figure 4 is implemented in the
DOT language as follows:
digraph G {

rankdir="LR";
Q1 [label="Q1", shape="circle", color="black"];
Q0 [label="Q0", shape="doublecircle",

color="forestgreen"];
Q0 -> Q0 [label="a", fontsize=15];
Q0 -> Q1 [label="b", fontsize=15];
Q1 -> Q1 [label="a", fontsize=15];
Q1 -> Q0 [label="b", fontsize=15];

}

The digraph’s name is G and rankdir sets the direction of the
graph layout: horizontally left to right. Nodes in the DOT language
are represented as a symbol (e.g. Q0), while edges are represented
as an arrow between two Nodes (e.g. Q0 -> Q1). Both nodes and
edges have attributes in square brackets. The goal of FSM’s interface
with the Graphviz library is to generate the above DOT language
representation of any machine built in FSM.

FSM requires specific formatting and customization in order to
properly generate DOT code. For example, each machine type has a
different syntax for transitions. Instead of having a custom DOT
code generation routine for each new machine type added to FSM
our goal is allow FSM developers to generate DOT code with little or
no knowledge of the DOT language. The general design idea is to
provide a graph generating function, graph->dot, that internally
(hidden from the user) generates DOT code and interfaces with
Graphviz.

In FSM, a graph is represented as a structure that has a name, a
list of nodes, a list of edges, and a color (for color-blind mode). It is
defined as follows:
(struct graph ([name]

[node-list #:mutable]
[edge-list #:mutable]
[color-blind #:mutable]) #:transparent)

To make the FSM visualization tool more responsive the node and
edge list are made mutable. This is required for faster rendering
times. Every time the user presses the next and previous buttons to
move forward or backward in the machine the graph needs to be
recreated, converted to the dot-language, converted to a PNG file,
and re-rendered on the screen. By using mutation we can essentially
skip step 1 by just mutating the previous structure we have.

FSM represents a node as a structure that contains 4 fields: name,
label, shape, and atb. The name and label represent the node

name and its label. The shape field defines the geometric shape to
render, and the atb is a map data structure that holds all the at-
tributes for the node (e.g., color and shape). The structure definition
is:
(struct node ([name]

[label]
[atb #:mutable]
[type]) #:transparent)

A node may be defined as follows:
(define Q3

(node 'Q3 'Q3 DEFAULT-NODE-ATTRS 'default))

The map structure allows to easily associate a Grahpviz attribute
with a value. For example, this is the default map used when a node
is created:
(define DEFAULT-NODE-ATTRS (hash

'color "black"
'shape "circle"))

The DOT code for Q3 is:
Q3 [label="Q3", shape="circle", color="black"];

In FSM, an edge is represented as structure that has 3 fields:
start-node (a symbol for the name of a node), end-node (a symbol
for the name of a node), and atb (a map for the edge’s attributes).
The structure definition for a an edge is:

(struct edge ([atb #:mutable]
[start-node #:mutable]
[end-node #:mutable]))

Constructing an edge labeled z between nodes A and B results in
the following DOT code:

A -> B [label="z", fontsize=15];

7.2 Builder Pattern
Section 3 discussed specialized Builder pattern used to create but-
tons and input fields. In this section, the classical Builder pattern
is used to construct a graph. The use of the builder pattern is well-
suited to hide the details of generating DOT code from a Racket
graph structure. By doing so we are able to hide the logic behind
generating DOT language code, allowing future developers to gener-
ate graphs without knowing the DOT language. Our builder interface
for graph building (not image generation) only provides 4 func-
tions to the programmer: graph-builder, add-edge, add-node,
and graph->dot.

In Rust, for example, a template to instantiate such a Builder is:
struct Graph {
name: String,
nodes: Vec<Node>,
edges: Vec<Edge>, }

impl Node {
fn new(name: &str) -> Self {...}
fn graph_to_dot(&mut self) -> PNG {...}
fn add_edge(&mut self, ...) -> &mut self {...}
fn add_node(&mut self, ...) -> &mut self {...} }

This allows the user, for example, to generate DOT code for a graph
as follows:
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let graph = Graph::new("Graph1")
.add_node("A")
.add_node("B")
.add_edge("A", "a", "B")
.graph_to_dot();

Observe that a key benefit obtained from using the builder pattern
is readability. Even a reader not familiar with Rust can understand
the above code.

In Racket, the builder pattern may be implemented using curry-
ing and message passing. The general skeleton for the graph builder
is implemented as follows:

(define (graph-builder name)
(define (add-node nname) ...)
(define (add-edge from label to) ...)
(define (graph->dot graph) ...)
(define (graph-object message)
(cond [(eq? 'add-node message) add-node]

[(eq? 'add-edge message) add-edge]
[(eq? 'gen-dot message) (graph->dot)]
[else (error ...)]))

graph-object)

Wrapper functions are written to present a cleaner interface to the
user as follows:

(define add-node graph nname)
((graph 'add-node) nname))

(define add-edge graph from label to)
((graph 'add-edge) from label to))

(define (add-node graph nname)
((graph 'add-node) nname))

(define (graph->dot graph)
(graph 'gen-dot))

The same graph generated using Rust above may now be gener-
ated in Racket in a remarkably similar manner:

(define graph (graph-builder 'dfa-graph))
(add-node graph 'A)
(add-node graph 'B)
(add-edge graph 'A 'a 'B)
(graph->dot graph)

The end result is that an FSM developer may now create a Graphviz
graph without burdening themselves to learn the DOT language.
This will reduce development time as support for new types of
machines (e.g., finite state transducers) are added to FSM.

7.3 Adapter Pattern
The function graph->dot must convert any type of FSM machine
into a DOT language representation. This means different FSM types
must be converted to a single type that is used to generate the
needed DOT syntax. This is a scenario that calls for using the adapter
pattern. The adapter pattern is used to create an interface where
the converters for each machine type are used together without
modifying the code for any of the converters.

The FSM graph adapter converts any machine’s rules into a string
representation for the label above an edge in the graph image
generated by Graphviz. In a functional programming setting, an
adapter may be implemented using higher-order functions and
pattern matching. The adapter takes as input any type of machine
and returns the converted rules as follows:

(define (graph-adapter a-machine)
(let ((rules (sm-getrules a-machine)))
(match (car rules)

[(list _ _ _)
(map fsa-rule->string rules)]
[(list (list _ _ _) (list _ _))
(map pda-rules->string rules)]
[(list _ _) (list _ _)
(map tm-rule->string rules)]
[else (error “Unsupported data type”)])))

Observe that a developer only needs to define how to generate a
string from a single rule. For this, there is no knowledge of the DOT
language required. Further observe that support for new types of
machines are easily added without requiring a major code rewrite.
All that is required is the addition of a new stanza in the match
expression. If two rule types are the same then Racket’s guard
clauses may be used to distinguish between them. For example,
consider a dfa variant where transitions consume numbers instead
of symbols. To handle this special cause we use a guarded pattern
as follows:

(define (graph-adapter a-machine)
(let ((rules (sm-getrules a-machine)))
(match (car rules)

[(list _ t _) #:when (number? t)
(map special-fsa-rule->string rules)]
[(list _ _ _)
(map fsa-rule->string rules)]
. . .)))

In a match clause :#when is used to guard a match. The expression
after :#when must hold in order to match. Its important to note
that the guarded match must be placed before an unguarded match.
Otherwise, control will never reach the guarded case.

It is worth observing that the adapter pattern is used throughout
the implementation of the FSM visualization tool. Another place
where the Adapter pattern is used is in the implementation of the
NEXT → and← PREV buttons to step through a computation. For
example, when using the control view of a machine the image
displayed (not generated using Graphviz) depends on the machine
type. In this case, the adapter matches the machine type to create
the image of the current machine configuration.

8 SUMMARY OF DESIGN PATTERN
IMPLEMENTATIONS

The practical lessons to take away from this article are the imple-
mentation strategies for the Builder, Factory Method, and Adapter
design patterns in a functional programming setting. This section
summarizes the implementation strategies and provides correspond-
ing function templates.
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For the Builder pattern first identify the fields that a programmer
may manipulate and provide wrapper methods for a clean interface.
A template for the Builder pattern is:

(define (X-builder p0 . . . p𝑛−1)
(define (handler-message0 . . .) . . .)

.

.

.

(define (handler-message𝑘−1 . . .) . . .)
(define (get-message message)

(cond [(eq? message message0)
handler-message0]

.

.

.

[(eq? message message𝑘−1)
handler-message𝑘−1]
[else (error . . .)]))

get-message)

;; the wrapper functions
(define (wf0 X . . .) ((X message0) . . .))

.

.

.

(define (wf𝑘−1 X . . .) ((X message𝑘−1) . . .))

For our specialized Builder, first define a structure that contains
all the needed fields. Then identify all fields that have a default value
and make them optional using keyword parameters. The template
for our specialized Builder pattern is:

(struct K (field0 . . . field𝑛−1))

(define (K-builder ;; required fields
field𝑑 field𝑐 . . . field𝑏
;; optional fields
#:fieldj[fieldj default-val𝑗]
#:fielde[fielde default-val𝑒]

.

.

.

#:fieldm[fieldm default-val𝑚])
(K field0 . . . field𝑛−1))

For the Factory Method pattern write a function distinguishes
between the varieties of the data to be processed. For each variety,
develop an auxiliary function that constructs the required instance
for the type. The template for the Factory Method pattern is:

(define (factory data)
(match . . .data). . .
[variety0 (create-variety1 . . .data. . .)]

.

.

.

[variety𝑖−1 (create-variety𝑖−1 . . .data. . .)]
[else (error ...)]))

For the Adapter first identify the data varieties that need to be
converted and writes an adapter function for each. Then develop a
main adapter function that dispatches on the variety that needs to
be converted. The template for the Adapter pattern is:

(define (type0-adapt . . .) . . .)
.
.
.

(define (type𝑘−1-adapt . . .) . . .)

(define (adapter data)
(match data
[type0 (type0-adapt . . .)]

.

.

.

[type𝑘−1 (type𝑘−1-adapt . . .)]
[else (error ...)]))

9 RELATED WORK
Design patterns in functional programming have sometimes been
categorized as unnecessary because they only exist due to miss-
ing features in a programming language [25]. Some functional
programmers may even argue that native language features like
higher-order functions, closures, and pattern matching are better
alternatives to design patterns. This, of course, ignores that design
patterns capture useful and recurring programming abstractions–
just like higher-order functions, closures, and pattern matching.
Whether polymorphism and inheritance or higher-order functions
and pattern matching is used to implement a design pattern, the
fact remains that an abstraction is always useful. First, it makes it
easier to communicate to others how a problem is solved–a major
goal of programming [3]. Second, as any abstraction, the use of
a design pattern facilitates future refinements without requiring
major code rewrites. In this article, three design patterns (Builder,
Factory Method, and Adapter) have been used to highlight these ad-
vantages. Design patterns are not used for the sake of using design
patterns just like higher-order functions are not used for the sake
of using higher-order functions. They are used to improve read-
ability and scalability and to make refinements easier. We exploit
functional programming features to provide similar design pattern
abstractions.

Many functional programmers, nonetheless, also argue that there
are many functional design patterns. For example, Category Theory
[11, 21] is considered a source of many design patterns in functional
programming. One of the functional programming languages that
has pioneered abstractions based on Category Theory is Haskell
[25]. For example, the Functor class abstracts the map operation.
For instance, the Functor class:

class Functor f where
fmap :: (a -> b) -> f a -> f b

may be used may be used to abstract map as follows:
instance Functor [] where
fmap f [] = []
fmap f (x:xs) = f x : fmap f xs

Observe that fmap is a map pattern that works on an arbitrary
Functor, not just lists. That is, it implements polymorphism. In the
same vein of abstraction, monads may also be used to implement
design patterns. For example, the remote monad design pattern
makes remote procedure calls more efficient [7]. Although the use
of abstractions based on Category Theory are now common in
many functional programming languages (e.g., Haskell [17], ML
[19], Racket[20] and Scala [25]), their use is not universal. Many
programmers find them too difficult to understand and maintain. We
hypothesize that starting with OO design patterns, as described in
this article, may serve as an effective stepping stone to abstractions
based on Category Theory.
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10 CONCLUDING REMARKS
This article describes how three OO design patterns are used in
a functional programming setting to simplify and to make more
readable code. The setting is the development of the FSM visual-
ization tool. This tool assists users to design and implement state
machines such as finite state machines, pushdown automata, and
Turing machines. Button and input field implementation benefit
from using a customized variant of the Builder pattern. The im-
plementation of scroll bars benefit from using the Factory Method
pattern. The implementation of an interface for the Graphviz li-
brary benefits from using the Builder and the Adapter patterns.
These design patterns exploit hallmarks of functional programming
like higher-order functions, pattern matching, and keyword pa-
rameters in lieu of objects, polymorphism, and inheritance. The
result is an implementation that developers find straightforward to
understand and refine. The article presents template for the design
patterns discussed to ease their use by others.

Future work includes exploiting the implementation based on
design patterns to extend FSM. Such extensions include support
for finite state transducers and multitape Turing machines. Future
work also includes extending the FSM visualization tool to support
the derivation of words using regular, context-free, and context-
sensitive grammars. This support will build on FSM’s interface for
grammars much like the current version of the FSM visualization
tool builds on FSM’s interface for state machines. Finally, future work
also includes developing elegant implementations in a functional
programming setting for all 23 OO design patterns.
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Abstract
When working with floating-point numbers, the result is
only an approximation of real value, and errors generated
by rounding or by the instability of the algorithms can lead
to incorrect results. We can?t affirm the accuracy of the es-
timated answer without the contribution of error analysis.
Interval techniques compute an interval range, with the as-
surance the answer belongs to this range. Using intervals for
the representation of real numbers, it is possible to control
the error propagation of rounding or truncation, between
others, in numerical computational procedures. Therefore,
intervals results carry with them the security of their quality.
In this paper, we describe a high accuracy tool ExInterval
which provides types and functions for Maximum Accuracy
Interval Arithmetic, following the standard convention IEEE
754 and 854 for single and double-precision, interval arith-
metic is a mathematical tool to solve problems related to
numerical errors.
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General Deforestation Using Fusion, Tupling and
Intensive Redundancy Analysis

Anonymous Author(s)

Abstract
Fusion and Tupling are well-known optimizations that have
been used by programmers, and also certain compilers over
the years. While each of these transformations can improve
performance when used independently, prior research has
suggested that combining them together can be beneficial,
as each transformation can help the other to optimize the
program further. Despite this, we’re not aware of any work
that provides empirical evidence to demonstrate the benefits
of this technique.

We propose a deforestation transformation that also com-
bines fusion, tupling, but along with a novel redundancy
analysis, and which is guaranteed to terminate and may
be incorporated in compilers. Redundancy analysis cleans
up some of the artifacts introduced by the fusion and tu-
pling, and increases their effectiveness by exposing more
optimization opportunities. We also provide a practical im-
plementation of our deforestation transformation, and show
that it is able to achieve significant speedup over unfused
programs that contain some fairly complicated traversals.

1 Introduction
Fusion is a classic optimization that can eliminate intermedi-
ate structures that arise frequently in functional programs.
When performed correctly, it reduces data traversal over-
head and memory usage, resulting in significant speedup. In
general, the goal of fusion is to take functions f1 :: A → B

and f2 :: B → C, and produce a fused function f12 :: A → C.
The simplest illustrative example is a program like (map f

2 (map f1 ls)), that maps functions f1 and f2 over a list ls.
This program applies (map f1) on its input, and generates
an intermediate structure that is then consumed by (map f2)

to produce the final output. If we instead use a fused func-
tion, (f2 ○ f1), we can directly generate the output without
creating an intermediate structure.

Fusion/deforestation transformations can be roughly clas-
sified into two groups: combinator based techniques, and
general fusion. A combinator based technique relies on cer-
tain predefined combinators that have well defined compo-
sitional behavior, and a set of rewrite rules that can fuse
the functions that use them. Such a technique is extremely
effective when the target of fusion is a program that uses
simple data structures such as lists or trees, for which many
common operations can be expressed by composing fusable

IFL’20, September 2–4, 2020, Virtual.
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combinators. For example, shortcut fusion [12, 14, 19, 19]
and stream fusion [10, 11] are both combinator based, and
have been successfully used in modern compilers such as
the Glasgow Haskell Compiler.

We classify these techniques under shallow fusion, because
they do not reason about the definitions in the input program,
or about the combinators themselves, and only rely on rules
that are given by the programmer. They greatly simplify the
problem, at the cost of generality.

General deep fusion techniques can directly fuse recur-
sive functions without baking in knowledge about primitive
combinators, but they have proved difficult to automate in
a practical way [3], and, as such, they have remained com-
paratively unexplored for the last two decades. The most
popular such approach is Wadler’s deforestation [22], which
guarantees programs in treeless form can be fused safely.
Treeless form, however, is very restrictive: functions must be
linear, and no intermediate data structures can be created dur-
ing a single function evaluation—ensuring termination and
complexity preservation. In his conclusion, Wadler states:
“Further practical experience is needed to better assess the
ideas in the paper”.

Chin et al. [9] have refined Wadler’s deforestation in an at-
tempt to remove these syntactic restrictions. Their extended-
deforestation algorithm also has some syntactic restrictions,
but they are more fine grained that Wadler’s. For example,
consider a function f :: List → List → List, which uses its
first argument non-linearly. Because of the non-linear argu-
ment, f is not in treeless form and Wadler’s algorithm won’t
consider it for fusion at all. But the extended-deforestation
algorithm will try to fuse f with the sub-terms passed it as its
second argument. For example, given a call-site like (f g h),
f and h might be fused, as long as h obeys certain syntactic
criteria. Thus, the extended-deforestation algorithm is ap-
plicable to a wider range of input programs than Wadler’s
deforestation, but certainly not all of them. In Section 7, Chin
et al. [9] state: “The syntactic criteria proposed in this paper
are based on safe approximations. They do not detect all pos-
sible opportunities for effective fusion, merely a sub-class of
them”.

Tupling is another well-known optimization [7, 8]. It elimi-
nates multiple traversals of the same structure, each of which
runs a different computation, by combining them into a sin-
gle traversal that returns the results at once, using a tuple.
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Figure 1. High-level structure of the deforestation transfor-
mation.

That is, it transforms functions such as f1 :: A → B and f2

:: A → C into a function f12 :: A → (B, C). Chin et al. stud-
ied the relationship between tupling and fusion, and sug-
gested that tupling may increase the applicability of fusion
[5]. Specifically, fusion may introduce multiple traversals of
the same structure if it is performed on non-linear terms, but
these additional traversals can be eliminated by a subsequent
tupling. Two different transformations that use combinations
of fusion and tupling [5, 6] have been suggested so far so far,
but none of them have been implemented or evaluated yet.

Like Chin et al., we propose a deforestation transformation
that uses a combination of fusion and tupling. Moreover, we
also use a novel redundancy analysis which cleans up some
of the artifacts introduced by the previous transformations,
and increases their effectiveness by exposing more optimiza-
tion opportunities. With respect to the syntactic restrictions,
we attack the problem differently. Instead of having any re-
strictions on input programs, our transformation uses a fuel
parameter to ensure termination.

This paper makes the following contributions:
● We propose a deforestation transformation that com-

bines fusion, tupling, and intensive redundancy analy-
sis, and which is guaranteed to terminate and may be
incorporated in practical compilers.● We implement and evaluate our transformation in a
real compiler that operates on a first-order language
with a Haskell backend, showing significant speedups
on a large set of programs. This includes difficult-to-
fuse examples such as rendering tree-structured docu-
ments (like HTML).● We introduce a static analysis called “Intensive Re-
dundancy Analysis” that is crucial for eliminating un-
necessary work introduced by fusion and tupling for
complicated programs.● We show that the general, deep fusion is still a promis-
ing technique, one that—with good engineering—can
fuse complicated programs that cannot be fused oth-
erwise.

2 Overview
Figure 1 shows the high level structure of our deforesta-
tion transformation. It takes in a program consisting of data
and function definitions as input, and optimizes it by using
a combination of fusion, tupling and redundancy analysis.
Consider the program given in Figure 2. It contains two func-
tions, prefixSum and shift, that operate on a list of integers.
prefixSum generates a new list in which each element at index
i is the sum of elements at indices i to n in the old one. And
shift moves all elements to the left by dropping the first one
and adding a zero at the end of the list. This example might
be somewhat contrived, but it highlights several properties
of our transformation.

data List = Sing Int ⋃︀ Cons Int List

head :: List → Int

head ls = case ls of

Sing x → x

Cons x xs → x

shift :: List → Int

shift ls = case ls of

Sing x → Sing 0

Cons x xs →
let x' = head xs in

let xs' = shift xs in

Cons x' xs'

prefixSum :: List → List

prefixSum ls = case ls of

Sing x → Sing x

Cons x xs →
let xs' = prefixSum xs in

let x' = head xs ' in

let x'' = x + x' in

Cons x'' xs'

main = let ls = MkList in

let ls' = prefixSum ls in

shift ls'

Figure 2

The transformation starts with the fusion step; it fuses
a composition of two functions into a single one, and then
continues to analyze this newly generated function. This
process continues until a fix point is reached, or until the
transformation runs out of fuel. For the example program,
fusion first combines the functions shift and prefixSum to
produce a function shift_sum. Next, it analyses shift_sum and
observes that head and sum can be fused too. So it runs one
more time and the generates the program shown in Figure 3a.
Now there are no more opportunities for fusion, so it halts.

2

138



221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

General Deforestation Using Fusion, Tupling and Intensive Redundancy Analysis IFL’20, September 2–4, 2020, Virtual.

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

shift_sum :: List → List

shift_sum ls = case ls of

Sing x → Sing 0

Cons x xs →
let hs = head_sum xs in

let ss = shift_sum xs in

Cons hs ss

head_sum :: List → Int

head_sum ls = case ls of

Sing x → x

Cons x xs →
let hs = head_sum xs in

hs + x

main = let ls = MkList in

shift_sum ls

(a)

shift_sum_T_head_sum :: List → (List , Int)

shift_sum_T_head_sum ls =

case ls of

Sing x→
let o1 = Sing 0 in

(o1 , x)

Cons x xs →
let (p0,p1) = shift_sum_T_head_sum xs in

let o1 = Cons p1 p0 in

let o2 = p1 + x in

(o1 , o2)

main = let ls = MkList in

let (ls', _) = shift_sum_T_head_sum ls in

ls

(b)

Figure 3. The program on the left shows the result of fusion operating on the program given in Figure 2. The one on the right
shows the result of running tupling on the program on the left.

Note that the fused function shift_sum calls head_sum for
every element in the list, and head_sum traverses the complete
list again. This has worse runtime complexity, O(N 2), com-
pared to the original O(N )! Fortunately, they both traverse
the exact same list, xs, and tupling can combine these two
functions! Fusion only eliminates intermediate structures
in the computation; there still might be multiple functions
that traverse the same structure, and combining them into a
single traversal will further optimize the program.

Tupling analyses each function that is generated dur-
ing the fusion step. Like fusion, it is also performed recur-
sively. As mentioned before, (shift_sum :: List → List) and
(head_sum :: List → Int) both traverse the same list. So these
functions are tupled together into a function that traverses
the list only once, and returns a tuple (List, Int). Figure 3b
shows the output of running tupling on the program gener-
ated by fusion in the previous step. Also, any repeated com-
putation is eliminated using a simple common subexpression
elimination (CSE) pass that is integrated with tupling. As it
turns out, CSE can sufficiently simplify the program given
in this example, but it is not always the case. Sometimes, an
intensive redundancy analysis followed by several cycles of
tupling might be needed.

As its name suggests, redundancy analysis eliminates re-
dundant work. The process consists of two passes: elimi-
nating output and input redundancy respectively. The first
pass eliminates outputs of functions that appear at different
indices in a tuple but always have the same value. In this
case, one component of the tuple can be dropped and some-
times the tuple is eliminated completely. This is a step in the
right direction by itself, but more importantly, it also enables
more optimizations at the call sites of such functions where

the fact that the two outputs are same can be leveraged to
further eliminate redundant traversals and expressions. The
next pass eliminates unused inputs of functions. It’s unlikely
for a programmer to have written functions that have such
inputs, but functions generated during fusion and tupling
often have this property, and this pass gets rid of them. Elim-
inating redundancy can allow more functions to be tupled,
and hence tupling runs back-to-back with redundancy analy-
sis until the process converges. Finally, a simplification pass
runs several times during the transformation that performs
common sub-expression and simple dead code elimination.

2.1 Non-linearity
In this paper, we borrow our notion of linearity from Wadler’s
work [22]: a term is said to be linear if no variable appears
in it more than once. There’s a special extension for case
expressions: a variable that occurs in the scrutinee may not
also appear in a branch, but a variable is allowed appear
in more than one branch. For example, a function foo de-
fined as (foo x y = case MkFoo1 of MkFoo1 → y ; MkFoo2 → y)

is said to be linear even though it doesn’t use x at all and y

appears syntactically twice. The treeless form enforces that
terms in the functions being fused are always linear, and this
guarantees that no repeated work gets introduced during
the fusion process. But our transformation cannot make this
guarantee.

In our transformation, fusion generates programs in which
all functions operate directly on the input tree to generate
some part of the output tree. If the original functions are
not linear it’s possible that there would be multiple points
in the fused program where the input tree is consumed,
and each of them can become a traversal. In the example
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K ∈ Data Constructors, τ ∈ Types,
f ∈ Function names x, v ∈ Variables

Top-Level Programs top ∶∶=Ð⇀dd ;
Ð⇀
fd ; e ⋃︀ e′

Type Scheme ts ∶∶=Ð⇀τ → τ

Datatype Declarations dd ∶∶= data τ =ÐÐ⇀K Ð⇀τ
Function Declarations fd ∶∶= f ∶ ts ; fb

Function Definition fb ∶∶= fÐ⇀x = caseÐ⇀x1 of
Ð⇀pat

Pattern pat ∶∶= K (ÐÐ⇀x ∶ τ) → e ⋃︀ e′
Let Expression e ∶∶= let x ∶ τ = e′ in e ⋃︀ e′

Leaf Expressions e′ ∶∶= fÐ⇀v ⋃︀ K Ð⇀v ⋃︀ v
Figure 4. Language definition

above, shift is non-linear—it consumes the tail of the list
once in a recursive call, and again in a call to head. After
fusion, those two points of consumption became separate
traversals, shift_sum and head_sum, and this causes it’s runtime
complexity to become O(N 2). As we show above, tupling
cleans up cleans up any unnecessary work that fusion may
have introduced. Furthermore, it brings work from different
traversals closer to each and makes it easier to detect and
eliminate redundancy. In the final tupled function, the list is
consumed only once, and the runtime complexity is O(N )
again, with no intermediate structures.

2.2 Non-termination and Non-linearity, together
Our deforestation transformation can handle non-termination
and non-linearity in isolation just fine. But when they oc-
cur in a program simultaneously, the program generated
by our transformation can have worse runtime complexity
compared to the original. In such cases, the fused program
may contain redundant work, and the state of the program
might be such that it makes it difficult for the subsequent
tupling transformation to eliminate the redundant work. We
plan to address this problem in the future.

3 Design
In this section we give details of all parts of the transforma-
tion: fusion, tupling and redundancy analysis. All of them
operate on a monomorphic, first order, functional program-
ming language described by the grammar shown in Figure 4.
We use the notationÐ⇀x to denote a vector (︀x1, . . . ,xn⌋︀, andÐ⇀xi to denote the item at position i. To simplify presentation,
primitives are dropped from the formal language. It permits
recursive data types, but since it is strict and side-effect free,
it doesn’t admit cyclic data structures.

A program consists of a set of data definitions, function
definitions, and the main expression. Note that the function
body has to be a case expression that destructs the first argu-
ment, which is assumed to be the dominant, traversed input.

f1_f2 generation

fuse body f1_f2

eliminate constructor's 
consumers

(f1, f2)

already 
fused?

create new function
f1_f2

no

clean up

replace consumer 
application

yes

find candidate

clean up

Figure 5. Fusion.

The branches of the case expressions are sequences of flat-
tened let expressions ending with leaf expressions – either a
variable, a function application, or a constructor expression
with variable arguments. This presentation is a simplified
version of the actual language used in the implementation
that supports literals and primitives, and expressions need
not be already flattened. Also, the assumption that a func-
tion’s first argument has to be the input that’s traversed can
be avoided by having the programmer provide annotations.

3.1 Fusion
The goal of the fusion pass is to eliminate intermediate struc-
tures in the program. Figure 5 shows the structure of the
fusion pass. It takes an expression and function definitions
as input and returns a new fused expression and a possibly-
larger set of function definitions.

The pass starts by identifying a fusion candidate in the pro-
cessed expression. To this end, it maintains a definition-use
table that tracks variables that are bound to function appli-
cations, and their consumers. Specifically, a candidate for
fusion (f1, f2) is a pair of functions that satisfies the following
pattern:
let y = f1 x ⋯ in⋯ f2 y ⋯
In such a case, a new function f2_f1 that represents the com-

position is generated. Generating the fused function draws
on previous fusion techniques [9, 22]. However it’s slightly
altered to handle non-treeless expressions, and preserve the
invariant that every function is a single case expression. This
invariant makes the implementation of the optimization eas-
ier and more regular.

To illustrate the fusion process consider the previous ex-
ample from Figure 2. Functions prefixSum and shift are candi-
dates for fusion. In such cases, prefixSum is referred to as the
producer, and shift as a consumer. As described in Figure 5
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Figure 6. Tupling.

the first step is to create a new function shift_sum that rep-
resents the composition of shift and prefixSum. It’s created
according to the following rules:

1. The output type of fused function is the output type
of the consumer function.

2. The input type of fused function is a concatenation
of the inputs of producer and the consumer excluding
the first input of the consumer function.

3. The body of the fused function is the body of the pro-
ducer with the consumer function applied to the out-
put of every branch in the producer.

Next we partially-evaluate the body of the generated func-
tion with a pass that eliminates constructor consumers (simi-
lar to “case of known constructor”). This pass uses its definition-
use table to look for patterns of the form: (let x = (K ..) in⋯ f x)

For each such pattern, the function application is replaced
with the branch in f that corresponds to the constructor K
after the appropriate instantiations. This sub-pass will keep
running on the function until there are no further applica-
tions to known constructors. After the new, fused function
is generated, a clean up pass will run, that removes com-
mon sub-expressions and unused let bindings. Fusion is then
performed recursively on the body of the new function.

3.2 Tupling
Tupling combines traversals that traverse the same struc-
ture and bring computations closer to each other. Tupling
is performed after fusion to eliminate redundant work that
is introduced during fusion. For tupling, we extend the in-
termediate language to include operations on tuples. New
expression forms are added for constructing tuples and pro-
jecting elements from tuples, plus a new product type.

Figure 6 summarizes the tupling pass, which begins by
finding a tupling candidate. A candidate is a set of indepen-
dent function applications that all traverse the same input
(have the same first argument in our language).

By independent we mean that none of them directly nor
indirectly consumes the other. For example in the code be-
low, calls to f1 and f2 are not tupleable because f2 indirectly
consumes f1 through the intermediate variables y.
let x = f1 tree in

let y = x + 1 in

let z = f2 tree y in⋯
For each candidate, a tupled function is generated. The

tupled function is generated according to the following rules:
1. The input type of the tupled function is the type of

the traversed tree followed by the remaining inputs of
each of the participating functions.

2. The output type of the tupled function is a tuple of
the output types of the participating functions, with
nested tuples flattened.

3. The body of the tupled function is a single case expres-
sion that destructs the traversed tree. For each case
branch the body of the corresponding branch in each
of the tupled functions is bound to a variable and a
tuple of those variables is returned.

Next, this new function is optimized through a cleanup
pass. At the end of the process, the original function ap-
plications that are tupled are eliminated by replacing the
first application with the tupled function and the rest with
projections to extract the corresponding output.

3.3 Redundancy Analysis
Following tupling, redundancy analysis is performed to fur-
ther optimize the tupled functions. The optimizations per-
formed during this pass are classified into two types; redun-
dant outputs and redundant inputs. Each is described in detail
in this section.

Note that as illustrated in Figure 1, tupling is performed
again after redundancy analysis, since eliminating redun-
dancy can enable more tupling to be done by eliminating
some dependences that prohibit tupling.

3.3.1 Redundant outputs
The redundant outputs pass eliminates outputs of functions
that appear at different indices in the tupled output but al-
ways have the same value.

Function ft shown in Figure 7 illustrates such redundancy
in its simplest form. The output of ft is always the same for
positions 0 and 1. We will use the notation f0=1

t to refer to
that property throughout the section.

Different circumstances can cause such redundancy to
originate. For example, consider tupling two fused functions,
fxfy and fxfz. If the result of fx does not depend on fz nor on fy,
then both functions would have the same output. Eliminating
such redundancy is important for two reasons. First, if this
function is called recursively, then the memory and runtime
overhead of creating such a tuple is eliminated. The second
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ft :: List → (Int , Int)

ft ls =

case ls of

Sing x → (0, 0)

Cons x xs →
let ret = depth xs in

(ret , ret)

Figure 7. An example for which it is easy to syntactically
eliminate redundant outputs.

important effect of such elimination is that it allows more
optimizations on the caller side by leveraging the fact the
the two outputs are the same to further eliminate redundant
traversals and expressions.

Redundant output elimination consists of 3 steps:
1. Identify redundant outputs.
2. Create a new function with redundant outputs elimi-

nated.
3. Fix callers to call the new function and optimize them.

For each tupled function, each output position is checked
for redundancy, then the function is rewritten to eliminate
any discovered redundancy. This is done by updating the
function’s return type and the tuple expressions in tail posi-
tion of the function body. Next, all call sites of the functions
are updated such that projections of the redundant element
are switched to projections of the retained element. Steps
two and three are straightforward rewrites. However, the
first step, identifying the redundant outputs, is not always
as trivial as it was in the previous example.

Inductive Redundant Output Analysis. In the previous
example, it was easy to identify that the outputs at positions
0 and 1 of the return value are the same, by simply inspect-
ing the output of each branch. Of course, the process is not
always that simple; due to mutual recursion and compli-
cated traversal patterns, a more rigorous inductive analysis
is needed. Consider the example shown in Figure 8, which
contains two mutually-recursive functions, f1 and f2.

Looking closely at those two functions, we observe that
the second output of f1 and f2 is redundant and matches
the first output, but how can we verify that soundly and
systematically?

We want to check if f1 always returns the same output
at indices 0 and 1. In other words, if f0=1

1 is satisfied. We
can do that by checking the output at each branch. In this
example the the following two equalities should be satisfied:
(Sing 0 == Sing 0) and (o1 == o2).

If the application of f1 is a leaf function application (with
respect to the execution call stack) then (Sing 0 == Sing 0)

should hold. If it is a non leaf application, then (o1 == o2)

should hold.

f1 :: List → (List , List)

f1 ls = case ls of

Sing 0 → (Sing 0, Sing 0)

Cons x xs →
let p = f2 tail in

let o1 = Cons (v+1) (proj 0 p)in

let o2 = Cons (v+1) (proj 1 p) in

(o1, o2)

f2 :: List → (List , List)

f2 ls = case ls of

Sing 0 → (Sing 0, Sing 0)

Cons v xs →
let p= f1 xs in

let y1 = Cons (v*2) (proj 0 p) in

let y2 = Cons (v*2) (proj 1 p) in

(y1, y2)

Figure 8. An example for which it is difficult to syntactically
eliminate redundant outputs.

Verifying that (o1 == o2) is equivalent to verifying that
Cons (v+1) (proj 0 p) == Cons (v+1) (proj 1 p), which is true
only if (proj 0 p == proj 1 p)—in other words, if f0=1

2 is satis-
fied, since p is bound to f2 function application.

More precisely, for f0=1
1 to be satisfied during a non-leaf

application at depth l , f0=1
2 need to be satisfied for depth l + 1.

In a similar a way f0=1
2 is satisfied if f0=1

1 is satisfied.
We can use induction to show that f0=1

1 is satisfied, under
the assumption that the program terminates, as follows:

Base Case: f0=1
1 and f0=1

2 are satisfied during a leaf function
application, since (Sing 0 = Sing 0).

Induction hypothesis: Assume that f0=1
1 and f0=1

2 holds at
depth > l .

Induction step: f0=1
1 and f0=1

2 are satisfied during non leaf
application at depth l as a consequence of the induction
hypothesis as discussed earlier.

We propose a process through which a compiler can con-
clude that two outputs of a given functions at two different
locations are always the same. The process checks all the
conditions that are needed to construct an inductive proof
similar to the previous proof.

We will use the example above to illustrate the process,
to verify f0=1

1 . The process tracks two sets of properties: S1
for properties that need to verified, and S2 for the properties
that are already verified. A single property is of the form
f0=1
1 . In our example, at the beginning of the process S1 = {

f0=1
1 } and S2 = {}.

The process will keep pulling properties from S1 and
checks for two things:
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natural
termination linear treeless lazy strict

unfused fused unfused fused
append (append ls) ✓ ✓ ✓ 0.47s 0.42s 1.51s 1.28s
sum (square ls) ✓ ✓ ✓ 0.37s 0.25s 0.99s 0.36s
shift (sum ls) ✓ ✗ ✗ 22.9ms 31.8ms 11.4ms 7.0ms
mul2pd ls ✗ ✓ ✗ 2.56s 2.38s 0.60s 0.58s
mul2pd tree ✗ ✓ ✗ 1.56s 0.42s 0.89s 0.32s
seteven (sumup tree) ✓ ✗ ✗ 1.11s 1.07s 0.95s 0.52s
sum (flatten tree) ✓ ✓ ✓ 0.69s 0.8s 1.66s 1.3s
flip (flip tree) ✓ ✓ ✓ 0.53s 0.28s 0.68s 0.48s
flipRec (flipRec tree) ✗ ✓ ✗ 3.18s 2ms 0.75s 1ms
sum (flatten mtrx) ✓ ✓ ✓ 1.16s 1.52s 1.37s 1.35s

Table 1. Comparison of the runtime of the fused and unfused programs under lazy and strict evaluation. Programs in this
table are ported or inspired form previous work.

Check1: Whether the property is satisfied during a leaf ap-
plication of the function (leaf with respect to to the
call stack).

Check2: Wether the property is satisfied during a non-leaf
application at level l under the assumption that all
properties that need to be satisfied at depth l + 1 are
satisfied.

If the two checks are satisfied, then the set of properties
that need to be satisfied at depth l + 1 (the assumptions in
check2) are then added to S1, and the condition that was
checked will be moved to S2. If a condition already exists in
S2, then it does not need to be added to S1 again since it is
already verified.

3.3.2 Redundant inputs
The redundant inputs pass targets eliminating inputs of func-
tions when they are not needed. Eliminating such inputs re-
moves the overhead of passing them, especially in recursive
functions. It also allows better optimization on the callee and
the caller site by possibly eliminating related computations.
Furthermore, it can eliminate dependences and allow more
tupling. This section will describe several types of redundant
inputs that are handled in our transformation.

Shared inputs Function applications that consume the
same input at different input positions can be optimized by
unifying such arguments into one argument. Although this
optimization is performed during tupling, it is performed
here again because the output redundancy pass can result in
more inputs being shared.

Unconsumed inputs Unconsumed inputs are inputs that
are not used in the body of the function that consumes it.
Removing such input can eliminate false dependences and
allow more tupling.

Non-recursively consumed inputs This pass eliminates
inputs that are returned as output without being further

consumed in the function. Thus the caller can be rewritten
to use them directly.

4 Implementation
We implemented a prototype of the our deforestation algo-
rithm as a program transformation pass in Gibbon [21], a
compiler for a small subset of Haskell. Gibbon has a Haskell
front-end and can be prompted to output the transformed
program into Haskell output. Hence, we used Gibbon to per-
form Haskell source-to-source transformation. We plan to
implement our transformation as a GHC plugin in the future.

5 Evaluation
We evaluated our transformation on a large set of programs
showing its ability to fuse them, achieving better perfor-
mance and lower memory usage.

We divided the benchmarks into two sets: a set of pro-
grams inspired by previous related work, and a set of more
complicated programs that involve larger traversals. For each
experiment, we evaluated the generated Haskell programs
in both lazy and strict modes. Strict mode is achieved via the
Strict pragma in GHC. We also report an experiment that
measures the effect of each major pass in the transformation.
Finally, we discuss a case in which our transformation was
not able to consistently achieve a speedup (Section 5.3).

Experimental setup: We ran our experiments on a Intel
Xenon E5-2699 CPU, with 65GB of memory running Ubuntu
18.04. All programs are compiled with GHC 8.8.1 using the
-O3 optimization level, and the runtime numbers are collected
by taking the average of 10 program executions. To control
termination, all cycles in the transformation are controlled
by a maximum depth of 10 in all the reported experiments,
unless otherwise noted.
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lazy strict
unfused fused unfused fused

4 render tree passes (1) 1.02s | 767MiB 0.53s | 551MiB 1.14s | 461MiB 0.47s | 228MiB
4 render tree passes (2) 3.79s |2.52GiB 2.26s | 1.85GiB 2.24s |1.53GiB 1.23s | 823MiB
5 render tree passes (1) 1.25s | 968MiB 0.49s | 590MiB 1.63s | 583MiB 0.63s | 291MiB
5 render tree passes (2) 4.97s | 3.16GiB 2.16s | 2.01GiB 4.24s |1.924GiB 1.73s | 1.04GiB
piecewise function f1 5.06s | 6.37GiB 0.88s | 2GiB 4.99s | 4.71GiB 1.65s | 2.75GiB
piecewise function f2 3.55s | 4.78GiB 0.76s | 1.9GiB 3.71s | 3.96GiB 1.53s | 2.65GiB
piecewise function f3 15.0s | 28GiB 5.56s | 19GiB 12.1s | 11.28GiB 6.00s | 6.59GiB
5 binary tree traversals 4.12s | 2.5GiB 3.10s| 1.46GiB 2.08s | 864MiB 0.77s | 480MiB

Table 2. Comparison of the runtime and total memory allocated of different fused and unfused programs under lazy and
strict evaluation. The two rows for render tree passes run on different inputs. The piecewise functions are defined as follows:
f 1 = x3 + x2 + x + 1, f 2 = x2 + x , f 3 = (f 1)2 + f 2

5.1 Surveyed Simple Programs
Each program in this set is a composition of two functions,
and is inspired by similar benchmarks from existing litera-
ture. These functions have been either shown before or are
self-explanatory, and we briefly explain those which are not:

1. mul2pd multiplies each element in the input list by 2i ,
where i is it’s index in the list.

2. sumup and seteven: These benchmarks operate on a search
tree defined as:
data STr = Null ⋃︀ Leaf Int ⋃︀ Node Int Bool STr STr

sumup stores the sum of all sub-trees of a Node in it, and
seteven sets the boolean flag based on whether the sum
is even or not.

3. flipRec flips each tree at depth d, d times.

We follow a convention that an argument named ls indicates
that the input is a list, where tree indicates that the input
is a tree. The last program, sum (flatten mtrx), operates on a
matrix represented as a list of lists.

Table 1 shows the results. For each program, the table
contains times that correspond to the fused and the unfused
versions in both lazy and strict modes. Three additional prop-
erties are shown: natural termination, linearity, and whether
the program is in treeless form.

Under strict evaluation, the fusion improves performance
for most programs and never introduces any slowdown, with
speedups up to more than 5× . Conversely, under lazy eval-
uation, a runtime regression is caused by fusion for three
programs. For some programs, something like fusion hap-
pens naturally during lazy evaluation. In such cases, the
overhead due to tuples packing and unpacking, as well as
the introduced coarser-grained traversals, is not justified.

flipRec is an interesting case; fusion does not terminate
naturally on the program, however when truncated at depth
10 it eliminates all the additional traversal up to that level,
and for a tree of depth 13 that is eliminating almost all of the
work, achieving more than 100× speedup.

Overall, for programs in table 1, fusion achieves geomean
speedups of 2.4× in lazy evaluation and 2.6× in strict evalua-
tion.

5.2 Larger Programs
In this section we consider another set of programs that
are larger, and closer to real-world programs one might en-
counter in the wild.

Render Tree: Render trees are used in render engines to rep-
resent the visual components of a document being rendered.
A render tree is consumed by different functions to com-
pute the visual attributes of elements of the document. We
implemented a render tree for a document that consists of
pages composed of nested horizontal and vertical containers
with leaf elements (TextBox, Image, etc.). We implement five
traversals that traverse the tree to compute height, width,
positions and font style of the visual elements of the docu-
ment. Each traversal consists of a set of mutually recursive
functions. In total, the program consists of more than 40
functions with more than 400 lines of code. Table 2 shows
four entries for the render tree, fusing 4 passes and fusing
5 passes with two different inputs. Fusion reduces memory
usage and achieves speedups up to 3× for all programs un-
der both lazy and strict evaluation. The suffixes (1) and (2)
indicate the variant of the dataset used.

Piecewise Functions: Kd-trees can be used to compactly
represent piecewise functions over a multi-dimensional do-
main. The inner nodes of the tree divide the domain of the
function into different sub-domains, while leaf nodes store
the coefficients of a polynomial that estimates the function
within the node’s sub-domain. In this program, we imple-
mented a kd-tree for single variable functions, and different
traversals to construct and perform computations on these
functions such as adding a constant (f 1 = x3 + x2 + x + 1),
multiplying with a variable (f 2 = x2 + x), and adding the
result of two functions (f 3 = (f 1)2 + f 2). Table 2 shows the
speedups for three different programs that are expressed
using different compositions of those functions along with
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Unfused Fusion Fusion + Tupling Fusion + Tupling
+ Redundancy Elimination

lazy strict lazy strict lazy strict lazy strict
4 render tree passes (1) 3.79s 3.24s 2.23s 3.22s 4.07s 1.68s 0.76s 0.46s
5 render tree passes (1) 1.25s 1.63s 0.74s 1.15s 0.70s 1.05s 0.49s 0.63s
shift (sum ls) 22.9ms 11.4ms 58.6s 45.6s 31.8ms 7.0ms 31.8ms 7.0ms
5 binary tree traversals 4.12s 2.08s 1.87s 2.46 3.10 0.77 3.10 0.77
piecewise function f3 15.02s 12.10s 6.82s 5.64s 6.82s 5.64s 6.82s 5.64s

Table 3. Runtime of the fused programs when the transformation is truncated at the its three main satges.

the corresponding equations. A binary tree of depth 22 is
used to represent those functions.

Fusion achieves up to 5× speedups on those programs and
significantly reduces the memory usage. The third program
has a relatively lower speedup than the first two, and the
reason is that the function that adds two piecewise functions
consumes two trees, but our fusion performs fusion across
one of them only.

Effect of different passes: Table 3 shows the runtime of the
fused programs when the transformation is truncated at its
major three stages: fusion, tupling, and redundancy analysis.
Render tree is the most complicated program, and it utilizes
both tupling and redundancy analysis to achieve speedups
especially in strict mode. Simpler, non-linear programs need
tupling only to eliminate redundancies and achieve speedups.
Finally, although the piecewise functions program is large
and not trivial, due to its linearity it only requires fusion to
achieve its speedup.

5.3 Does it always work?
There is no guarantee that this transformation is always safe
from a runtime perspective. Although for strict evaluation
the transformation does not reduce the runtime for almost
all the benchmarks, we encountered one case where the
performance of the fused program varies between 2x speedup
and 2x slowdown for different inputs.

We implemented a sequence of 7 functions that optimize
and evaluate first-order lambda calculus expression. The pro-
gram’s traversals are complicated from a fusion perspective,
and hard to fuse. Specifically because we are dealing with
expressions only, not functions, fusion opportunities are less
likely to be found at that level.

For this benchmark, a threshold of 10 for the depth of
the transformation was too large for the transformation to
terminate in a reasonable time. Furthermore, the code size
grows very quickly since the number of different composi-
tions of functions and traversed structures can get very large.
In the future, we plan to do a more thorough investigation to
analyze this benchmark, and determine the causes of slow-
downs for some inputs, and whether it’s something that can
be handled by our transformation.

6 Related Work
In 1977, Burstall and Darlington [3] provide a calculation
method to transform recursive equations so as to reach a
fused program, however decisions for applying transforma-
tions are left to the programmer. More recent work [13] uni-
fied several previous fusion approaches under one theoretical
and notational framework based on recursive coalgebras.

Domain specific languages [2, 16] and data-parallel li-
braries [1, 4, 15] typically include fusion rules that merge
multiple data-parallel transformations of their data collec-
tions. For example, these systems frequently provide map
and fold operations over multi-dimensional arrays (dense or
sparse). These systems typically manipulate an explicit ab-
stract syntax representation to perform fusion optimizations,
and can generally be classified with the combinator-based
approaches we discussed in Section 1.

In contrast, libraries that expose iterator or generator ab-
stractions can often achieve fusion by construction, and
avoid the necessity of fusion as a compiler optimization
(which may not always succeed).

For example Rust (or C++) iterators1 provide a stream
of elements without necessarily storing them within a data
structure; likewise a Rust (rayon) parallel map operation,
simply returns a new parallel iterator without creating a
new data structure. In functional contexts as well, libraries
often provide data abstractions where a client can “pull” data,
or where a producer pushes data to a series of downstream
consumers (as in “push arrays” [20]. All these techniques
amount to fusion-by-construction programming. However,
in these approaches the programmer often needs to manu-
ally intervene if they do want to explicitly store a result in
memory and share it between consumers.

Finally Grafter a [17, 18] is a fusion approach that oper-
ates on an imperative representation (where deforestation
is not relevant because a tree is updated with no new inter-
mediate result allocated). All the traversals in Grafter are
assumed to traverse the same tree. While it might be pos-
sible to map functions that do not change the structure of
the input into such a representation, Grafter allows limited
structural mutations.

1https://doc.rust-lang.org/book/ch13-02-iterators.html
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7 Conclusion
Deforestation is an important optimization in functional pro-
grams due to their stateless nature. Practical fusion optimiza-
tions that are adopted by compilers utilize combinator-based
fusion techniques. While those are easy to implement, they
address a narrow set of fusion opportunities, and require
programs to be built using specific combinators.

In this work we propose and implement a practical fusion
transformation that operates directly on general recursive
functions. We utilize fusion, tupling and redundancy analy-
sis to increase the applicability of such transformations and
mitigate or eliminate any performance side effects. The pro-
posed transformation shows significant speedup over GHC
optimized Haskell code. We hope that this work will inspire
and motivate more work to be done on practical, general
deforestation techniques.
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Abstract
Language transformations are algorithms that take in input
a language definition and return another language defini-
tion. They can be useful to automatically add features such
as subtyping and pattern-matching to languages.

lang-n-change is a domain-specific language for express-
ing such language transformations algorithms.We have pre-
viously used lang-n-change to express simple transforma-
tions, which begs the question on whether lang-n-change
can be applied to more sophisticated aspects of program-
ming languages.

In this paper, we target the automatic transformation of
functional languages into their gradual typed version. We
formulate a significant part of the Gradualizer in
lang-n-change. Our code is succinct, and shows that
lang-n-change can, indeed, be applied to more sophisti-
cated aspects.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

ACM Reference Format:
Benjamin Mourad and Matteo Cimini. 2020. A Declarative Grad-
ualizer with Lang-n-Change. In Proceedings of Proceedings of the
33rd Symposium on Implementation and Application of Functional
Languages (IFL 2020). ACM, New York, NY, USA, 7 pages.

1 Introduction
Programming language features such as subtyping, pattern-
matching, type inference, and gradual typing, among sev-
eral others, are often added to language definitions a poste-
riori. Some of these features can be thought of as transfor-
mations of a base language definition.

Consider the task of adding pattern-matching to a lan-
guage, a task that language designers frequently undertake.
The operational semantics of pattern-matching makes use
of auxiliary relations to handle matches at compile-time and
run-time. For example, one of these relations is the typing of
patterns with a judgment of the form Γ ⊢ 𝑝 : 𝑇 ⇒ Γ′. This
relation ensures that the pattern is well-formed, and pro-
vides an output type environment Γ′with bindings (variable-
type). In a language with lists, we must add the rules below
on the right, derived from the typing rules of the language
(on the left).

IFL 2020, September 2020, Kent, UK.
2020.

Γ ⊢ nil : List 𝑇 =⇒ Γ ⊢ nil : List 𝑇 ⇒ Γ

Γ ⊢ 𝑒1 : 𝑇
Γ ⊢ 𝑒2 : List 𝑇 ⇒ Γ2

Γ ⊢ cons 𝑒1 𝑒2 : List 𝑇
=⇒

Γ ⊢ 𝑝1 : 𝑇 ⇒ Γ1
Γ ⊢ 𝑝2 : List 𝑇 ⇒ Γ2

Γ′ = Γ1 ∪ Γ2

Γ ⊢ cons 𝑝1 𝑝2 : List 𝑇 ⇒ Γ′

This change can be described as an algorithm. Intuitively,
such an algorithm must copy typing rules and insert 𝑝s in
place of 𝑒s. Furthermore, it must lift recursive calls to the
shape of the typing judgement for patterns, which entails
that we assign a new variable to accommodate the output
of the call. Finally, all outputs of the recursive calls must be
collected together to form the output of the overall rule.

To describe this, and others, transformations on languages,
or language transformations, Mourad and Cimini have de-
veloped a domain-specific language called lang-n-change
[Mourad and Cimini 2020a,b]. So far, lang-n-change has
been applied to adding subtyping, pattern-matching, and to
converting from small-step to big-step semantics, for (mostly
functional) language definitions. In such a setting, these are
rather simple aspects of programming languages, which begs
the question:

Can lang-n-change language transformations be applied
to more sophisticated aspects of PL?

In this paper, we show evidence that this is indeed the
case by providing lang-n-change formulations that auto-
matically add gradual typing to functional languages.

Gradual typing is an approach to integrating static and
dynamic typing within the same language [Siek and Taha
2006]. The algorithms that we use to add gradual typing to
languages are not novel. Indeed, we strictly follow the al-
gorithms described in the Gradualizer papers [Cimini and
Siek 2016, 2017]. This means that the gradualization process
works only on functional languages. Ultimately, we could
formulatemost of the Gradualizer algorithms in roughly 300
lines of lang-n-change code.

The contributions of this paper are

• lang-n-change transformations to add gradual typ-
ing to functional languages, which implement the al-
gorithms the Gradualizer papers in lang-n-change.
Differently from theGradualizer papers, lang-n-change
transforms languages defined with a textual represen-
tation of operational semantics, while the Gradualizer
takes in input logic programs.
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1 Expression e ::= x | (abs T (x)e) | (app e e)

2 Type T ::= (arrow T T)

3 Value v ::= (abs T (x)e)

4 Context E ::= [] | (app E e) | (app v E)

5 TypeEnv Gamma ::= MAP(x, T)

6
7 (T-VAR)

8 member ((x => T), Gamma)

9 --------------------------------------

10 Gamma |- x : T

11
12 (T-ABS)

13 Gamma , x : T1 |- e : T2

14 --------------------------------------

15 Gamma |- (abs T1 (x)e) : (arrow T1 T2)

16
17 (T-APP)

18 Gamma |- e1 : (arrow T1 T2),

19 Gamma |- e2 : T1

20 --------------------------------------

21 Gamma |- (app e1 e2) : T2

22
23 (R-BETA)

24 --------------------------------------

25 (app (abs T1 (x)e) v) --> e[v/x]

26
27 # variance arrow -> contra cov

28 # mode typeOf -> inp inp out | step -> inp out

Figure 1.The Simply-Typed 𝜆-Calculus in lang-n-change

• Our formulations show that the gradualization algo-
rithms can be written succinctly in lang-n-change,
and that lang-n-change language transformations
can indeed be applied to more sophisticated aspects.

Section 2 describes our lang-n-change code for generat-
ing the static semantics of gradually typed languages. Sec-
tion 3 describes that for generating the dynamic semantics
of gradually typed languages. Section 4 provides some dis-
cussion and concludes the paper.

The lang-n-change tool is open source. Its repo contains
language transformations algorithms, language definitions,
and transformed languages, and can be found at [Mourad
and Cimini 2019].

2 Static Semantics of Gradual Typing
lang-n-change startswith a language in input. Fig. 1 shows
the simply-typed lambda-calculus in lang-n-change. The
syntax for defining languages is essentially a textual repre-
sentation of operational semantics. Then, lang-n-change
expresses a language transformation with a domain-specific
language. We explain the operations of lang-n-change as
we encounter them in the remainder of the paper in the algo-
rithms for adding gradual typing. These algorithms always
start from the language definition in input, such as Fig 1,
apply an instruction, and pass the modified language to the
next instruction.

2.1 Adding the Dynamic Type
The gradually typed language augments the base language
with a special type dyn that represents the dynamic type.
The lang-n-change code to do so is
1 Type T ::= ... | (dyn [])

Thenotation ...| inside a grammarmeans that lang-n-change
takes the grammar Type of the language in input and add a
new grammar item (dyn []) to it.

2.2 Split Type Equality
Next, we need to make the type variables that are used as
output distinct. Since this operation is quite common,
lang-n-change provides a specific operation for doing this.
1 Rule(keep)[|-]:

2 uniquify(Premise [*]: self , mode , out) =>

(mymap , newprems):

3 newprems

4 --------------

5 conclusion

Line 1 is a selector. It selects all the rules of the current
language whose conclusion makes use of the relation ⊢; that
is, it selects all the typing rules. The body of the selector is
in lines 2-5, and is the body applied to the selected rule. For
each of them, the body returns a new rule. uniquefy takes in
in put three arguments. The first is a set of premises. In this
case, we pass all the premises of the selected rule. We do so
by using a selector, as well, with Premise[∗] : self. Inside
[ .. ] is a pattern of the premises that we select, but in this
case the pattern [*] selects all of them. uniquefy also takes
in input a mode map that tells which arguments of relations
are input and which are output, and takes the string ”out”
that instructs uniquefy to act only on the variables that are
in output position according to mode.

uniquefy also returns a map that associates a variable
just replaced with the variables that have been used to re-
place it. For the typing rule for application, it returns
mymap = {𝑇1 ↦→ [𝑇11,𝑇12]}. The resulting language also
needs the attribute keep, which tells lang-n-change to sim-
ply keep the rules that do not match with ⊢.

2.3 Generating Consistency or Join
For the types that we split into unique variable names, we
add the consistency (∼) relation between them. The follow-
ing code modifies the typing rule to reflect this.
1 Premise [*]: self ,

2 concat(mymap[T]:

3 fold(~, mymap.[T])

4 )

5 ------------------------------------

6 conclusion

Line 1 uses a selector to preserve the current premises of
the rule. Line 3 iterates over the keys of mymap, which are the
types that were split into unique variable names. Line 4 uses
the built-in fold operation to generate the new premises. It
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takes in input a predicate name for a binary relation and a
list of terms (in this case, ∼ and mymap.[T], respectively) and
interleaves the terms from left to right in pairs, generating
new premises for the given predicate name. For example,
if mymap.[T] = [𝑇1,𝑇2,𝑇3,𝑇4], then fold(∼, mymap.[T]) =
[𝑇1 ∼ 𝑇2,𝑇2 ∼ 𝑇3,𝑇3 ∼ 𝑇4].

As an example we show the above transformation on the
typing rule for application:

Γ ⊢ 𝑒1 : 𝑇1 → 𝑇2
Γ ⊢ 𝑒2 : 𝑇1

Γ ⊢ 𝑒1 𝑒2 : 𝑇2
=⇒

Γ ⊢ 𝑒1 : 𝑇11 → 𝑇2
Γ ⊢ 𝑒2 : 𝑇12
𝑇11 ∼ 𝑇12

Γ ⊢ 𝑒1 𝑒2 : 𝑇2

For application, the type 𝑇11 is contravariant, which al-
lows for a consistency relation to be present. In the absence
of such types, the variables in question are peers. Therefore,
a join (⊔) between these types is required.
1 let contraT = concat(

2 Premise[Gamma |- e : (c TTs)]:

3 let vmap = makeMap(TTs , variance .[c]) in

4 vmap[T]: if vmap.[T] = contra then T

else nothing

5 ) in

6 Premise [*]: self ,

7 mymap[T]:

8 if not(overlap(contraT , mymap .[T]))

9 then (join (T @ mymap.[T]))

10 else nothing

11 ---------------------------------------------

12 conclusion

Lines 1-5make use of a let-binding to the variable contraT,
which contains a list of type variables identified to be in con-
travariant positions in the typing premises. Lines 2-4 iterate
over these premises whose output type matches with a con-
structor (c 𝑇1 . . .𝑇𝑛). The constructor name c is then used
in a lookup in variance, which is a mapping from construc-
tor names to the variance of each position for its list of ar-
guments. For example, in a language with the function (→)
type, variance = {arrow ↦→ [contra, cov], . . .}, where
the first argument is contravariant (contra) and the sec-
ond argument is covariant (cov). Line 3 creates a mapping
from each argument to its associated variance and binds it to
vmap. Line 4 then iterates over each key in this map using a
selector and filters out the types which map to contra. The
expression if vmap.[T] = contra then T else nothing re-
turns nothing if the type is not contravariant, which is equiv-
alent to discarding the result from the list.

Lines 6-12 make use of contraT in deciding whether to
compute the join and add it to the premises of the rule. Line
6 preserves the current premises, as done before. Line 7 iter-
ates over the type variables which were split, since these are
the ones relevant to computing the join. Line 8 uses the built-
in operator overlap, which checks for overlapping terms
between the lists contraT and mymap.[T]. If there are over-
lapping terms, then one or more of the types in mymap.[T]
are contravariant, so we skip computing the join. Otherwise,

line 9 adds the premise to compute the join of all the types
in mymap.[T] and place the output in T.

In the case that there remain consistency relations which
are subsumed by join relations, the following codewill clean
up the premises of the rule accordingly:
1 let consistencyPrems = Premise[T1 ~ T2]:

self in

2 listDifference(Premise [*]: self ,

consistencyPrems),

3 consistencyPrems[T1 ~ T2]:

4 if isEmpty(Premise [(pred ts)]:

5 if pred = join then

6 if overlap(T1, ts) and overlap(T2, ts)

then self else nothing

7 else nothing

8 ) then self else nothing

9 -------------------------------------------

10 conclusion

As an example, we show the transformation on the rule
for the if operator:

Γ ⊢ 𝑒 : Bool
Γ ⊢ 𝑒1 : 𝑇 Γ ⊢ 𝑒2 : 𝑇

Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇
=⇒

Γ ⊢ 𝑒 : Bool
Γ ⊢ 𝑒1 : 𝑇1 Γ ⊢ 𝑒2 : 𝑇2
𝑇1 ∼ 𝑇2 𝑇 = 𝑇1 ⊔𝑇2

Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇

=⇒

Γ ⊢ 𝑒 : Bool
Γ ⊢ 𝑒1 : 𝑇1 Γ ⊢ 𝑒2 : 𝑇2

𝑇 = 𝑇1 ⊔𝑇2

Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇

2.4 Compute Final Type and Fix the Conclusion
Previouslywe havemade some output variables distinct.These
have been only those in the premises of the rule. It may hap-
pen, then, that the conclusion of the rule still refers to the old
name for the variable that have been split.This variable now
is basically not bound to any output, and we therefore need
to fix this. However, there is a question on what variable
we should give to it because now there are several distinct
names for the same variable. As explained in the first Gradu-
alizer paper [Cimini and Siek 2016], in the case of the if-then-
else, the conclusion takes the join type. If a contravariant
variable was around instead, the original name of the vari-
able should take that of the contravariant one. For each vari-
able, then, we compute a final type [Cimini and Siek 2016],
that is, the variable it should be replaced to when it occurs
in the conclusion. Below is the code for computing the final
type and for fixing the conclusion of the rule.
1 let finalType =

2 concat(mymap[Tk]:

3 concat ([ conclusion ][ Gamma |- e : Te]:

4 concat(varsOf(e)[Tf]:

5 if Tf in mymap .[Tk] then

6 makeMap(Tk , Tf)

7 else

8 let ov = getOverlap(mymap .[Tk],

contraT) in

3
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9 if isEmpty(ov) then makeMap(Tk,

Tk) else makeMap(Tk , ov))))

10 in

11 substitute(self , finalType)

At line 3, the notation [conclusion] [Gamma ⊢ e : Te] is a
simple trick that makes use of the selector to pattern-match
the conclusion with the form Gamma ⊢ e : Te. With that, we
can extract the output type in the conclusion.The code above
checkswhether the are contravariant or not,The code builds
a map between each original variable, which are in the keys
of mymap, and the one variable it should be replaced to.

2.5 Pattern-matching
A subtlety in gradual typing occurs when the typing rule
exactly expects to find a type constructor. For example in
the typing rule for application we have that 𝑒1 is expected
to be typed at the function type. In gradual typing, instead,
we need to accommodate the fact that that expression can
simply be dynamically typed and we will check at run-time
on whether it is of function type. To do so, we have to pre-
vent the typing rule to exactly match the output of that type
checker call with a function type. We instead modify that
premise with two premises Γ ⊢ 𝑒1 : 𝑇 ′ and
𝑇 ′ gradualMatch 𝑇1 → 𝑇2 where𝑇 ′ is a fresh new variable,
and gradualMatch is specifically devoted to 1) match func-
tion types, if𝑇 happens to be an actual function type, and 2)
also match the dynamic type dyn if instead it is dynamically
typed. In the latter case, the typing rule consider𝑇1 and𝑇2 as
dynamically typed too.The following lang-n-change code
performs this transformation:
1 concat(

2 Premise(keep)[Gamma |- e : (c Ts)]:

3 let V = newvar(V) in

4 [Gamma |- e : V, (gradualMatch [V, (c Ts)])]

5 )

6 --------------------------------------

7 conclusion

At line 2, we scan the typing rules of the language. How-
ever, we select only thosewhose outputmatches (c 𝑇1 . . .𝑇𝑛),
where c is a top level constructor. In that case, line 4 gener-
ates the two premises that we have discussed above.

2.6 Generate the Consistency Relation
The code that we have seen in the previous section gener-
ates the new typing rules for the gradually typed language.
However, these rules make use of auxiliary relations that
were not part of the base language that we started with. In
particular, these rules make use of the consistency relation,
gradualMatch, and the join. We show the code to generate
consistency relation in this section. In the next section we
show the code to generate gradualMatch. As computing the
join follows similar lines we omit the code for generating its
definition but it can be found in the repo of lang-n-change
[Mourad and Cimini 2020a].

We start with the consistency relation. The code is below.

1 T ~ (dyn []);

2
3 (dyn []) ~ T;

4
5 Type[(c Ts)]:

6 Ts[T]: let TT = unbind(T) in TT ~ TT'

7 ----------------------------------

8 (c Ts) ~ (c Ts ')

Lines 1 and 3 mean that we simply add those two rules
to the language. These two rules say that dyn is related to
everything. Next, at lines 4-8, we generate the definition for
type constructors. We scan every type in the grammar of
types of the language. For each of these we generate one
rule. The conclusion of this rule relates the selected type
with other types with the same top level type constructor.
Then, the premises are such to relate arguments pairwise.
The relation is a congruence then, and is not driven by the
variance of arguments. Of course, more sophisticated lan-
guages have a rather different treatment of the consistency
relation (such as [Ahmed et al. 2011; Igarashi et al. 2017; Xie
et al. 2019] among others) and those are out of the scope of
this gradualization process.

2.7 Generate the Gradual Matching Relation
In this section we show the code to generate gradualMatch

1 Type[(c Ts)]:

2 if not(c = dyn)

3 then (gradualMatch [(c Ts), (c Ts)])

4 else nothing

5 ;

6 Type[(c Ts)]:

7 if not(c = dyn) then

8 let newTs = Ts[T]:

9 if isBinding(T) then

10 let X = boundOf(T) in

11 (X)(dyn [])

12 else (dyn [])

13 in (gradualMatch [(dyn []), (c newTs)])

14 else nothing

Lines 1-4 generate the rules to match a type constructor
with itself. As we have seen in the case of function types,
gradualMatch must be prepared to match a function type
indeed. We scan every type. Notice however, that we are
in a language in which the grammar of types has been aug-
mented with dyn, we therefore skip dyn because the match
operates for those type constructor that the typing rules of
the original language where trying to match. For each of
these types, then, we simply relate them with themselves.

Lines 6-14 instead, relate dyn with the types of the origi-
nal language. In this case, we relate it to each type in which
the top level constructor is applied to dyn for every argu-
ment.
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2.8 Missing: Arbitrarily nested pattern-matching
The lang-n-change code for generating the typing rules
with gradualMatch of Section 2.5 (not the previous section)
is less powerful than that of the Gradualizer paper [Cimini
and Siek 2016]. Indeed, it works only for typing rules that
solely match the top level constructor of a type applied to
all variables, as in Γ ⊢ 𝑒1 : 𝑇1 → 𝑇2. If the language was
a little more complicated, for example if 𝑒1 was a pair of
functions with premise Γ ⊢ 𝑒1 : (𝑇1 → 𝑇2) × (𝑇3 → 𝑇4),
the Gradualizer paper generates 4 premises: Γ ⊢ 𝑒1 : 𝑋 ,
gradualMatch 𝑋 (𝑋 ′ × 𝑋 ′′), gradualMatch 𝑋 (𝑇1 → 𝑇2),
and gradualMatch 𝑋 (𝑇3 → 𝑇4).That is, the matches are re-
cursively expanded when nested matching are encountered.
Unfortunately, lang-n-change does not currently have re-
cursionmechanisms andwe can only generate gradualMatch
for the top level type constructor. Extending lang-n-change
with recursion and capturing arbitrarily nested patternmatch-
ing is part of our future work.

3 Dynamic Semantics of Gradual Typing
In this section we describe our lang-n-change transfor-
mation to automatically generate the dynamic semantics of
a gradually typed language. In the standard approach to
the dynamic semantics for gradual typing, programs are ex-
ecuted in a version of the language with a cast operator,
known as the Cast Calculus. Here, casts have the form
(cast 𝑒 𝑇1 𝑇2), which means that the expression 𝑒 is of type
𝑇1 and is cast to the type 𝑇2.

The dynamic semantics of the language with casts must
be prepared to detect whether a cast fails or succeeds. For
example, if an integer 4 is passed to a function that is dynam-
ically typed and is then used in an operation which expects
a boolean, we end up performing

(cast (cast 4 Int dyn) dyn Bool)
which fails at run-time. We call the reduction rules that han-
dle these cast scenarios cast reduction rules. However, extra
difficulty arises for inductive types. For example, it is not
clear how to perform a cast on a function, as in

(cast 𝜆𝑥 .𝑒 (Int → dyn) (Int → Int))
. How can we know that a dynamically typed function actu-
ally returns an integer at run-time? To solve this problem,
we perform the cast only when the function is applied [Find-
ler and Felleisen 2002].Therefore the language is augmented
with specific reduction rules. For functions, we have

(cast 𝑣1 (𝑇 ′
1 → 𝑇 ′

2) (𝑇1 → 𝑇2)) 𝑣2

−→
(cast (𝑣1 (cast 𝑣2 𝑇1 𝑇

′
1)) 𝑇 ′

2 𝑇2)

Notice that casts are decomposed and distributed to the sib-
ling arguments (here 𝑣2 only) and also wrap the whole ex-
pression. The argument is cast before being passed, and the

result of the function is also cast. Below, we call these types
of reduction rules operator-specific cast rules.

The literature provides an algorithm to automatically gen-
erate the dynamic semantics of gradually typed languages
[Cimini and Siek 2017]. The algorithm below implements
most of the algorithm in lang-n-change (we did not model
blame tracking).

1 Type T ::= ... | (dyn []);

2 Expression e ::= ... | (cast e T T)

3 | (castError [])

4 ;

5 Error er ::= ... | (castError []);

6 Context E ::= ... | (cast E T T);

7 GroundType G ::=

8 Type[(c Ts)]: in (c Ts[*]: (dyn []))

9 ;

10 Value v ::= ... | (cast v G dyn) |

11 Type[(c Ts)]:

12 if not(isEmpty(Ts))

13 then (cast v (c Ts) (c Ts))

14 else nothing

15 ;

16
17 Gamma |- (castError []) : T;

18
19 Gamma |- e : T1, T1 ~ T2

20 --------------------------------

21 Gamma |- (cast e T1 T2) : T2

22 ;

23
24 (cast (cast v G (dyn [])) (dyn []) G) --> v;

25
26 G1 =/= G2

27 ---------------------------------------------

28 (cast (cast v G1 (dyn [])) (dyn []) G2) -->

(castError [])

29 ;

30
31 ... the other cast reduction rules ...

32
33 Rule[Gamma |- (op es) : T]:

34 if isKindOp(op, Value) then nothing else

35 let castT = head(

36 Premise[G |- e : (c Ts)]: (c Ts)

37 ) in

38 let castMap = concat(

39 tail(premises)[Gamma |- e : Te]:

40 makeMap(e, Te)

41 ) in

42 let siblings =

43 tail(es)[e]:

44 (cast e castMap .[e]

castMap .[e]'|(vars(castT)))

45 in

46 (op (cast v castT ' castT) tail(es))

47 -->

48 (cast (op v siblings) (T'|( vars(castT))) T)

Lines 1-6 augment the language with the dynamic type,
cast operator and cast error. Lines 7-9 generate the grammar
for the so-called ground types. In gradual typing, a cast from
Int → dyn to dyn → Int is divided into two casts: one from

5
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Int → dyn to dyn → dyn and another from dyn → dyn

to dyn → Int. The type highlighted is a ground type, which
can be checked in a dynamically typed fashion. Ground types
comprise the basic types and the inductive types when ap-
plied to dynamic types only. We select all types and we re-
place the arguments in Ts with dyn, which has the effect of
creating a list with as many dyn as arguments. Lines 11-15
generate the values. As we mentioned above a function cast
from Int → dyn to Int → Int is unresolved until applied.
Thus, this and similar casts are values in gradual typing. We
augment the values of the languagewith cast values from in-
ductive types to (the same) inductive types. We select every
type and, if the arguments are not empty (as with inductive
types), then we generate the cast value.

Lines 17-22 add the typing rules for the cast operator and
cast error. Notice that the typing rule for the cast operator
relies on the relation ∼. Lines 24-31 add the cast handling
rules. These rules are standard from literature and we omit
them. We only show the reduction rules for failing and suc-
ceeding casts.

Lines 33-48 are responsible for creating the operator-specific
cast rules. Let us consider the case of function casts. We cre-
ate a reduction rule for the application so that it handles
casts on functions. This is because now function casts are
values (see lines 10-15). The application of a function tries
to remove the cast and expose the function underneath be-
cause this is the only value we can use. We therefore strive
to go back to a place where we can use the 𝛽-reduction.
However, once we remove the cast, the type of the func-
tion is different. This causes a mismatch with the types of
the sibling arguments (the argument of the function, in this
case) and with the type of the whole expression. Therefore
we insert casts around the siblings and around the whole ex-
pression, and get back to matching the types. The mismatch
happens when the types that the function uses are also used
by the sibling arguments and are used for typing the whole
expression (removing the cast exposes different types and
creates the mismatch with all in the surrounding context
that used those types). As shown in [Cimini and Siek 2017],
this scenario is not particular to functions but generalizes to
most common types. Line 33 selects all typing rules, while
line 44 filters out rules that type values. For simplicity, we
assume that the principal argument of an elimination form
(the value being subject of the operation) is the first argu-
ment. We also assume that the first premise of the typing
rule is the typing premise of this first argument. Then, lines
35-37 retrieve the type of the first argument from the first
premise of the rule. Lines 38-41 create a map from the sib-
ling arguments to their types. Lines 42-45 create the casts
around the siblings. Casts are from their types to the ticked
versions of their types. Also, the tick operation is restricted

only to those types that appear in the type of the first/prin-
cipal argument (vars(castT)). Lines 46-48 create the reduc-
tion rule (there is no horizontal line because we have no
premises). In the source of the step we place a cast value in
the first/principal argument position. The target of the step
removes the cast at that position and leaves the value 𝑣 . It
also replaces the siblings with 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 and wraps the whole
expression in a cast. The latter cast gets the type back to
𝑇 from the type 𝑇 in which the types of the first/principal
argument (castT) are ticked.

4 Discussion and Conclusion
In this paper, we have used lang-n-change to formulate
a significant part of the Gradualizer by Cimini et al [Ci-
mini and Siek 2016, 2017]. We believe that our formulations
are rather declarative, and map well with the algorithms
of the original papers. Furthermore, this paper could be a
more accessible resource than the Gradualizer papers for
newbies because 1) we work on a textual representation
of pen&paper operational semantics. In contrast the Grad-
ualizer takes in input and manipulates 𝜆-prolog logic pro-
grams. 2) Also, our declarative lang-n-change transforma-
tions may flesh out the intention of the Gradualizer paper
in a clear way.

TheGradualizer implementation and our lang-n-change
formulation cannot be compared directly yet because they
work on different representations, and because the Gradu-
alizer also captures other features: blame tracking [Wadler
and Findler 2009] and arbitrarily nested pattern-matching
(discussed at the end of Section 2).

Nonetheless, for the parts thatwe coverwith lang-n-change
we can provide a very succinct code in roughly 300 lines.
We believe that this paper provides some evidence that lan-
guage transformations can indeed be applied to sophisti-
cated aspects of programming languages such as gradual
typing.

In the future, we would like to cover the following fea-
tures:

• Blame tracking,
• Arbitrarily nested pattern-matching. To add this fea-

ture, we will extend lang-n-change with recursion.
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ABSTRACT
Defunctionalization is a program transformation that removes all
first-class functions from a source program, leaving behind an
equivalent target program that contains only first-order functions.
As originally described by Reynolds, the defunctionalization trans-
forms an untyped higher-order source language into an untyped
first-order target language with a single, global dispatch function. In
addition to being limited to untyped languages, another drawback
of this approach is that obscures control flow, making it appear
as though the code associated with every source function could
be invoked at every call site of the target program. Subsequent
work has extended defunctionalization to both simply-typed and
polymorphically-typed languages, but the latter remains limited
to a single, global dispatch function. Other work has extended de-
functionalization of a simply-typed language to be guided by a
control-flow analysis of the source program, where the types of
the target program exactly capture the results of the flow analy-
sis and makes it apparent which (limited) set of functions can be
invoked at each call site. Our work draws inspiration from these
previous approaches and proposes a novel flow-directed defunc-
tionalization for a polymorphically-typed language. Guided by a
type- and control-flow analysis, which exploits well-typedness of
the source program to filter flows that are incompatible with static
types, the transformation must construct evidence that filtered
flows are impossible in order to ensure the well-typedness of the
target program.

KEYWORDS
defunctionalization, control-flow analysis, type-flow analysis

1 INTRODUCTION
Defunctionalization is a program transformation that removes all
first-class functions from a source program, leaving behind an
equivalent target program that contains only first-order functions.
In order to do so, each first-class-function value in the source pro-
gram is represented by a first-order closure value, comprised of a
distinct tag and a record of values; the tag is uniquely associated
with a source 𝜆-abstraction and the record of values corresponds
to the free variables of the source 𝜆-abstraction. Each application
expression in the source program is transformed into an expression
that performs a case analysis on the tag component of a closure
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(obtained as the result of evaluating the transformed function subex-
pression of the application) and dispatches to the transformed body
of the corresponding source 𝜆-abstraction passing the record of
values component of the closure and the actual argument (obtained
as the result of evaluating the transformed argument subexpression
of the application). First discovered by Reynolds [12], a variety of
techniques for [2, 3, 6, 7, 10, 11, 17, 18] and applications of defunc-
tionalization have been proposed.

Consider the following source program, which we will use to
illustrate the original defunctionalization transformation and our
novel type- and control-flow directed defunctionalization:

let id = 𝜆x . x in
let app = 𝜆f . 𝜆z. let g = id f in g z in
let add = 𝜆a1.𝜆a2. a1 + a2 in
let mul = 𝜆b1.𝜆b2. b1 ∗ b2 in
let minc = 𝜆c1. 𝜆𝑐2. if c1 then c2 + 1 else c2 in
let res1 = id add in
let res2 = id mul in
let res3 = app minc Tru in
. . .

Essence of Reynolds Defunctionalization. Defunctionalizing the
source program yields the following target program which is com-
prised of (mutually recursive) algebraic data type definitions, (mu-
tually recursive) first-order function definitions, and a “main” ex-
pression:

data Cls = {Id(),App(_),App′ (_, _),Add(),Add′ (_),
Mul(),Mul′ (_),MInc(),MInc′ (_) } ;

fun idC (x) = x
fun appC (id, f ) = App′ (id, f )
fun app′C (id, f , z) = let g = apply (id, f ) in apply (g, z)
fun addC (a1) = Add′ (a1)
fun add′C (a1, a2) = a1 + a2
fun mulC (b1) = Mul′ (b1)
fun mul′C (b1, b2) = b1 ∗ b2
fun mincC (c1) = MInc′ (c1)
fun minc′C (c1, c2) = if c1 then c2 + 1 else c2
fun apply (fn, arg) = case fn of Id() ⇒ idC (𝑎𝑟𝑔)

App(id) ⇒ appC (id, arg)
App′ (id, f ) ⇒ app′C (id, f , arg)
Add() ⇒ addC (arg)
Add′ (a1) ⇒ add′C (a1, arg)
Mul() ⇒ mulC (arg)
Mul′ (b1) ⇒ mul′C (b1, arg)
MInc() ⇒ mincC (arg)
MInc′ (c1) ⇒ minc′C (c1, arg) ;

let id = Id() in
let app = App(id) in
let add = Add() in
let mul = Mul() in
let minc = MInc() in
let res1 = apply (id, add) in
let res2 = apply (id,mul) in
let res3 = apply (apply (app,minc), Tru) in
. . .
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For each 𝜆-abstractions in the source program, we introduce a vari-
ant of the Cls algebraic data type where the arity of the variant
corresponds to the number of free variables of the 𝜆-abstraction
(e.g, Add′(_) for 𝜆a2. a1 + a2). Also, for each 𝜆-abstraction, we
introduce a first-order “code” function that accepts the values of
the free variables and the argument and executes the (transformed)
body of the 𝜆-abstraction (e.g, add ′C). A distinguished apply func-
tion accepts a value of the Cls algebraic data type and an argument,
examines the closure to determine the variant and extract the val-
ues of the free variables, and dispatches to the appropriate code
function, passing the values of the free variables and the argument.
Each 𝜆-abstraction in the source program is transformed into a
construction of the appropriate variant and each application ex-
pression in the source program is transformed into an application
of the apply function.

Reynolds’ original defunctionalization is similar to the above,
except that we need to inline each of the first-order “code” functions
into the apply function. Alternatively, we could inline the apply
function at each call site.

There are two significant limitations with this original defunc-
tionalization. First, the transformation is defined to target an un-
typed first-order language, which limits the amount of static check-
ing that can be performed on the target program. Second, the trans-
formation obscures the control flow by suggesting that any code
function might be invoked from any call site in the target pro-
gram. Moreover, these limitations are not entirely independent;
indeed, due to the obscured control flow, in the target program it
may appear that function can be called with an argument of an
inappropriate type. To address the first limitation, defunctionaliza-
tion has been extended to operate on simply-typed [2, 17, 18] and
polymorphically-typed [10, 11] languages. To address the second
limitation, defunctionalization of a simply-typed language has been
extended to be guided by flow analyses [3], which more precisely
captures the set of functions that may be invoked at a particular call
site. But, no work has simultaneously addressed both limitations
for polymorphically-typed languages.

Essence of Type- and Control-Flow Directed Defunctionalization. In
this paper, we combine the benefits of flow-directed defunction-
alization [3] and polymorphic typed defunctionalization [10, 11].
That is, we use a flow analysis to guide the defunctionalization of
a polymorphic higher-order source program into a polymorphic
first-order target program, where the results of the flow analysis are
precisely reflected in (and verified by) the types of the target pro-
gram. Consequently, each call site in the target program dispatches
only among the functions that the flow analysis asserts may be
invoked at the corresponding call site in the source program.

To guide our defunctionalization transformation, we use type-
and control-flow analysis (TCFA), a flow analysis for System F (with
recursion) that we developed in previous work [1, 5] as an exten-
sion of 0CFA [9, 16], the classic monovariant control-flow analysis
that was formulated for the untyped lambda calculus. TCFA yields
both control-flow information via a global context-insensitive envi-
ronment that maps expression variables to sets of (abstract) values
(e.g., 𝜆- and Λ-expressions) that may be bound to the expression
variable during evaluation and type-flow information via a global
context-insensitive environment that maps type variables to sets

of type expressions that may instantiate the type variable during
evaluation. In addition, TCFA exploits well-typedness of the pro-
gram to improve the precision of the analysis by allowing two
flows to influence each other: control-flow information determines
which Λ-expressions may be applied at a type-application expres-
sion (thereby determining which type expressions flow to which
type variables) and type-flow information filters the (abstract) val-
ues that may flow to expression variables (by rejecting abstract
values with static types that are incompatible according to the type-
flow information with the static type of the receiving expression
variable).

Consider the following polymorphically-typed version of our
example source program:

let id = Λ𝛼. 𝜆x:𝛼. x in
let app = Λ𝛽. Λ𝛿. 𝜆f :𝛽→𝛿. 𝜆z:𝛽.

let g = id @(𝛽→𝛿) f in g z in
let add = 𝜆a1:Int.𝜆a2:Int. a1 + a2 in
let mul = 𝜆b1:Int.𝜆b2:Int. b1 ∗ b2 in
let minc = 𝜆c1:Bool. 𝜆𝑐2:Int. if c1 then c2 + 1 else c2 in
let res1 = id @(Int→Int→Int) add in
let res2 = id @(Int→Int→Int) mul in
let res3 = app @(Bool) @(Int→Int) minc Tru in
. . .

and the (partial) result of TCFA, given by an environment 𝜌 :
𝜌 (𝛼) = {Int→Int→Int, 𝛽→𝛿 }
𝜌 (𝛽) = {Bool}
𝜌 (𝛿) = {Int→Int}

𝜌 (id) = {Λ𝛼 }
𝜌 (x) = {𝜆a1, 𝜆b1, 𝜆c1}
𝜌 (f ) = {𝜆c1}
𝜌 (z) = {$̂Bool}
𝜌 (g) = {𝜆c1}

𝜌 (res1) = {𝜆a1, 𝜆b1}
𝜌 (res2) = {𝜆a1, 𝜆b1}
𝜌 (res3) = {𝜆c2 }

(where $̂Bool is the abstract value for the Bool base type).
As a monovariant analysis, TCFA conflates all functions that flow

through the id function and (correctly) maps x to {𝜆a1, 𝜆b1, 𝜆c1}.
Naïvely, it might appear that the flow analysis should map each
variable bound to a call of id (res1, res2, and g) to this set. However,
type soundness ensures that res1 and res2 may only be bound to
values of type Int→Int→Int and therefore cannot be bound to
𝜆c1. More subtly, g cannot be bound to 𝜆a1 or 𝜆b1, due to the
static type of g (𝛽→𝛿) and the type-flow information about the
types at which 𝛽 and 𝛿 may be instantiated. Note that failing to
exploit the type-flow information when computing the control-flow
information for g (i.e., by mapping g to {𝜆a1, 𝜆b1, 𝜆c1}) would result
in res3 being mapped to {𝜆a2, 𝜆b2, 𝜆c2}; furthermore, note that this
mapping for res3 could not be improved by post-processing, because
both of 𝜆a2 and 𝜆b2 have static types that are compatible with that
of res3.

The binding of g to the application id @(𝛽→𝛿) f highlights the
key challenges to be addressed by our defunctionalization trans-
formation. As noted above, three distinct functions flow through
the id function; hence, the types of both the argument x and the
result of the first-order function representing 𝜆x in the defunction-
alized program will be a data type Val3 with three constructors
corresponding to {𝜆a1, 𝜆b1, 𝜆c1}. Meanwhile, the types of both the
argument f and the local variable g of the first-order function rep-
resenting 𝜆f in the defunctionalized program will be a data type
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Val4 with one constructor corresponding to {𝜆c1}. In order to pass
the value of the actual argument f for the formal argument x, we
will need to coerce from Val4 to Val3. In this case, it is a simple
“up-cast”, because the (single) constructor in Val4 has a correspond-
ing constructor in Val3. However, in order to bind the result of the
call to g, we will need to coerce from Val3 to Val4. In this case, it is
a “down-cast”, because only one of the constructors in Val3 has a
corresponding constructor in Val4. For the other two constructors,
the defunctionalization transformation must provide evidence that
these matches are impossible.

The essence of our solution is to use Generalized Algebraic Data
Types (GADTs) (first appearing in the literature under the names
guarded recursive data types [19], first-class phantom types [4, 8],
and equality-qualified types [15]) to give each constructor in a data
type representing a set of abstract values a type equality that rep-
resents its static type from the source program. When introducing
such a constructor, we must establish that the type equality holds;
conversely, when eliminating such a constructor (in a match of
a case-expression), we may assume that the type equality holds.
Ultimately, the evidence required to justify that certain cases in a
“down-cast” are “impossible” will arise from a contradiction (e.g.,
Int ∼ Bool) derivable from the type equalities in scope. Because
the static type of an abstract value or a receiving variable may be
expressed in terms of type variables and it is sometimes necessary
to reason about the types at which those type variables may be in-
stantiated when filtering (as is the case in down-casting the result of
the call of id @(𝛽→𝛿) f to g), we also use GADTs to represent the
type-flow information. For each type variable in scope in the source
program there is both a corresponding type variable in the target
program and a corresponding “information” expression variable.
The type of the “info” variable is a GADT that has a constructor
for each of the type expressions at which the type variable may be
instantiated; again, each constructor is given a type equality that
represents the corresponding type from the source program. By
performing a case analysis on the value of such an “info” expression
variable, we can reason about each of the (source) types at which
the type variable may be instantiated. Although this amounts to
a form of run-time type passing, we emphasize that no dynamic
type tests are performed during evaluation of the defunctionalized
program; every case analysis of an “info” expression variable is on a
code path that must lead to a contradiction — hence, the code path
must never be executed during evaluation.

Figure 1 presents selected components of our type- and control-
flow directed defunctionalization of the example program, empha-
sizing the first-order function app′′′C representing the first-class
function 𝜆z from the source program.

Each distinct set of type expressions 𝑇 that arises in the flow
analysis becomes a distinct GADT declaration Ty

𝑇
. A source type

variable 𝜐 that is mapped by the flow analysis to the set 𝑇 is trans-
lated by defunctionalization to a target type variable 𝜐 and a target
expression variable 𝑖𝜐 of type Ty

𝑇
(𝜐); the latter is an explicit value

representing the type at which the former has been instantiated.
For example, the set {Int→Int→Int, 𝛽→𝛿} is represented by the
GADT declaration:

data Ty1 (𝛼1) {III1 () [𝛼1 ∼ Arr(Int,Arr(Int, Int)) ] (),
BD1 (𝛽, 𝛿) [𝛼1 ∼ Arr(𝛽, 𝛿) ] (Ty2 (𝛽), Ty3 (𝛿)) }

(Note that a GADT declaration is comprised of a type construc-
tor, zero or more universal (parametric) type variables and a set
of zero or more constructors; each constructor is comprised of
zero or more existential type variables, zero or more type equality
constraints, and zero or more types of carried data.) In each con-
structor of the Ty1 data type, corresponding to a type expression
𝜏 ∈ {Int→Int→Int, 𝛽→𝛿}, the type parameter 𝛼1 is used in an
equality constraint to assert that 𝛼1 is equal to

q
𝜏
y

R, where
q
·
y

R
computes a type-level representation of the source type 𝜏 . The tar-
get program declares the (uninhabited) data types Arr, Forall, Z
(zero), and S (successor) to represent function and universal types
(using de Bruijn indices for ∀-bound type variables). When the type
expression has free type variables, the corresponding constructor
uses existential type variables and carries data that represents the
type at which the free type variables have been instantiated. For
example, the constructor BD1 corresponding to 𝛽→𝛿 has existen-
tial type variables 𝛽 and 𝛿 , an equality constraint 𝛼1 ∼ Arr(𝛽, 𝛿),
and carries data of types Ty2 (𝛽) and Ty3 (𝛿). The type of the BD1
constructor is essentially

∀(𝛼1) . ∀(𝛽, 𝛿) . [𝛼1 ∼ Arr(𝛽, 𝛿) ] ⇒ (Ty2 (𝛽), Ty3 (𝛿)) → Ty1 (𝛼1)

with the caveat that constructors in the target language must always
be fully applied and the type equalities must be satisfied at the point
of application.

Similarly, each distinct set of abstract values 𝑉 that arises in
the flow analysis becomes a distinct GADT declaration Val

�̂�
. A

source expression variable y of type 𝜏 that is mapped by the flow
analysis to the set 𝑉 will be translated by defunctionalization to a
target expression variable y of type Val

�̂�
(
q
𝜏
y

R). For example, the
set of abstract values {𝜆a1, 𝜆b1, 𝜆c1} is represented by the GADT
declaration:

data Val3 (𝛼3) {Add3 () [𝛼3 ∼ Arr(Int,Arr(Int, Int)) ] (),
Mul3 () [𝛼3 ∼ Arr(Int,Arr(Int, Int)) ] (),
MInc3 () [𝛼3 ∼ Arr(Bool,Arr(Int, Int)) ] () }

In each constructor of the Val3 data type declaration, corresponding
to an abstract value in {𝜆a1, 𝜆b1, 𝜆c1}, the type parameter 𝛼3 is
used in an equality constraint to assert that 𝛼3 is equal to the
representation of the static type of corresponding abstract value.
For example, the constructor Add3 has the equality constraint 𝛼3 ∼
Arr(Int,Arr(Int, Int)) because it corresponds to 𝜆a1 with static
type Int→Int→Int. When the abstract value has free type and
expression variables, the corresponding constructor uses existential
type variables and carries data that represents the type at which the
free type variables have been instantiated and the values for the free
expression variables. For example, the set of abstract values {𝜆z},
which arises in the flow analysis as the result of the 𝜆f function, is
represented by the GADT declaration:
data Val7 (𝛼7) {App′′′7 (𝛽, 𝛿)

[𝛼7 ∼ Arr(𝛽, 𝛿) ]
(Ty2 (𝛽), Ty3 (𝛿),
Val1 (Forall(Arr(Z(),Z()))),Val4 (Arr(𝛽, 𝛿))) }

where 𝜆z has free type variables 𝛽 (mapped to {Bool} by the
flow analysis, which is represented by Ty2) and 𝛿 (mapped to
{Int→Int}, represented by Ty3) and free expression variables id
(with type ∀𝛼. 𝛼→𝛼 and mapped to {Λ𝛼}, represented by Val1) and
𝑓 (with type 𝛽→𝛿 and mapped to {𝜆c1}, represented by Val4).

With these GADT declarations, we can now examine the first-
order function app′′′C, representing the first-class function 𝜆z,
with free type variables 𝛽 and 𝛿 and free expression variables id
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data Arr(𝛼𝑎, 𝛼𝑟 ) {}
data Forall(𝛼𝑟 ) {}
data Z() {}
data S(𝛼𝑘 ) {}
data Ty1 (𝛼1) {III1 () [𝛼1 ∼ Arr(Int,Arr(Int, Int)) ] (),BD1 (𝛽, 𝛿) [𝛼1 ∼ Arr(𝛽, 𝛿) ] (Ty2 (𝛽), Ty3 (𝛿)) }
data Ty2 (𝛼2) {B2 () [𝛼2 ∼ Bool] () }
data Ty3 (𝛼3) {II3 () [𝛼3 ∼ Arr(Int, Int) ] () }
. . .

data Val1 (𝛼1) {Id1 () [𝛼1 ∼ Forall(Arr(Z(),Z())) ] () }
data Val2 (𝛼2) {Id′2 (𝛼) [𝛼2 ∼ Arr(𝛼, 𝛼) ] (Ty1 (𝛼)) }
data Val3 (𝛼3) {Add3 () [𝛼3 ∼ Arr(Int,Arr(Int, Int)) ] (),Mul3 () [𝛼3 ∼ Arr(Int,Arr(Int, Int)) ] (),MInc3 () [𝛼3 ∼ Arr(Bool,Arr(Int, Int)) ] () }
data Val4 (𝛼4) {MInc4 () [𝛼4 ∼ Arr(Bool,Arr(Int, Int)) ] () }
data Val5 (𝛼5) {BoolV5 () [𝛼5 ∼ Bool] (Bool) }
data Val6 (𝛼6) {MInc′6 () [𝛼6 ∼ Arr(Int, Int) ] (Val5 (Bool)) }
data Val7 (𝛼7) {App′′′7 (𝛽, 𝛿) [𝛼7 ∼ Arr(𝛽, 𝛿) ] (Ty2 (𝛽), Ty3 (𝛿),Val1 (Forall(Arr(Z(),Z()))),Val4 (Arr(𝛽, 𝛿))) }
. . . ;
fun idC (𝛼) (i𝛼 :Ty1 (𝛼)) :Val2 (Arr(𝛼, 𝛼)) = Id′2 (Arr(𝛼, 𝛼)) (𝛼) [Arr(𝛼, 𝛼) ∼ Arr(𝛼, 𝛼) ] (i𝛼 )
fun id′C (𝛼) (i𝛼 :Ty1 (𝛼), x:Val3 (𝛼)) :Val3 (𝛼) = x
. . .

fun app′′′C (𝛽, 𝛿) (i𝛽 :Ty2 (𝛽), i𝛿 :Ty3 (𝛿), id:Val1 (Forall(Arr(Z(),Z()))), f :Val4 (Arr(𝛽, 𝛿)), 𝑧:Val5 (𝛽)) :Val6 (𝛿) =
let 𝑔 = case id of

Id1 () [Forall(Arr(Z(),Z())) ∼ Forall(Arr(Z(),Z())) ] () ⇒
let i′𝛼 = BD1 (Arr(𝛽, 𝛿)) (𝛽, 𝛿) [Arr(𝛽, 𝛿) ∼ Arr(𝛽, 𝛿) ] (i𝛽 , i𝛿 ) in
case idC (Arr(𝛽, 𝛿)) (i′𝛼 ) of

Id′2 (𝛼′) [Arr(Arr(𝛽, 𝛿),Arr(𝛽, 𝛿)) ∼ Arr(𝛼′, 𝛼′) ] (i𝛼′ ) ⇒
let x′ = case f of

MInc4 () [Arr(𝛽, 𝛿) ∼ Arr(Bool,Arr(Int, Int)) ] () ⇒ MInc3 (𝛼′) () [𝛼′ ∼ Arr(Bool,Arr(Int, Int)) ] () in
case id′C (𝛼′) (i𝛼′ , x′) of

Add3 () [𝛼′ ∼ Arr(Int,Arr(Int, Int) ] () ⇒ (case 𝑖𝛽 of B2 () [𝛽 ∼ Bool] () ⇒ abort)
Mul3 () [𝛼′ ∼ Arr(Int,Arr(Int, Int) ] () ⇒ (case 𝑖𝛽 of B2 () [𝛽 ∼ Bool] () ⇒ abort)
MInc3 () [𝛼′ ∼ Arr(Bool,Arr(Int, Int) ] () ⇒ MInc4 (Arr(𝛽, 𝛿)) () [Arr(𝛽, 𝛿) ∼ Arr(Bool,Arr(Int, Int) ] () in

case 𝑔 of
MInc4 () [Arr(𝛽, 𝛿) ∼ Arr(Bool,Arr(Int, Int)) ⇒ mincC (c1)

. . .

fun mincC () (c1:Val5 (Bool)) :Val6 (Arr(Int, Int)) = MInc′6 (Arr(Int, Int)) () [Arr(Int, Int) ∼ Arr(Int, Int) ] (c1)
. . . ;
let id = Id1 (Forall(Arr(Z(),Z()))) () [Forall(Arr(Z(),Z())) ∼ Forall(Arr(Z(),Z())) ] () in
. . .

Figure 1: Type- and Control-Flow Directed Defunctionalization (selected components)

and f . A first-order, polymorphic function in the target language
is comprised of name, zero or more type variables, zero or more
expression variables (with types), a result type, and a body ex-
pression. Note that the type and expression arguments of app′′′C
correspond exactly to the free type variables and free expression
variables of 𝜆z plus the formal argument z. The first step is to com-
pute id @(𝛽→𝛿); to do so in the defunctionalized program, a case
analysis is performed on id. Since 𝜌 (id) = {Λ𝛼}, the exhaustive
case analysis has exactly one match, indicating that the first-order
function idC should be called. When performing a type application
in the defunctionalized program, an explicit value representing the
type used for instantiation is passed; the BD1 constructor is used
to build the representation of the type expression 𝛽→𝛿 in the set
{Int→Int→Int, 𝛽→𝛿}, to which the flow analysis maps 𝛼 .

The next step is to compute □ f , where □ corresponds to the
result of id @(𝛽→𝛿); again, to do so in the defunctionalized pro-
gram, a case analysis is performed on the result of the call of idC.
Once again, the exhaustive case analysis has exactly one match,

indicating that the first-order function id ′C should be called. Note
that the Id′2 constructor has an existential type variable 𝛼 ′ that
records the type at which id was instantiated and the type equality
recovers that Arr(𝛽, 𝛿) ∼ 𝛼 ′. The actual argument in this call is f ,
where 𝜌 (𝑓 ) = {𝜆c1} (represented by Val4), but the formal param-
eter in this call is x, where 𝜌 (𝑥) = {𝜆a1, 𝜆b1, 𝜆c1} (represented by
Val3). Thus, we must “up-cast” from f to x, which is easily achieved
because the MInc4 constructor of Val4 can be trivially converted to
the MInc3 constructor of Val3.

Next, the result of id @(𝛽→𝛿) f must be bound to g. Note that,
in the source program, g has the type 𝛽→𝛿 and 𝜌 (𝑔) = {𝜆c1}; hence,
in the target program, g should have the type Val4 (Arr(𝛽, 𝛿)). How-
ever, flow analysis determines that the result of 𝜆x is {𝜆a1, 𝜆b1, 𝜆c1}
and, therefore, the result of id ′C (𝛼 ′) (𝑖𝛼′, 𝑥 ′) is Val3 (𝛼 ′). Thus, we
must “down-cast” from Val3 (𝛼 ′) to Val4 (Arr(𝛽, 𝛿). From above, we
have the type equality Arr(𝛽, 𝛿) ∼ 𝛼 ′. In the MInc3 match, we
have the type equality 𝛼 ′ ∼ Arr(Bool,Arr(Int, Int); transitivity
and injectivity establish that 𝛽 ∼ Bool and 𝛿 ∼ Arr(Int, Int),
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which suffices to construct a value of type Val4 (Arr(𝛽, 𝛿) with the
MInc4 constructor. In the Add3 and Mul3 matches, we have the
type equality 𝛼 ′ ∼ Arr(Int,Arr(Int, Int); transitivity and injectiv-
ity establish that 𝛽 ∼ Int and 𝛿 ∼ Arr(Int, Int). Performing an
exhaustive case analysis on 𝑖𝛽 of type Ty2 (𝛽) requires a single B2
match, which introduces the type equality 𝛽 ∼ Bool; transitivity
establishes that Int ∼ Bool, which is a contradiction. Thus, in the
Add3 and Mul3 matches, we use the abort expression, which is
well-typed (with any type) only under inconsistent type equalities,
to “prove” that this is unreachable, dead code.

The final step is to compute g z; in the defunctionalized program,
the exhaustive case analysis of g has exactly one match, indicating
that the first-order function mincC should be called.

1.1 Contributions
The full version of the paper will precisely define this type- and
control-flow directed defunctionalization. The source language for
our defunctionalization transformation is a variant of System F
with integers and recursive functions; the static semantics of the
language combines a type system and the type- and control-flow
analysis as a single syntax-directed judgement. The target language
for our defunctionalization transformation is comprised of (mutu-
ally recursive) GADT declarations, (mutually recursive) first-order,
polymorphic, type-equality parameterized functions, and a main
expression. The defunctionalization transformation is primarily
defined by induction on the derivation of the source program’s type
system and type- and control-flow analysis judgement.

A subtle aspect of the translation, not illustrated by the example
above, is that there may be “loops” in the type-flow information.
For example, we may have 𝜌 (𝛼) = {Int, 𝛼→𝛼} (represented by
Ty𝑎) and 𝜌 (𝛽) = {Bool, 𝛽→𝛽} (represented by Ty𝑏 ). Given the
type expressions at which 𝛼 and 𝛽 can be instantiated, the type
equality 𝛼 ∼ 𝛽 should imply a contradiction. In order to establish
the contradiction, we require an inductive proof, which will be
represented by a recursive function that examines arguments of
type Ty𝑎 (𝛼) and Ty𝑏 (𝛽). The soundness of this proof relies on the
finiteness of the type-flow information and the decidability of type
incompatibility.
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Towards a more perfect union type
Anonymous Author(s)

Abstract
We present a principled theoretical framework for inferring
and checking the union types, and show its work in practice
on JSON data structures.

The framework poses a union type inference as a learn-
ing problem from multiple examples. The categorical frame-
work is generic and easily extensible.

1 Introduction
Typing dynamic languages has been long considered a chal-
lenge [3]. The importance of the task grown with the ubiq-
uity cloud application programming interfaces (APIs) utiliz-
ing JavaScript object notation (JSON), where one needs to
infer the structure having only a limited number of sample
documents available. Previous research has suggested it is
possible to infer adequate type mappings from sample data
[2, 8, 14, 20].

In the present study, we expand on these results. We pro-
pose a modular framework for type systems in program-
ming languages as learning algorithms, formulate it as equa-
tional identities, and evaluate its performance on inference
of Haskell data types from JSON API examples.

1.1 Related work
1.1.1 Union type providers
The earliest practical effort to apply union types to JSON
inference to generate Haskell types [14]. It uses union type
theory, but it also lacks an extensible theoretical framework.
F# type providers for JSON facilitate deriving a schema auto-
matically; however, a type system does not support union of
alternatives and is given shape inference algorithm, instead
of design driven by desired properties [20]. The other at-
tempt to automatically infer schemas has been introduced in
the PADS project [8]. Nevertheless, it has not specified a gen-
eralized type-system designmethodology. One approach uses
Markov chains to derive JSON types [2]1. This approach re-
quires considerable engineering time due to the implemen-
tation of unit tests in a case-by-case mode, instead of formu-
lating laws applying to all types. Moreover, this approach
lacks a sound underlying theory. Regular expression types
were also used to type XML documents [13], which does not
allow for selecting alternative representation. In the present
study, we generalize previously introduced approaches and

1This approach uses Markov chains to infer best of alternative type
representations.

GPCE, November, 2020, Illinois, USA
2020.

enable a systematic addition of not only value sets, but in-
ference subalgorithms, to the union type system.

1.1.2 Frameworks for describing type systems
Type systems are commonly expressed as partial relation of
typing. Their properties, such as subject reduction are also
expressed relatively to the relation (also partial) of reduction
within a term rewriting system. General formulations have
been introduced for the Damas-Milner type systems param-
eterized by constraints [23]. It is alsoworth noting that tradi-
tional Damas-Milner type disciplines enjoy decidability, and
embrace the laws of soundness, and subject-reduction. How-
ever these laws often prove too strict during type system
extension, dependent type systems often abandon subject-
reduction, and type systems of widely used programming
languages are either undecidable [21], or even unsound [27].

Early approaches used lattice structure on the types [25],
which is more stringent than ours since it requires idem-
potence of unification (as join operation), as well as com-
plementary meet operation with the same properties. Se-
mantic subtyping approach provides a characterization of
a set-based union, intersection, and complement types [9,
10], which allows model subtype containment on first-order
types and functions. This model relies on building a model
using infinite sets in set theory, but its rigidity fails to gen-
eralize to non-idempotent learning2. We are also not aware
of a type inference framework that consistently and com-
pletely preserve information in the face of inconsistencies
nor errors, beyond using bottom and expanding to infa-
mous undefined behaviour [5].

We propose a categorical and constructive framework that
preserves the soundness in inferencewhile allowing for con-
sistent approximations. Indeed our experience is that most
of the type system implementation may be generic.

2 Motivation
Here, we consider several examples similar to JSON API de-
scriptions. We provide these examples in the form of a few
JSON objects, along with desired representation as Haskell
data declaration.

1. Subsets of data within a single constructor:
a. API argument is an email – it is a subset of valid

String values that can be validated on the client-
side.

2Which would allow extension with machine learning techniques like
Markov chains to infer optimal type representation from frequency of oc-
curing values[2].

1
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b. The page size determines the number of results to re-
turn (min: 10, max:10,000) – it is also a subset of in-
teger values (Int) between 10, and 10, 000

c. The date field contains ISO8601 date – a record field
represented as a String that contains a calendar date
in the format ”2019-03-03”

2. Optional fields: The page size is equal to 100 by default
– itmeanswe expect to see the record like {”page_size”:
50} or an empty record {} that should be interpreted
in the same way as {”page_size”: 100}

3. Variant fields: Answer to a query is either a number
of registered objects, or String ”unavailable” - this is
integer value (Int) or a String (Int :|: String)

4. Variant records: Answer contains either a text message
with a user identifier or an error. – That can be repre-
sented as one of following options:

{”message” : ”Where can I submit my proposal?”, ”uid” : 1014}
{”message” : ”Submit it to HotCRP”, ”uid” : 317}
{”error” : ”Authorization failed”, ”code”: 401}
{”error” : ”User not found”, ”code”: 404}
data Example4 = Message { message :: String, uid :: Int }

| Error { error :: String, code :: Int }
5. Arrays corresponding to records:

[ [1, ”Nick”, null ]
, [2, ”George”, ”2019-04-11”]
, [3, ”Olivia”, ”1984-05-03”] ]

6. Maps of identical objects (example from [2]):
{ ”6408f5”: { ”size”: 969709 , ”height”: 510599

, ”difficulty”: 866429.732, ”previous”: ”54fced” },
”54fced”: { ”size”: 991394 , ”height”: 510598

, ”difficulty”: 866429.823, ”previous”: ”6c9589” },
”6c9589”: { ”size”: 990527 , ”height”: 510597

, ”difficulty”: 866429.931, ”previous”: ”51a0cb” } }
It should be noted that the last example presented above

requiresHaskell representation inference to be non-monotonic,
as an example of object with only a single key would be best
represented by a record type:
data Example = Example { f_6408f5 :: O_6408f5, f_54fced :: O_6408f5

, f_6c9589 :: O_6408f5 }
data O_6408f5 = O_6408f5 { size, height :: Int, difficulty :: Double

, previous :: String }
However, when this object has multiple keys with values

of the same structure, the best representation is that of a
mapping shown below.This is also an example of when user
may decide to explicitly add evidence for one of the alter-
native representations in the case when input samples are
insufficient. (like when input samples only contain a single
element dictionary.)
data ExampleMap = ExampleMap (Map Hex ExampleElt)
data ExampleElt = ExampleElt { size :: Int, height :: Int
, difficulty :: Double, previous :: String }

2.1 Goal of inference
Given an undocumented (or incorrectly labelled) JSON API,
we may need to read the input of Haskell encoding and
avoid checking for the presence of unexpected format devia-
tions. At the same time, we may decide to accept all known
valid inputs outright so that we can use types3 to ensure
that the input is processed exhaustively.

Accordingly, we can assume that the smallest non-singleton
set is a better approximation type than a singleton set. We
call it minimal containing set principle.

Second, we can prefer types that allow for a fewer num-
ber of degrees of freedom compared with the others, while
conforming to a commonly occurring structure. We denote
it as an information content principle.

Given these principles, and examples of frequently oc-
curring patterns, we can infer a reasonable world of types
that approximate sets of possible values. In this way, we
can implement type system engineering that allows deriving
type system design directly from the information about data
structures and the likelihood of their occurrence.

3 Problem definition
As we focus on JSON, we utilize Haskell encoding of the
JSON term for convenient reading(from Aeson package [1]);
specified as follows:
data Value = Object (Map String Value) | Array [Value] | Null

| Number Scientific | String Text | Bool Bool

3.1 Defining type inference
3.1.1 Information in the type descriptions
If an inference fails, it is always possible to correct it by in-
troducing an additional observation (example). To denote
unification operation, or information fusion between two
type descriptions, we use a Semigroup interface operation
<> to merge types inferred from different observations. If
the semigroup is a semilattice, then <> is meet operation
(least upper bound). Note that this approach is dual to tra-
ditional unification that narrows down solutions and thus is
join operation (greatest lower bound). We use a neutral ele-
ment of the Monoid to indicate a type corresponding to no
observations.
class Semigroup ty where (<>) :: ty -> ty -> ty
class Semigroup ty => Monoid ty where mempty :: ty

In other words, we can say thatmempty (or bottom) ele-
ment corresponds to situation where no information was
accepted about a possible value (no termwas seen, not even
a null). It is a neutral element of Typelike. For example,
an empty array [] can be referred to as an array type with
mempty as an element type. This represents the view that
<> always gathers more information about the type, as
opposed to the traditional unification that always narrows
3Compiler feature of checking for unmatched cases.
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down possible solutions. We describe the laws described be-
low asQuickCheck [4] properties so that unit testing can be
implemented to detect apparent violations.

3.1.2 Beyond set
In the domain of permissive union types, a beyond set repre-
sents the case of everything permitted or a fully dynamic
value when we gather the information that permits every
possible value inside a type. At the first reading, it may be
deemed that a beyond set should comprise of only one sin-
gle element – the top one (arriving at complete bounded
semilattice), but this is too narrow for our purpose ofmono-
tonically gathering information

However, since we defined generalization operator <>
as information fusion (corresponding to unification in cat-
egorically dual case of strict type systems.), wemay encounter
difficulties in assuring that no information has been lost
during the generalization4. Moreover, strict type systems
usually specify more than one error value, as it should con-
tain information about error messages and keep track from
where an error has been originated5.

This observation lets us go well beyond typing statement
of gradual type inference as a discovery problem from in-
complete information [22]. Here we consider type inference
as a learning problem furthermore, find common ground
between the dynamic and the static typing discipline. The
languages relying on the static type discipline usually con-
sider beyond as a set of error messages, as a value should
correspond to a statically assigned and a narrow type. In
this setting,memptywould be fully polymorphic type ∀𝑎.𝑎.

Languageswith dynamic type disciplinewill treatbeyond
as untyped, dynamic value andmempty again is an entirely
unknown, polymorphic value (like a type of an element of
an empty array)6.
class (Monoid t, Eq t, Show t) => Typelike t where beyond :: t -> Bool

Besides, the standard laws for a commutative Monoid,
we state the new law for the beyond set: The beyond set
is always closed to information addition by (<>a) or
(a<>) for any value of a, or submonoid. In other words,
the beyond set is an attractor of <> on both sides.7 How-
ever, we do not require idempotence of <>, which is uni-
formly present in union type frameworks based on the lat-
tice [25] and set-based approaches8[9]. Concerning union
types, the key property of the beyond set, is that it is closed
to information acquisition:

In this way, we can specify other elements of beyond set
instead of a single top. When under strict type discipline,
4Examples will be provided later.
5In this case: beyond (Error _) = True | otherwise = False.
6May sound similar until we consider adding more information to the type.
7So both for ∀a(<> a) and ∀a.(a<>), the result is kept in the beyond
set.
8Which use Heyting algebras, which have more assumptions that the lat-
tice approaches.

like that of Haskell [21], we seek to enable each element of
the beyond set to contain at least one error message9.

We abolish the semilattice requirement that has been con-
ventionally assumed for type constraints [24], as this require-
ment is valid only for the strict type constraint inference,
not for a more general type inference considered as a learn-
ing problem. As we observe in example 5 in sec. 2, we need
to perform a non-monotonic step of choosing alternative
representation after monotonic steps of merging all the in-
formation.

When a specific instance of Typelike is not a semilattice
(an idempotent semigroup), we will explicitly indicate that
is the case. It is convenient validation when testing a recur-
sive structure of the type. Note that we abolish semilattice
requirement that was traditionally assumed for type con-
straints here [25]. That is because this requirement is valid
only for strict type constraint inference, not for a more gen-
eral type inference as a learning problem. As we saw on
ExampleMap in sec. 2, we need non-monotonic inference
when dealing with alternative representations.We note that
this approach significantly generalized the assumptions com-
pared with a full lattice subtyping [24, 25].

Time to present the relation of typing and its laws. In
order to preserve proper English word order, we state that
ty ‵Types‵ val instead of classical val:ty. Specifying the laws
of typing is important, since we may need to separately con-
sider the validity of a domain of types/type constraints, and
that of the sound typing of the terms by these valid types.
Theminimal definition of typing inference relation and type
checking relation is formulated as consistency between these
two operations.
class Typelike ty => ty `Types` val where
infer :: val -> ty
check :: ty -> val -> Bool
First, we note that to describe no information, mempty

cannot correctly type any term. A second important rule of
typing is that all terms are typed successfully by any value
in the beyond set. Finally, we state the most intuitive rule
for typing: a type inferred from a term, must always be valid
for that particular term.The law asserts that the diagram on
the figure commutes:

The last law states that the terms are correctly type-checked
after adding more information into a single type. (For infer-
ence relation, it would be described as principal type prop-
erty.) The minimal Typelike instance is the one that con-
tains only mempty corresponding to the case of no sample
data received, and a single beyond element for all values
permitted. We will define it below as PresenceConstraint
in sec. 3.3.3. These laws are also compatible with the strict,
static type discipline: namely, the beyond set corresponds
to a set of constraints with at least one type error, and a
9Note that many but not all type constraints are semilattice. Please refer to
the counting example below.
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Type1 × Type2

Type1 Type1 <> Type2 Type2

Value1 True Value2

<>
𝜋2𝜋1

<>Type2

check value2check value1

Type1<>

infer

check with 𝑇𝑦𝑝𝑒1

infer

check with 𝑇𝑦𝑝𝑒2

Figure 1. Categorical diagram for Typelike.

task of a compiler to prevent any program with the terms
that type only to the beyond as a least upper bound.

3.2 Type engineering principles
Considering that we aim to infer a type from a finite number
of samples, we encounter a learning problem, so we need to
use prior knowledge about the domain for inferring types.
Observing that 𝑎 : false we can expect that in particular
cases, we may obtain that 𝑎 : true. After noting that 𝑏 : 123,
we expect that 𝑏 : 100 would also be acceptable. It means
that we need to consider a typing system to learn a reason-
able general class from few instances. This observation moti-
vates formulating the type system as an inference problem.
As the purpose is to deliver the most descriptive10 types, we
assume that we need to obtain a broader view rather than fo-
cusing on a free type and applying it to larger sets whenever
it is deemed justified.

The other principle corresponds to correct operation. It
implies that having operations regarded on types, we can
find a minimal set of types that assure correct operation in
the case of unexpected errors. Indeed we want to apply this
theory to infer a type definition from a finite set of examples.
We also seek to generalize it to infinite types. We endeavour
rules to be as short as possible. The inference must also be
a contravariant functor with regards to constructors. For
example, if AType x y types {”a”: X, ”b”: Y}, then xmust
type X, and y must type Y.

3.3 Constraint definition
3.3.1 Flat type constraints
Let us first consider typing of flat type: String (similar treat-
ment should be given to the Number.type.)
data StringConstraint = SCDate | SCEmail
| SCEnum (Set Text) {- non-empty set of observed values -}
| SCNever {- mempty -} | SCAny {- beyond -}

instance StringConstraint `Types` Text where
infer (isValidDate -> True) = SCDate

10The shortest one according to the information complexity principle.

infer (isValidEmail -> True) = SCEmail
infer value = SCEnum $ Set.singleton value
infer _ = SCAny

check SCDate s = isValidDate s
check SCEmail s = isValidEmail s
check (SCEnum vs) s = s `Set.member` vs
check SCNever _ = False
check SCAny _ = True

instance Semigroup StringConstraint where
SCNever <> a = a
SCAny <> _ = SCAny
SCDate <> SCDate = SCDate
SCEmail <> SCEmail = SCEmail
(SCEnum a) <> (SCEnum b) | length (a `Set.union` b) <= 10 = SCEnum (a <> b)
_ <> _ = SCAny

3.3.2 Free union type
Before we endeavour on finding type constraints for com-
pound values (arrays and objects), it might be instructive to
find a notion of free type, that is a type with no additional
laws but the ones stated above. Given a term with arbitrary
constructors we can infer a free type for every term set𝑇 as
follows: For any 𝑇 value type Set 𝑇 satisfies our notion of
free type specified as follows:

data FreeType a = FreeType { captured :: Set a } | Full

instance (Ord a, Eq a) => Semigroup (FreeType a) where
Full <> _ = Full
_ <> Full = Full
a <> b = FreeType $ (Set.union `on` captured) a b

instance (Ord a, Eq a, Show a) => Typelike (FreeType a) where
beyond = (==Full)

instance (Ord a, Eq a, Show a) => FreeType a `Types` a where
infer = FreeType . Set.singleton
check Full _term = True
check (FreeType s) term = term `Set.member` s
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This definition is deemed sound and applicable to finite
sets of terms or values. For a set of values: [”yes”, ”no”,
”error”], we may reasonably consider that type is an ap-
propriate approximation of C-style enumeration, or Haskell-
style ADTwithout constructor arguments. However, the de-
ficiency of this notion of free type is that it does not allow
generalizing in infinite and recursive domains! It only al-
lows to utilize objects from the sample.

3.3.3 Presence and absence constraint
We call the degenerate case of Typelike a presence or ab-
sence constraint. It just checks that the type contains at least
one observation of the input value or no observations at all.
It is vital as it can be used to specify an element type of an
empty array. After seeing true value, we also expect false,
so we can say that it is also a primary constraint for prag-
matically indivisible like the set of boolean values.The same
observation is valid for null values, as there is only one null
value ever to observe.
type BoolConstraint = PresenceConstraint Bool
type NullConstraint = PresenceConstraint ()
data PresenceConstraint a = Present | Absent

Variants It is simple to represent a variant of two mutu-
ally exclusive types. They can be implemented with a type
related to Either type that assumes these types are exclu-
sive, we denote it by :|:. In other words for Int :|: String
type, we first control whether the value is an Int, and if
this check fails, we attempt to check it as a String. Variant
records are slightly more complicated, as it may be unclear
which typing is better to use:
{”message”: ”Where can I submit my proposal?”, ”uid” : 1014}
{”error” : ”Authorization failed”, ”code”: 401}
data OurRecord = OurRecord { message, error :: Maybe String

, code, uid :: Maybe Int }
data OurRecord2 = Message { message :: String, uid :: Int }

| Error { error :: String, code :: Int }
The best attempt here is to rely on the available examples

being reasonably exhaustive. That is, we can estimate how
many examples we have for each, and how many of them
match.Then, we compare this number with type complexity
(with options being more complex to process because they
need additional case expression.) In such cases, the latter
definition has only oneMaybe field (on the toplevel option-
ality is one), while the former definition has four Maybe
fields (optionality is four). When we obtain more samples,
the pattern emerges:
{”error” : ”Authorization failed”, ”code”: 401}
{”message”: ”Where can I submit my proposal?”, ”uid” : 1014}
{”message”: ”Sent it to HotCRP”, ”uid” : 93}
{”message”: ”Thanks!”, ”uid” : 1014}
{”error” : ”Missing user”, ”code”: 404}

Type cost function Since we are interested in types with
less complexity and less optionality, wewill define cost func-
tion as follows:
class Typelike ty => TypeCost ty where
typeCost :: ty -> TyCost
typeCost a = if a == mempty then 0 else 1

instance Semigroup TyCost where (<>) = (+)
instance Monoid TyCost where mempty = 0

newtype TyCost = TyCost Int
When presented with several alternate representations

from the same set of observations, we will use this function
to select the least complex representation of the type. For
flat constraints as above, we infer that they offer no option-
ality when no observations occurred (cost of mempty is 0),
otherwise, the cost is 1. Type cost should be non-negative,
and non-decreasing when we add new observations to the
type.

3.3.4 Object constraint
To avoid information loss, a constraint for JSON object type
is introduced in such a way to simultaneously gather in-
formation about representing it either as aMap, or a record.
The typing of Map would be specified as follows, with the
optionality cost being a sum of optionalities in its fields.
data MappingConstraint = MappingNever -- mempty
| MappingConstraint { keyConstraint :: StringConstraint

, valueConstraint :: UnionType }
instance TypeCost MappingConstraint where
typeCost MappingNever = 0
typeCost MappingConstraint {..} = typeCost keyConstraint

+ typeCost valueConstraint
Separately, we acquire the information about a possible

typing of a JSON object as a record of values. Note that
RCTop never actually occurs during inference. That is, we
could have represented the RecordConstraint as a Type-
like with an empty beyond set. The merging of constraints
would be simply merging of all column constraints.
data RecordConstraint =

RCTop {- beyond -} | RCBottom {- mempty -}
| RecordConstraint { fields :: HashMap Text UnionType }

instance RecordConstraint `Types` Object where
infer = RecordConstraint . Map.fromList

. fmap (second infer) . Map.toList
check RecordConstraint {fields} obj =

all (`elem` Map.keys fields) -- all object keys
(Map.keys obj) -- present in type

&& and (Map.elems $ Map.intersectionWith -- values check
check fields obj)

&& all isNullable (Map.elems $ fields `Map.difference` obj)
-- absent values are nullable
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Observing that the two abstract domains considered above
are independent, we can store the information about both
options separately in a record11. It should be noted that this
representation is similar to intersection type: any value that
satisfiesObjectConstraintmust conform to bothmapping-
Case, and recordCase. Also, this intersection approach in or-
der to address alternative union type representations benefit
from principal type property, meaning that a principal type
serves to acquire the information corresponding to differ-
ent representations and handle them separately. Since we
plan to choose only one representation for the object, we
can say that the minimum cost of this type is the minimum
of component costs.
data ObjectConstraint = ObjectNever -- mempty
| ObjectConstraint { mappingCase :: MappingConstraint

, recordCase :: RecordConstraint }
instance TypeCost ObjectConstraint where
typeCost ObjectConstraint {..} = typeCost mappingCase

`min` typeCost recordCase

3.3.5 Array constraint
Similarly to the object type, ArrayConstraint is used to si-
multaneously obtain information about all possible repre-
sentations of an array, differentiating between an array of
the same elements, and a row with the type depending on a
column. We need to acquire the information for both alter-
natives separately, and then, tomeasure a relative likelihood
of either case, before mapping the union type to Haskell dec-
laration. Here, we specify the records for two different pos-
sible representations:
data ArrayConstraint = ArrayNever -- mempty
| ArrayConstraint { rowCase :: RowConstraint, arrayCase :: UnionType }
Semigroup operation justmerges information on the com-

ponents, and the same is donewhen inferring types or check-
ing them: For the arrays, we plan to choose again only one
of possible representations, so the cost of optionality is the
lesser of the costs of the representation-specific constraints.
instance ArrayConstraint `Types` Array where

infer vs = ArrayConstraint { rowCase = infer vs
, arrayCase = mconcat (infer <$> Foldable.toList vs) }

check ArrayNever vs = False
check ArrayConstraint {..} vs = check rowCase vs
&& and (check arrayCase <$> Foldable.toList vs)

3.3.6 Row constraint
A row constraint is valid only if there is the same num-
ber of entries in all rows, which is represented by escap-
ing the beyond set whenever there is an uneven number
of columns. Row constraint remains valid only if both con-
straint describe the record of the same length; otherwise,
11The choice of representation will be explained later. Here we only con-
sider acquiring information about possible values.

we yield RowTop to indicate that it is no longer valid. In
other words, RowConstraint is a levitated semilattice[16]12
with a neutral element over the content type that is a list of
UnionType objects.
data RowConstraint = RowTop | RowNever | Row [UnionType]

3.3.7 Combining the union type
It should note that given the constraints for the different
type constructors, the union type can be considered asmostly
a generic Monoid instance [11]. Merging information with
<> and mempty follow the pattern above, by just lifting
operations on the component.
data UnionType = UnionType {

unionNull :: NullConstraint, unionBool :: BoolConstraint
, unionNum :: NumberConstraint, unionStr :: StringConstraint
, unionArr :: ArrayConstraint, unionObj :: ObjectConstraint }
The generic structure of union type can be explained by

the fact that the information contained in each record field is
independent from the information contained in other fields.
It means that we generalize independently over different di-
mensions13

Inference breaks down disjoint alternatives correspond-
ing to different record fields, depending on the constructor
of a given value. It enables implementing a clear and effi-
cient treatment of different alternatives separately14. Since
union type is all about optionality, we need to sum all op-
tions from different alternatives to obtain its typeCost.
instance UnionType `Types` Value where
infer (Bool b) = mempty { unionBool = infer b }
infer Null = mempty { unionNull = infer () }
infer (Number n) = mempty { unionNum = infer n }
infer (String s) = mempty { unionStr = infer s }
infer (Object o) = mempty { unionObj = infer o }
infer (Array a) = mempty { unionArr = infer a }

check UnionType { unionBool } (Bool b) = check unionBool b
check UnionType { unionNull } Null = check unionNull ()
check UnionType { unionNum } (Number n) = check unionNum n
check UnionType { unionStr } (String s) = check unionStr s
check UnionType { unionObj } (Object o) = check unionObj o
check UnionType { unionArr } (Array a) = check unionArr a

3.3.8 Overlapping alternatives
The essence of union type systems have long been dealing
with the conflicting types provided in the input. Motivated
by the examples above, we also aim to address conflicting
12Levitated lattice is created by appending distinct bottom and top to a
set that does not possess them by itself.
13In this example, JSON terms can be described by terms without variables,
and sets of tuples for dictionaries, so generalization by anti-unification is
straightforward.
14The question may arise: what is the union type without set union? When
the sets are disjoint, we just put the values in different bins to enable easier
handling.
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alternative assignments. It is apparent that examples 4. to
6. hint at more than one assignment: in example 5, a set of
lists of values that may correspond to Int, String, or null,
or a table that has the same (and predefined) type for each
values; in example 6 A record of fixed names or the mapping
from hash to a single object type.

3.3.9 Counting observations
In this section, we discuss how to gather information about
the number of samples supporting each alternative type con-
straint. To explain this, the other example can be considered:
{”history”: [
{”error” : ”Authorization failed”, ”code”: 401}
,{”message”: ”Where can I submit my proposal?”, ”uid” : 1014}
,{”message”: ”Sent it to HotCRP”, ”uid” : 93}
,{”message”: ”Thanks!”, ”uid” : 1014}
,{”error” : ”Authorization failed”, ”code”: 401}]}
First, we need to identify it as a list of similar elements.

Second, there are multiple instances of each record example.
We consider that the best approach would be to use the mul-
tisets of inferred records instead. To find the best represen-
tation, we can a type complexity, and attempt to minimize
the term. Next step is to detect the similarities between type
descriptions introduced for different parts of the term:
{”history” : [...]
,”last_message” : {”message”: ”Thanks!”, ”uid” : 1014} }

We can add the auxiliary information about a number of
samples observed, and the constraint will remain aTypelike
object. The Counted constraint counts the number of sam-
ples observed for the constraint inside so that we can decide
on which alternative representation is best supported by ev-
idence. It should be noted that Counted constraint is the
first example that does not correspond to a semilattice, that
is a<>a≠a. This is natural for a Typelike object; it is not
a type constraint in a conventional sense, just an accumula-
tion of knowledge.
data Counted a = Counted { count :: Int, constraint :: a }

instance Semigroup a => Semigroup (Counted a) where
a <> b = Counted (count a + count b)

(constraint a <> constraint b)
Therefore, at each step, we may need to maintain a cardi-

nality of each possible value, and is providedwith sufficient
number of samples, we may attempt to detect15. To preserve
efficiency, we may need to merge whenever the number of
alternatives in a multiset crosses the threshold. We can at-
tempt to narrow strings only in the cases when cardinality
crosses the threshold.

15If we detect a pattern too early, we risk to make the types too narrow to
work with actual API responses.

4 Finishing touches
The final touch would be to perform the post-processing of
an assigned type before generating it to make it more re-
silient to common uncertainties.These assumptions may by-
pass the defined least-upper-bound criterion specified in the
initial part of the paper; however, they prove to work well
in practice[2, 14].

If we have no observations corresponding to an array type,
it can be inconvenient to disallow an array to contain any
values at all. Therefore, we introduce a non-monotonic step
of converting the mempty into a final Typelike object aim-
ing to introduce a representation allowing the occurrence
of anyValue in the input. That still preserves the validity of
the typing. We note that the program using our types must
not have any assumptions about these values; however, at
the same time, it should be able to print them for debugging
purposes.

Inmost JSON documents, we observe that the same object
can be simultaneously described in different parts of sample
data structures. Due to this reason, we compare the sets of
labels assigned to all objects and propose to unify those that
havemore than 60% of identical labels. For transparency, the
identified candidates are logged for each user, and a user can
also indicate them explicitly instead of relying on automa-
tion. We conclude that this allows considerably decreasing
the complexity of types and makes the output less redun-
dant.

5 Future work
In the present paper, we only discuss typing of tree-like val-
ues. However, it is natural to scale this approach to multi-
ple types in APIs, in which different types are referred to
by name and possibly contain each other. To address these
cases, we plan to show that the environment of Typelike
objects is also Typelike, and that constraint generalization
(anti-unification) can be extended in the same way.

It should be noted that many Typelike instances for non-
simple types usually follow one the two patterns of (1) for
a finite sum of disjoint constructors, we bin this informa-
tion by each constructor during the inference (2) for typing
terms with multiple alternative representations, we infer all
constraints separately for each alternative representation.
In both cases,Generic derivation procedure for theMonoid,
Typelike, and TypeCost instances is possible [17]. This al-
lows us to design a type system by declaring datatypes them-
selves and leave implementation to the compiler. Manual
implementation would be only left for special cases, like
StringConstraint and Counted constraint.

Finally, we believe that we can explain the duality of cat-
egorical framework of Typelike categories and use general-
ization (anti-unification) instead of unification (or narrow-
ing) as a type inference mechanism. The beyond set would
then correspond to a set of error messages, and a result of
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the inference would represent a principal type in Damas-
Milner sense.

5.1 Conclusion
In the present study, we aimed to derive the types that were
valid with respect to the provided specification16, thereby
obtaining the information from the input in the most com-
prehensive way. We defined type inference as representa-
tion learning and type system engineering as ameta-learning
problem in which the priors corresponding to the data
structure induced typing rules. We show how the type
safety can be quickly tested as equational lawswithQuickCheck,
which is a useful prototyping tool, andmay be supplemented
with fully formal proof in the future.

We also formulated the union type discipline as manip-
ulation of Typelike commutativemonoids, that represented
knowledge about the data structure. In addition, we pro-
posed a union type system engineering methodology that
was logically justified by theoretical criteria.We demonstrated
that it was capable of consistently explaining the decisions
made in practice. We followed a strictly constructive proce-
dure, that can be implemented generically.

We hope that this kind of straightforward type system
engineering will become widely used in practice, replacing
less modular approaches of the past.The proposed approach
may be used to underlie the way towards formal construc-
tion and derivation of type systems based on the specifica-
tion of value domains and design constraints.
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6 Appendix: all laws of Typelike
check mempty 𝑣 = False (mempty contains no terms)

beyond 𝑡 ⇒ check 𝑡 𝑣 = True (beyond contains all terms)
check 𝑡1 𝑣 ⇒ check (𝑡1 ⋄ 𝑡2) 𝑣 = True (left fusion keeps terms)
check 𝑡2 𝑣 ⇒ check (𝑡1 ⋄ 𝑡2) 𝑣 = True (right fusion keeps terms)

check (infer 𝑣) 𝑣 = False (inferred type contains the source term)
𝑡1 ⋄ (𝑡2 ⋄ 𝑡3) = 𝑡1 ⋄ (𝑡2 ⋄ 𝑡3) (semigroup associativity)
mempty ⋄ 𝑡 = 𝑡 (left identity of the monoid)
𝑡 ⋄mempty = 𝑡 (right identity of the monoid)

7 Appendix: definition module headers
{-# language AllowAmbiguousTypes #-}
{-# language DeriveGeneric #-}
{-# language DuplicateRecordFields #-}
{-# language FlexibleInstances #-}
{-# language GeneralizedNewtypeDeriving #-}
{-# language MultiParamTypeClasses #-}
{-# language NamedFieldPuns #-}
{-# language PartialTypeSignatures #-}
{-# language ScopedTypeVariables #-}
{-# language TypeOperators #-}
{-# language RoleAnnotations #-}
{-# language ViewPatterns #-}
{-# language RecordWildCards #-}
{-# language OverloadedStrings #-}
{-# options_ghc -Wno-orphans #-}
module Unions where

import Control.Arrow(second)
import Data.Aeson
import Data.Maybe(isJust,catMaybes)
import qualified Data.Foldable as Foldable
import Data.Function(on)
import Data.Text(Text)
import qualified Data.Text as Text
import qualified Data.Text.Encoding as Text
import qualified Text.Email.Validate(isValid)
import qualified Data.Set as Set
import Data.Set(Set)
import Data.Scientific
import Data.String
import qualified Data.HashMap.Strict as Map
import Data.HashMap.Strict(HashMap)
import GHC.Generics (Generic)
import Data.Hashable
import Data.Typeable
import Data.Time.Format (iso8601DateFormat,parseTimeM,defaultTimeLocale)
import Data.Time.Calendar (Day)
import Missing

<<freetype>>
<<typelike>>
<<basic-constraints>>
<<row-constraint>>
<<array-constraint>>
<<object-constraint>>
<<presence-absence-constraints>>
<<union-type-instance>>
<<type>>
<<counted>>
<<typecost>>
<<representation>>

8 Appendix: test suite
{-# language FlexibleInstances #-}
{-# language Rank2Types #-}
{-# language MultiParamTypeClasses #-}
{-# language MultiWayIf #-}
{-# language NamedFieldPuns #-}
{-# language ScopedTypeVariables #-}
{-# language StandaloneDeriving #-}
{-# language TemplateHaskell #-}
{-# language TypeOperators #-}
{-# language TypeApplications #-}
{-# language TupleSections #-}
{-# language UndecidableInstances #-}
{-# language AllowAmbiguousTypes #-}
{-# language OverloadedStrings #-}
{-# language ViewPatterns #-}
{-# options_ghc -Wno-orphans #-}
module Main where

import qualified Data.Set as Set
import qualified Data.Text as Text
import qualified Data.ByteString.Char8 as BS
import Control.Monad(when, replicateM)
import Control.Exception(assert)
import Data.FileEmbed
import Data.Maybe
import Data.Scientific
import Data.Aeson
import Data.Proxy
import Data.Typeable
import qualified Data.HashMap.Strict as Map
import Data.HashMap.Strict(HashMap)
import Test.Hspec
import Test.Hspec.QuickCheck
import Test.QuickCheck
import Test.Validity.Shrinking.Property
import Test.Validity.Utils(nameOf)
import qualified GHC.Generics as Generic
import Test.QuickCheck.Classes
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import System.Exit(exitFailure)

import Test.Arbitrary
import Test.LessArbitrary as LessArbitrary
import Unions

instance Arbitrary Value where
arbitrary = fasterArbitrary

instance LessArbitrary Value where
lessArbitrary = cheap $$$? genericLessArbitrary
where
cheap = LessArbitrary.oneof [

pure Null
, Bool <$> lessArbitrary
, Number <$> lessArbitrary
]

instance LessArbitrary a
=> LessArbitrary (Counted a) where

instance LessArbitrary a
=> Arbitrary (Counted a) where

arbitrary = fasterArbitrary

instance Arbitrary Object where
arbitrary = fasterArbitrary

instance Arbitrary Array where
arbitrary = fasterArbitrary

class Typelike ty
=> ArbitraryBeyond ty where
arbitraryBeyond :: CostGen ty

instance ArbitraryBeyond (PresenceConstraint a) where
arbitraryBeyond = pure Present

instance ArbitraryBeyond StringConstraint where
arbitraryBeyond = pure SCAny

instance ArbitraryBeyond IntConstraint where
arbitraryBeyond = pure IntAny

instance ArbitraryBeyond NumberConstraint where
arbitraryBeyond = pure NCFloat

instance ArbitraryBeyond RowConstraint where
arbitraryBeyond = pure RowTop

instance ArbitraryBeyond RecordConstraint where
arbitraryBeyond = pure RCTop

instance ArbitraryBeyond MappingConstraint where

arbitraryBeyond =
MappingConstraint <$$$> arbitraryBeyond

<*> arbitraryBeyond

instance (Ord a
,Show a
)

=> ArbitraryBeyond (FreeType a) where
arbitraryBeyond = pure Full

instance ArbitraryBeyond ObjectConstraint where
arbitraryBeyond = do
ObjectConstraint <$$$> arbitraryBeyond

<*> arbitraryBeyond

instance ArbitraryBeyond ArrayConstraint where
arbitraryBeyond = do
ArrayConstraint <$$$> arbitraryBeyond

<*> arbitraryBeyond

instance ArbitraryBeyond UnionType where
arbitraryBeyond =
UnionType <$$$> arbitraryBeyond

<*> arbitraryBeyond
<*> arbitraryBeyond
<*> arbitraryBeyond
<*> arbitraryBeyond
<*> arbitraryBeyond

instance ArbitraryBeyond a
=> ArbitraryBeyond (Counted a) where

arbitraryBeyond = Counted <$> LessArbitrary.choose (0, 10000)
<*> arbitraryBeyond

arbitraryBeyondSpec :: forall ty.
(ArbitraryBeyond ty
,Typelike ty)

=> Spec
arbitraryBeyondSpec =
prop ”arbitrarybeyond returns terms beyond” $
(beyond <$> (arbitraryBeyond :: CostGen ty))

instance LessArbitrary Text.Text where
lessArbitrary = Text.pack <$> lessArbitrary

instance Arbitrary Text.Text where
arbitrary = Text.pack <$> arbitrary

instance Arbitrary Scientific where
arbitrary = scientific <$> arbitrary

<*> arbitrary

instance (LessArbitrary a
,Ord a)
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=> LessArbitrary (FreeType a) where

instance Arbitrary (FreeType Value) where
arbitrary = fasterArbitrary
{-shrink Full = []
shrink (FreeType elts) = map FreeType

$ shrink elts-}

instance (Ord v
,Show v)

=> TypeCost (FreeType v) where
typeCost Full = inf
typeCost (FreeType s) = TyCost $ Set.size s

instance LessArbitrary (PresenceConstraint a) where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary (PresenceConstraint a) where
arbitrary = fasterArbitrary

instance LessArbitrary IntConstraint where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary IntConstraint where
arbitrary = fasterArbitrary

instance LessArbitrary NumberConstraint where
lessArbitrary = genericLessArbitrary

instance Arbitrary NumberConstraint where
arbitrary = fasterArbitrary

listUpToTen :: LessArbitrary a
=> CostGen [a]

listUpToTen = do
len <- LessArbitrary.choose (0,10)
replicateM len lessArbitrary

instance LessArbitrary StringConstraint where
lessArbitrary = LessArbitrary.oneof simple

$$$? LessArbitrary.oneof (complex <> simple)
where
simple = pure <$> [SCDate, SCEmail, SCNever, SCAny]
complex = [SCEnum . Set.fromList <$> listUpToTen]

<> simple

instance Arbitrary StringConstraint where
arbitrary = fasterArbitrary

instance LessArbitrary ObjectConstraint where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary ObjectConstraint where
arbitrary = fasterArbitrary

instance LessArbitrary RecordConstraint where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary RecordConstraint where
arbitrary = fasterArbitrary

instance LessArbitrary ArrayConstraint where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary ArrayConstraint where
arbitrary = fasterArbitrary

instance LessArbitrary RowConstraint where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary RowConstraint where
arbitrary = fasterArbitrary

instance LessArbitrary MappingConstraint where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary MappingConstraint where
arbitrary = fasterArbitrary

instance LessArbitrary UnionType where
lessArbitrary = genericLessArbitraryMonoid

instance Arbitrary UnionType where
arbitrary = fasterArbitrary

shrinkSpec :: forall a.
(Arbitrary a
,Typeable a
,Show a
,Eq a
)

=> Spec
shrinkSpec = prop (”shrink on ” <> nameOf @a)

$ doesNotShrinkToItself arbitrary (shrink :: a -> [a])

allSpec :: forall ty v.
(Typeable ty
,Arbitrary ty
,Show ty
,Types ty v
,ArbitraryBeyond ty
,Arbitrary v
,Show v
) => Spec

allSpec = describe (nameOf @ty) $ do
arbitraryBeyondSpec @ty
shrinkSpec @ty

<<typelike-spec>>
<<types-spec>>
<<typecost-laws>>

-- * Unit tests for faster checking
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-- | Bug in generation of SCEnum
scEnumExample = label ”SCEnum” $ s == s <> s
where
s = SCEnum $ Set.fromList $ [””] <> [Text.pack $ show i | i <- [0..8]]

-- | Bug in treatment of missing keys
objectExample = do

print t
quickCheck $ label ”non-empty object” $ t `check` ob2
quickCheck $ label ”empty object” $ t `check` ob

where
ob :: Object = Map.fromList []
ob2 :: Object = Map.fromList [(”a”, String ”b”)]
t :: RecordConstraint = infer ob2 <> infer ob

-- | Checking for problems with set.
freetypeExample = label ”freetype” $ a <> b == b <> a
where
a = FreeType {captured = Set.fromList [Bool False,Bool True,Number (-3000.0),Number 0.6,Number (-1.1e11),Number (-9.0e7),Null]}
b = FreeType {captured = Set.fromList [Bool False,Bool True,Number 5.0e-6,Null,String ”?”,Number 1.1e9,Number 3.0e10]}

-- * Run all tests
main :: IO ()
main = do
{-
sample $ arbitrary @Value
sample $ arbitrary @NullConstraint
sample $ arbitrary @NumberConstraint
sample $ arbitrary @RowConstraint
sample $ arbitrary @RecordConstraint
sample $ arbitrary @ArrayConstraint
sample $ arbitrary @MappingConstraint
sample $ arbitrary @ObjectConstraint
-}
quickCheck scEnumExample
objectExample
quickCheck freetypeExample

lawsCheckMany
[typesSpec (Proxy :: Proxy (FreeType Value) )

(Proxy :: Proxy Value ) True
,typesSpec (Proxy :: Proxy NumberConstraint )

(Proxy :: Proxy Scientific) True
,typesSpec (Proxy :: Proxy StringConstraint )

(Proxy :: Proxy Text.Text ) True
,typesSpec (Proxy :: Proxy BoolConstraint )

(Proxy :: Proxy Bool ) True
,typesSpec (Proxy :: Proxy NullConstraint )

(Proxy :: Proxy () ) True
,typesSpec (Proxy :: Proxy RowConstraint )

(Proxy :: Proxy Array ) True
,typesSpec (Proxy :: Proxy ArrayConstraint )

(Proxy :: Proxy Array ) True
,typesSpec (Proxy :: Proxy MappingConstraint)

(Proxy :: Proxy Object ) True
,typesSpec (Proxy :: Proxy RecordConstraint )

(Proxy :: Proxy Object ) True
,typesSpec (Proxy :: Proxy ObjectConstraint )

(Proxy :: Proxy Object ) True
,typesSpec (Proxy :: Proxy UnionType )

(Proxy :: Proxy Value ) True
,typesSpec (Proxy :: Proxy (Counted NumberConstraint))

(Proxy :: Proxy Scientific ) False
]

representationSpec

typesSpec :: (Typeable ty
,Typeable term
,Monoid ty
,ArbitraryBeyond ty
,Arbitrary ty
,Arbitrary term
,Show ty
,Show term
,Eq ty
,Eq term
,Typelike ty
,Types ty term
,TypeCost ty
)

=> Proxy ty
-> Proxy term
-> Bool -- idempotent?
-> (String, [Laws])

typesSpec (tyProxy :: Proxy ty)
(termProxy :: Proxy term) isIdem =

(nameOf @ty <> ” types ” <> nameOf @term, [
arbitraryLaws tyProxy

, eqLaws tyProxy
, monoidLaws tyProxy
, commutativeMonoidLaws tyProxy
, typeCostLaws tyProxy
, typelikeLaws tyProxy
, arbitraryLaws termProxy
, eqLaws termProxy
, typesLaws tyProxy termProxy
]<>idem)

where
idem | isIdem = [idempotentSemigroupLaws tyProxy]

| otherwise = []

typesLaws :: ( ty `Types` term
,Arbitrary ty
,ArbitraryBeyond ty
,Arbitrary term
,Show ty
,Show term
)
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=> Proxy ty
-> Proxy term
-> Laws

typesLaws (_ :: Proxy ty) (_ :: Proxy term) =
Laws ”Types” [(”mempty contains no terms”

,property $
mempty_contains_no_terms @ty @term)

,(”beyond contains all terms”
,property $
beyond_contains_all_terms @ty @term)

,(”fusion keeps terms”
,property $
fusion_keeps_terms @ty @term)

,(”inferred type contains its term”
,property $
inferred_type_contains_its_term @ty @term)

]

<<representation-examples>>

representationTest :: String -> [Value] -> HType -> IO Bool
representationTest name values repr = do

if foundRepr == repr
then do
putStrLn $ ”*** Representation test ” <> name <> ” succeeded.”
return True

else do
putStrLn $ ”*** Representation test ” <> name <> ” failed: ”
putStrLn $ ”Values : ” <> show values
putStrLn $ ”Inferred type : ” <> show inferredType
putStrLn $ ”Representation: ” <> show foundRepr
putStrLn $ ”Expected : ” <> show repr
return False

where
foundRepr :: HType
foundRepr = toHType inferredType
inferredType :: UnionType
inferredType = foldMap infer values

readJSON :: HasCallStack
=> BS.ByteString -> Value

readJSON = fromMaybe (”Error reading JSON file”)
. decodeStrict
. BS.unlines
. filter notComment
.
BS.lines

where
notComment (BS.isPrefixOf ”//” -> True) = False
notComment _ = True

representationSpec :: IO ()
representationSpec = do
b <- sequence

[representationTest ”1a” example1a_values example1a_repr
,representationTest ”1b” example1b_values example1b_repr
,representationTest ”1c” example1c_values example1c_repr
,representationTest ”2” example2_values example2_repr
,representationTest ”3” example3_values example3_repr
,representationTest ”4” example4_values example4_repr
,representationTest ”5” example5_values example5_repr
,representationTest ”6” example6_values example6_repr]

when (not $ and b) $
exitFailure

9 Appendix: package dependencies
name: union-types
version: '0.1.0.0'
category: Web
author: Anonymous
maintainer: example@example.com
license: BSD-3
extra-source-files:
- CHANGELOG.md
- README.md
dependencies:
- base
- aeson
- containers
- text
- hspec
- QuickCheck
- unordered-containers
- scientific
- hspec
- QuickCheck
- validity
- vector
- unordered-containers
- scientific
- genvalidity
- genvalidity-hspec
- genvalidity-property
- time
- email-validate
- generic-arbitrary
- mtl
- hashable
library:
source-dirs: src
exposed-modules:
- Unions

tests:
spec:
main: Spec.hs
source-dirs:
- test/lib
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- test/spec
dependencies:
- union-types
- mtl
- random
- transformers
- hashable
- quickcheck-classes
- file-embed
- bytestring

less-arbitrary:
main: LessArbitrary.hs
source-dirs:
- test/lib
- test/less

dependencies:
- union-types
- mtl
- random
- transformers
- hashable
- quickcheck-classes
- quickcheck-instances

10 Appendix: representation of generated
Haskell types

We will not delve here into identifier conversion between
JSON and Haskell, so it suffices that we have an abstract
datatypes for Haskell type and constructor identifiers:
newtype HConsId = HConsId String
deriving (Eq,Ord,Show,Generic,IsString)

newtype HFieldId = HFieldId String
deriving (Eq,Ord,Show,Generic,IsString)

newtype HTypeId = HTypeId String
deriving (Eq,Ord,Show,Generic,IsString)
For each single type we will either describe its exact rep-

resentation or reference to the other definition by name:
data HType =

HRef HTypeId
| HApp HTypeId [HType]
| HADT [HCons]
deriving (Eq, Ord, Show, Generic)
For syntactic convenience, we will allow string literals to

denote type references:
instance IsString HType where
fromString = HRef . fromString
When we define a single constructor, we allow field and

constructor names to be empty strings (””), assuming that
the relevant identifiers will be put there by post-processing
that will pick names using types of fields and their contain-
ers [18].

data HCons = HCons {
name :: HConsId

, args :: [(HFieldId, HType)]
}

deriving (Eq, Ord, Show, Generic)
At some stage we want to split representation into indi-

vidually named declarations, and then we use environment
of defined types, with an explicitly named toplevel type:
data HTypeEnv = HTypeEnv {

toplevel :: HTypeId
, env :: HashMap HTypeId HType
}
When checking for validity of types and type environ-

ments, we might need a list of predefined identifiers that
are imported:
predefinedHTypes :: [HType]
predefinedHTypes = [

”Data.Aeson.Value”
, ”()”
, ”Double”
, ”String”
, ”Int”
, ”Date” -- actually: ”Data.Time.CalendarDay”
, ”Email” -- actually: ”Data.Email”
]
Consider that we also have an htop value that represents

any possible JSON value. It is polimorphic for ease of use:
htop :: IsString s => s
htop = ”Data.Aeson.Value”

10.1 Code for selecting representation
Below is the code to select Haskell type representation. To
convert union type discipline to strict Haskell type repre-
sentations, we need to join the options to get the actual rep-
resentation:
toHType :: ToHType ty => ty -> HType
toHType = joinAlts . toHTypes

joinAlts :: [HType] -> HType
joinAlts [] = htop -- promotion of empty type
joinAlts alts = foldr1 joinPair alts
where
joinPair a b = HApp ”:|:” [a, b]
Considering the assembly of UnionType, we join all the

options, and convert nullable types to Maybe types
instance ToHType UnionType where
toHTypes UnionType {..} =

prependNullable unionNull opts
where
opts = concat [toHTypes unionBool

,toHTypes unionStr
,toHTypes unionNum
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,toHTypes unionArr
,toHTypes unionObj]

prependNullable :: PresenceConstraint a -> [HType] -> [HType]
prependNullable Present tys = [HApp ”Maybe” [joinAlts tys]]
prependNullable Absent tys = tys

The type class returns a list of mutually exclusive type
representations:
class Typelike ty
=> ToHType ty where
toHTypes :: ty -> [HType]
Conversion of flat types is quite straightforward:

instance ToHType BoolConstraint where
toHTypes Absent = []
toHTypes Present = [”Bool”]

instance ToHType NumberConstraint where
toHTypes NCNever = []
toHTypes NCFloat = [”Double”]
toHTypes NCInt = [”Int”]

instance ToHType StringConstraint where
toHTypes SCAny = [”String”]
toHTypes SCEmail = [”Email”]
toHTypes SCDate = [”Date”]
toHTypes (SCEnum es) = [HADT $

mkCons <$> Set.toList es
]

where
mkCons = (`HCons` [])

. HConsId

. Text.unpack
toHTypes SCNever = []
For array and object types we pick the representation

which presents the lowest cost of optionality:
instance ToHType ObjectConstraint where
toHTypes ObjectNever = []
toHTypes ObjectConstraint {..} =
if typeCost recordCase <= typeCost mappingCase
then toHTypes recordCase
else toHTypes mappingCase

instance ToHType RecordConstraint where
toHTypes RCBottom = []
toHTypes RCTop = [htop] -- should never happen
toHTypes (RecordConstraint fields) =

[HADT
[HCons ”” $ fmap convert $ Map.toList fields]

]
where
convert (k,v) = (HFieldId $ Text.unpack k

,toHType v)

instance ToHType MappingConstraint where

toHTypes MappingNever = []
toHTypes MappingConstraint {..} =
[HApp ”Map” [toHType keyConstraint

,toHType valueConstraint
]]

instance ToHType RowConstraint where
toHTypes RowNever = []
toHTypes RowTop = [htop]
toHTypes (Row cols) =
[HADT

[HCons ”” $ fmap (\ut -> (””, toHType ut)) cols]
]

instance ToHType ArrayConstraint where
toHTypes ArrayNever = []
toHTypes ArrayConstraint {..} =
if typeCost arrayCase <= typeCost rowCase
-- || count <= 3
then [toHType arrayCase]
else [toHType rowCase ]

Appendix: Missing pieces of code
In order to represent FreeType for the Value, we need to
add Ord instance for it:
deriving instance Ord Value

For validation of dates and emails, we import functions
from Hackage:
isValidDate :: Text -> Bool
isValidDate = isJust

. parseDate

. Text.unpack
where
parseDate :: String -> Maybe Day
parseDate = parseTimeM True

defaultTimeLocale $
iso8601DateFormat Nothing

isValidEmail :: Text -> Bool
isValidEmail = Text.Email.Validate.isValid

. Text.encodeUtf8

instance (Hashable k
,Hashable v)

=> Hashable (HashMap k v) where
hashWithSalt s = hashWithSalt s

. Foldable.toList

instance Hashable v
=> Hashable (V.Vector v) where

hashWithSalt s = hashWithSalt s
. Foldable.toList
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-- instance Hashable Scientific where
-- instance Hashable Value where

Then we put all the missing code in the module:
{-# language AllowAmbiguousTypes #-}
{-# language DeriveGeneric #-}
{-# language DuplicateRecordFields #-}
{-# language FlexibleInstances #-}
{-# language GeneralizedNewtypeDeriving #-}
{-# language MultiParamTypeClasses #-}
{-# language NamedFieldPuns #-}
{-# language PartialTypeSignatures #-}
{-# language ScopedTypeVariables #-}
{-# language StandaloneDeriving #-}
{-# language TypeOperators #-}
{-# language RoleAnnotations #-}
{-# language ViewPatterns #-}
{-# language RecordWildCards #-}
{-# language OverloadedStrings #-}
{-# options_ghc -Wno-orphans #-}
module Missing where

import Control.Arrow(second)
import Data.Aeson
import Data.Maybe(isJust,catMaybes)
import qualified Data.Foldable as Foldable
import Data.Function(on)
import Data.Text(Text)
import qualified Data.Text as Text
import qualified Data.Text.Encoding as Text
import qualified Text.Email.Validate(isValid)
import qualified Data.Set as Set
import Data.Set(Set)
import Data.Scientific
import Data.String
import qualified Data.Vector as V
import qualified Data.HashMap.Strict as Map
import Data.HashMap.Strict(HashMap)
import GHC.Generics (Generic)
import Data.Hashable
import Data.Typeable
import Data.Time.Format (iso8601DateFormat,parseTimeM,defaultTimeLocale)
import Data.Time.Calendar (Day)

<<missing>>
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Abstract
This paper proposes a new approach towards representing
uniqueness types as logic formulae. It introduces a notion of
containerised uniqueness attributes which resolves the two
key challenges of preexisting work on uniqueness types as
logic formulae: The unification of such formulae becomes
computationally tractable and the inferred types are more
conducive for an interpretation by programmers.

1 Introduction
A key characteristic of pure languages is referential trans-
parency. It guarantees that variables are placeholders whose
values are fixed throughout the program execution. This
property allows variables to be replaced by their definition
at any time without effecting the overal result, enabling
reasoning about programs in terms of equations and thus
opening the door for a wide range of formal proofs.

Many implementations of pure functional languages make
use of sharing to limit memory use: a value is stored just
once in memory, and program variables are references to
this memory. When there is more than one variable storing
a reference to the same object, this object is shared. A de-
structive update to such values is observable: it can change
the program output. A shared value will be used later in
the evaluation of the program, at which point the original
definition and the current value may be different because
of an earlier destructive update: referential transparency is
violated.

For this reason, variables in such languages cannot be
used to denote memory that can be updated at will, in sharp
contrast to procedural languages. Even small changes in
large data structures, at least conceptually, require the cre-
ation of a completely new data structures. This copying
causes huge overhead in both runtime, and space demand,
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and presents challenges for the efficient implementation of
pure languages.

But crucially, a destructive update only violates referential
transparency because the value is shared, and therefore used
after it has been modified. If value is not shared, a destruc-
tive update to it is not observable: the original value is not
used in the rest of the program, and the program output
is unchanged. The challenge is then to determine whether
a variable is shared, and thus whether it can be updated
destructively.

Reference counting can determine at runtime whether a
value is shared. Runtime values are extended with a counter,
the reference count, that tracks how many live pointers ex-
ist to the value. A common usage of reference counting is
garbage collection. When the reference count of a value is
decremented to 0, there is no way to access the value and
its memory can be reclaimed. But when the reference count
is exactly 1, the value is not shared and can be safely de-
structively updated. Reference counting itself however has a
runtime cost: values extended with space for the reference
count may no longer fit in a cache line, and the manipu-
lation of the reference count has overhead, especially in a
multi-threaded scenario.

Uniqueness types are a mechanism to statically determine
whether a value is non-shared, and thus whether a destruc-
tive update can be performed. While less precise than a run-
time approach, the static nature enables reasoning about per-
formance and memory usage. Furthermore, the type system
can enforce that certain values are never shared, providing
strong correctness guarantees.

Uniqueness types were initially developed for and im-
plemented in the Clean programming language [15]. The
semantics of Clean are based on a term rewrite system, and
the uniqueness types constitute a non-trivial extension of the
type system of Clean. They add a notion of uniqueness vari-
ables and constraints on them; subtyping is introduced for
the use of unique objects in non-unique contexts. All these
extensions are invasive in almost the entire type inference
process.

In Uniqueness Typing Simplified (UTS) [7], Edsko de Vries
et al. present an approach for inferring uniqueness types that
is defined on the lambda calculus in a way that is orthogonal
to the base type system. While this approach still contains the
notion of uniqueness variables, subtyping and constraints
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on uniqueness variables in this approach are expressed as
formulae in first-order logic.

While this approach very elegantly simplifies the expres-
sion of uniqueness types and their addition to other type
systems, it does come with its own challenges. It requires
the unification of logic formulae which can quickly turn
into a performance bottleneck and which often leads to un-
necessarily complex logic expressions. An automation of
their simplification adds to the challenge and it seems to
be impossible to guarantee a concise, easily understandable
result.

In this work, we try to further improve on the UTS ap-
proach. We limit the expression of constraints between unique-
ness variables to solely disjunctions. We establish upper
and lower bounds on the uniqueness attribute of containers
(e.g. tuples), and use a unification mechanism inspired by
that of polymorphic records. The result is a unification of
uniqueness attributes that is fast and infers succinct type
signatures.

Chapter 2 first describes the core concepts involved in
uniqueness types and their inference. Later sections look
in detail at the inference of uniqueness types in the Clean
programming language, and the approach of Uniqueness
Typing Simplified [7]. Chapter 3 describes why inference
with UTS is slow and finds large types. Chapter 4 describes
container annotations, our proposed solution. Chapter 5
describes related work, and Chapter 6 concludes the thesis.

2 Background
2.1 Basic concepts
This section introduces the basic concepts behind uniqueness
types, and is not yet specific to an implementation. The
following sections look at the concrete systems of Clean and
UTS in more detail.

2.1.1 Updating values. In procedural languages, variables
can – and often do – denote memory that can be updated at
will. Values are commonly destructively updated: the update
modifies the original in-place in memory. In contrast, non-
destructive updates never change the original. Conceptually,
they first copy the original, and then change this new value
in-place. Copying of data has a steep cost in terms of both
runtime and memory use, and should therefore be avoided
as much as possible.

An expensive copy can be partially avoided with tree-
based data structures. When updating a tree, large subtrees
will likely be untouched. Structural sharing is a strategy
where only the the modified subtree and a path from it to
the root need to be copied, all other parts of the tree can
reference the original. The drawbacks of tree data structures
are two-fold: access times are no longer constant and the
number of memory allocations required for a single data
structure typically increase linearly with the size of that
overall data.

A flat array (a contiguous region of memory) does have
constant access time and linear memory usage, but copying
an array is expensive.
That presents a challenge for the usage of arrays in pure func-
tional languages, because most of these languages cannot
recognize in general when a destructive update is safe. There
are pure functional languages for array-based programming,
but they all must minimize copying to be performant. They
use techniques like reference counting and uniqueness types
to determine when in-place mutation is safe [12] [16]. In lan-
guages without such mechanisms, the usage of tree-based
data structures instead of arrays is common because trees
can benefit from structural sharing.

Destructive updates are however not just important for
the efficient usage of arrays; the tree data structures and
ADTs that are so ubiquitous in functional languages also
benefit. For instance [17] uses reference counting to make
linked-list and tree transformations use constant-space when
the data structure is not shared.

Thus, the ability to use destructive updates in a functional
language is desirable: it enables the efficient usage of arrays,
an attractive data structure in many cases, and speeds up
operations on other common data structures.

ADD: tradeoff of RC: more accurate but has runtime over-
head h3ere we’ll focus on uniqueness types (do things stati-
cally)

2.1.2 Statically marking sharing variables. To deter-
mine at compile time whether a destructive update to a value
is safe, it must be known whether this value is potentially
shared. We assume that constants (1, [], "foo", etc.) are never
shared (e.g. f [] [] would create two new empty lists). Fur-
thermore we assume that the primary source of sharing is
variables. A variable that is guaranteed not to be shared is
an exclusive variable.

An accurate static marking of variables as shared or ex-
clusive is undecidable, but the solution can be approximated.
The general idea is to count how often a variable occurs in its
scope. If it occurs once, the variable is exclusive. Otherwise
it must be conservatively assumed the variable is shared.

For example, the x variable occurs only once in the body of
the identity function, and therefore is marked as exclusive
(⊙):

identity x = x⊙

In constrast the x variable occurs twice in the body of duplicate,
and thus is marked as shared (⊗):

duplicate x = (x⊗, x⊗)

For implementation reasons these markings are convention-
ally written in the expression, rather than at the binding
site.

The marking of variables solely by counting the number
of occurences is conservative, because not every second oc-
curence actually causes the variable to become shared. For

2

176



221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Container Unification for Uniqueness Types IFL ’20, September 2–4, 2020, Online

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

this thesis we will assume it is possible to extract both values
from a tuple without sharing the tuple: the two values could
conceptually be extracted at the same time. Other refine-
ments to improve the accuracy of markings are orthogonal
to this thesis. Concretely, this annotation is correct:

swap = 𝜆 r . (snd r⊙, fst r⊙)
In a more powerful language, this function can be imple-
mented using pattern matching, in which case the r variable
will only occur once.

2.1.3 Propagation of sharing. A variable marked as ex-
clusive is not shared within it scope. However, it may be an
alias for a variable that is shared, or its value may be shared.
To guarantee the safety of destructive updates, local sharing
information must be propagated to be able to give global
guarantees about non-sharedness.

We call a variable unique if we can statically guarantee
that it is globally non-shared. Otherwise it is non-unique.
Variables marked as shared are certainly non-unique, but
determining the uniqueness of exclusive-marked variables
requires essentially a fixed-point calculation.

Functions can propagate the uniqueness between argu-
ments and the output. For instance if the identity function is
applied to a unique value, the output is still unique. When
instead it is applied to a non-unique value, the output is still
non-unique. The identity function 𝜆 x .x should thus be able
to handle both unique and non-unique values.

Intuitively it is possible to treat unique values as non-
unique. The uniqueness property can be ignored: even though
destructive updates are safe, one can choose to update non-
destructively. But there is a subtle complication regarding
function types. Consider the functions:

const = 𝜆 x . 𝜆 y. x

twice = 𝜆 f . 𝜆 x . (f (x), f (x))
Assume p is a unique value. The partial application T =

const p must hold onto this p value, so it can be returned
when the partial application becomes fully applied. When
T indeed becomes fully applied, the unique p value is re-
turned. But p is unique, and therefore may not be shared.
Therefore T may only become fully applied once! To enforce
this constraint, a function that stores a unique value in its
closure must itself become unique. Moreover, it is unique in a
way that is unsafe to ignore: unique functions are necesarilly
unique.

Therefore the argument to the the duplicate function
cannot be any value of any uniqueness. Only non-necesarilly-
unique values should be accepted.

duplicate x = (x⊗, x⊗)

Finally, containers (e.g. tuples, records, ADTs) put a de-
mand on the relation between the uniqueness of the con-
tainer and its elements. This is captured in the container
rule:

To extract a unique value from a container,
the container must itself be unique

Concretely, given a pair (x, y), sharing the pair will also
share the elements x and y, because they can be repeatedly
extracted. We can now reason about the uniqueness demands
and guarantees of swap:

swap = 𝜆 r . (snd r⊙, fst r⊙)

If the input tuple r is unique, then the two elements can be
extract uniquely, but also non-uniquely. If it is non-unique,
then the elements can only by extracted non-uniquely. In
other words, the uniqueness of the tuple r must be at least
as unique as either of the elements. Thus it must be possible
to express in a function type that certain parameters are at
least as unique as others.

It turns out that a type system is well-suited for express-
ing the constraints between unique and non-unique values
outlined above. A type checking and inference algorithm
can perform the fixed-point calculation that determines for
each expression whether it is globally non-shared. In the
next subsections we will look at two concrete systems with
uniqueness types. Based on this subsection, a point in the
design space must be able to:

• distinguish between unique and non-unique values
• specify that two values are either both unique or both

non-unique
• specify that a value is at least as unique as some other

value
For practical programmer convenience, at least two other

aspects are important:
• it should be possible to define functions generically

for both unique and non-unique arguments when the
implementation would be the same, thus preventing
code duplication

• the inferred uniqeness properties need to be commu-
nicated with the programmer in a clear way

2.2 Uniqueness Types in Clean
2.2.1 Uniqueness attributes. In Clean every type comes
in two variants: unique and non-unique. Standard Curry-
style types, the base types are annotated with a uniqueness
attribute:

• unique: denoted with a superscript bullet, Int•.
• non-unique: denoted with a superscript cross, Int×.

The attribute on function arrows is written above the
arrow: ×−→,

•−→. A unique function •−→ is necesarilly unique.
Values of a type annotated with • can be safely destructively
updated, while values of a ×-annotated type cannot.

To express that the attribute on different (parts of) argu-
ments is the same, uniqueness polymorphism is introduced.
A uniqueness annotation can contain a uniqueness variable,
for instance in the annotation identity :: au ×−→ au. Both the
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based type a and the uniqueness annotation u of the output
must be the same as the input.

The uniqueness of constants is a free uniqueness variable:
1 :: Intu. A free uniqueness variable in the return type al-
lows a caller to decide the uniqueness of a function’s output,
e.g. (𝜆 x . 1) :: au ×−→ Intw .

2.2.2 Subtyping. The container rule requires the ability
to express that certain uniqueness attributes are more unique
than others. To this end, Clean introduces two concepts: a
subtyping rule on uniqueness attributes, and uniqueness
constraints.

In the Clean type system, unique types are subtypes of
their non-unique counterparts. This means that a unique
value can be used in a non-unique context, e.g. when a func-
tion requires a non-unique argument, then it can be given a
unique value. For most types, uniqueness is a property that
can be ignored.

However, function types and type variables – which may
be instantiated to function types – are necesarilly unique:
their uniqueness cannot be ignored. The subtyping rule in
Clean therefore exempts these types.

This exemption has consequences for the applicability
of uniqueness type variables. Consider again the duplicate

function:

duplicate x = (x⊗, x⊗)

This function duplicates its argument. Therefore the return
type is a tuple with two non-unique elements. At first sight
the subtyping rule seems to allow the signature:

duplicate :: au ×−→ (a×, a×)w

That is, the input can be of any type a with any uniqueness
attribute u. But the exemption of function types from the
subtyping rule means this signature is incorrect. duplicate
actually cannot be applied to function types with attribute •.
This function is therefore given the annotation:

duplicate :: a×
×−→ (a×, a×)w

Now the argument can be any type a with an annotation
that is a subtype of ×. That includes unique types that are
not necesarilly-unique.

Equalities between uniqueness attributes are captured by
parametric polymorphism over uniqueness variables. To ex-
press inequalities between uniqueness attributes, Clean uses
uniqueness constraints. For instance:

fst :: (tu, sv)w → tu, [w ≤ u]

Here the syntax [w ≤ u] expresses that w must be a subtype
of u. We can also interpret the constraint as u implies w: if u
is unique, then w must be as well (and if u is not unique, w is
unconstrained). Because the second element is not extracted,
it’s uniqueness annotation is not relevant for the signature
of fst.

2.3 Uniqueness Typing Simplified
Uniqueness Typing Simplified [7] makes considerably differ-
ent design decisions

A big accomplishment of UTS is that uniqueness types
are orthogonal to other type system features. However the
UTS approach has challenges of its own.

UTS combines base types and uniqueness attributes into
one syntactical category, distinguishing the two with a kind
system. Base types are of kind T , and uniqueness attributes
are of kind U. A special constructor Attr :: T → U → ∗
combines a base type and uniqueness attribute into a type of
kind ∗, the kind that is inhabited by values. The goal of this
change is that a standard hindley-milner type checker with
kind inference can be used to infer uniqueness types with
minimal modification. The kind language is given in figure
1.

In UTS, uniqueness relations are represented as formulae
in first-order logic. Uniqueness attributes, types of kind U,
are boolean expressions. The • type now stands for boolean
True, × for boolean False, but attributes can also contain
variables and the boolean connectives ¬,∨,∧. We say that
a value is unique when the uniqueness attribute of its type
evaluates to •. E.g. both of these are the type of unique
integers: Int• and Intu∨•.

Like in Clean, uniqueness polymorphism can be used to
express that the uniqueness of two types is the same. How-
ever, where Clean uses uniqueness constraints, UTS encodes
implications between uniqueness attributes as disjunctions:

fst :: (tu, sv)u∨w → tu

To extract the first value uniquely (i.e. when u = •), the tuple
must also be unique. Indeed, the boolean expression u ∨ w
evaluates to • if u is •, and when u = ×, the free w variable
still allows the annotation on the tuple to become •.

An advantage of boolean attributes is that all information
to determine the value of the annotation is in the annota-
tion, rather than in a constraint in the environment. This is
convenient when adding advanced type system features like
higher-rank polymorphism and impredicativity [5] [14].

In UTS, all unique types are necesarilly unique: their
uniqueness cannot be ignored. Therefore a value of type
tu cannot be implicatly converted into t×, and duplicate

function cannot be given the type

duplicate :: tu ×−→ (t×, t×)
Therefore we must assign it a type that is visually the same
as Clean’s, but semantically different:

duplicate :: t×
×−→ (t×, t×)

Because in UTS all unique types are necesarilly unique and
there is no subtyping rule, this function can really only be
applied to non-unique arguments.

At first sight, this change seems to severely limit the op-
portunities where a value is inferred as unique, and can thus
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Kind language
𝜅 ::= kind

T base type
U uniqueness attribute
∗ base type together with uniqueness attribute
𝜅1 → 𝜅2 type constructors

Type constants
Int, Bool :: T base type
→ :: ∗ → ∗ → T function space
•,× :: U unique, non-unique
∨,∧ :: U → U → U logical or, and
¬ :: U → U logical negation
Attr :: T → U → ∗ combine base type and attribute

Syntactic conventions
tu ≡ Attr t u

a
u−→ b ≡ Attr (a → b) u

Figure 1. kind language

be destructively updated. However in practice, this problem
can be overcome with careful API design.

A generic function tu ×−→ tv cannot be implemented, and
would be unsafe to expose as a primitive. But for specific
types, e.g. arrays, a coercion primitive is perfectly safe:

coerce :: (Array tu)v ×−→ (Array tu)w

This function changes the uniqueness of the array from v
to w, and may be instantiated at types u = • and w = ×.
But explicit coercions are rarely needed if primitives return
uniqueness-polymorphic values when possible. For instance:

set :: Intz ×−→ tu z−→ (Array tu)v z∨u
−−−→ (Array tu)w

If the input array is non-unique, the output array is newly
allocated, otherwise the array is mutated in-place. In either
case, the insertion always produces a unique array. But the
output is not (Array tu)• to enable the output to actually be
non-unique if the surrounding context demands it.

After type inference and checking, remaining polymor-
phic uniqueness attributes can be interpreted as •: a poly-
morphic attribute at this stage means that either × or • can
be handled, but we can pick • to potentially benefit from
destructive updates.

2.3.1 Language. To talk about the typing rules and unique-
ness type inference, we must first define a language for them
to operate on. Our language (2) is the lambda calculus ex-
tended with tuples, and usage markings exclusive (⊙) and
shared (⊗) on variables.

Expressions e F x⊙ variable (exlusive)
| x⊗ variable (shared)
| 𝜆 x . e abstraction
| e e application
| (e, e) tuple construction
| fst e tuple projection 1
| snd e tuple projection 2

Figure 2. lambda calculus extended with tuples

Variable occurences are annotated as either exlusive or
shared by a usage analysis. A variable x is marked exclusive
if:

• it occurs freely exactly once in its scope, or
• it occurs freely exactly twice in its scope: once as an

argument to the primitive function fst, and once as an
argument to the primitive function snd

Otherwise, a variable is annotated as shared. Exclusive
usage is denoted with a superscript ⊙, shared usage is de-
noted with a superscript ⊗. Examples of annotations based
on these rules are:

(𝜆 x .x⊙)
(𝜆 x .(x⊗, x⊗))
(𝜆 r .(fst r⊙, snd r⊙))
(𝜆 r .(fst r⊗, fst r⊗))
(𝜆 r .(fst ((𝜆 x .x⊙)r⊗), snd r⊗))

Note again that the markings are in the expressions, not
at the binding site of a variable, even though in UTS the
marking annotation has to be the same at all occurences of a
variable. In the UTS system the annotation is used in the typ-
ing rule var. Having the annotation on the expression rather
than in the environment makes the typing rules simpler.

2.3.2 Type Inference. The typing relation (figure 3) is
taken from [7], and extended with the rules for tuples. The
typing relation consists of judgements of the form

Γ ⊢ e : 𝜏 |fv
Which is read as “in environment Γ, expression e has type
𝜏 , where the uniqueness attributes on free variables in e are
fv”. The uniqueness attributes of free variables are used to
determine whether a function must be unique (as free vari-
ables are captured in the closure, and closures must adhere
to the container rule).

The var⊗ forces any shared variable to be of a non-unique
type. var⊙ assigns a free uniqueness attribute to exclusive
variables.

When a function captures unique variables in its closure,
the function must itself be unique. The variables captured by
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a closure are the free variables in the function body. Hence
a map of free variables to their uniqueness attribute is main-
tained. Rule abs uses this map to constrain the type of the
function arrow. The app rule enforces that the argument to
a function has the same type as the function’s parameter.

Next pair types the construction of tuples. Note that the
uniqueness attribute on the result is the free variable w. The
container rule is not enforced when creating containers, only
when extracting values from them. Therefore w can be free
in this rule. Finally fst and snd enforce the container rule:
a unique element can only be extracted if the tuple is itself
unique.

var⊙
Γ, x : 𝜏v ⊢ x⊙ : 𝜏v |x:v

var⊗
Γ, x : 𝜏× ⊢ x⊗ : 𝜏× |x:×

Γ, x : 𝜏 ⊢ e : 𝜏 ′ |fv fv′ = fv −▷ x
abs

Γ ⊢ 𝜆 x .e : 𝜏
∨

fv′
−−−−→ 𝜏 ′ |fv′

Γ ⊢ e : 𝜏 v−→ 𝜏 ′ |fv1 Γ ⊢ e′ : 𝜏 |fv2app
Γ ⊢ e e′ : 𝜏 ′ |fv1∪fv2

Γ ⊢ x : tu |fv1 Γ ⊢ y : sv |fv2pair
Γ ⊢ (x, y) : (tu, sv)w |fv1∪fv2

Γ ⊢ r : (tu, sv)u∨w |fv
fst

Γ ⊢ fst r : tu |fv

Γ ⊢ r : (tu, sv)v∨w |fv
snd

Γ ⊢ snd r : sv |fv

Figure 3. typing rules adapted from Uniqueness typing sim-
plified[7] extended with products. In rule abs, −▷ is the do-
main subtraction operator. It removes x from the set of free
variables because it is bound in the lambda body.

3 The problem with boolean attributes
The UTS approach of making uniqueness type inference
orthogonal to the rest of the type system is impressive. How-
ever, we highlight two problems with UTS type inference
already noted in [7]:

• unification of boolean attributes finds large unifiers,
occurs often, and is computationally expensive

• inferred types are hard to interpret
These are serious problems in practice, because UTS relies

on disjunctions for uniqueness propagation. We will first
look at an example where a needlessly complex type is in-
ferred, then discuss boolean unification and highlight why
disjunctions in particular cause unifiers to be large.

3.1 An example
In [7], the function swap is given as an example where the
inferred type is hard to interpret.

swap = 𝜆 t .(snd t⊙, fst t⊙)

The desired inferred signature for this function in the UTS
system is:

swap :: (sv, tu)v∨u∨w → (tu, sv)w′

We ignore the attribute on the arrow. u and v can only be
unique if the input tuple is. Note that the uniqueness on
the output tuple is the unbound variable w′, because tuple
creation does not enforce the container rule. Unfortunately,
the inferred type based on UTS is:

swap :: (s (¬ v∧u)∨(¬ v∧w)∨(u1∧u)∨(u1∧w) , tu)u∨w

→ (tu, s (¬ v∧u)∨(¬ v∧w)∨(u1∧u)∨(u1∧w) )v1

These two signatures are logically equivalent, but it’s not at
all trivial to see that they are. Additionally, [7] reports that
type-checking swap with the succinct signature takes “a long
time”.

3.2 Unification
Type equivalence is important in type inference. For instance,
in the application f x, the type of the first argument of f
must be equivalent to the type of x for the application to be
well-typed.

Equivalence of types is defined as equality up to unification.
Unification of two terms T , T ′ aims to find a substitution or
unifier S such that B ⊢ ST � ST ′. Here the set B is the set
of identities. To infer the most general type for functions, it
is important to use not just any unifier, but a most general
unifier (mgu). An mgu subsumes all other unifiers.

For the unification of base types, syntactical unification is
used. With syntactical unification, the set of identities B is
empty. Therefore for T and T ′ to unify, ST has to be syntac-
tically the same as ST ′. For example, the unification problem
Int � a has the unifier [a ↦→ Int]. Syntactic unification
is compositional: for instance, unification of two function
types implies that the argument and result types individually
must unify.

a � c b � d
a → b � c → d

In contrast, UTS uses boolean unification to unify unique-
ness attributes. For boolean unification the set of identities B
contains Huntington’s postulates, intuitively meaning that
for S to be a unifier, the truth tables of ST and ST ′ must be the
same. Boolean unification is decidedly non-compositional.
For instance the unification problem a ∨ b � • has several
unifiers: either a, or b, or both must be • for a ∨ b to unify
with •. The most general unifier must cover all of these op-
tions, and is therefore [a ↦→ ¬b ∨ a], and absolutely not
[a ↦→ •, b ↦→ •].
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3.3 Unifying two disjunctions
The rest of our argument hinges on the observation that
unification of two disjunctions produces a large unifier. Con-
sider the unification problem tu1∨u2 � tv1∨v2. The intuition
is that the annotation of this type is • if and only if at least
one of u1, u2, v1, v2 is •.

Boolean unificaton finds the unifier S:

u1 ↦→ (¬u2 ∧ v1) ∨ (¬u2 ∧ v2) ∨ (u1 ∧ v1) ∨ (u1 ∧ v2)
u2 ↦→ (u2 ∧ v1) ∨ (u2 ∧ v2)

Note that the variable names u1, u2 are present in their own
subsitition, but they represent fresh variables. Furthermore,
their assignment is irrelevant for the value of S(u1 ∨ u2),
which is totally determined by the assignments of v1, v2. We
define U1,U2 as shorthands, but with u1, u2 renamed to w1,w2
for clarity. Logically, S(u1 ∨ u2) = U1 ∨ U2.

U1 = (¬w2 ∧ v1) ∨ (¬w2 ∧ v2) ∨ (w1 ∧ v1) ∨ (w1 ∧ v2)
U2 = (w2 ∧ v1) ∨ (w2 ∧ v2)
To convince ourselves that this substitution is in fact a unifier,
we must verify that:

1. the truth table of U1 ∨ U2 is the same as the truth table
of v1 ∨ v2.

2. both u1 � • and u2 � • imply v1 ∨ v2 � •.
The first point can easily be checked by hand. The second

is harder, so we’ll spell out the details for the case of u1.
If u1 � • that implies that U1 � •. So we must solve the
unification problem:

(¬w2 ∧ v1) ∨ (¬w2 ∧ v2) ∨ (w1 ∧ v1) ∨ (w1 ∧ v2) � •
This gives the unifier [w2 ↦→ (w2 ∧ w1), v1 ↦→ (¬v2 ∨ v1)].
Now when we apply this unifier to v1 ∨ v2, we get ¬v2 ∨
v1 ∨ v2. By the law of the excluded middle, this expression
always evaluates to •.

To ensure the individual substitutions (e.g. U1 and U2 in
the above example) are as small as possible, UTS proposes to
use boolean simplification. But boolean simplification has ex-
ponential runtime complexity [18]. Because the substitutions
are usually still larger than one variable (e.g. substitution of
u1 with U1 grows the expression size), the types grow over
the course of unification, to sizes where boolean unification’s
time complexity becomes a problem.

3.4 Nails in the coffin
In this section we will see that, besides being computationally
expensive, unification of disjunctions occurs often. Addition-
ally, inferred types are hard for the programmer to interpret.

Consider for instance the function:

choose : a → a → a

Inference of an application choose x y must unify the types
assigned to x and y. We pick x :: tu1∨u2 and y :: tv1∨v2. What
is the inferred return type of the application?

We can reason from first principles: the annotation on x
is unique when either u1 or u2 is. Likewise the annotation
on y is unique when either v1 or v2 is. Therefore the return
value must be unique if at least one of u1, u2, v1, v2 is unique.
We expect the inferred return type to be tu1∨u2∨v1∨v2.

Unfortunately, the at least one is unique constraint is diffi-
cult to express in boolean logic. As we’ve seen, the boolean
unification u1 ∨ u2 � v1 ∨ v2 gives the rather large and
obtuse unifier:

u1 ↦→ (¬u2 ∧ v1) ∨ (¬u2 ∧ v2) ∨ (u1 ∧ v1) ∨ (u1 ∧ v2)
u2 ↦→ (u2 ∧ v1) ∨ (u2 ∧ v2)

Thus, the type tu1∨u2 will now be rendered as

t (¬u2∧v1)∨(¬u2∧v2)∨(u1∧v1)∨(u1∧v2)∨(u2∧v1)∨(u2∧v2)

This would be fine if this annotation is subsequently sim-
plified, but [7] notes that the inferred types often cannot
be sufficiently simplified to be easily interpretable by the
programmer. The swap example of section 3.1 highlights this
issue.

The unifier additionally introduces the boolean connec-
tives ∧,¬ in annotations. These connectives never occur
when translating Clean signatures into UTS, so they are not
essential to express uniqueness types. The extra connectives
further hinder programmer interpretation of inferred types.

Because any access to a container introduces a disjunctive
annotation, unification of disjunctions will occur often. The
situation is even worse with larger containers (e.g. records
with many fields) that may be nested, because their annota-
tions will be larger disjunctions and hence produce larger
unifiers. In our experiments we found that even relatively
simple functions can take in the order of seconds to type-
check. This is unacceptable in a modern compiler.

Altogether, whilst moving all of the uniqueness propaga-
tion complexity into boolean unification is elegant at first
glance, it comes with problems of its own. Boolean unifica-
tion introduces new non-essential connectives, and inferred
types are needlessly large. Inferred signatures are hard in-
terpret for the programmer. Moreover boolean unification
and simplification cause unacceptable compile times.

We believe that the use of boolean annotations and unifi-
cation is not a good approach in practice. In the next section,
we propose an improved approach.

4 Container Unification
We have seen that unification of disjunctions produces pro-
hibitively large unifiers, and unification of disjunctions oc-
curs often. The types that UTS infers, and the time it takes
to infer them, are not acceptable in a modern compiler. How-
ever, UTS does make substantial improvements over Clean.
We want to preserve the orthogonality of uniqueness types
and the absense of solving inequalities. Thus, we set out to
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find a better unification approach that can replace boolean
unification, but otherwise preserves the advantages of UTS.

It is speculated in [7] that it may be possible to limit the
type language to just disjunctions. The choose example (sec-
tion 3.4) suggests that the unification of two disjunctions
could be simplified: the unification of u1 ∨ u2 with v1 ∨ v2
should yield u1 ∨ u2 ∨ v1 ∨ v2, a solution that contains
only disjunctions. Unfortunately that does not quite work.
First of all it’s not obvious how to define this intuition as
a unification: how would one create a substitution out of
this idea? Secondly, a unification u ∨ v � • still introduces
the problem of requiring at least one of u, v to be unique,
necesarilly introducing the ¬,∧ connectives.

Therefore an annotation consisting of just a disjunction on
variables is not sufficient. Slightly more structure is required
to make unification of a collection of variables with • efficient.
Our key idea is to exploit knowledge about how disjunctions
arise. Disjunctions are introduced by the abs and fst, snd
rules. In other words, disjunctions are only introduced on
containers.

Thus, we replace boolean annotations with special con-
tainer annotations of the form:

(w, {u1 . . . un | 𝛼})

In the notation, we explicitly distinguish between variables
u1 . . . un occuring in the container, the member variables,
and the container variable w that allows the container to
be more unique than any of its elements. Member variables
still conceptually constitute a disjunction of variables, but
are equiped with a different unification approach inspired
by polymorphic records. We define unification on container
annotations, and show programmer-interpretable types can
be inferred efficiently.

4.1 Comitting to disjunctions
We commit to only using disjunctions in annotations. In
the previous section we noted that while the unification is
intuitively obvious, it’s hard to define what a substitution
is in a boolean expression context. Therefore we chose a
different approach inspired by polymorphic records [9].

have to add nw variables into containers? unification re-
quires a substitution. we need to still be extensible after one
unification. use trick from extensible records.

A disjunction u1 ∨ . . . ∨ un is written as {u1 . . . un | 𝛼}.
The variable in the 𝛼 position is the extension variable. A
nested disjunction {u1 . . . un | {v1 . . . vm | 𝛼}} is equal to
{u1 . . . un, v1 . . . vm | 𝛼}.

Unification of two disjunctions is defined as:
𝛼 � {v1 . . . vm | 𝛾1} 𝛽 � {u1 . . . un | 𝛾2} 𝛾1 � 𝛾2

{u1 . . . un | 𝛼} � {v1 . . . vm | 𝛽}
The 𝛾 variables enable further unifications. All hypothe-

ses are simple unifications with a variable, resulting in the

unifier:
[𝛼 ↦→ {v1 . . . vm | 𝛾1}, 𝛽 ↦→ {u1 . . . un | 𝛾2}, 𝛾1 ↦→ 𝛾2]

The unification of two disjunctions is therefore efficient, and
produces the minimal and desired result.

4.2 Container structure
As previously noted, the unification of a disjunction with •
is problematic. The constraint that “at least one is unique” is
no easier to express with the new notation.

To solve this problem, we must look at how annotations
on containers arise in more detail. Consider the signature
(tu, sv)u∨v∨w . From a boolean expression perspective, all vari-
ables u, v,w in the u ∨ v ∨ w disjunction are interchangable:
they are just variables. But we know that this disjunction is
associated with a tuple type. The annotation on the tuple
actually encodes that the uniqueness of the tuple is at least
as unique as u and v, and at most as unique as w. This distinc-
tion between u, v being a lower bound and w an upper bound
on uniqueness cannot be exploited by boolean unification.

Another way to phrase the relation is to write w ≥ u, v:
the uniqueness of w is at least as unique as u and v. Indeed,
this is exactly the constraint one would write in Clean (but
with a ≤ instead of ≥ because we’re here using the order
• > ×, not a subtyping relation).

Now suddenly unification with • is simple: If “any of
u, v,w must be unique”, then certainly w = •: we can just
pick w to be the unique variable. It may turn out that u or v
also are unique, but that is no longer relevant for the unique-
ness of the tuple. Note that this trick only works because w
occurs freely, and we can thus pick any value for it so long
as the container rule is not violated.

The typing rule abs also introduces a disjunction, but has
no completely unrestricted variable. But we can generalize
the abs rule slightly to include an extra free variable w in
the

∨
fv′ disjunction. This is in fact a generalization over

the UTS system: functions can now be more unique than
any of their captured variables.

With this insight, we have arrived at container annota-
tions.

4.3 Container annotations
Recall our definition of a container annotation:

(w, {u1 . . . un | 𝛼})
where

• w is the container variable. It is at least as unique as the
variables u1 . . . un, and therefore equals the uniqueness
of the whole container.

• u1 . . . un are the member variables: these occur as an-
notations on the elements of the container. If any of
the member variables is unique, the whole container
must be unique.

• 𝛼 is the extension variable.
8
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This is a combination of the ideas from the previous two
sections: We combine the simple unification of two disjunc-
tions with the simple unification of a disjunction with •. The
container unification rules are given in figure 4. Crucially,
a container unification can still be turned into a boolean
disjunction: (w, {u1 . . . un | 𝛼}) = w ∨ u1 ∨ . . . ∨ un.

w1 � w2 𝛼 � {v1 . . . vm | 𝛾} 𝛽 � {u1 . . . un | 𝛾}
co-co

(w1, {u1 . . . un | 𝛼}) � (w2, {v1 . . . vm | 𝛽})

w � × u1 � × . . . un � ×
non-unique

(w, {u1 . . . un | 𝛼}) � ×
w � • unique

(w, {u1 . . . un | 𝛼}) � •

Figure 4. container unification rules

4.4 Type system changes
Only minimal changes to the type language and inference
rules are required, as shown in figures 5 and 6. The type
language is extended with the container annotation, and
boolean attributes are removed. Only three of the inference
rules require changes:

• In abs, the arrow’s uniqueness attribute changes from∨
fv′ to (w, (range(fv′) | 𝛼)). Because there is an extra

variable w, this is a slight generalization. The function
can now be more unique than any of its elements (val-
ues captured in the closure).

• In fst, snd, the tuple’s uniqueness attribute changes
from w ∨ u ∨ v to (w, {u, v | 𝛼}).

4.5 equivalence
We show that container unification is equivalent to boolean
unification with respect to uniqueness types. The proof is
based on the truth tables of annotations after unification.
Unification of a container with a variable or × are straigt-
forward to prove equivalent to its boolean counterpart. We
will look in detail at the other two cases: unification of a
disjunction with •, and unification of two disjunctions.

4.5.1 Disjunction with •. The problem u ∨ v � • pro-
duces the unifier [u ↦→ ¬v ∨ u]. In general, u ∨ v1 ∨ . . . ∨
vn has unifier [u ↦→ u ∨ (¬v1 ∧ . . . ∧ ¬vn)]. By the law of
the excluded middle, any variable assignment will make the
expression evaluate to •.

Symmetrically, the problem (u, {v1 . . . vn | 𝛼}) � • finds
the unifier [u ↦→ •]. The container annotation is logically
equivalent to the disjunction u ∨ v1 . . . vn, and clearly • ∨
v1 . . . vn = • for all choices of u, v1 . . . vn.

4.5.2 Disjunction with Disjunction. This is a general-
ization of the argument from section 3.3. Consider the unifi-
cation problem

tu1∨...∨un � tv1∨...∨vm

The intuition is that the annotation of this type is • if and only
if at least one of u1, . . . , un, v1, . . . , vm is •. The unification
problem u1 ∨ . . . ∨ un � v1 ∨ . . . ∨ vm has unifier S:

u1 ↦→ ((u1 ∧ v1) ∨ (u1 ∧ v2) ∨ . . . ∨ (u1 ∧ vm))
∨ (¬u2 ∧ . . . ∧ ¬un ∧ v1)
∨ . . .

∨ (¬u2 ∧ . . . ∧ ¬un ∧ vm)
u2 ↦→ (u2 ∧ v1) ∨ (u2 ∧ v2) ∨ . . . ∨ (u2 ∧ vm)

...

un ↦→ (un ∧ v1) ∨ (un ∧ v2) ∨ . . . ∨ (un ∧ vm)

It is hard to see that this is in fact a unifier. We show that it
is in appendix A. Because S is a unifier, it makes the truth
tables of the two disjunctions the same. Therefore, if and
only if at least one of u1, . . . un, v1, . . . vm is •, then both u1 ∨
. . . ∨ un = • and v1 ∨ . . . ∨ vm = •. If all variables are ×,
then both disjunctions are also ×.

Now we must show that the truth table of the solution
found by container unification is equivalent.

u1 � v1 𝛼 � {v2, . . . , vm | 𝛾 } 𝛽 � {u2, . . . , un | 𝛾 }
co-co

(u1, {u2, . . . , un | 𝛼}) � (v1, {v2, . . . , vm | 𝛽})
Rule co-co gives the unifier:

[u1 ↦→ v1, 𝛼 ↦→ {v2, . . . , vm | 𝛾}, 𝛽 ↦→ {u2, . . . , un | 𝛾}]

Applying this unifier to either side gives the annotation
(v1, {v2, . . . vm, u2, . . . , un | 𝛾}).

• if all variables are ×, then the container annotation is
×.

• if any of v1, . . . vm, u2, . . . un are •, then the container
annotation is •.

• if u1 = •, then it must be that v1 = •, and the container
annotation must be •.

Thus, the truth tables of the uniqueness annotations found
with either boolean unification or container unification are
equivalent.

4.5.3 Induction. We have proven that after one unifica-
tion, the truth table of the solution found with boolean uni-
fication is identical to the one found using container unifica-
tion. Now we can write the container annotation as a boolean
disjunction again, to get boolean expressions equivalent to
the ones found by boolean unification, but consisting solely
of disjunctions. Then for subsequent unifications we repeat
the argument.
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4.6 Loss of generality
Finally, are container annotations less expressive than boolean
expressions? Certainly, fewer programs can be typed with
container annotations than with boolean annotations. There
is no way to express tu∧v as a container annotation.

The question is rather whether any useful expressivity is
lost. [7] poses the same question. It notes that it is occasonally
useful to write an implication as a conjunction, but draws
no firm conclusions.

We argue however that no usefull expressivity is lost, be-
cause container annotations are just as expresive as Clean’s
uniqueness implications. For the purposes of expressing
uniqueness types, the full expressivity of boolean expres-
sions is not required.

5 Related Work
Uniqueness Types UTS was preceded by Uniqueness Typ-
ing Redefined [6], and more background is given in the lead
author’s PhD thesis [5]. The system – specifically unique-
ness inference – of Clean is described in [1]. A more general
introduction to Clean can be found in [15].

Usage Analysis we have left refinements to the usage
analysis – marking which variables are shared in their scope
– to future work. A potential starting point in this area are
the counting analyses presented in [11] and [19].

Reference counting has a long tradition, although the
focus is commonly on garbage collection. The Sisal project
[8] is an early example of using reference counting effectively
for inserting destructive updates. More recent examples in-
clude SAC [10] and Lean [17].

Array Programming There are several approaches for
fast array manipulation in functional languages, but all have
to minimize copying of data [13]. Futhark [12] and SAC [16]
are functional languages with a big focus on array manipu-
lation. Futhark uses uniqueness types, while SAC performs
reference counting to allow safe destructive updates. The
Haskell Accelerate library [4] uses an embedded domain-
specific language to specify array computations that can be
executed on the GPU. A reference counting scheme is used
to copy only when needed, and mutate destructively when
values are non-shared.

Linear types [20] are a very active area of research, and
are increasingly implemented in functional languages, e.g. Haskell
[2] and Idris [3]. Where intuitively uniqueness types can
guarantee that a value has not been shared in the past, linear
types guarantee that a value will not be shared in the future.
Both of these guarantees are useful, and there is overlap in
their applications.

6 Conclusion & Future Work
We have discussed two approaches to infer uniqueness types:
Clean introduces a subtyping rule to use unique values in
non-unique contexts. Relations between uniqueness attributes

Kind language
𝜅 ::= kind

T base type
U uniqueness attribute
R member variable set
∗ base type together with uniqueness attribute
𝜅1 → 𝜅2 type constructors

Type constants
Int, Bool :: T base type
→ :: ∗ → ∗ → T function space
•,× :: U unique, non-unique
(−{− | −}) :: U → U∗ → R → U container annotation
Attr :: T → U → ∗ combine base & attribute

Syntactic conventions
tu ≡ Attr t u

a
u−→ b ≡ Attr (a → b) u

Figure 5. kind language

var⊙
Γ, x : 𝜏v ⊢ x⊙ : 𝜏v |x:v

var⊗
Γ, x : 𝜏× ⊢ x⊗ : 𝜏× |x:×

Γ, x : 𝜏 ⊢ e : 𝜏 ′ |fv fv′ = fv −▷ x
abs

Γ ⊢ 𝜆 x .e : 𝜏
(w,(range (fv′) |𝛼))
−−−−−−−−−−−−−−→ 𝜏 ′ |fv′

Γ ⊢ e : 𝜏 v−→ 𝜏 ′ |fv1 Γ ⊢ e′ : 𝜏 |fv2app
Γ ⊢ e e′ : 𝜏 ′ |fv1∪fv2

Γ ⊢ x : tu |fv1 Γ ⊢ y : sv |fv2pair
Γ ⊢ (x, y) : (tu, sv)w |fv1∪fv2

Γ ⊢ r : (tu, sv) (w,{u,v |𝛼 }) |fv
fst

Γ ⊢ fst r : tu |fv

Γ ⊢ r : (tu, sv) (w,{u,v |𝛼 }) |fv
snd

Γ ⊢ snd r : sv |fv

Figure 6. container annotation typing rules. In rule abs, −▷
is the domain subtraction operator. It removes x from the
set of free variables because it is bound in the lambda body.

are expressed as constraints. Uniqueness Typing Simplified
(UTS) [7] encodes relations between uniqueness attributes

10
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in boolean formulae. Uniqueness polymorphism enables the
generic treatment of unique and non-unique values.

An attractive feature of UTS is that uniqueness types are
orthogonal to the rest of the type system. However, we high-
light two limitations that hinder practical adoption: inferred
types are needlesly complex, and unification of uniqueness
attributes is a performance bottleneck.

We present container annotations as a modification to
UTS that maintains orthogonality of uniqueness types. Con-
tainer unification is computationally simpler than boolean
unification, and infers succinct uniqueness attributes.
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A Unifier of two disjunctions
The unification problem u1 ∨ . . . ∨ un � v1 ∨ . . . ∨ vm has
unifier S:

u1 ↦→ ((u1 ∧ v1) ∨ (u1 ∧ v2) ∨ . . . ∨ (u1 ∧ vm))
∨ (¬u2 ∧ . . . ∧ ¬un ∧ v1)
∨ . . .

∨ (¬u2 ∧ . . . ∧ ¬un ∧ vm)
u2 ↦→ (u2 ∧ v1) ∨ (u2 ∧ v2) ∨ . . . ∨ (u2 ∧ vm)

...

un ↦→ (un ∧ v1) ∨ (un ∧ v2) ∨ . . . ∨ (un ∧ vm)
We will now show that this is in fact a unifier. In particular

it is hard to see why some ui = • causes that v1 ∨ . . . ∨ um =

•.
First define SU = S(u1 ∨ . . . ∨ un). There are 4 cases:
Case 1: if any ui = •, 1 ≤ i ≤ n, then v1 ∨ . . . ∨ vm = •:

If i = 1, then S(ui) � •, which expands to:
(u1 ∧ v1) ∨ . . . ∨ (u1 ∧ vm)

∨ (¬u2 ∧ . . . ∧ ¬un ∧ v1)
∨ . . .

∨ (¬u2 ∧ . . . ∧ ¬un ∧ vm)
� •

This problem has the unifier
[u1 ↦→ u2 ∨ . . . ∨ un ∨ u1, v1 ↦→ v1 ∨ (¬v2 ∧ . . . ∧ ¬vm)]

Applying the substitution to v1 ∨ . . . ∨ vm gives:
v1 ∨ (¬v2 ∧ . . . ∧ ¬vm) ∨ v2 ∨ . . . vm

If any v1 . . . vm = •, then this expression is •. If
all v are ×, then the second disjunct makes the
disjunction evaluate to • anyway.

Otherwise if i > 1, then S(ui) � • expands to:
(ui ∧ v1) ∨ (ui ∧ v2) ∨ . . . ∨ (ui ∧ vm)) � •

This problem has the unifier:
[ui ↦→ •, v1 ↦→ v1 ∨ (¬v2 ∧ . . . ∧ ¬vm)]

Applying the substitution to v1 ∨ . . . ∨ vm gives
the same expression as in the case above.

Case 2: if any vj = •, 1 ≤ j ≤ m, then u1 ∨ . . . ∨ un = •:
11
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1320

Either:
• Some ui = •. SU contains the disjunct ui ∧ vj ,

therefore SU = •.
• Otherwise all ui = ×, then SU contains the

disjunct ¬u2 ∧ . . . ∧ ¬un, which evaluates to
•, therefore SU = •.

Case 3: if all ui = ×, 1 ≤ i ≤ n, then v1 ∨ . . . ∨ vm = ×:

If all ui = ×, 1 ≤ i ≤ n, then it must be that
SU � ×. This problem has unifier

[v1 ↦→ ×, v2 ↦→ ×, . . . , vm ↦→ ×]
Therefore v1 ∨ . . . ∨ vm = ×.

Case 4: if all vj = ×, 1 ≤ j ≤ m, then u1 ∨ . . . ∨ un = ×:
In SU , every disjunct is a conjunct containing
some vj . Therefore if all vj = ×, 1 ≤ j ≤ m, all
disjuncts of SU are ×, and thus SU = ×.

12
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ABSTRACT
System I is a simply-typed lambda calculus with pairs, extended
with an equational theory obtained from considering the type iso-
morphisms as equalities. In this work we propose an extension
of System I to polymorphic types, adding the isomorphisms cor-
responding to the universal quantifier. This is a work in progress
proving only subject reduction. For the final version we expect to
include a non-standard proof of strong normalisation, extending
that of System I.
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1 INTRODUCTION
Two types 𝐴 and 𝐵 are considered isomorphic if there exist two
functions 𝑓 : 𝐴⇒ 𝐵 and 𝑔 : 𝐵 ⇒ 𝐴 such that the composition 𝑔 ◦ 𝑓
is semantically equivalent to the identity in 𝐴 and the composition
𝑓 ◦ 𝑔 is semantically equivalent to the identity in 𝐵. Di Cosmo et
al. characterized the isomorphic types in different systems: simple
types, simple types with pairs, polymorphism, etc. (cf. [9] for refer-
ence). Using such a characterization, System I has been defined [12],
a simply-typed lambda calculus with pairs, where isomorphic types
are considered equal. In this way, if 𝐴 and 𝐵 are isomorphic, every
term of type 𝐴 can be used as a term of type 𝐵. For example, the
∗All authors have contributed equally to this research.
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currying rule (𝐴 ∧ 𝐵) ⇒ 𝐶 ≡ 𝐴 ⇒ 𝐵 ⇒ 𝐶 allows passing argu-
ments one by one to a function expecting a pair. Normally, this
would imply for a function 𝑓 : (𝐴 ∧ 𝐵) ⇒ 𝐶 to be transformed
through a term 𝑡 into 𝑡 𝑓 : 𝐴 ⇒ 𝐵 ⇒ 𝐶 . System I goes further, by
considering that 𝑓 has both types (𝐴 ∧ 𝐵) ⇒ 𝐶 and 𝐴⇒ 𝐵 ⇒ 𝐶 ,
and so, the transformation occurs without the need for the term 𝑡 .
To make this idea work, System I includes an equivalence between
terms; for example: 𝑡 ⟨𝑟, 𝑠⟩ ⇄ 𝑡𝑟𝑠 , since if 𝑡 expects a pair, it can
also take each component at a time. Also, 𝛽-reduction have to be
parametrized by the type: if the expected argument is a pair, then
𝑡 ⟨𝑟, 𝑠⟩ 𝛽-reduces; otherwise, it does not 𝛽-reduce, but 𝑡𝑟𝑠 does. For
example, (𝜆𝑥𝐴∧𝐵 .𝑢)⟨𝑟, 𝑠⟩ 𝛽-reduces if 𝑟 has type 𝐴 and 𝑠 has type
𝐵. Instead, (𝜆𝑥𝐴 .𝑢)⟨𝑟, 𝑠⟩ does not reduce directly, but since it is
equivalent to (𝜆𝑥𝐴 .𝑢)𝑟𝑠 , which does reduce, then it also reduces.

The idea of identifying some propositions has already been in-
vestigated, for example, in Martin-Löf’s type theory [20], in the
Calculus of Constructions [6], and in Deduction modulo theory
[16, 17], where definitionally equivalent propositions, for instance
𝐴 ⊆ 𝐵, 𝐴 ∈ P(𝐵), and ∀𝑥 (𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵) can be identified. But
definitional equality does not handle isomorphisms. For example,
𝐴 ∧ 𝐵 and 𝐵 ∧ 𝐴 are not identified in these logics. Besides defi-
nitional equality, identifying isomorphic types in type theory is
also a goal of the univalence axiom [22]. From the programming
perspective, isomorphisms capture the computational meaning cor-
respondence between types. Taking currying again, for example,
we have a function 𝑓 : 𝐴 ∧ 𝐵 ⇒ 𝐶 that can be transformed, be-
cause of the fact that there exists an isomorphism, into a function
𝑓 ′ : 𝐴 ⇒ 𝐵 ⇒ 𝐶 . These two functions differ in how they can be
combined with other terms, but they share a computational mean-
ing: they both computes 𝐶 given two arguments of types 𝐴 and
𝐵. In this sense, System I’s proposal is to allow a programmer to
focus on the computational meaning of programs and combining
any term with the ones that are combinable with its isomorphic
counterparts (e.g. 𝑓 𝑥𝐴𝑦𝐵 and 𝑓 ′⟨𝑥𝐴, 𝑦𝐵⟩), ignoring its rigid syntax
within the safe context provided by type isomorphisms. From the
logic perspective, isomorphisms make proofs more natural. For
instance, to prove (𝐴 ∧ (𝐴 ⇒ 𝐵)) ⇒ 𝐵 in natural deduction we
need to introduce the conjunctive hypothesis 𝐴 ∧ (𝐴⇒ 𝐵) which
has to be decomposed into 𝐴 and 𝐴 ⇒ 𝐵, while using currying
allows to transform the goal to 𝐴⇒ (𝐴⇒ 𝐵) ⇒ 𝐵 and to directly
introduce the hypotheses 𝐴 and 𝐴 ⇒ 𝐵, completely eliminating
the need for the conjunctive hypotheses.

An interpreter of a preliminary version of System I extended with
a recursion operator has been implemented in Haskell [15]. Such
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𝐴 ∧ 𝐵 ≡ 𝐵 ∧𝐴 (1)
𝐴 ∧ (𝐵 ∧𝐶) ≡ (𝐴 ∧ 𝐵) ∧𝐶 (2)
𝐴⇒ (𝐵 ∧𝐶) ≡ (𝐴⇒ 𝐵) ∧ (𝐴⇒ 𝐶) (3)
(𝐴 ∧ 𝐵) ⇒ 𝐶 ≡ 𝐴⇒ 𝐵 ⇒ 𝐶 (4)

if 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) ∀𝑋 .(𝐴⇒ 𝐵) ≡ 𝐴⇒ ∀𝑋 .𝐵 (5)
∀𝑋 .(𝐴 ∧ 𝐵) ≡ ∀𝑋 .𝐴 ∧ ∀𝑋 .𝐵 (6)

Table 1: Isomorphisms considered in PSI

a language have peculiar characteristics. For example, using the
existing isomorphism between 𝐴⇒ (𝐵 ∧𝐶) and (𝐴⇒ 𝐵) ∧ (𝐴⇒
𝐶), we can project a function computing a pair of elements, and
obtain, through evaluation, a simpler function computing only
one of the elements of the pair, discarding the unused code that
computes the output that is not of interest to us.

In this work in progress we propose an extension of System I to
polymorphism, considering some of the isomorphisms correspond-
ing to polymorphic types.

Plan of the paper. The paper is organized as follows: Section 2
introduces the proposed system, and Section 3 gives examples to bet-
ter clarify the constructions. Section 4 proves the Subject Reduction
property, which is the main theorem in the paper. Finally, Section 5
discusses some design choices, as well as possible directions for
future work.

2 INTUITIONS AND DEFINITIONS
We define Polymorphic System I (PSI) as an extension of System
I [12] to polymorphic types. The syntax of types coincides with
System F with pairs [9]:

𝐴 := 𝑋 | 𝐴⇒ 𝐴 | 𝐴 ∧𝐴 | ∀𝑋 .𝐴

where 𝑋 ∈ TV𝑎𝑟 , a set of type variables.
However, the extension with respect to System F with pairs

consists of adding the following typing rule:
Γ ⊢ 𝑡 : 𝐴 𝐴 ≡ 𝐵

Γ ⊢ 𝑡 : 𝐵
(≡)

valid for every pair of isomorphic types 𝐴 and 𝐵. This non-trivial
addition induces the modification of the operational semantics of
the calculus.

There are eight isomorphisms characterizing all the valid iso-
morphism of System F with pairs (cf. [9]). From those eight, we only
consider the six given as a congruence in Table 1, where 𝐹𝑇𝑉 (𝐴)
is the set of free type variables defined as usual.

The two not listed isomorphisms are the following:
∀𝑋 .𝐴 ≡ ∀𝑌 .[𝑋 := 𝑌 ]𝐴 (7)

∀𝑋 .∀𝑌 .𝐴 ≡ ∀𝑌 .∀𝑋 .𝐴 (8)
The isomorphism (7) is in fact an 𝛼-equivalence, and we indeed
consider terms and types modulo 𝛼-equivalence. We simply do not
make this isomorphism explicit in order to avoid confusion.

The isomorphism (8) on the other hand is not treated on this
paper because PSI is presented in Church style (as System I), and so,
being able to swap the arguments of a type abstraction would imply

swapping the typing arguments, and so it would carry a cumber-
some notation, with little gain. We will discuss this in Section 5.2.3.

The added typing rule (≡) induces certain equivalences between
terms. In particular, the isomorphism (1) implies that the pairs
⟨𝑡, 𝑟 ⟩ and ⟨𝑟, 𝑡⟩ are indistinguishable, since both are typed as 𝐴 ∧ 𝐵
and also as 𝐵 ∧𝐴, independently of which term have type 𝐴 and
which term have type 𝐵. Then, we consider that those two pairs
are equivalent. In the same way, as a consequence of isomorphism
(2), ⟨𝑡, ⟨𝑟, 𝑠⟩⟩ is equivalent to ⟨⟨𝑡, 𝑟 ⟩, 𝑠⟩.

Such an equivalence between terms implies that the usual projec-
tion, which is defined with respect to the position (i.e. 𝜋𝑖 ⟨𝑡1, 𝑡2⟩ ↩→
𝑡𝑖 ), is not well-defined in this system. Indeed, 𝜋1⟨𝑡, 𝑟 ⟩ would reduce
to 𝑡 , but since ⟨𝑡, 𝑟 ⟩ is equivalent to ⟨𝑟, 𝑡⟩, it would also reduce to
𝑟 . Therefore, PSI (as well as System I), defines the projection with
respect to a type: If Γ ⊢ 𝑡 : 𝐴 then 𝜋𝐴⟨𝑡, 𝑟 ⟩ ↩→ 𝑡 .

This rule turns PSI into a non-deterministic (and therefore non-
confluent) system. Indeed, if both 𝑡 and 𝑟 have type 𝐴, then 𝜋𝐴⟨𝑡, 𝑟 ⟩
reduces non-deterministically to 𝑡 or to 𝑟 . This non-determinism,
however, can be argued not to be of a mayor problem: if we think
of PSI as a proof system, then the non-determinism, as soon as we
have type preservation, implies that the system identify different
proofs of isomorphic propositions (as a form of proof-irrelevance).
On the other hand, if PSI is thought as a programming language,
then the determinism can be recovered by the following encoding:
if 𝑡 and 𝑟 have the same type, it suffices to encode the deterministic
projection of ⟨𝑡, 𝑟 ⟩ into 𝑡 as 𝜋𝐵⇒𝐴⟨𝜆𝑥𝐵 .𝑡, 𝜆𝑥𝐶 .𝑟 ⟩𝑠 where 𝐵 . 𝐶 and
𝑠 has type 𝐵. Hence, the non-determinism of System I (inherited
in PSI) is considered a feature and not a flaw (cf. [12] for a longer
discussion).

Therefore, PSI (as well as System I) is one of the many non-
deterministic calculi in the literature, e.g. [4, 5, 7, 8, 21] and so our
pair-construction operator can also be considered as the parallel
composition operator of a non-deterministic calculus.

In non-deterministic calculi, the non-deterministic choice is such
that if 𝑟 and 𝑠 are two 𝜆-terms, the term 𝑟 ⊕ 𝑠 represents the compu-
tation that runs either 𝑟 or 𝑠 non-deterministically, that is such that
(𝑟 ⊕ 𝑠)𝑡 reduces either to 𝑟𝑡 or 𝑠𝑡 . On the other hand, the parallel
composition operator | is such that the term (𝑟 | 𝑠)𝑡 reduces to
𝑟𝑡 | 𝑠𝑡 and continue running both 𝑟𝑡 and 𝑠𝑡 in parallel. In our case,
given 𝑟 and 𝑠 of type 𝐴⇒ 𝐵 and 𝑡 of type 𝐴, the term 𝜋𝐵 (⟨𝑟, 𝑠⟩𝑡) is
equivalent to 𝜋𝐵 ⟨𝑟𝑡, 𝑠𝑡⟩, which reduces to 𝑟𝑡 or 𝑠𝑡 , while the term
⟨𝑟𝑡, 𝑠𝑡⟩ itself would run both computations in parallel. Hence, our
pair-constructor is equivalent to the parallel composition while the
non-deterministic choice ⊕ is decomposed into the pair-constructor
followed by its destructor.

In PSI and System I, the non-determinism comes from the in-
teraction of two operators, ⟨, ⟩ and 𝜋 . This is also related to the
algebraic calculi [1–3, 11, 14, 23], some of which have been designed
to express quantum algorithms. There is a clear link between our
pair constructor and the projection 𝜋 , with the superposition con-
structor + and the measurement 𝜋 on these algebraic calculi. In
these cases, the pair 𝑠 + 𝑡 is not interpreted as a non-deterministic
choice, but as a superposition of two processes running 𝑠 and 𝑡 , and
the operator 𝜋 is the projection related to the measurement, which
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Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
(ax) Γ ⊢ 𝑡 : 𝐴 𝐴 ≡ 𝐵

Γ ⊢ 𝑡 : 𝐵
(≡)

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥𝐴 .𝑡 : 𝐴⇒ 𝐵

(⇒𝑖 ) Γ ⊢ 𝑡 : 𝐴⇒ 𝐵 Γ ⊢ 𝑟 : 𝐴
Γ ⊢ 𝑡𝑟 : 𝐵

(⇒𝑒 )

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑟 : 𝐵
Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐴 ∧ 𝐵

(∧𝑖 ) Γ ⊢ 𝑡 : 𝐴 ∧ 𝐵
Γ ⊢ 𝜋𝐴 (𝑡) : 𝐴

(∧𝑒 )

Γ ⊢ 𝑡 : 𝐴 𝑋 ∉ 𝐹𝑇𝑉 (Γ)
Γ ⊢ Λ𝑋 .𝑡 : ∀𝑋 .𝐴

(∀𝑖 ) Γ ⊢ 𝑡 : ∀𝑋 .𝐴

Γ ⊢ 𝑡 [𝐵] : [𝑋 := 𝐵]𝐴
(∀𝑒 )

Table 2: Typing rules

is the only non-deterministic operator. In such calculi, the distribu-
tivity rule (𝑟 + 𝑠)𝑡 ⇄ 𝑟𝑡 + 𝑠𝑡 is seen as the point-wise definition of
the sum of two functions.

The syntax of terms is then similar to that of System F with pairs,
but with the projections depending on types instead of position, as
discussed:

𝑡 := 𝑥𝐴 | 𝜆𝑥𝐴 .𝑡 | 𝑡𝑡 | ⟨𝑡, 𝑡⟩ | 𝜋𝐴𝑡 | Λ𝑋 .𝑡 | 𝑡 [𝐴]

where 𝑥𝐴 ∈ V𝑎𝑟 , a set of variables. We omit the type of variables
when it is evident from the context. For example, we write 𝜆𝑥𝐴 .𝑥
instead of 𝜆𝑥𝐴 .𝑥𝐴 .

The type system of PSI is standard, with only two modifications
with respect to that of System F with pairs: the projection (∧𝑒 ), and
the added rule (≡). The full system is shown in Table 2.

In the same way as isomorphisms (1) and (2) induce the com-
mutativity and associativity of pairs, as well as a modification in
the elimination of the pairs (i.e. the projection), the isomorphism
(3) induces that some terms must be identified: an abstraction of
type 𝐴 ⇒ (𝐵 ∧ 𝐶) can be considered as a pair of abstractions
of type (𝐴 ⇒ 𝐵) ∧ (𝐴 ⇒ 𝐶), and so it can be projected. There-
fore, an abstraction returing a pair is identified with a pair of ab-
stractions, and a pair applied, distributes its argument: That is,
𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩ ⇄ ⟨𝜆𝑥𝐴 .𝑡, 𝜆𝑥𝐴 .𝑟 ⟩, and ⟨𝑡, 𝑟 ⟩𝑠 ⇄ ⟨𝑡𝑠, 𝑟𝑠⟩, where ⇄ is a
symmetric symbol (and⇄∗ its transitive closure).

In addition, isomorphism (4) induces the following: 𝑡 ⟨𝑟, 𝑠⟩ ⇄
𝑡𝑟𝑠 . However, this equivalence produces an ambiguity with the
𝛽-reduction. For example, if 𝑡 has type 𝐴 and 𝑟 has type 𝐵, the term
(𝜆𝑥𝐴∧𝐵 .𝑠)⟨𝑡, 𝑟 ⟩ can 𝛽-reduce to [𝑥 := ⟨𝑡, 𝑟 ⟩]𝑠 , but also, since this
term is equivalent to (𝜆𝑥𝐴∧𝐵 .𝑠)𝑡𝑟 , which 𝛽-reduces to ( [𝑥 := 𝑡]𝑠)𝑟 ,
reduction would not be stable by equivalence. To ensure the stability
of reduction by equivalence, the 𝛽-reduction must be performed
only when the type of the argument is the same as the type of the
abstracted variable: if Γ ⊢ 𝑟 : 𝐴 then (𝜆𝑥𝐴 .𝑡)𝑟 ↩→ [𝑥 := 𝑟 ]𝑡 .

The two added isomorphisms for polymorphism ((5) and (6)) also
add several equivalences between terms. Two induced by (5), and
four induced by (6).

Summarizing, the operational semantics of PSI is given by the
relation ↩→ modulo the symmetric relation⇄. That is, we consider
the relation→ := ⇄∗ ◦ ↩→ ◦ ⇄∗. As usual, we write→∗ the
reflexive and transitive closure of →. Both relations for PSI are
given in Table 3.

⟨𝑟, 𝑠⟩ ⇄ ⟨𝑠, 𝑟 ⟩ (COMM)
⟨𝑟, ⟨𝑠, 𝑡⟩⟩ ⇄ ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ (ASSO)

𝜆𝑥𝐴 .⟨𝑟, 𝑠⟩ ⇄ ⟨𝜆𝑥𝐴 .𝑟 , 𝜆𝑥𝐴 .𝑠⟩ (DIST𝜆)
⟨𝑟, 𝑠⟩𝑡 ⇄ ⟨𝑟𝑡, 𝑠𝑡⟩ (DISTapp)
𝑟 ⟨𝑠, 𝑡⟩ ⇄ 𝑟𝑠𝑡 (CURRY)

if 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) Λ𝑋 .𝜆𝑥𝐴 .𝑟 ⇄ 𝜆𝑥𝐴 .Λ𝑋 .𝑟 (P-COMM∀𝑖⇒𝑖
)

if 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) (𝜆𝑥𝐴 .𝑡) [𝐵] ⇄ 𝜆𝑥𝐴 .𝑡 [𝐵] (P-COMM∀𝑒⇒𝑖
)

Λ𝑋 .⟨𝑟, 𝑠⟩ ⇄ ⟨Λ𝑋 .𝑟,Λ𝑋 .𝑠⟩
(P-DIST∀𝑖∧𝑖 )

⟨𝑟, 𝑠⟩[𝐴] ⇄ ⟨𝑟 [𝐴], 𝑠 [𝐴]⟩ (P-DIST∀𝑒∧𝑖 )
𝜋∀𝑋 .𝐴 (Λ𝑋 .𝑟 ) ⇄ Λ𝑋 .𝜋𝐴𝑟 (P-DIST∀𝑖∧𝑒 )

if 𝑡 : ∀𝑋 .(𝐵 ∧𝐶) (𝜋∀𝑋 .𝐵𝑡) [𝐴] ⇄ 𝜋 [𝑋 :=𝐴]𝐵 (𝑡 [𝐴])
(P-DIST∧𝑒∀𝑒 )

If Γ ⊢ 𝑠 : 𝐴, (𝜆𝑥𝐴 .𝑟 )𝑠 ↩→ [𝑥 := 𝑠]𝑟 (𝛽𝜆)
(Λ𝑋 .𝑟 ) [𝐴] ↩→ [𝑋 := 𝐴]𝑟 (𝛽Λ)

If Γ ⊢ 𝑟 : 𝐴, 𝜋𝐴⟨𝑟, 𝑠⟩ ↩→ 𝑟 (𝜋)
𝑡 ⇄ 𝑟

𝜆𝑥𝐴 .𝑡 ⇄ 𝜆𝑥𝐴 .𝑟

𝑡 ⇄ 𝑟

𝑡𝑠 ⇄ 𝑟𝑠

𝑡 ⇄ 𝑟

𝑠𝑡 ⇄ 𝑠𝑟

𝑡 ⇄ 𝑟

⟨𝑡, 𝑠⟩ ⇄ ⟨𝑟, 𝑠⟩
𝑡 ⇄ 𝑟

⟨𝑠, 𝑡⟩ ⇄ ⟨𝑠, 𝑟 ⟩
𝑡 ⇄ 𝑟

𝜋𝐴𝑡 ⇄ 𝜋𝐴𝑟

𝑡 ⇄ 𝑟

𝑡 [𝐴] ⇄ 𝑟 [𝐴]
𝑡 ⇄ 𝑟

Λ𝑋 .𝑡 ⇄ Λ𝑋 .𝑟
𝑡 ↩→ 𝑟

𝜆𝑥𝐴 .𝑡 ↩→ 𝜆𝑥𝐴 .𝑟
𝑡 ↩→ 𝑟
𝑡𝑠 ↩→ 𝑟𝑠

𝑡 ↩→ 𝑟
𝑠𝑡 ↩→ 𝑠𝑟

𝑡 ↩→ 𝑟

⟨𝑡, 𝑠⟩ ↩→ ⟨𝑟, 𝑠⟩
𝑡 ↩→ 𝑟

⟨𝑠, 𝑡⟩ ↩→ ⟨𝑠, 𝑟 ⟩
𝑡 ↩→ 𝑟

𝜋𝐴𝑡 ↩→ 𝜋𝐴𝑟

𝑡 ↩→ 𝑟

𝑡 [𝐴] ↩→ 𝑟 [𝐴]
𝑡 ↩→ 𝑟

Λ𝑋 .𝑡 ↩→ Λ𝑋 .𝑟

Table 3: Relations defining the operational semantics of PSI

3 EXAMPLES
In this Section we present some examples to discuss the need for
the rules presented.

The first example shows the use of term equivalence to allow
applications that are not possible to build in Simple Types. In par-
ticular, the function apply = 𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥 can ben applied to a
pair, e.g. ⟨𝑔, 𝑡⟩ with Γ ⊢ 𝑔 : 𝐴 ⇒ 𝐵 and Γ ⊢ 𝑡 : 𝐴, because, due to
isomorphism (4), the following type derivation is valid:

Γ ⊢ 𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥 : (𝐴⇒ 𝐵) ⇒ 𝐴⇒ 𝐵
(≡)

Γ ⊢ 𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥 : ((𝐴⇒ 𝐵) ∧𝐴) ⇒ 𝐵

Γ ⊢ 𝑔 : 𝐴⇒ 𝐵 Γ ⊢ 𝑡 : 𝐴
(∧𝑖 )

Γ ⊢ ⟨𝑔, 𝑡⟩ : (𝐴⇒ 𝐵) ∧𝐴
(⇒𝑒 )

Γ ⊢ (𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥)⟨𝑔, 𝑡⟩ : 𝐵

and we have (𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥)⟨𝑔, 𝑡⟩ ⇄ (𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥)𝑔𝑡 ↩→2
𝛽

𝑔𝑡 .
The second example shows that the same application can be used

in other ways. The term (𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥)𝑡𝑔 is also well-typed, us-
ing isomorphisms (1) and (4), and reduces to𝑔𝑡 : (𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥)𝑡𝑔
⇄ (𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥)⟨𝑡, 𝑔⟩ ⇄ (𝜆𝑓 𝐴⇒𝐵 .𝜆𝑥𝐴 .𝑓 𝑥)⟨𝑔, 𝑡⟩ →∗ 𝑔𝑡 .
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The uncurried function apply’ = 𝜆𝑥 (𝐴⇒𝐵)∧𝐴 .𝜋𝐴⇒𝐵 (𝑥)𝜋𝐴 (𝑥)
can be applied to Γ ⊢ 𝑔 : 𝐴⇒ 𝐵 and Γ ⊢ 𝑡 : 𝐴 as if it was curried:

(𝜆𝑥 (𝐴⇒𝐵)∧𝐴 .𝜋𝐴⇒𝐵 (𝑥)𝜋𝐴 (𝑥))𝑔𝑡

⇄ (𝜆𝑥 (𝐴⇒𝐵)∧𝐴 .𝜋𝐴⇒𝐵𝑥𝜋𝐴𝑥)⟨𝑔, 𝑡⟩
↩→𝛽 𝜋𝐴⇒𝐵 ⟨𝑔, 𝑡⟩𝜋𝐴⟨𝑔, 𝑡⟩
↩→2

𝜋 𝑔𝑡

Another example of interest is the one mentioned in Section 2:
a function returning a pair can be projected. Consider the term
𝜋𝐴⇒𝐵 (𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩), where Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 and Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐶 . This
term is typable, using isomorphism (3), since 𝐴⇒ (𝐵 ∧𝐶) ≡ (𝐴⇒
𝐵) ∧ (𝐴⇒ 𝐶). The reduction goes as follows: 𝜋𝐴⇒𝐵 (𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩) ⇄
𝜋𝐴⇒𝐵 ⟨𝜆𝑥𝐴 .𝑡, 𝜆𝑥𝐴 .𝑟 ⟩ ↩→𝜋 𝜆𝑥𝐴 .𝑡 . Note that the function is projected
even while not being applied, returning another function.

Rule (P-COMM∀𝑖⇒𝑖
) is a consequence of isomorphism (5). The term

(Λ𝑋 .𝜆𝑥𝐴 .𝜆𝑓 𝐴⇒𝑋 .𝑓 𝑥)𝑡 , for instance, is well-typed assuming Γ ⊢ 𝑡 :
𝐴 and 𝑋 ∉ 𝐹𝑇𝑉 (𝐴):
Γ ⊢ Λ𝑋 .𝜆𝑥𝐴 .𝜆𝑓 𝐴⇒𝑋 .𝑓 𝑥 : ∀𝑋 .(𝐴⇒ (𝐴⇒ 𝑋 ) ⇒ 𝑋 )

(≡)
Γ ⊢ Λ𝑋 .𝜆𝑥𝐴 .𝜆𝑓 𝐴⇒𝑋 .𝑓 𝑥 : 𝐴⇒ ∀𝑋 .((𝐴⇒ 𝑋 ) ⇒ 𝑋 ) Γ ⊢ 𝑡 : 𝐴

(⇒𝑒 )
Γ ⊢ (Λ𝑋 .𝜆𝑥𝐴 .𝜆𝑓 𝐴⇒𝑋 .𝑓 𝑥)𝑡 : ∀𝑋 .((𝐴⇒ 𝑋 ) ⇒ 𝑋 )

and we have (Λ𝑋 .𝜆𝑥𝐴 .𝜆𝑓 𝐴⇒𝑋 .𝑓 𝑥)𝑡 ⇄ (𝜆𝑥𝐴 .(Λ𝑋 .𝜆𝑓 𝐴⇒𝑋 .𝑓 𝑥))𝑡
↩→𝛽𝜆 (Λ𝑋 .𝜆𝑓 𝐴⇒𝑋 .𝑓 𝑡).

Rule (P-COMM∀𝑒⇒𝑖
) is also a consequence of isomorphism (5). Con-

sider the term (𝜆𝑥∀𝑋 .(𝑋⇒𝑋 ) .𝑥) [𝐴]Λ𝑋 .𝜆𝑥𝑋 .𝑥 . Let X = ∀𝑋 .(𝑋 ⇒
𝑋 ). Since X ⇒ X ≡ ∀𝑌 .(X ⇒ (𝑌 ⇒ 𝑌 )) (renaming the variable
for readability), then, ⊢ (𝜆𝑥X .𝑥) [𝐴]Λ𝑋 .𝜆𝑥𝑋 .𝑥 : 𝐴⇒ 𝐴.

The reduction goes as follows: (𝜆𝑥∀𝑋 .(𝑋⇒𝑋 ) .𝑥) [𝐴]Λ𝑋 .𝜆𝑥𝑋 .𝑥 ⇄
(𝜆𝑥∀𝑋 .(𝑋⇒𝑋 ) .𝑥 [𝐴])Λ𝑋 .𝜆𝑥𝑋 .𝑥 ↩→𝛽𝜆 (Λ𝑋 .𝜆𝑥𝑋 .𝑥) [𝐴] ↩→𝛽Λ 𝜆𝑥𝐴 .𝑥 .

Rules (P-DIST∀𝑖∧𝑖 ) and (P-DIST∀𝑖∧𝑒 ) are both consequences of the same
isomorphism: (6). Consider the term 𝜋∀𝑋 .(𝑋⇒𝑋 ) (Λ𝑋 .⟨𝜆𝑥𝑋 .𝑥, 𝑡⟩).
Since ∀𝑋 .((𝑋 ⇒ 𝑋 ) ∧ 𝐴) ≡ (∀𝑋 .(𝑋 ⇒ 𝑋 )) ∧ (∀𝑋 .𝐴), we can
derive Γ ⊢ 𝜋∀𝑋 .(𝑋⇒𝑋 ) (Λ𝑋 .⟨𝜆𝑥𝑋 .𝑥, 𝑡⟩) : ∀𝑋 .(𝑋 ⇒ 𝑋 ). A possible
reduction is:

𝜋∀𝑋 .(𝑋⇒𝑋 ) (Λ𝑋 .⟨𝜆𝑥𝑋 .𝑥, 𝑡⟩) ⇄ 𝜋∀𝑋 .(𝑋⇒𝑋 ) ⟨Λ𝑋 .𝜆𝑥𝑋 .𝑥,Λ𝑋 .𝑡⟩

↩→𝜋 Λ𝑋 .𝜆𝑥𝑋 .𝑥

Another consequence of isomorphism (6) is the rule (P-DIST∀𝑒∧𝑖 ).
Consider ⟨Λ𝑋 .𝜆𝑥𝑋 .𝜆𝑦𝐴 .𝑡, Λ𝑋 .𝜆𝑥𝑋 .𝜆𝑧𝐵 .𝑟 ⟩[𝐶] where 𝑡 has type 𝐷

and 𝑟 has type 𝐸. Since ∀𝑋 .(𝑋 ⇒ 𝐴⇒ 𝐷) ∧ ∀𝑋 .(𝑋 ⇒ 𝐵 ⇒ 𝐸) ≡
∀𝑋 .((𝑋 ⇒ 𝐴 ⇒ 𝐷) ∧ (𝑋 ⇒ 𝐵 ⇒ 𝐸)), we have ⟨Λ𝑋 .𝜆𝑥𝑋 .𝜆𝑦𝐴 .𝑡,

Λ𝑋 .𝜆𝑥𝑋 .𝜆𝑧𝐵 .𝑟 ⟩[𝐶] : (𝐶 ⇒ 𝐴⇒ 𝐷) ∧ (𝐶 ⇒ 𝐵 ⇒ 𝐸). It reduces as
follows: ⟨Λ𝑋 .𝜆𝑥𝑋 .𝜆𝑦𝐴 .𝑡, Λ𝑋 .𝜆𝑥𝑋 .𝜆𝑧𝐵 .𝑟 ⟩[𝐶] ⇄ ⟨(𝜆𝑥𝑋 .𝜆𝑦𝐴 .𝑡) [𝐶],
(𝜆𝑥𝑋 .𝜆𝑧𝐵 .𝑟 ) [𝐶]⟩ ↩→𝛽Λ ⟨𝜆𝑥𝐶 .𝜆𝑦𝐴 .𝑡, 𝜆𝑥𝐶 .𝜆𝑧𝐵 .𝑟 ⟩.

Finally, rule (P-DIST∧𝑒∀𝑒 ) is also a consequence of isomorphism
(6). Consider the term (𝜋∀𝑋 .(𝑋⇒𝑋 ) (Λ𝑋 .⟨𝜆𝑥𝑋 .𝑥, 𝑟 ⟩)) [𝐴], with type
𝐴⇒ 𝐴, which reduces as follows:

(𝜋∀𝑋 .(𝑋⇒𝑋 ) (Λ𝑋 .⟨𝜆𝑥𝑋 .𝑥, 𝑟 ⟩)) [𝐴] ⇄ 𝜋𝐴⇒𝐴 ((Λ𝑋 .⟨𝜆𝑥𝑋 .𝑥, 𝑟 ⟩) [𝐴])

↩→𝛽Λ 𝜋𝐴⇒𝐴⟨𝜆𝑥𝐴 .𝑥, [𝑋 := 𝐴]𝑟 ⟩

↩→𝜋 𝜆𝑥𝐴 .𝑥

4 SUBJECT REDUCTION
In this section we prove the preservation of typing through reduc-
tion. First we need to characterize the equivalences between types,
for example, if ∀𝑋 .𝐴 ≡ 𝐵 ∧𝐶 , then 𝐵 ≡ ∀𝑋 .𝐵′ and𝐶 ≡ ∀𝑋 .𝐶 ′, with
𝐴 ≡ 𝐵′ ∧𝐶 ′ (Lemma 4.9). Due to the number of isomorphisms, this
kind of lemmas are not trivial. To prove these relations, we first
define the multiset of prime factors of a type (Definition 4.1). That
is, the multiset of types that are not equivalent to a conjunction,
such that the conjunction of all its elements is equivalent to a cer-
tain type. This technique has already been used in System I [12],
however, it has been used with simply types with only one basic
type 𝜏 . In PSI, instead, we have an infinite number of variables
acting as basic types, hence the proof becomes more complex.

We write ∀ ®𝑋 .𝐴 for ∀𝑋1 .∀𝑋2 . . . . .∀𝑋𝑛 .𝐴, for some 𝑛 ≥ 0 (where
if 𝑛 = 0, ∀ ®𝑋 .𝐴 = 𝐴).

Definition 4.1 (Prime factors).

PF(𝑋 ) = [𝑋 ]

PF(𝐴⇒ 𝐵) = [∀ ®𝑋𝑖 .((𝐴 ∧ 𝐵𝑖 ) ⇒ 𝑌𝑖 )]𝑛𝑖=1

where PF(𝐵) = [∀ ®𝑋𝑖 .(𝐵𝑖 ⇒ 𝑌𝑖 )]𝑛𝑖=1
PF(𝐴 ∧ 𝐵) = PF(𝐴) ⊎ PF(𝐵)

PF(∀𝑋 .𝐴) = [∀𝑋 .∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1

where PF(𝐴) = [∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1

Lemma 4.2 and Corollary 4.3 state the correctness of Defini-
tion 4.1. We write

∧( [𝐴𝑖 ]𝑖 ) for
∧

𝑖 𝐴𝑖 .

Lemma 4.2. For all 𝐴, there exist ®𝑋,𝑛, 𝐵1, . . . , 𝐵𝑛, 𝑌1, . . . , 𝑌𝑛 such
that 𝑃𝐹 (𝐴) = [∀ ®𝑋𝑖 .(𝐵𝑖 ⇒ 𝑌𝑖 )]𝑛𝑖=1.

Proof. Straightforward induction on the structure of 𝐴. □

Corollary 4.3. For all 𝐴, 𝐴 ≡ ∧(PF(𝐴)).

Proof. By induction on the structure of A.
• Let 𝐴 = 𝑋 . Then PF(𝑋 ) = [𝑋 ], and

∧( [𝑋 ]) = 𝑋 .
• Let 𝐴 = 𝐵 ⇒ 𝐶 . By Lemma 4.2, PF(𝐶) = [∀ ®𝑋𝑖 .(𝐶𝑖 ⇒ 𝑌𝑖 )]𝑛𝑖=1.

Hence, by definition, PF(𝐴) = [∀ ®𝑋𝑖 .(𝐵∧𝐶𝑖 ⇒ 𝑌𝑖 )]𝑛𝑖=1. By the
induction hypothesis, 𝐶 ≡ ∧(PF(𝐶)) = ∧𝑛

𝑖=1 ∀ ®𝑋𝑖 .(𝐶𝑖 ⇒ 𝑌𝑖 ).
Therefore, 𝐴 = 𝐵 ⇒ 𝐶 ≡ 𝐵 ⇒ ∧𝑛

𝑖=1 ∀ ®𝑋𝑖 .(𝐶𝑖 ⇒ 𝑌𝑖 ) ≡∧𝑛
𝑖=1 ∀ ®𝑋𝑖 .((𝐵 ∧𝐶𝑖 ) ⇒ 𝑌𝑖 ) =

∧( [∀ ®𝑋𝑖 .(𝐵 ∧𝐶𝑖 ⇒ 𝑌𝑖 )]𝑛𝑖=1) =∧(PF(𝐴)).
• Let 𝐴 = 𝐵 ∧𝐶 . By the induction hypothesis, 𝐵 ≡ ∧(PF(𝐵))

and 𝐶 ≡ ∧(PF(𝐶)). Hence, 𝐴 = 𝐵 ∧ 𝐶 ≡ ∧(PF(𝐵)) ∧∧(PF(𝐶)) ≡ ∧(PF(𝐵) ⊎ PF(𝐶)) = ∧(PF(𝐴)).
• Let 𝐴 = ∀𝑋 .𝐵. By Lemma 4.2, PF(𝐵) = [∀®𝑌𝑖 .(𝐵𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1.

Hence, by definition, PF(𝐴) = [∀𝑋 .∀®𝑌𝑖 .(𝐵𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1. By
the induction hypothesis, 𝐵 ≡ ∧(PF(𝐵)) = ∧𝑛

𝑖=1 ∀®𝑌𝑖 .(𝐵𝑖 ⇒
𝑍𝑖 ). Therefore, 𝐴 = ∀𝑋 .𝐵 ≡ ∀𝑋 .

∧𝑛
𝑖=1 ∀®𝑌𝑖 .(𝐵𝑖 ⇒ 𝑍𝑖 ) ≡∧𝑛

𝑖=1 ∀𝑋 .∀®𝑌𝑖 .(𝐵𝑖 ⇒ 𝑍𝑖 ) =
∧( [∀𝑋 .∀®𝑌 .(𝐵𝑖 ⇒ 𝑍 )]𝑛

𝑖=1) =∧(PF(𝐴)). □

Lemma 4.5 states the stability of prime factors through equiva-
lence and Lemma 4.6 states a sort of reciprocal result.
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Definition 4.4. [𝐴1, . . . , 𝐴𝑛] ∼ [𝐵1, . . . , 𝐵𝑚] if 𝑛 = 𝑚 and 𝐴𝑖 ≡
𝐵𝑝 (𝑖) , for 𝑖 = 1, . . . , 𝑛 and 𝑝 a permutation on {1, . . . .𝑛}.

Lemma 4.5. For all 𝐴, 𝐵, if 𝐴 ≡ 𝐵, then PF(𝐴) ∼ PF(𝐵).

Proof. First we check that PF (𝐴∧𝐵) ∼ PF (𝐵∧𝐴) and similar for
the other five isomorphisms. Then we prove by structural induction
that if 𝐴 and 𝐵 are equivalent in one step, then PF (A) ∼ PF (B). We
conclude by an induction on the length of the derivation of the
equivalence 𝐴 ≡ 𝐵. □

Lemma 4.6. For all 𝑅, 𝑆 , if 𝑅 ∼ 𝑆 , then
∧(𝑅) ≡ ∧(𝑆). □

Lemma 4.7. For all ®𝑋, ®𝑍,𝐴, 𝐵,𝑌,𝑊 , if ∀ ®𝑋 .(𝐴 ⇒ 𝑌 ) ≡ ∀ ®𝑍 .(𝐵 ⇒
𝑊 ), then ®𝑋 = ®𝑍 , 𝐴 ≡ 𝐵, and 𝑌 =𝑊 .

Proof. By simple inspection of the isomorphisms. □

Lemma 4.8. For all 𝐴, 𝐵,𝐶1,𝐶2, if 𝐴 ⇒ 𝐵 ≡ 𝐶1 ∧𝐶2, then there
exist 𝐵1, 𝐵2 such that𝐶1 ≡ 𝐴⇒ 𝐵1,𝐶2 ≡ 𝐴⇒ 𝐵2 and 𝐵 ≡ 𝐵1 ∧ 𝐵2.

Proof. By Lemma 4.5, PF(𝐴 ⇒ 𝐵) ∼ PF(𝐶1 ∧ 𝐶2) = PF(𝐶1) ⊎
PF(𝐶2).

By Lemma 4.2, let PF(𝐵) = [∀ ®𝑋𝑖 .(𝐷𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1, PF(𝐶1) =

[∀®𝑌𝑗 .(𝐸 𝑗 ⇒ 𝑍 ′
𝑗
)]𝑘

𝑗=1, and PF(𝐶2) = [∀®𝑌𝑗 .(𝐸 𝑗 ⇒ 𝑍 ′
𝑗
)]𝑚

𝑗=𝑘+1. Hence,
[∀ ®𝑋𝑖 .((𝐴 ∧ 𝐷𝑖 ) ⇒ 𝑍𝑖 )]𝑛𝑖=1 ∼ [∀®𝑌𝑗 .(𝐸 𝑗 ⇒ 𝑍 ′

𝑗
)]𝑚

𝑗=1. So, by defini-
tion of ∼, 𝑛 = 𝑚 and for 𝑖 = 1, . . . , 𝑛 and a permutation 𝑝 , we
have ∀ ®𝑋𝑖 .((𝐴 ∧ 𝐷𝑖 ) ⇒ 𝑍𝑖 ) ≡ ∀®𝑌𝑝 (𝑖) .(𝐸𝑝 (𝑖) ⇒ 𝑍 ′

𝑝 (𝑖) ). Hence, by
Lemma 4.7, we have ®𝑋𝑖 = ®𝑌𝑝 (𝑖) , 𝐴 ∧ 𝐷𝑖 ≡ 𝐸𝑝 (𝑖) , and 𝑍𝑖 = 𝑍 ′

𝑝 (𝑖) .
Thus, there exists 𝐼 such that 𝐼 ∪ 𝐼 = {1, . . . , 𝑛}, such that

PF(𝐶1) = [∀®𝑌𝑝 (𝑖) .(𝐸𝑝 (𝑖) ⇒ 𝑍 ′
𝑝 (𝑖) )]𝑖∈𝐼

PF(𝐶2) = [∀®𝑌𝑝 (𝑖) .(𝐸𝑝 (𝑖) ⇒ 𝑍 ′
𝑝 (𝑖) )]𝑖∈𝐼

Therefore, by Corollary 4.3, 𝐶1 ≡
∧

𝑖∈𝐼 ∀®𝑌𝑝 (𝑖) .(𝐸𝑝 (𝑖) ⇒ 𝑍 ′𝑝𝑖 ) ≡∧
𝑖∈𝐼 ∀ ®𝑋𝑖 .((𝐴 ∧ 𝐷𝑖 ) ⇒ 𝑍𝑖 ) and 𝐶 ≡ ∧

𝑖∈𝐼 ∀ ®𝑋𝑖 .((𝐴 ∧ 𝐷𝑖 ) ⇒ 𝑍𝑖 ).
Let 𝐵1 =

∧
𝑖∈𝐼 ∀ ®𝑋𝑖 .(𝐷𝑖 ⇒ 𝑍𝑖 ) and 𝐵2 =

∧
𝑖∈𝐼 ∀ ®𝑋𝑖 .(𝐷𝑖 ⇒ 𝑍𝑖 ). So,

𝐶1 ≡ 𝐴⇒ 𝐵1 and 𝐶2 ≡ 𝐴⇒ 𝐵2. In addition, also by Corollary 4.3,
we have 𝐵 ≡ ∧𝑛

𝑖=1 ∀ ®𝑋𝑖 .(𝐷𝑖 ⇒ 𝑍𝑖 ) ≡ 𝐵1 ∧ 𝐵2. □

The proofs of the following two lemmas are similar to the proof
of Lemma 4.8. Full details are given in the appendix.

Lemma 4.9. For all 𝑋,𝐴, 𝐵,𝐶 , if ∀𝑋 .𝐴 ≡ 𝐵 ∧ 𝐶 , then there exist
𝐵′,𝐶 ′ such that 𝐵 ≡ ∀𝑋 .𝐵′, 𝐶 ≡ ∀𝑋 .𝐶 ′ and 𝐴 ≡ 𝐵′ ∧𝐶 ′. □

Lemma 4.10. For all𝑋,𝐴, 𝐵,𝐶 , if ∀𝑋 .𝐴 ≡ 𝐵 ⇒ 𝐶 , then there exists
𝐶 ′ such that 𝐶 ≡ ∀𝑋 .𝐶 ′ and 𝐴 ≡ 𝐵 ⇒ 𝐶 ′. □

Since the calculus is presented in Church-style, excluding rule
≡, the PSI is syntax directed. Therefore, the generation lemma
(Lemma 4.12) is straightforward, and we have the following unicity
lemma (whose proof is given in the appendix):

Lemma 4.11 (Unicity modulo). For all Γ, 𝑟 , 𝐴, 𝐵, if Γ ⊢ 𝑟 : 𝐴 and
Γ ⊢ 𝑟 : 𝐵, then 𝐴 ≡ 𝐵. □

Lemma 4.12 (Generation). For all Γ, 𝑥, 𝑟, 𝑠, 𝑋,𝐴, 𝐵:
(1) If Γ ⊢ 𝑥 : 𝐴 and Γ ⊢ 𝑥 : 𝐵, then 𝐴 ≡ 𝐵.
(2) If Γ ⊢ 𝜆𝑥𝐴 .𝑟 : 𝐵, then there exists 𝐶 such that Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐶

and 𝐵 ≡ 𝐴⇒ 𝐶 .

(3) If Γ ⊢ 𝑟𝑠 : 𝐴, then there exists 𝐶 such that Γ ⊢ 𝑟 : 𝐶 ⇒ 𝐴 and
Γ ⊢ 𝑠 : 𝐶 .

(4) If Γ ⊢ ⟨𝑟, 𝑠⟩ : 𝐴, then there exist 𝐶, 𝐷 such that 𝐴 ≡ 𝐶 ∧ 𝐷 ,
Γ ⊢ 𝑟 : 𝐶 and Γ ⊢ 𝑠 : 𝐷 .

(5) If Γ ⊢ 𝜋𝐴𝑟 : 𝐵, then 𝐴 ≡ 𝐵 and there exists 𝐶 such that
Γ ⊢ 𝑟 : 𝐵 ∧𝐶 .

(6) If Γ ⊢ Λ𝑋 .𝑟 : 𝐴, then there exists 𝐶 such that 𝐴 ≡ ∀𝑋 .𝐶 ,
Γ ⊢ 𝑟 : 𝐶 and 𝑋 ∉ 𝐹𝑇𝑉 (Γ).

(7) If Γ ⊢ 𝑟 [𝐴] : 𝐵, then there exists 𝐶 such that [𝑋 := 𝐴]𝐶 ≡ 𝐵

and Γ ⊢ 𝑟 : ∀𝑋 .𝐶 . □

The detailed proofs of Lemma 4.13 (Substitution) and Theo-
rem 4.14 (Subject Reduction) are given in the appendix.

Lemma 4.13 (Substitution).
(1) For all Γ, 𝑥, 𝑟, 𝑠, 𝐴, 𝐵, if Γ, 𝑥 : 𝐵 ⊢ 𝑟 : 𝐴 and Γ ⊢ 𝑠 : 𝐵 then

Γ ⊢ [𝑥 := 𝑠]𝑟 : 𝐴.
(2) For all Γ, 𝑟 , 𝑋,𝐴, 𝐵, if Γ ⊢ 𝑟 : 𝐴, then [𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵]𝑟 :
[𝑋 := 𝐵]𝐴. □

Theorem 4.14 (Subject reduction). For all Γ, 𝑟 , 𝑠, 𝐴, if Γ ⊢ 𝑟 : 𝐴
and 𝑟 ↩→ 𝑠 or 𝑟 ⇄ 𝑠 , then Γ ⊢ 𝑠 : 𝐴. □

5 CONCLUSION, DISCUSSION AND FUTURE
WORK

System I is a proof system for propositional logic, where isomorphic
propositions have the same proofs. In this paper we have defined
PSI, a polymorphic extension of System I where two of the iso-
morphisms corresponding to the universal quantifier were added.
This is a step towards obtaining a system that identifies all the
isomorphisms (which have been characterized by Di Cosmo [9]).

5.1 Termination (work in progress)
The strong normalisation of System I has been proved [12], using a
non-trivial reformulation of Tait’s classical proof for Simple Types.
Indeed, in System I we cannot define a notion of neutral terms [19],
which are usually defined being the elimination terms (i.e. appli-
cation, projection). In System I, and so in PSI, being neutral is not
stable through equivalence⇄. For instance, ⟨𝑟, 𝑠⟩𝑡 is an application,
thus it is neutral, but its equivalent term ⟨𝑟𝑡, 𝑠𝑡⟩ is a pair, which is
not neutral. Therefore, our proof does not rely on the definition of
neutral terms and the so called CR3 property. We claim that it is
possible to extend such a proof technique to PSI, and it is ongoing
work.

5.2 Other future work
5.2.1 Implementation and fix point. As mentioned in the previous
section, we have already proposed an implementation of an early
version of System I, extended with a fix point operator [15]. We plan
to extend such an implementation for polymorphism, following the
design of PSI.

5.2.2 Towards more connectives. It is a subtle question how to add
a neutral element of the conjunction, which would imply more
isomorphisms, e.g. 𝐴 ∧ ⊤ ≡ 𝐴, 𝐴 ⇒ ⊤ ≡ ⊤ and ⊤ ⇒ 𝐴 ≡ 𝐴 [9].
Adding the equation ⊤ ⇒ ⊤ ≡ ⊤ would make it possible to derive
(𝜆𝑥⊤ .𝑥𝑥) (𝜆𝑥⊤ .𝑥𝑥) : ⊤; however, this term is not the classical Ω,
since it is typed by ⊤, and by imposing some restrictions on the
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𝛽-reduction, it could be forced not to reduce to itself but to discard
its argument. For example: “If 𝐴 ≡ ⊤, then (𝜆𝑥𝐴 .𝑟 )𝑠 ↩→ 𝑟 [★/𝑥]”,
where ★ : ⊤ is the introduction rule of ⊤.

5.2.3 Swap. As mentioned in Section 2, two isomorphisms for Sys-
tem F with pairs, as defined by Di Cosmo [9], are not considered
explicitly: isomorphisms (7) and (8). However, the isomorphism (7)
is just the 𝛼-equivalence, which has been given implicitly, and so
it has indeed been considered. The isomorphism that actually was
not considered is (8), which allows to swap the type abstractions:
∀𝑋 .∀𝑌 .𝐴 ≡ ∀𝑌 .∀𝑋 .𝐴. This isomorphism is the analogous to the
isomorphism 𝐴 ⇒ 𝐵 ⇒ 𝐶 ≡ 𝐵 ⇒ 𝐴 ⇒ 𝐶 at the first order
level, which is a consequence of isomorphisms (4) and (1). At this
first order level, the isomorphism induces the following equiva-
lence: (𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )𝑠𝑡 ⇄ (𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )⟨𝑠, 𝑡⟩ ⇄ (𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )⟨𝑡, 𝑠⟩ ⇄
(𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )𝑡𝑠

An alternative approach would have been to introduce an equiv-
alence between 𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 and 𝜆𝑦𝐵 .𝜆𝑥𝐴 .𝑟 . However, in any case, to
keep subject reduction, the 𝛽𝜆 reduction must verify that the type
of the argument matches the type of the variable before reducing.
This solution is not easily implementable for the 𝛽Λ reduction, since
it involves using the type as a labelling for the term and the variable,
to identify which term corresponds to which variable (leaving the
posibility for non-determinism if the “labellings” are duplicated),
but at the level of types we do not have a natural labelling.

Another alternative solution, in the same direction, is the one
implemented by the selective lambda calculus [18], where only
arrows, and not conjunctions, were considered, and so only the
ismorphism 𝐴 ⇒ 𝐵 ⇒ 𝐶 ≡ 𝐵 ⇒ 𝐴 ⇒ 𝐶 is treated. In the
selective lambda calculus the solution is indeed to include external
labellings (not types) to identify which argument is being used at
each time. We could have added a labelling to type applications,
𝑡 [𝐴𝑋 ], together with the following rule: 𝑟 [𝐴𝑋 ] [𝐵𝑌 ] ⇄ 𝑟 [𝐵𝑌 ] [𝐴𝑋 ]
and so modifying the 𝛽Λ to (Λ𝑋 .𝑟 ) [𝐴𝑋 ] ↩→ [𝑋 := 𝐴]𝑟 .

Despite that such a solution seems to work, we found that it does
not contribute to the language in any aspect, while it does make
the system less readable. Therefore, we have decided to exclude the
isomorphism (8) for PSI.

5.2.4 Eta-expansion rule. An extended fragment of an early ver-
sion of System I [10] has been implemented in Haskell [15]. In
such an implementation, we have added some ad-hoc rules in or-
der to have a progression property (that is, having only introduc-
tions as normal forms of closed terms). For example, “If 𝑠 : 𝐵 then
(𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )𝑠 ↩→ 𝜆𝑥𝐴 .((𝜆𝑦𝐵 .𝑟 )𝑠)”. Such a rule, among others intro-
duced in this implementation, is a particular case of a more general

𝜂-expansion rule. Indeed, with the rule 𝑡 ↩→ 𝜆𝑥𝐴 .𝑡𝑥 we can derive
(𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )𝑠 ↩→ 𝜆𝑧𝐴 .(𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )𝑠𝑧

⇄∗ 𝜆𝑧𝐴 .(𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑟 )𝑧𝑠

↩→ 𝜆𝑧𝐴 .((𝜆𝑦𝐵 .𝑟 [𝑧/𝑥])𝑠)
In [13] we have showed that it is indeed the case that all the

ad-hoc rules from [10] can be lifted by adding extensional rules.
We left as a future work to add these extensional rules to PSI

and show a progression property for it.
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A DETAILED PROOFS
Lemma 4.9. If ∀𝑋 .𝐴 ≡ 𝐵 ∧ 𝐶 , then 𝐵 ≡ ∀𝑋 .𝐵′, 𝐶 ≡ ∀𝑋 .𝐶 ′ and
𝐴 ≡ 𝐵′ ∧𝐶 ′.

Proof. By Lemma 4.5, PF(∀𝑋 .𝐴) ∼ PF(𝐵 ∧𝐶) = PF(𝐵) ⊎ PF(𝐶).
By Lemma 4.2, let

PF(𝐴) = [∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1

PF(𝐵) = [∀ ®𝑊𝑗 .(𝐷 𝑗 ⇒ 𝑍 ′𝑗 )]
𝑘
𝑗=1

PF(𝐶) = [∀ ®𝑊𝑗 .(𝐷 𝑗 ⇒ 𝑍 ′𝑗 )]
𝑚
𝑗=𝑘+1

Hence, [∀𝑋 .∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1 ∼ [∀ ®𝑊𝑗 .(𝐷 𝑗 ⇒ 𝑍 ′
𝑗
)]𝑚

𝑗=1. So, by
definition of ∼, 𝑛 =𝑚 and for 𝑖 = 1, . . . , 𝑛 and a permutation 𝑝 , we
have

∀𝑋 .∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ) ≡ ∀ ®𝑊𝑝 (𝑖) .(𝐷𝑝 (𝑖) ⇒ 𝑍 ′
𝑝 (𝑖) )

Thus, by Lemma 4.7, we have 𝑋, ®𝑌𝑖 = ®𝑊𝑝 (𝑖) , 𝐴𝑖 ≡ 𝐷𝑝 (𝑖) , and 𝑍𝑖 =

𝑍 ′
𝑝 (𝑖) . Therefore, there exists 𝐼 such that 𝐼 ∪ 𝐼 = {1, . . . , 𝑛}, such

that
PF(𝐵) = [∀ ®𝑊𝑝 (𝑖) .(𝐷𝑝 (𝑖) ⇒ 𝑍 ′

𝑝 (𝑖) )]𝑖∈𝐼

PF(𝐶) = [∀ ®𝑊𝑝 (𝑖) .(𝐷𝑝 (𝑖) ⇒ 𝑍 ′
𝑝 (𝑖) )]𝑖∈𝐼

Hence, by Corollary 4.3, we have, 𝐵 ≡ ∧
𝑖∈𝐼 ∀ ®𝑊𝑝 (𝑖) .(𝐷𝑝 (𝑖) ⇒

𝑍 ′𝑝𝑖 ) ≡
∧

𝑖∈𝐼 ∀𝑋 .∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ), and 𝐶 ≡ ∧
𝑖∈𝐼 ∀𝑋 .∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ).

Let 𝐵′ =
∧

𝑖∈𝐼 ∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ) and 𝐶 ′ =
∧

𝑖∈𝐼 ∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ). So,
𝐵 ≡ ∀𝑋 .𝐵′ and 𝐶 ≡ ∀𝑋 .𝐶 ′. Hence, also by Corollary 4.3, we have
𝐴 ≡ ∧𝑛

𝑖=1 ∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ) ≡ 𝐵′ ∧𝐶 ′. □

Lemma 4.10. If ∀𝑋 .𝐴 ≡ 𝐵 ⇒ 𝐶 , then 𝐶 ≡ ∀𝑋 .𝐶 ′ and 𝐴 ≡ 𝐵 ⇒ 𝐶 ′.

Proof. By Lemma 4.5, PF(∀𝑋 .𝐴) ∼ PF(𝐵 ⇒ 𝐶).
By Lemma 4.2, let

PF(𝐴) = [∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1

PF(𝐶) = [∀ ®𝑊𝑗 .(𝐷 𝑗 ⇒ 𝑍 ′𝑗 )]
𝑚
𝑗=1

Hence, [∀𝑋 .∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 )]𝑛𝑖=1 ∼ [∀ ®𝑊𝑗 .((𝐵 ∧ 𝐷 𝑗 ) ⇒ 𝑍 ′
𝑗
)]𝑚

𝑗=1. So,
by definition of ∼, 𝑛 =𝑚 and for 𝑖 = 1, . . . , 𝑛 and a permutation 𝑝 ,
we have

∀𝑋 .∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ) ≡ ∀ ®𝑊𝑝 (𝑖) .((𝐵 ∧ 𝐷𝑝 (𝑖) ) ⇒ 𝑍 ′
𝑝 (𝑖) )

Hence, by Lemma 4.7, we have 𝑋, ®𝑌𝑖 = ®𝑊𝑝 (𝑖) , 𝐴𝑖 ≡ 𝐵 ∧ 𝐷𝑝 (𝑖) , and
𝑍𝑖 = 𝑍 ′

𝑝 (𝑖) . Hence, by Corollary 4.3, 𝐶 ≡ ∧𝑛
𝑗=1 ∀ ®𝑊𝑗 .(𝐷 𝑗 ⇒ 𝑍 ′

𝑗
) ≡∧𝑛

𝑖=1 ∀ ®𝑊𝑝 (𝑖) .(𝐷𝑝 (𝑖) ⇒ 𝑍 ′
𝑝 (𝑖) ) ≡

∧𝑛
𝑖=1 ∀𝑋 .∀®𝑌𝑖 .(𝐷𝑝 (𝑖) ⇒ 𝑍𝑖 ).

Let 𝐶 ′ =
∧𝑛

𝑖=1 ∀®𝑌𝑖 .(𝐷𝑝 (𝑖) ⇒ 𝑍𝑖 ). So, 𝐶 ≡ ∀𝑋 .𝐶 ′.
Hence, also by Corollary 4.3, we have𝐴 ≡ ∧𝑛

𝑖=1 ∀®𝑌𝑖 .(𝐴𝑖 ⇒ 𝑍𝑖 ) ≡∧𝑛
𝑖=1 ∀®𝑌𝑖 .((𝐵 ∧ 𝐷𝑝 (𝑖) ) ⇒ 𝑍𝑖 ) ≡ 𝐵 ⇒ ∧𝑛

𝑖=1 ∀®𝑌𝑖 .(𝐷𝑝 (𝑖) ⇒ 𝑍𝑖 ) ≡
𝐵 ⇒ 𝐶 ′. □

Lemma 4.11 (Unicity modulo). If Γ ⊢ 𝑟 : 𝐴 and Γ ⊢ 𝑟 : 𝐵, then
𝐴 ≡ 𝐵.

Proof.
• If the last rule of the derivation of Γ ⊢ 𝑟 : 𝐴 is (≡), then we

have a shorter derivation of Γ ⊢ 𝑟 : 𝐶 with 𝐶 ≡ 𝐴, and, by
the induction hypothesis, 𝐶 ≡ 𝐵, hence 𝐴 ≡ 𝐵.

• If the last rule of the derivation of Γ ⊢ 𝑟 : 𝐵 is (≡) we proceed
in the same way.
• All the remaining cases are syntax directed. □

Lemma 4.13 (Substitution).
(1) If Γ, 𝑥 : 𝐵 ⊢ 𝑟 : 𝐴 and Γ ⊢ 𝑠 : 𝐵 then Γ ⊢ [𝑥 := 𝑠]𝑟 : 𝐴.
(2) If Γ ⊢ 𝑟 : 𝐴, then [𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵]𝑟 : [𝑋 := 𝐵]𝐴. □
Proof.
(1) By structural induction on 𝑟 .
• Let 𝑟 = 𝑥 . By Lemma 4.12, 𝐴 ≡ 𝐵, thus Γ ⊢ 𝑠 : 𝐴. Since
[𝑥 := 𝑠]𝑥 = 𝑠 , we have Γ ⊢ [𝑥 := 𝑠]𝑥 : 𝐴.
• Let 𝑟 = 𝑦, with 𝑦 ≠ 𝑥 . Since [𝑥 := 𝑠]𝑦 = 𝑦, we have
Γ ⊢ [𝑥 := 𝑠]𝑦 : 𝐴.
• Let 𝑟 = 𝜆𝑥𝐶 .𝑡 . We have [𝑥 := 𝑠] (𝜆𝑥𝐶 .𝑡) = 𝜆𝑥𝐶 .𝑡 , so Γ ⊢
[𝑥 := 𝑠] (𝜆𝑥𝐶 .𝑡) : 𝐴.
• Let 𝑟 = 𝜆𝑦𝐶 .𝑡 , with 𝑦 ≠ 𝑥 . By Lemma 4.12, 𝐴 ≡ 𝐶 ⇒ 𝐷

and Γ, 𝑦 : 𝐶 ⊢ 𝑡 : 𝐷 . By the induction hypothesis, Γ, 𝑦 :
𝐶 ⊢ [𝑥 := 𝑠]𝑡 : 𝐷 , and so, by rule (⇒𝑖 ), Γ ⊢ 𝜆𝑦𝐶 .[𝑥 := 𝑠]𝑡 :
𝐶 ⇒ 𝐷 . Since 𝜆𝑦𝐶 .[𝑥 := 𝑠]𝑡 = [𝑥 := 𝑠] (𝜆𝑦𝐶 .𝑡), using rule
(≡), Γ ⊢ [𝑥 := 𝑠] (𝜆𝑥𝐶 .𝑡) : 𝐴.
• Let 𝑟 = 𝑡𝑢. By Lemma 4.12, Γ ⊢ 𝑡 : 𝐶 ⇒ 𝐴 and Γ ⊢ 𝑢 : 𝐶 . By

the induction hypothesis, Γ ⊢ [𝑥 := 𝑠]𝑡 : 𝐶 ⇒ 𝐴 and Γ ⊢
[𝑥 := 𝑠]𝑢 : 𝐶 , and so, by rule (⇒𝑒 ), Γ ⊢ ([𝑥 := 𝑠]𝑡) ( [𝑥 :=
𝑠]𝑢) : 𝐴. Since ( [𝑥 := 𝑠]𝑡) ( [𝑥 := 𝑠]𝑢) = [𝑥 := 𝑠] (𝑡𝑢), we
have Γ ⊢ [𝑥 := 𝑠] (𝑡𝑢) : 𝐴.
• Let 𝑟 = ⟨𝑡,𝑢⟩. By Lemma 4.12, Γ ⊢ 𝑡 : 𝐶 and Γ ⊢ 𝑢 : 𝐷 , with
𝐴 ≡ 𝐶 ∧ 𝐷 . By the induction hypothesis, Γ ⊢ [𝑥 := 𝑠]𝑡 : 𝐶
and Γ ⊢ [𝑥 := 𝑠]𝑢 : 𝐷 , and so, by rule (∧𝑖 ), Γ ⊢ ⟨[𝑥 :=
𝑠]𝑡, [𝑥 := 𝑠]𝑢⟩ : 𝐶 ∧ 𝐷 . Since ⟨[𝑥 := 𝑠]𝑡, [𝑥 := 𝑠]𝑢⟩ = [𝑥 :=
𝑠]⟨𝑡,𝑢⟩, using rule (≡), we have Γ ⊢ [𝑥 := 𝑠]⟨𝑡,𝑢⟩ : 𝐴.
• Let 𝑟 = 𝜋𝐴𝑡 . By Lemma 4.12, Γ ⊢ 𝑡 : 𝐴∧𝐶 . By the induction

hypothesis, Γ ⊢ [𝑥 := 𝑠]𝑡 : 𝐴 ∧ 𝐶 , and so, by rule (∧𝑒 ),
Γ ⊢ 𝜋𝐴 ( [𝑥 := 𝑠]𝑡) : 𝐴. Since 𝜋𝐴 ( [𝑥 := 𝑠]𝑡) = [𝑥 := 𝑠] (𝜋𝐴𝑡),
we have Γ ⊢ [𝑥 := 𝑠] (𝜋𝐴𝑡) : 𝐴.
• Let 𝑟 = Λ𝑋 .𝑡 . By Lemma 4.12, 𝐴 ≡ ∀𝑋 .𝐶 and Γ ⊢ 𝑡 : 𝐶 . By

the induction hypothesis, Γ ⊢ [𝑥 := 𝑠]𝑡 : 𝐶 , and so, by rule
(∀𝑖 ), Γ ⊢ Λ𝑋 .[𝑥 := 𝑠]𝑡 : ∀𝑋 .𝐶 . Since Λ𝑋 .[𝑥 := 𝑠]𝑡 = [𝑥 :=
𝑠] (Λ𝑋 .𝑡), using rule (≡), we have Γ ⊢ [𝑥 := 𝑠] (Λ𝑋 .𝑡) : 𝐴.
• Let 𝑟 = 𝑡 [𝐶]. By Lemma 4.12, 𝐴 ≡ [𝑋 := 𝐶]𝐷 and Γ ⊢ 𝑡 :
∀𝑋 .𝐷 . By the induction hypothesis, Γ ⊢ [𝑥 := 𝑠]𝑡 : ∀𝑋 .𝐷 ,
and so, by rule (∀𝑒 ), Γ ⊢ ([𝑥 := 𝑠]𝑡) [𝐶] : [𝑋 := 𝐶]𝐷 . Since
( [𝑥 := 𝑠]𝑡) [𝐶] = [𝑥 := 𝑠] (𝑡 [𝐶]), using rule (≡), we have
Γ ⊢ [𝑥 := 𝑠] (𝑡 [𝐶]) : 𝐴.

(2) By induction on the typing relation.
• (ax): Let Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴. Then, using rule (ax), we have
[𝑋 := 𝐵]Γ, 𝑥 : [𝑋 := 𝐵]𝐴 ⊢ [𝑋 := 𝐵]𝑥 : [𝑋 := 𝐵]𝐴.
• (≡): Let Γ ⊢ 𝑟 : 𝐴, with𝐴 ≡ 𝐶 . By the induction hypothesis,
[𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵]𝑟 : [𝑋 := 𝐵]𝐶 . Since 𝐴 ≡ 𝐶 , [𝑋 :=
𝐵]𝐴 ≡ [𝑋 := 𝐵]𝐶 . Using rule (≡), we have [𝑋 := 𝐵]Γ ⊢
[𝑋 := 𝐵]𝑟 : [𝑋 := 𝐵]𝐴.
• (⇒𝑖 ): Let Γ ⊢ 𝜆𝑥𝐶 .𝑡 : 𝐶 ⇒ 𝐷 . By the induction hypothesis,
[𝑋 := 𝐵]Γ, 𝑥 : [𝑋 := 𝐵]𝐶 ⊢ [𝑋 := 𝐵]𝑡 : [𝑋 := 𝐵]𝐷 .
Using rule (⇒𝑖 ), [𝑋 := 𝐵]Γ ⊢ 𝜆𝑥 [𝑋 :=𝐵 ]𝐶 .[𝑋 := 𝐵]𝑡 :
[𝑋 := 𝐵]𝐶 ⇒ [𝑋 := 𝐵]𝐷 . Since 𝜆𝑥 [𝑋 :=𝐵 ]𝐶 .[𝑋 := 𝐵]𝑡 =
[𝑋 := 𝐵] (𝜆𝑥𝐶 .𝑡), we have [𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵] (𝜆𝑥𝐶 .𝑡) :
[𝑋 := 𝐵] (𝐶 ⇒ 𝐷).
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• (⇒𝑒 ): Let Γ ⊢ 𝑡𝑠 : 𝐷 . By the induction hypothesis, [𝑋 :=
𝐵]Γ ⊢ [𝑋 := 𝐵]𝑡 : [𝑋 := 𝐵] (𝐶 ⇒ 𝐷) and [𝑋 := 𝐵]Γ ⊢
[𝑋 := 𝐵]𝑠 : [𝑋 := 𝐵]𝐶 . Since [𝑋 := 𝐵] (𝐶 ⇒ 𝐷) = [𝑋 :=
𝐵]𝐶 ⇒ [𝑋 := 𝐵]𝐷 , using rule (⇒𝑒 ), we have [𝑋 :=
𝐵]Γ ⊢ ([𝑋 := 𝐵]𝑡) ( [𝑋 := 𝐵]𝑠) : [𝑋 := 𝐵]𝐷 . Since ( [𝑋 :=
𝐵]𝑡) ( [𝑋 := 𝐵]𝑠) = [𝑋 := 𝐵] (𝑡𝑠), we have [𝑋 := 𝐵]Γ ⊢
[𝑋 := 𝐵] (𝑡𝑠) : [𝑋 := 𝐵]𝐷 .
• (∧𝑖 ): Let Γ ⊢ ⟨𝑡, 𝑠⟩ : 𝐶 ∧ 𝐷 . By the induction hypothesis,
[𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵]𝑡 : [𝑋 := 𝐵]𝐶 and [𝑋 := 𝐵]Γ ⊢
[𝑋 := 𝐵]𝑠 : [𝑋 := 𝐵]𝐷 . Using rule (∧𝑖 ), [𝑋 := 𝐵]Γ ⊢
⟨[𝑋 := 𝐵]𝑡, [𝑋 := 𝐵]𝑠⟩ : [𝑋 := 𝐵]𝐶 ∧ [𝑋 := 𝐵]𝐷 . Since
⟨[𝑋 := 𝐵]𝑡, [𝑋 := 𝐵]𝑠⟩ = [𝑋 := 𝐵]⟨𝑡, 𝑠⟩, and [𝑋 := 𝐵]𝐶 ∧
[𝑋 := 𝐵]𝐷 = [𝑋 := 𝐵] (𝐶 ∧𝐷), we have [𝑋 := 𝐵]Γ ⊢ [𝑋 :=
𝐵]⟨𝑡, 𝑠⟩ : [𝑋 := 𝐵] (𝐶 ∧ 𝐷).
• (∧𝑒 ): Let Γ ⊢ 𝑡 : 𝐶 ∧𝐷 . By the induction hypothesis, [𝑋 :=
𝐵]Γ ⊢ [𝑋 := 𝐵]𝑡 : [𝑋 := 𝐵] (𝐶∧𝐷). Since [𝑋 := 𝐵] (𝐶∧𝐷)
= [𝑋 := 𝐵] (𝐶) ∧ [𝑋 := 𝐵] (𝐷), using rule (∧𝑒 )we have
[𝑋 := 𝐵]Γ ⊢ 𝜋 [𝑋 :=𝐵 ]𝐶 ( [𝑋 := 𝐵]𝑡) : [𝑋 := 𝐵] (𝐶). Since
𝜋 [𝑋 :=𝐵 ]𝐶 [𝑋 := 𝐵]𝑡 = [𝑋 := 𝐵]𝜋𝐶𝑡 , we have [𝑋 := 𝐵]Γ ⊢
[𝑋 := 𝐵]𝜋𝐶𝑡 : [𝑋 := 𝐵] (𝐶).
• (∀𝑖 ): Let Γ ⊢ Λ𝑌 .𝑡 : ∀𝑌 .𝐶 , with 𝑋 ∉ 𝐹𝑇𝑉 (Γ). By the

induction hypothesis, [𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵]𝑡 : [𝑋 := 𝐵]𝐶 .
Since 𝑋 ∉ 𝐹𝑇𝑉 (Γ), 𝑋 ∉ 𝐹𝑉 ( [𝑋 := 𝐵]Γ). Using rule (∀𝑖 ),
we have [𝑋 := 𝐵]Γ ⊢ Λ𝑌 .[𝑋 := 𝐵]𝑡 : Λ𝑌 .[𝑋 := 𝐵]𝐶 .
Since Λ𝑌 .[𝑋 := 𝐵]𝑡 = [𝑋 := 𝐵]Λ𝑌 .𝑡 , and ∀𝑌 .[𝑋 := 𝐵]𝐶 =

[𝑋 := 𝐵]∀𝑌 .𝐶 , we have [𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵]Λ𝑌 .𝑡 : [𝑋 :=
𝐵]∀𝑌 .𝐶 .
• (∀𝑒 ): Let Γ ⊢ 𝑡 [𝐷] : [𝑌 := 𝐷]𝐶 . By the induction hy-

pothesis, [𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵]𝑡 : [𝑋 := 𝐵]∀𝑌 .𝐶 . Since
[𝑋 := 𝐵]∀𝑌 .𝐶 = ∀𝑌 .[𝑋 := 𝐵]𝐶 , using rule (∀𝑒 ), we have
[𝑋 := 𝐵]Γ ⊢ ([𝑋 := 𝐵]𝑡) [[𝑋 := 𝐵]𝐷] : [𝑌 := [𝑋 :=
𝐵]𝐷] [𝑋 := 𝐵]𝐶 .
Since ( [𝑋 := 𝐵]𝑡) [[𝑋 := 𝐵]𝐷] = [𝑋 := 𝐵] (𝑡 [𝐷]), and
[𝑌 := [𝑋 := 𝐵]𝐷] [𝑋 := 𝐵]𝐶 = [𝑋 := 𝐵] [𝑌 := 𝐷]𝐶 , we
have [𝑋 := 𝐵]Γ ⊢ [𝑋 := 𝐵] (𝑡 [𝐷]) : [𝑋 := 𝐵] [𝑌 :=
𝐷]𝐶 . □

Theorem 4.14 (Subject reduction). If Γ ⊢ 𝑟 : 𝐴 and 𝑟 ↩→ 𝑠 or 𝑟 ⇄ 𝑠 ,
then Γ ⊢ 𝑠 : 𝐴.

Proof. By induction on the rewrite relation.
• (COMM): ⟨𝑡, 𝑟 ⟩ ⇄ ⟨𝑟, 𝑡⟩
(→)(1) Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐴 (Hypothesis)

(2) 𝐴 ≡ 𝐵 ∧𝐶
Γ ⊢ 𝑡 : 𝐵
Γ ⊢ 𝑟 : 𝐶 (1, Lemma 4.12)

(3) 𝐵 ∧𝐶 ≡ 𝐶 ∧ 𝐵 (Iso. (1))
(4)

Γ ⊢ 𝑟 : 𝐶 Γ ⊢ 𝑡 : 𝐵 (∧𝑖 )
Γ ⊢ ⟨𝑟, 𝑡⟩ : 𝐶 ∧ 𝐵

[3] (≡)
Γ ⊢ ⟨𝑟, 𝑡⟩ : 𝐵 ∧𝐶

[2] (≡)
Γ ⊢ ⟨𝑟, 𝑡⟩ : 𝐴

(←) analogous to (→).
• (ASSO): ⟨𝑡, ⟨𝑟, 𝑠⟩⟩ ⇄ ⟨⟨𝑡, 𝑟 ⟩, 𝑠⟩
(→)(1) Γ ⊢ ⟨𝑡, ⟨𝑟, 𝑠⟩⟩ : 𝐴 (Hypothesis)

(2) 𝐴 ≡ 𝐵 ∧𝐶
Γ ⊢ 𝑡 : 𝐵
Γ ⊢ ⟨𝑟, 𝑠⟩ : 𝐶 (1, Lemma 4.12)

(3) 𝐶 ≡ 𝐷 ∧ 𝐸
Γ ⊢ 𝑟 : 𝐷
Γ ⊢ 𝑠 : 𝐸 (2, Lemma 4.12)

(4) 𝐵 ∧ (𝐷 ∧ 𝐸) ≡ (𝐵 ∧ 𝐷) ∧ 𝐸 (Iso. (2))
(5) 𝐴 ≡ 𝐵 ∧ (𝐷 ∧ 𝐸) (2, 3, congr. (≡))
(6)

Γ ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑟 : 𝐷 (∧𝑖 )
Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐵 ∧ 𝐷 Γ ⊢ 𝑠 : 𝐸

(∧𝑖 )
Γ ⊢ ⟨⟨𝑡, 𝑟 ⟩, 𝑠⟩ : (𝐵 ∧ 𝐷) ∧ 𝐸

[4] (≡)
Γ ⊢ ⟨⟨𝑡, 𝑟 ⟩, 𝑠⟩ : 𝐵 ∧ (𝐷 ∧ 𝐸)

[5] (≡)
Γ ⊢ ⟨⟨𝑡, 𝑟 ⟩, 𝑠⟩ : 𝐴

(←) analogous to (→).
• (DIST𝜆): 𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩ ⇄ ⟨𝜆𝑥𝐴 .𝑡, 𝜆𝑥𝐴 .𝑟 ⟩
(→)(1) Γ ⊢ 𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩ : 𝐵 (Hypothesis)

(2) 𝐵 ≡ 𝐴⇒ 𝐶

Γ, 𝑥 : 𝐴 ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐶 (1, Lemma 4.12)
(3) 𝐶 ≡ 𝐷 ∧ 𝐸

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐷
Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐸 (2, Lemma 4.12)

(4) 𝐴⇒ (𝐷 ∧ 𝐸) ≡ (𝐴⇒ 𝐷) ∧ (𝐴⇒ 𝐸) (Iso. (3))
(5) 𝐵 ≡ 𝐴⇒ (𝐷 ∧ 𝐸) (2, 3, congr. (≡))
(6)

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐷 (⇒𝑖 )
Γ ⊢ 𝜆𝑥𝐴 .𝑡 : 𝐴⇒ 𝐷

Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐸 (⇒𝑖 )
Γ ⊢ 𝜆𝑥𝐴 .𝑟 : 𝐴⇒ 𝐸 (∧𝑖 )

Γ ⊢ ⟨𝜆𝑥𝐴 .𝑡, 𝜆𝑥𝐴 .𝑟 ⟩ : (𝐴⇒ 𝐷) ∧ (𝐴⇒ 𝐸)
[4] (≡)

Γ ⊢ ⟨𝜆𝑥𝐴 .𝑡, 𝜆𝑥𝐴 .𝑟 ⟩ : 𝐴⇒ (𝐷 ∧ 𝐸)
[5] (≡)

Γ ⊢ ⟨𝜆𝑥𝐴 .𝑡, 𝜆𝑥𝐴 .𝑟 ⟩ : 𝐵
(←)(1) Γ ⊢ ⟨𝜆𝑥𝐴 .𝑡, 𝜆𝑥𝐴 .𝑟 ⟩ : 𝐵 (Hypothesis)

(2) 𝐵 ≡ 𝐶 ∧ 𝐷
Γ ⊢ 𝜆𝑥𝐴 .𝑡 : 𝐶
Γ ⊢ 𝜆𝑥𝐴 .𝑟 : 𝐷 (1, Lemma 4.12)

(3) 𝐶 ≡ 𝐴⇒ 𝐶 ′

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐶 ′ (2, Lemma 4.12)
(4) 𝐷 ≡ 𝐴⇒ 𝐷 ′

Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐷 ′ (2, Lemma 4.12)
(5) (𝐴⇒ 𝐶 ′) ∧ (𝐴⇒ 𝐷 ′) ≡ 𝐴⇒ (𝐶 ′ ∧ 𝐷 ′) (Iso. (3))
(6) 𝐵 ≡ (𝐴⇒ 𝐶 ′) ∧ (𝐴⇒ 𝐷 ′) (2, 3, 4, congr. (≡))
(7)

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐶 ′ Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐷 ′ (∧𝑖 )
Γ, 𝑥 : 𝐴 ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐶 ′ ∧ 𝐷 ′

(⇒𝑖 )
Γ ⊢ 𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩ : 𝐴⇒ (𝐶 ′ ∧ 𝐷 ′)

[5] (≡)
Γ ⊢ 𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩ : (𝐴⇒ 𝐶 ′) ∧ (𝐴⇒ 𝐷 ′)

[6] (≡)
Γ ⊢ 𝜆𝑥𝐴 .⟨𝑡, 𝑟 ⟩ : 𝐵

• (DISTapp): ⟨𝑡, 𝑟 ⟩𝑠 ⇄ ⟨𝑡𝑠, 𝑟𝑠⟩
(→)(1) Γ ⊢ ⟨𝑡, 𝑟 ⟩𝑠 : 𝐴 (Hypothesis)

(2) Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐵 ⇒ 𝐴

Γ ⊢ 𝑠 : 𝐵 (1, Lemma 4.12)
(3) 𝐵 ⇒ 𝐴 ≡ 𝐶 ∧ 𝐷

Γ ⊢ 𝑡 : 𝐶
Γ ⊢ 𝑟 : 𝐷 (2, Lemma 4.12)
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(4) 𝐶 ≡ 𝐵 ⇒ 𝐶 ′

𝐷 ≡ 𝐵 ⇒ 𝐷 ′

𝐴 ≡ 𝐶 ′ ∧ 𝐷 ′ (3, Lemma 4.8)
(5)

Γ ⊢ 𝑡 : 𝐶[4] (≡)
Γ ⊢ 𝑡 : 𝐵 ⇒ 𝐶 ′ Γ ⊢ 𝑠 : 𝐵 (⇒𝑒 )

Γ ⊢ 𝑡𝑠 : 𝐶 ′
(6)

Γ ⊢ 𝑟 : 𝐷[4] (≡)
Γ ⊢ 𝑟 : 𝐵 ⇒ 𝐷 ′ Γ ⊢ 𝑠 : 𝐵 (⇒𝑒 )

Γ ⊢ 𝑟𝑠 : 𝐷 ′
(7)

(5)
Γ ⊢ 𝑡𝑠 : 𝐶 ′

(6)
Γ ⊢ 𝑟𝑠 : 𝐷 ′ (∧𝑖 )

Γ ⊢ ⟨𝑡𝑠, 𝑟𝑠⟩ : 𝐶 ′ ∧ 𝐷 ′
[4] (≡)

Γ ⊢ ⟨𝑡𝑠, 𝑟𝑠⟩ : 𝐴
(←)(1) Γ ⊢ ⟨𝑡𝑠, 𝑟𝑠⟩ : 𝐴 (Hypothesis)

(2) 𝐴 ≡ 𝐵 ∧𝐶
Γ ⊢ 𝑡𝑠 : 𝐵
Γ ⊢ 𝑟𝑠 : 𝐶 (1, Lemma 4.12)

(3) Γ ⊢ 𝑡 : 𝐷 ⇒ 𝐵

Γ ⊢ 𝑠 : 𝐷 (2, Lemma 4.12)
(4) Γ ⊢ 𝑟 : 𝐸 ⇒ 𝐵

Γ ⊢ 𝑠 : 𝐸 (2, Lemma 4.12)
(5) 𝐷 ≡ 𝐸 (3, 4, Lemma 4.11)
(6) 𝐷 ⇒ (𝐵 ∧𝐶) ≡ (𝐷 ⇒ 𝐵) ∧ (𝐷 ⇒ 𝐶) (Iso. (3))
(7) 𝐸 ⇒ 𝐶 ≡ 𝐷 ⇒ 𝐶 (6, congr. (≡))
(8)

Γ ⊢ 𝑡 : 𝐷 ⇒ 𝐵

Γ ⊢ 𝑟 : 𝐸 ⇒ 𝐶[7] (≡)
Γ ⊢ 𝑟 : 𝐷 ⇒ 𝐶 (∧𝑖 )

Γ ⊢ ⟨𝑡, 𝑟 ⟩ : (𝐷 ⇒ 𝐵) ∧ (𝐷 ⇒ 𝐶)
[5] (≡)

Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐷 ⇒ (𝐵 ∧𝐶)
(⇒𝑒 )

Γ ⊢ ⟨𝑡, 𝑟 ⟩𝑠 : 𝐵 ∧𝐶
[2] (≡)

Γ ⊢ ⟨𝑡, 𝑟 ⟩𝑠 : 𝐴
• (CURRY): 𝑡 ⟨𝑟, 𝑠⟩ ⇄ 𝑡𝑟𝑠

(→)(1) Γ ⊢ 𝑡 ⟨𝑟, 𝑠⟩ : 𝐴 (Hypothesis)
(2) Γ ⊢ 𝑡 : 𝐵 ⇒ 𝐴

Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐵 (1, Lemma 4.12)
(3) 𝐵 ≡ 𝐶 ∧ 𝐷

Γ ⊢ 𝑟 : 𝐶
Γ ⊢ 𝑠 : 𝐷 (2, Lemma 4.12)

(4) 𝐵 ⇒ 𝐴 ≡ (𝐶 ∧ 𝐷) ⇒ 𝐴 (3, congr. (≡))
(5) (𝐶 ∧ 𝐷) ⇒ 𝐴 ≡ 𝐶 ⇒ (𝐷 ⇒ 𝐴) (Iso. (4))
(6)

Γ ⊢ 𝑡 : 𝐵 ⇒ 𝐴[4] (≡)
Γ ⊢ 𝑡 : (𝐶 ∧ 𝐷) ⇒ 𝐴

[5] (≡)
Γ ⊢ 𝑡 : 𝐶 ⇒ (𝐷 ⇒ 𝐴) Γ ⊢ 𝑟 : 𝐶

(⇒𝑒 )
Γ ⊢ 𝑡𝑟 : 𝐷 ⇒ 𝐴

(7)
(6)

Γ ⊢ 𝑡𝑟 : 𝐷 ⇒ 𝐴 Γ ⊢ 𝑠 : 𝐷 (⇒𝑒 )
Γ ⊢ 𝑡𝑟𝑠 : 𝐴

(←)(1) Γ ⊢ 𝑡𝑟𝑠 : 𝐴 (Hypothesis)
(2) Γ ⊢ 𝑡𝑟 : 𝐵 ⇒ 𝐴

Γ ⊢ 𝑠 : 𝐵 (1, Lemma 4.12)

(3) Γ ⊢ 𝑡 : 𝐶 ⇒ (𝐵 ⇒ 𝐴)
Γ ⊢ 𝑟 : 𝐶 (2, Lemma 4.12)

(4) 𝐶 ⇒ (𝐵 ⇒ 𝐴) ≡ (𝐶 ∧ 𝐵) ⇒ 𝐴 (Iso. (4))
(5)

Γ ⊢ 𝑡 : 𝐶 ⇒ (𝐵 ⇒ 𝐴)
[4] (≡)

Γ ⊢ 𝑡 : (𝐶 ∧ 𝐵) ⇒ 𝐴

Γ ⊢ 𝑟 : 𝐶 Γ ⊢ 𝑠 : 𝐵 (∧𝑖 )
Γ ⊢ ⟨𝑟, 𝑠⟩ : 𝐶 ∧ 𝐵

(⇒𝑒 )
Γ ⊢ 𝑡 ⟨𝑟, 𝑠⟩ : 𝐴

• (P-COMM∀𝑖⇒𝑖
): Λ𝑋 .𝜆𝑥𝐴 .𝑡 ⇄ 𝜆𝑥𝐴 .Λ𝑋 .𝑡

(→)(1) 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) (Hypothesis)
(2) Γ ⊢ Λ𝑋 .𝜆𝑥𝐴 .𝑡 : 𝐵 (Hypothesis)
(3) 𝐵 ≡ ∀𝑋 .𝐶

Γ ⊢ 𝜆𝑥𝐴 .𝑡 : 𝐶
𝑋 ∉ 𝐹𝑇𝑉 (Γ) (2, Lemma 4.12)

(4) 𝐶 ≡ 𝐴⇒ 𝐷

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐷 (3, Lemma 4.12)
(5) ∀𝑋 .(𝐴⇒ 𝐷) ≡ 𝐴⇒ ∀𝑋 .𝐷 (1, Iso. (5))
(6) ∀𝑋 .𝐶 ≡ ∀𝑋 .(𝐴⇒ 𝐷) (4, congr. (≡))
(7)

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐷[1 3] (∀𝑖 )
Γ, 𝑥 : 𝐴 ⊢ Λ𝑋 .𝑡 : ∀𝑋 .𝐷 (⇒𝑖 )

Γ ⊢ 𝜆𝑥𝐴 .Λ𝑋 .𝑡 : 𝐴⇒ ∀𝑋 .𝐷[5] (≡)
Γ ⊢ 𝜆𝑥𝐴 .Λ𝑋 .𝑡 : ∀𝑋 .(𝐴⇒ 𝐷)

[6] (≡)
Γ ⊢ 𝜆𝑥𝐴 .Λ𝑋 .𝑡 : ∀𝑋 .𝐶[3] (≡)
Γ ⊢ 𝜆𝑥𝐴 .Λ𝑋 .𝑡 : 𝐵

(←)(1) 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) (Hypothesis)
(2) Γ ⊢ 𝜆𝑥𝐴 .Λ𝑋 .𝑡 : 𝐵 (Hypothesis)
(3) 𝐵 ≡ 𝐴⇒ 𝐶

Γ, 𝑥 : 𝐴 ⊢ Λ𝑋 .𝑡 : 𝐶 (2, Lemma 4.12)
(4) 𝐶 ≡ ∀𝑋 .𝐷

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐷
𝑋 ∉ 𝐹𝑇𝑉 (Γ) ∪ 𝐹𝑇𝑉 (𝐴) (3, Lemma 4.12)

(5) ∀𝑋 .(𝐴⇒ 𝐷) ≡ 𝐴⇒ ∀𝑋 .𝐷 (1, Iso. (5))
(6) 𝐴⇒ 𝐶 ≡ 𝐴⇒ ∀𝑋 .𝐷 (4, congr. (≡))
(7)

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐷 (⇒𝑖 )
Γ ⊢ 𝜆𝑥𝐴 .𝑡 : 𝐴⇒ 𝐷[4] (∀𝑖 )

Γ ⊢ Λ𝑋 .𝜆𝑥𝐴 .𝑡 : ∀𝑋 .(𝐴⇒ 𝐷)
[5] (≡)

Γ ⊢ Λ𝑋 .𝜆𝑥𝐴 .𝑡 : 𝐴⇒ ∀𝑋 .𝐷[6] (≡)
Γ ⊢ Λ𝑋 .𝜆𝑥𝐴 .𝑡 : 𝐴⇒ 𝐶[3] (≡)

Γ ⊢ Λ𝑋 .𝜆𝑥𝐴 .𝑡 : 𝐵
• (P-COMM∀𝑒⇒𝑖

): (𝜆𝑥𝐴 .𝑡) [𝐵] ⇄ 𝜆𝑥𝐴 .𝑡 [𝐵]
(→)(1) 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) (Hypothesis)

(2) Γ ⊢ (𝜆𝑥𝐴 .𝑡) [𝐵] : 𝐶 (Hypothesis)
(3) 𝐶 ≡ [𝑋 := 𝐵]𝐷

Γ ⊢ 𝜆𝑥𝐴 .𝑡 : ∀𝑋 .𝐷 (2, Lemma 4.12)
(4) ∀𝑋 .𝐷 ≡ 𝐴⇒ 𝐸

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐸 (3, Lemma 4.12)
(5) 𝐸 ≡ ∀𝑋 .𝐸 ′

𝐷 ≡ 𝐴⇒ 𝐸 ′ (4, Lemma 4.10)
(6) 𝐴⇒ [𝑋 := 𝐵]𝐸 ′ = [𝑋 := 𝐵] (𝐴⇒ 𝐸 ′) (1, Def.)
(7) [𝑋 := 𝐵] (𝐴⇒ 𝐸 ′) ≡ [𝑋 := 𝐵]𝐷 (5, congr. (≡))
(8)
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1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102
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1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐸[5] (≡)
Γ, 𝑥 : 𝐴 ⊢ 𝑡 : ∀𝑋 .𝐸 ′ (∀𝑒 )

Γ, 𝑥 : 𝐴 ⊢ 𝑡 [𝐵] : [𝑋 := 𝐵]𝐸 ′
(⇒𝑖 )

Γ ⊢ 𝜆𝑥𝐴 .𝑡 [𝐵] : 𝐴⇒ [𝑋 := 𝐵]𝐸 ′
[6] (≡)

Γ ⊢ 𝜆𝑥𝐴 .𝑡 [𝐵] : [𝑋 := 𝐵] (𝐴⇒ 𝐸 ′)
[7] (≡)

Γ ⊢ 𝜆𝑥𝐴 .𝑡 [𝐵] : [𝑋 := 𝐵]𝐷
[3] (≡)

Γ ⊢ 𝜆𝑥𝐴 .𝑡 [𝐵] : 𝐶
(←)(1) 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) (Hypothesis)

(2) Γ ⊢ 𝜆𝑥𝐴 .𝑡 [𝐵] : 𝐶 (Hypothesis)
(3) 𝐶 ≡ 𝐴⇒ 𝐷

Γ, 𝑥 : 𝐴 ⊢ 𝑡 [𝐵] : 𝐷 (1, Lemma 4.12)
(4) 𝐷 ≡ [𝑋 := 𝐵]𝐸

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : ∀𝑋 .𝐸 (2, Lemma 4.12)
(5) 𝐴⇒ ∀𝑋 .𝐸 ≡ ∀𝑋 .(𝐴⇒ 𝐸) (Iso. (5))
(6) [𝑋 := 𝐵] (𝐴⇒ 𝐸) = 𝐴⇒ [𝑋 := 𝐵]𝐸 (1, Def.)
(7) 𝐴⇒ [𝑋 := 𝐵]𝐸 ≡ 𝐴⇒ 𝐷 (4, congr. (≡))
(8)

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : ∀𝑋 .𝐸 (⇒𝑖 )
Γ ⊢ 𝜆𝑥𝐴 .𝑡 : 𝐴⇒ ∀𝑋 .𝐸[5] (≡)
Γ ⊢ 𝜆𝑥𝐴 .𝑡 : ∀𝑋 .(𝐴⇒ 𝐸)

(∀𝑒 )
Γ ⊢ (𝜆𝑥𝐴 .𝑡) [𝐵] : [𝑋 := 𝐵] (𝐴⇒ 𝐸)

[6] (≡)
Γ ⊢ (𝜆𝑥𝐴 .𝑡) [𝐵] : 𝐴⇒ [𝑋 := 𝐵]𝐸

[7] (≡)
Γ ⊢ (𝜆𝑥𝐴 .𝑡) [𝐵] : 𝐴⇒ 𝐷

[3] (≡)
Γ ⊢ (𝜆𝑥𝐴 .𝑡) [𝐵] : 𝐶

• (P-DIST∀𝑖∧𝑖 ): Λ𝑋 .⟨𝑡, 𝑟 ⟩ ⇄ ⟨Λ𝑋 .𝑡,Λ𝑋 .𝑟 ⟩
(→)(1) Γ ⊢ Λ𝑋 .⟨𝑡, 𝑟 ⟩ : 𝐴 (Hypothesis)

(2) 𝐴 ≡ ∀𝑋 .𝐵

Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐵
𝑋 ∉ 𝐹𝑇𝑉 (Γ) (1, Lemma 4.12)

(3) 𝐵 ≡ 𝐶 ∧ 𝐷
Γ ⊢ 𝑡 : 𝐶
Γ ⊢ 𝑟 : 𝐷 (2, Lemma 4.12)

(4) ∀𝑋 .(𝐶 ∧ 𝐷) ≡ ∀𝑋 .𝐶 ∧ ∀𝑋 .𝐷 (Iso. (6))
(5) ∀𝑋 .𝐵 ≡ ∀𝑋 .(𝐶 ∧ 𝐷) (3, congr. (≡))
(6)

Γ ⊢ 𝑡 : 𝐶[2] (∀𝑖 )
Γ ⊢ Λ𝑋 .𝑡 : ∀𝑋 .𝐶

Γ ⊢ 𝑟 : 𝐷[2] (∀𝑖 )
Γ ⊢ Λ𝑋 .𝑟 : ∀𝑋 .𝐷 (∧𝑖 )

Γ ⊢ ⟨Λ𝑋 .𝑡,Λ𝑋 .𝑟 ⟩ : ∀𝑋 .𝐶 ∧ ∀𝑋 .𝐷
[4] (≡)

Γ ⊢ ⟨Λ𝑋 .𝑡,Λ𝑋 .𝑟 ⟩ : ∀𝑋 .(𝐶 ∧ 𝐷)
[5] (≡)

Γ ⊢ ⟨Λ𝑋 .𝑡,Λ𝑋 .𝑟 ⟩ : ∀𝑋 .𝐵
[2] (≡)

Γ ⊢ ⟨Λ𝑋 .𝑡,Λ𝑋 .𝑟 ⟩ : 𝐴
(←)(1) Γ ⊢ ⟨Λ𝑋 .𝑡,Λ𝑋 .𝑟 ⟩ : 𝐴 (Hypothesis)

(2) 𝐴 ≡ 𝐵 ∧𝐶
Γ ⊢ Λ𝑋 .𝑡 : 𝐵
Γ ⊢ Λ𝑋 .𝑟 : 𝐶 (1, Lemma 4.12)

(3) 𝐵 ≡ ∀𝑋 .𝐷

Γ ⊢ 𝑡 : 𝐷
𝑋 ∉ 𝐹𝑇𝑉 (Γ) (2, Lemma 4.12)

(4) 𝐶 ≡ ∀𝑋 .𝐸

Γ ⊢ 𝑟 : 𝐸
𝑋 ∉ 𝐹𝑇𝑉 (Γ) (2, Lemma 4.12)

(5) ∀𝑋 .(𝐷 ∧ 𝐸) ≡ ∀𝑋 .𝐷 ∧ ∀𝑋 .𝐸 (Iso. (6))
(6) ∀𝑋 .𝐷 ∧ ∀𝑋 .𝐸 ≡ 𝐵 ∧𝐶 (3, 4, congr. (≡))
(7)

Γ ⊢ 𝑡 : 𝐷 Γ ⊢ 𝑟 : 𝐸 (∧𝑖 )
Γ ⊢ ⟨𝑡, 𝑟 ⟩ : 𝐷 ∧ 𝐸

[3] (∀𝑖 )
Γ ⊢ Λ𝑋 .⟨𝑡, 𝑟 ⟩ : ∀𝑋 .(𝐷 ∧ 𝐸)

[5] (≡)
Γ ⊢ Λ𝑋 .⟨𝑡, 𝑟 ⟩ : ∀𝑋 .𝐷 ∧ ∀𝑋 .𝐸

[6] (≡)
Γ ⊢ Λ𝑋 .⟨𝑡, 𝑟 ⟩ : 𝐵 ∧𝐶

[2] (≡)
Γ ⊢ Λ𝑋 .⟨𝑡, 𝑟 ⟩ : 𝐴

• (P-DIST∀𝑒∧𝑖 ): ⟨𝑡, 𝑟 ⟩[𝐵] ⇄ ⟨𝑡 [𝐵], 𝑟 [𝐵]⟩
(→)(1) Γ ⊢ ⟨𝑡, 𝑟 ⟩[𝐵] : 𝐴 (Hypothesis)

(2) 𝐴 ≡ [𝑋 := 𝐵]𝐶
Γ ⊢ ⟨𝑡, 𝑟 ⟩ : ∀𝑋 .𝐶 (1, Lemma 4.12)

(3) ∀𝑋 .𝐶 ≡ 𝐷 ∧ 𝐸
Γ ⊢ 𝑡 : 𝐷
Γ ⊢ 𝑟 : 𝐸 (2, Lemma 4.12)

(4) 𝐷 ≡ ∀𝑋 .𝐷 ′

𝐸 ≡ ∀𝑋 .𝐸 ′

𝐶 ≡ 𝐷 ′ ∧ 𝐸 ′ (3, Lemma 4.9)
(5) [𝑋 := 𝐵] (𝐷 ′ ∧ 𝐸 ′) = [𝑋 := 𝐵]𝐷 ′ ∧ [𝑋 := 𝐵]𝐸 ′ (Def.)
(6) [𝑋 := 𝐵]𝐶 ≡ [𝑋 := 𝐵] (𝐷 ′ ∧ 𝐸 ′) (4, congr. (≡))
(7)

Γ ⊢ 𝑡 : 𝐷[4] (≡)
Γ ⊢ 𝑡 : ∀𝑋 .𝐷 ′ (∀𝑒 )

Γ ⊢ 𝑡 [𝐵] : [𝑋 := 𝐵]𝐷 ′

Γ ⊢ 𝑟 : 𝐸[4] (≡)
Γ ⊢ 𝑟 : ∀𝑋 .𝐸 ′ (∀𝑒 )

Γ ⊢ 𝑟 [𝐵] : [𝑋 := 𝐵]𝐸 ′
(∧𝑖 )

Γ ⊢ ⟨𝑡 [𝐵], 𝑟 [𝐵]⟩ : [𝑋 := 𝐵]𝐷 ′ ∧ [𝑋 := 𝐵]𝐸 ′
[5] (≡)

Γ ⊢ ⟨𝑡 [𝐵], 𝑟 [𝐵]⟩ : [𝑋 := 𝐵] (𝐷 ′ ∧ 𝐸 ′)
[6] (≡)

Γ ⊢ ⟨𝑡 [𝐵], 𝑟 [𝐵]⟩ : [𝑋 := 𝐵]𝐶
[2] (≡)

Γ ⊢ ⟨𝑡 [𝐵], 𝑟 [𝐵]⟩ : 𝐴
(←)(1) Γ ⊢ ⟨𝑡 [𝐵], 𝑟 [𝐵]⟩ : 𝐴 (Hypothesis)

(2) 𝐴 ≡ 𝐶 ∧ 𝐷
Γ ⊢ 𝑡 [𝐵] : 𝐶
Γ ⊢ 𝑟 [𝐵] : 𝐷 (1, Lemma 4.12)

(3) 𝐶 ≡ [𝑋 := 𝐵]𝐶 ′
Γ ⊢ 𝑡 : ∀𝑋 .𝐶 ′ (2, Lemma 4.12)

(4) 𝐷 ≡ [𝑋 := 𝐵]𝐷 ′
Γ ⊢ 𝑟 : ∀𝑋 .𝐷 ′ (2, Lemma 4.12)

(5) ∀𝑋 .(𝐶 ′ ∧ 𝐷 ′) ≡ ∀𝑋 .𝐶 ′ ∧ ∀𝑋 .𝐷 ′ (Iso. (6))
(6) [𝑋 := 𝐵] (𝐶 ′ ∧ 𝐷 ′) = [𝑋 := 𝐵]𝐶 ′ ∧ [𝑋 := 𝐵]𝐷 ′ (Def.)
(7) [𝑋 := 𝐵]𝐶 ′ ∧ [𝑋 := 𝐵]𝐷 ′ ≡ 𝐶 ∧ 𝐷 (3, 4, congr. (≡))
(8)

Γ ⊢ 𝑡 : ∀𝑋 .𝐶 ′ Γ ⊢ 𝑟 : ∀𝑌 .𝐷 ′ (∧𝑖 )
Γ ⊢ ⟨𝑡, 𝑟 ⟩ : ∀𝑋 .𝐶 ′ ∧ ∀𝑋 .𝐷 ′

[5] (≡)
Γ ⊢ ⟨𝑡, 𝑟 ⟩ : ∀𝑋 .(𝐶 ′ ∧ 𝐷 ′)

(∀𝑒 )
Γ ⊢ ⟨𝑡, 𝑟 ⟩[𝐵] : [𝑋 := 𝐵] (𝐶 ′ ∧ 𝐷 ′)

[6] (≡)
Γ ⊢ ⟨𝑡, 𝑟 ⟩[𝐵] : [𝑋 := 𝐵]𝐶 ′ ∧ [𝑋 := 𝐵]𝐷 ′

[7] (≡)
Γ ⊢ ⟨𝑡, 𝑟 ⟩[𝐵] : 𝐶 ∧ 𝐷

[2] (≡)
Γ ⊢ ⟨𝑡, 𝑟 ⟩[𝐵] : 𝐴

• (P-DIST∀𝑖∧𝑒 ): 𝜋∀𝑋 .𝐵 (Λ𝑋 .𝑡) ⇄ Λ𝑋 .𝜋𝐵𝑡

(→)(1) Γ ⊢ 𝜋∀𝑋 .𝐵 (Λ𝑋 .𝑡) : 𝐴 (Hypothesis)
(2) 𝐴 ≡ ∀𝑋 .𝐵

Γ ⊢ Λ𝑋 .𝑡 : (∀𝑋 .𝐵) ∧𝐶 (1, Lemma 4.12)
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(3) (∀𝑋 .𝐵) ∧𝐶 ≡ ∀𝑋 .𝐷

Γ ⊢ 𝑡 : 𝐷
𝑋 ∉ 𝐹𝑇𝑉 (Γ) (2, Lemma 4.12)

(4) 𝐶 ≡ ∀𝑋 .𝐶 ′

𝐷 ≡ 𝐵 ∧𝐶 ′ (3, Lemma 4.9)
(5)

Γ ⊢ 𝑡 : 𝐷[4] (≡)
Γ ⊢ 𝑡 : 𝐵 ∧𝐶 ′ (∧𝑒 )
Γ ⊢ 𝜋𝐵𝑡 : 𝐵

[3] (∀𝑖 )
Γ ⊢ Λ𝑋 .𝜋𝐵𝑡 : ∀𝑋 .𝐵

[2] (≡)
Γ ⊢ Λ𝑋 .𝜋𝐵𝑡 : 𝐴

(←)(1) Γ ⊢ Λ𝑋 .𝜋𝐵𝑡 : 𝐴 (Hypothesis)
(2) 𝐴 ≡ ∀𝑋 .𝐶

Γ ⊢ 𝜋𝐵𝑡 : 𝐶
𝑋 ∉ 𝐹𝑇𝑉 (Γ) (1, Lemma 4.12)

(3) 𝐵 ≡ 𝐶
Γ ⊢ 𝑡 : 𝐶 ∧ 𝐷 (2, Lemma 4.12)

(4) ∀𝑋 .(𝐶 ∧ 𝐷) ≡ ∀𝑋 .𝐶 ∧ ∀𝑋 .𝐷 (Iso. (6))
(5)

Γ ⊢ 𝑡 : 𝐶 ∧ 𝐷[2] (∀𝑖 )
Γ ⊢ Λ𝑋 .𝑡 : ∀𝑋 .(𝐶 ∧ 𝐷)

[4] (≡)
Γ ⊢ Λ𝑋 .𝑡 : ∀𝑋 .𝐶 ∧ ∀𝑋 .𝐷 (∧𝑒 )
Γ ⊢ 𝜋∀𝑋 .𝐵 (Λ𝑋 .𝑡) : ∀𝑋 .𝐶

[2] (≡)
Γ ⊢ 𝜋∀𝑋 .𝐵 (Λ𝑋 .𝑡) : 𝐴

• (P-DIST∧𝑒∀𝑒 ): (𝜋∀𝑋 .𝐵𝑡) [𝐶] ⇄ 𝜋 [𝑋 :=𝐶 ]𝐵 (𝑡 [𝐶])
(→)(1) Γ ⊢ 𝑡 : ∀𝑋 .(𝐵 ∧ 𝐷) (Hypothesis)

(2) Γ ⊢ (𝜋∀𝑋 .𝐵𝑡) [𝐶] : 𝐴 (Hypothesis)
(3) 𝐴 ≡ [𝑋 := 𝐶]𝐸

Γ ⊢ 𝜋∀𝑋 .𝐵𝑡 : ∀𝑋 .𝐸 (2, Lemma 4.12)
(4) ∀𝑋 .𝐸 ≡ ∀𝑋 .𝐵

Γ ⊢ 𝑡 : ∀𝑋 .𝐸 ∧ 𝐹 (3, Lemma 4.12)
(5) 𝐸 ≡ 𝐵 (4)
(6) [𝑋 := 𝐶] (𝐵 ∧ 𝐷) = [𝑋 := 𝐶]𝐵 ∧ [𝑋 := 𝐶]𝐷 (Def.)
(7) [𝑋 := 𝐶]𝐵 ≡ [𝑋 := 𝐶]𝐸 (5, congr. (≡))
(8)

Γ ⊢ 𝑡 : ∀𝑋 .𝐵 ∧ 𝐷 (∀𝑒 )
Γ ⊢ 𝑡 [𝐶] : [𝑋 := 𝐶] (𝐵 ∧ 𝐷)

[6] (≡)
Γ ⊢ 𝑡 [𝐶] : [𝑋 := 𝐶]𝐵 ∧ [𝑋 := 𝐶]𝐷

(∧𝑒 )
Γ ⊢ 𝜋 [𝑋 :=𝐶 ]𝐵 (𝑡 [𝐶]) : [𝑋 := 𝐶]𝐵

[7] (≡)
Γ ⊢ 𝜋 [𝑋 :=𝐶 ]𝐵 (𝑡 [𝐶]) : [𝑋 := 𝐶]𝐸

[3] (≡)
Γ ⊢ 𝜋 [𝑋 :=𝐶 ]𝐵 (𝑡 [𝐶]) : 𝐴

(←)(1) Γ ⊢ 𝑡 : ∀𝑋 .(𝐵 ∧ 𝐷) (Hypothesis)
(2) Γ ⊢ 𝜋 [𝑋 :=𝐶 ]𝐵 (𝑡 [𝐶]) : 𝐴 (Hypothesis)
(3) 𝐴 ≡ [𝑋 := 𝐶]𝐵

Γ ⊢ 𝑡 [𝐶] : 𝐴 ∧ 𝐸 (2, Lemma 4.12)
(4) ∀𝑋 .(𝐵 ∧ 𝐷) ≡ ∀𝑋 .𝐵 ∧ ∀𝑋 .𝐷 (Iso. (6))
(5)

Γ ⊢ 𝑡 : ∀𝑋 .(𝐵 ∧ 𝐷)
[4] (≡)

Γ ⊢ 𝑡 : ∀𝑋 .𝐵 ∧ ∀𝑋 .𝐷 (∧𝑒 )
Γ ⊢ 𝜋∀𝑋 .𝐵𝑡 : ∀𝑋 .𝐵

(∀𝑒 )
Γ ⊢ (𝜋∀𝑋 .𝐵𝑡) [𝐶] : [𝑋 := 𝐶]𝐵

[3] (≡)
Γ ⊢ (𝜋∀𝑋 .𝐵𝑡) [𝐶] : 𝐴

• (𝛽𝜆): If Γ ⊢ 𝑠 : 𝐴, (𝜆𝑥𝐴 .𝑟 )𝑠 ↩→ [𝑥 := 𝑠]𝑟
(1) Γ ⊢ 𝑠 : 𝐴 (Hypothesis)
(2) Γ ⊢ 𝜆𝑥𝐴 .𝑟 : 𝐵 (Hypothesis)
(3) Γ ⊢ 𝜆𝑥𝐴 .𝑟 : 𝐴⇒ 𝐵 (2, Lemma 4.12)
(4) 𝐴⇒ 𝐵 ≡ 𝐴⇒ 𝐶

Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐶 (3, Lemma 4.12)
(5) 𝐵 ≡ 𝐶 (4, congr. (≡))
(6) Γ ⊢ [𝑥 := 𝑠]𝑟 : 𝐶 (1, 4, Lemma 4.13)
(7) Γ ⊢ [𝑥 := 𝑠]𝑟 : 𝐵 (5, 6, rule (≡))

• (𝛽Λ): (Λ𝑋 .𝑟 ) [𝐴] ↩→ [𝑋 := 𝐴]𝑟
(1) Γ ⊢ (Λ𝑋 .𝑟 ) [𝐴] : 𝐵 (Hypothesis)
(2) 𝐵 ≡ [𝑋 := 𝐴]𝐶

Γ ⊢ Λ𝑋 .𝑟 : ∀𝑋 .𝐶 (1, Lemma 4.12)
(3) ∀𝑋 .𝐶 ≡ ∀𝑋 .𝐷

Γ ⊢ 𝑟 : 𝐷
𝑋 ∉ 𝐹𝑇𝑉 (Γ) (2, Lemma 4.12)

(4) 𝐶 ≡ 𝐷 (3)
(5) Γ ⊢ 𝑟 : 𝐶 (4, rule (≡))
(6) [𝑋 := 𝐴]Γ ⊢ Γ ⊢ [𝑋 := 𝐴]𝑟 : [𝑋 := 𝐴]𝐶 (5, Lemma 4.13)
(7) Γ ⊢ [𝑋 := 𝐴]𝑟 : 𝐵 (2, 3, 7, rule (≡))

• (𝜋): If Γ ⊢ 𝑟 : 𝐴, 𝜋𝐴⟨𝑟, 𝑠⟩ ↩→ 𝑟

(1) Γ ⊢ 𝑟 : 𝐴 (Hypothesis)
(2) 𝜋𝐴⟨𝑟, 𝑠⟩ : 𝐵 (Hypothesis)
(3) 𝐵 ≡ 𝐴

Γ ⊢ ⟨𝑟, 𝑠⟩ : 𝐴 ∧𝐶 (2, Lemma 4.12)
(4) Γ ⊢ 𝜋𝐴⟨𝑟, 𝑠⟩ : 𝐴 (2, 3, rule (≡))

□

2020-08-17 18:08. Page 11 of 1–11.
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Schema-driven mutation of datatype with multiple
representations
Work-in-progress report

Anonymous Author(s)

Abstract
We attempt to make change gradual, and commute unnec-
essary updates in a functional language. To do this, instead
of using state monads, we utilise semigroup right action in-
stead. Finding that diffing is left inverse of mutation, we
recover an alternative algebra of change that allows mod-
ifying the local state in a similar way as updating state dis-
tributed on multiple remote servers, or database relations.

1 Introduction
While the pure functional view of programs as transforma-
tions allow us to reach unprecedented robust systems, some-
times we miss the simplicity of record update in the pres-
ence of large schema. Even more, we would sometimes like
to treat complex APIs as implementations of a data struc-
ture.

Functional languages have used van Laarhoven-style lens[9]
and optics[5] to provide a more complex way of doing the
same thing. However, there remain practical issues: (1) each
lens-based update requires allocation of record nodes across
the whole data structure. While this is acceptable for small
changes, it is rather inefficient for amassed updates that touch
significantly part of the data structure. (2) lens objects can
be hardly used on derived representations of the same schema:
we might want to make a mutable record to allow a fast up-
date, where each substructure is represented by IORef a
instead of a (3) We might make a database record where
each reference is a foreign key of another structure like in
beam: ForeignKey a (4) We might want to have a generic
data structure that represents a change between two values
for showing a changelog (5) We might want to compress
multiple updates into a single update and execute it at once
(6) Finally, we might want to use a schema to represent ob-
jects represented by remote API like in GraphQL, and push
updates for it generically.

We can divide functional change management into sub-
problems:

compositional path where we want to assemble frag-
ments of the path in order to indicate that a small up-
date should be applied somewhere deep in the data
structure. Lens and optics solve this one.

, ,
.

update consolidation wherewe have an algorithm that
affects many little updates to the structure, and we
want to make sure that the total cost of them does not
break the complexity of the algorithm. Zippers solve
this problem.

change virtualisation where we have an algorithm af-
fecting change using one schema of the data structure,
but want to change the representation to improve as-
ymptotic complexity: inHaskell lens [9] solve this prob-
lem, while object-oriented languages like Python and
Java use attribute getters and setters.

representation change problem,wherewewant to use
the same change description to affect the change in
different representations of the same schema: pure ver-
susmutable data structure, or localmemory data struc-
ture versus the cloud.

We argue that solving multiple problems from the above
list will give us synergistic effects, and allow better program-
ming. We attempt to solve all of this schema-oriented pro-
gramming challenges, where data structure content is sep-
arated solving issues related to its representation and loca-
tion. That is, we call for separation schema and other quali-
ties of the datatype: (1) representation (2) location, local or
remote (by allowing one to update remote datatype without
the need to evermaterialise it locally) (3) efficiency optimisa-
tions: update consolidation, data structure implementation,
strictness or laziness or partial materialisation.

2 Solution
In this work, we plan our solution on higher kinded data
families in order to accommodate multiple representations
of the same schemawith a single data type declarationwhich
was done before in limited contexts [1–3, 10, 11].

However, we also go an extra mile to generically derive
class instances1, while allowing for overriding to customise
data structures with special laws. Usually, we customise the
treatment of data structure that have non-free terms, like
mappings or sets.] derive change protocols for these types,
which allows us to generalise lens [9] and optics [5] to han-
dle all derived representations.

1For data structures corresponding to closed data terms without additional
laws.
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In all, our solution provides compatible treatment of all
these requirements with simple and easy to understand in-
terface. It also allows natural expansion to large schemas,
and composing of both lenses, and commuting of changes
on the massive data structures.

2.1 Example schema
We are using higher-kinded datatypes to allow for multiple
representations based on the same schema [2, 3, 10, 11]. Let
us consider a set of files. If the contents are in memory, we
can use a different representation of the same schema than
when we consider files stored in the cloud:
newtype FileSet f = FileSet {

unFileSet :: f (Map.Map FilePath (f Content)) }

type FilesInMemory = FileSet Identity

type family ContentInfo a where
ContentInfo Content = ContentHeader Identity
ContentInfo a = a

data ContentHeader f = ContentHeader {
chETag :: f ETag

, chLLength :: f Integer
, chVersion :: f ObjectVersionId
, chExpires :: f UTCTime }

type FilesInS3Bucket = FileSet ContentInfo
Our running example may be reading a set of files from

the filesystem, thenminification2 of those files that areHTML
or CSS, and then synchronising them to an AWS S3 bucket
[4]. For efficiency, we would like to minify the files by mak-
ing imperative updates on their contents:
type MutableFileSet = FileSet IORef

2.2 Change representation
2.3 Finding the change description
class Monoid (Diff a)

=> Diffy a where
data family Diff a
diff :: a -> a -> Diff a
The mempty of the Monoid corresponds to an empty diff:

diff 𝑎 𝑎 ≡ mempty
In order to apply the change to different objects based

on the same schema, we want to use a single description of
change c. We also use a basic tool for describing differences
between two snapshots of the same object: diff :: a -> a
-> c. Then we apply this to our state, by running it in a
monad: patch :: c -> m (). From the laws of both operations,
2By removing unnecessary spaces and comments that do not change
semantics.

we can infer that c is a semigroup right action on an object
state hidden in the monad (as indicated by the categorical
diagram).
class (Diffy c a

,Monad m)
=> Change m c a where

settle :: c -> m ()
see :: m a

2.4 Finding diff
There aremany families of generic diff algorithms presented
in literature [8], so we are satisfied that wemay easily derive
a simple case with Generic types.

We expand on this scheme, by generic diffing, where we
override a default implementation to implement diff on a
non-free data type that permits a better change representa-
tion:
data family Diff a

In the case of flat datatypes the implementation is straight-
forward:

instance Diffy String where
type Diff String = String
diff _ new = new
patch new _ = Right new

instance Diffy Int where
type Diff Int = Int
diff _ new = new
patch new _ = Right new
That means that we can use Haskell Generic to derive

differences automatically for free datatypes. However, when
implementing dictionaries, we can override the default and
give a better change representation:
data Diff (Map.Map k v) =

ByKey { added :: Map.Map k v
, deleted :: Set.Set k
, updated :: Map.Map k (Diff v) }

newtype FileSetChange = FileSet Diff

instance (Diffy v
, Ord k
, Show k )

=> Diffy (Map.Map k v) where
diff old new = ByKey {

added = new Map.\\ old
, deleted = Set.fromList $ Map.keys $ old Map.\\ new
, updated = Map.intersectionWith diff new old
}

patch Same v = Right v
patch (Set v) _ = Right v

2
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Snapshot1 × Snapshot2

Snapshot1 Action1→2 Snapshot2

State1 State1 ×Action1→2 State2

diff 𝜋2𝜋1

𝑠𝑒𝑒

𝜋1 act

𝜋2 see

𝑎 ⋄ (𝑏 ⋄ 𝑐) = (𝑎 ⋄𝑏) ⋄ 𝑐 (associativity of actions)
mempty ⋄ 𝑎 = 𝑎 (left identity of action)

𝑎 ⋄ mempty = 𝑎 (right identity of action)
settle 𝑎 >> settle 𝑏 = settle (𝑎 ⋄𝑏) (semigroup action on a monad)
settle mempty = return () (monoid action on a monad)
diff 𝑎 𝑎 = mempty (no change)
see >> return () = return () (querying changes nothing)

see = return 𝑎 ⇒ settle (diff 𝑎 𝑏) >> see ≈is return 𝑏 (observation of settled difference)

Figure 1. Laws of the change, when a state is only partially accessible for making a snapshot with see. We are using ≈is to
indicate equivalence modulo ignoring state.

patch (ByKey {..}) v = updates
$ additions
$ deletions v

where
additions = Map.union additions
deletions = Map.withoutKeys deleted
updates = Merge.mergeA failedHunk

Merge.preserveMissing
(Merge.zipWithAMatched)
applyHunk updated

applyHunk hunk m = m>>=patch hunk
failedHunk = Merge.dropMissing

3 Summary
We exhibit the current status of our work-in-progress to use
schema-driven programming in order to facilitate updates
of the standard schema. This schema can represent just a
directory full of files, or a remote configuration of a cloud
service. Schema-driven programming with generic deriva-
tions3 and higher-kinded datatypes allows us to reduce boil-
erplate code significantly, while still benefitting from type-
safety of keeping the same virtual information on different
representations.
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Abstract
We study monoidal profunctors as a tool to reason and com-
pose pure functional programs. We present a formalization
of this structure, and we show the free monoidal profunctor
construction, some primary instances, and some applications
in a Haskell context such as optics and type-safe lists. The
relationship between monoidal profunctor optics and other
existent optics is also discussed.
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1 Introduction
It is well-known that pure functional programming views
programs as pure mathematical functions without computa-
tional side-effects. Compositionality is a powerful tool for
structuring such programs [19] and leads us to write clean,
efficient, and easy to reason code.

Category theory [13] has inspired many tools to achieve
compositional programs. Monads [18] allow composition by
making distinctions between values and computations. Ap-
plicative functors [15], are similar to monads and gain com-
positionality at the cost of only dealing with static compu-
tations. Arrows [6] are focused on compositional processes
that model machine-like constructions.
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A comparison amongmonads, applicatives, and arrows [12]
shows that a theory of idioms (applicative functors) can be
embedded into static arrows and monads into high-order ar-
rows. In the chain of abstractions of unary type constructors,
applicative functors lie between functors (the weakest) and
monads (the strongest).

Monoidal profunctors are a categorical structure with two
components: an identity computation and a generic parallel
composition. Being a profunctor, they may lift pure compu-
tations into its structure. Arrows are, in a sense, a general-
isation of monads from unary type constructors to binary
type constructors [7, 25], where the first type parameter is
contravariant and the second covariant. In this analogy, pro-
functors play the role of functors. This work studies whether
a monoidal profunctor is the applicative equivalent for such
binary type constructors.

Thiswork’s primarymotivation is to investigate if monoidal
profunctors can be used to structure pure functional pro-
grams: Can monoidal profunctors be used to structure and
reason about pure functional programs in the same manner
as applicative functors? Can the gap in the following table
be filled with monoidal profunctors?

functor applicative monad
profunctor ⁇⁇ arrow

Table 1. Structure relations

Therefore, with this paper we aim to gather the knowledge
about monoidal profunctors and study their application in
the context of functional programming, helping its use in
the Haskell ecosystem.

Possible applications for monoidal profunctors are in par-
allel programming, as a tool for reasoning about contexts,
and even optics [1]. We present an application of monoidal
product profunctors in the optics area and observe connec-
tions with well-known structures such as traversals and
grates [20]. The category-theoretic framework around this
structure is also provided. This work presents some useful
and primary instances for the monoidal product profunc-
tor type-class and discusses some applications seen in the
Haskell ecosystem.

Manyworks propose categorical structures to reason about
pure functional programs. We are not aware of any other
work that investigates the use of monoidal profunctors to do
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this. Hughes introduced arrows as a generalized interface for
computations [6], which has a sequential composition inter-
face alongside a parallel one. Monoidal product profunctors
exposes only a parallel composition interface, and hence are
weaker than Arrows.

This work provides another instance of the use of categor-
ical monoids to model computations and follows the same
approach as in the work of Rivas and Jaskelioff [25].

In the optics area, works such as [24] discuss the uses of
profunctors to achieve the same results at a higher level of
abstraction than the original work by Van Laarhoven [28].
Using Doubles [22] and Tambara Modules [17] one can build
a plethora of profunctor optics [1, 26]. Using a construction
similar to a representation theorem for second-order func-
tionals [8], and a profunctor version of it [21], monoidal
profunctor optics can be built with a different approach than
the aforementioned investigations.

An application of monoidal product profunctors is present
on the packages product-profunctors [5] and opaleye [4].
The former presents a way to generate type-safe lists using a
type-class that holds default computations in joint work with
such profunctors. We discuss this technique in Section 5.

This work is divided as follows. Section 2 presents the no-
tion of a monoidal category and its laws, describes profunc-
tors, and defines the Day convolution. Section 3 introduces
monoidal profunctors together, the notion of a monoid on
top of it, and a free monoidal profunctor together with a
representation theorem for profunctors. Section 4 discusses
instances and examples of the type-class MonoPro, and Sec-
tion 5 applications such as type-safe lists and monoidal prod-
uct profunctor optics.

2 Category theory background
2.1 Monoidal Categories
The definition of a monoidal category gives us a minimal
framework for defining a monoid in a category.

Definition 1. A monoidal category is a sextuple (C, ⊗, I , α ,
ρ, λ) where

• C is a category;
• ⊗ : C × C → C is a bifunctor;
• I is an object called unit;
• ρA : A ⊗ I → A, λA : I ⊗A → A and αABC : (A ⊗ B) ⊗
C → A ⊗ (B ⊗ C) are three natural isomorphisms such
that the diagrams below commute.

A ⊗ (B ⊗ (C ⊗ D))
α //

id⊗α

��

(A ⊗ B) ⊗ (C ⊗ D)

α
��

((A ⊗ B) ⊗ C) ⊗ D

A ⊗ ((B ⊗ C) ⊗ D) α
// (A ⊗ (B ⊗ C)) ⊗ D

α ⊗id

OO

A ⊗ (I ⊗ B)
α //

id⊗λ &&

(A ⊗ I) ⊗ B

ρ⊗idxx
A ⊗ B.

If the isomorphisms ρ, λ and α are equalities then the
monoidal category is called strict, if there is a natural iso-
morphism γAB : A ⊗ B → B ⊗ A the monoidal category is
called symmetric.

A monoidal category is closed if there is an additional
functor, called the internal hom, ⇒: Cop × C → Set such
that C(A⊗B,C) � C(A,B ⇒ C) for everyA, B andC objects
of C. The witnesses of this isomorphism are called currying
and uncurrying. In Set , A ⇒ B is just the hom-set A → B.

A symmetric closedmonoidal category [13] is themain cat-
egorical tool for reasoning about pure functional programs
in this work.

Definition 2. A monoid in a monoidal category C is the
tuple (M, e,m) where M is an object of C, e : I → M is the
unit morphism and m : M ⊗ M → M is the multiplication
morphism, satisfying

1. Right unit:m ◦ (id ⊗ e) = ρ
2. Left unit:m ◦ (e ⊗ id) = λ
3. Associativity:m ◦ (id ⊗m) =m ◦ (m ⊗ id) ◦ α

The following commuting diagrams represent those laws.

M ⊗ I
id⊗e //

ρ
%%

M ⊗ M

m
��
M

I ⊗ M
e⊗id //

λ
%%

M ⊗ M

m
��
M

M ⊗ (M ⊗ M)
id⊗m //

α

��

M ⊗ M

m

""
M

(M ⊗ M) ⊗ M
m⊗id // M ⊗ M

m
<<

2.2 Profunctors
A profunctor generalizes the notion of function relations and
bimodules [11].

Definition 3. Given two categories C and D, a profunctor is
a functor P : Cop ×D → Set , written P : C 9 D, consists of:

• for each a object of C and b object of D, a set P(a,b);
• for each a object of C and b,d objects of D, a function
(left action) D(d,b) × P(a,d) → P(a,b);

• for each a, c objects of C and b object of D, a function
(right action) P(a,b) × C(c,a) → P(c,b).

This definition is also known as a Bimodule or a (C,D)-
module.
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Since a profunctor is a functor from the product category
Cop × D to Set , it must satisfy the functor laws.

P(1C , 1D) = 1P(C ,D)

P(f ◦ д,h ◦ i) = P(д,h) ◦ P(f , i)

Note that the units 1C and 1D are identity morphisms on
objects C and D of the categories C and D, while 1P(C ,D) is
an identity morphism in Set . The second law tells us that a
profunctor preserve the composition of morphisms of any
morphisms f ,д from C and h, i of D.

An example of a profunctor is the hom functor Hom :
Cop × C → Set , written as A → B when C = Set . the
profunctor actions are pre-composition and post-compostion
of set valued functions.

Definition 4. Let C and D small categories, Pro f (C,D) is
the profunctor category consisting of profunctors as objects, nat-
ural transformations as morphisms, and vertical composition
to compose them.

The profunctor category inherits some structure from the
functor category Set C such as binary products given by (P ×
Q)(S,T ) = P(S,T ) × Q(S,T ) and binary coproducts given
by (P + Q)(S,T ) = P(S,T ) + Q(S,T ), where ×,+ are the
respective universal constructions from Set . There is also
terminal and initial profunctors given by 1p(S,T ) = {∗}

and 0p(S,T ) = ∅, i.e., constant profunctors on initial and
terminal objects in Set . If the target of a profunctor that is
not Set , but some other category, say E, with binary products
and coproducts, initial and terminal objects, the profunctor
category based on top of E will also have these constructs.

2.3 Day Convolution
Definition 5. Let C be a small monoidal category and F ,G :
D → Set , the Day convolution [2] of F and G is another functor
(in T ) given by

(F ?G)T =
∫ X ,Y ∈Ob(D)

FX ×GY ×HomD(X ⊗Y ,T ). (1)

The co-end (or an end when present) in this definition can
have a notational reduction to∫ XY

FX ×GY × HomD(X ⊗ Y ,T )

whenever the context is clear.
We instantiate this convolution in the category Pro f of

profunctors letting D = Cop × C be the described product
category. For this definition we use the calculus of ends and
coends. For any object (S,T ) in this category:

(F ?G)(S,T )

=
∫ ABCD

F (A,B) ×G(C,D) × [Cop × C]((A,B) ⊗ (C,D), (S,T ))

�
∫ ABCD

F (A,B) ×G(C,D) × [Cop × C]((A ⊗ C,B ⊗ D), (S,T ))

�
∫ ABCD

F (A,B) ×G(C,D) × Cop(A ⊗ C, S) × C(B ⊗ D,T )

�
∫ ABCD

F (A,B) ×G(C,D) × C(S,A ⊗ C) × C(B ⊗ D,T )

The profunctor J(A,B) = C(A, I) × C(I ,B) is a unit for ?.
When I = 1, where 1 is a terminal object, J(A,B) � B.
Proposition 1. Let C be a monoidal category, the profunctor
J(A,B) = C(A, I) × C(I ,B) is the right and left unit of ?.

The associativity of ? is required to define a monoidal
profunctor category.
Proposition 2. Let (C, ⊗, I) be a monoidal category and S,T
two objects of C, the Day convolution for profunctors is an
associative tensor product (P ?Q)?R � P ? (Q ?R)

In order to be able to define monoids in a monoidal pro-
functor category, one needs to check that when C and D are
monoidal categories then (Pro f (C,D)),?, J) is a monoidal
category.
Proposition 3. Let C and D are monoidal small categories.
Then (Pro f (C,D)),?, J) is a monoidal category.

Proof. Since C and D are monoidal categories, ? is a bifunc-
tor by construction, and by Proposition 1 and 2 gives the desired
morphisms, it follows that (Pro f (C,D)),?, J) is a monoidal
category.

It is now possible to define a monoid in this category by
showing that a morphism going out of Day convolution of
profunctors is in one-to-one correspondence with a mor-
phism not using this tensor, as in the work of Rivas and
Jaskelioff [25].
Proposition 4. LetD = Cop ⊗C, there is a one-to-one corre-
spondence defining morphisms going out of a Day convolution
for profunctors∫
XY (P ?Q)(X ,Y ) → R(X ,Y )

�
∫
ABCD P(A,B) ×Q(C,D) → R(A ⊗ C,B ⊗ D)

which is natural in P , Q and R.

Whenever P = Q in the equation of Proposition 4 we
get

∫
ABCD P(A,B) × P(C,D) → P(A ⊗ C,B ⊗ D) useful to

define a monoid in the profunctor category Pro f with Day
convolution as its tensor.

2.4 Yoneda lemma
The famous Yoneda Lemma [3], in its covariant and con-
travariant, needs to be stated in order to proceed.
Lemma 1 (Yoneda). Let C be a locally small category and
F : C → Set a covariant functor. There is an isomorphism

F X � Nat(C(X ,−), F )

natural in X . The Meaning is that there is a natural isomor-
phism between the set FX and the set of natural transfor-
mations involving the hom functor C(X ,−) and F [25]. The
same lemma holds when considering a contravariant functor
G : CtoSet . There is also an isomorphism

G Y � Nat(C(−,Y ),G)

natural in Y .
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Using ends and coends, one can rewrite [3] the above
lemma as :

FX �
∫
A C(X ,A) → FA �

∫ A
FY × C(A,Y ).

The rightmost term is the well-known co-Yoneda lemma,
which holds by the duality principle.

3 Monoidal Profunctors
This section aims to provide the essential categorical tool to
derive a Haskell representation for a monoid on a monoidal
category of profunctors. This section also discusses the free
monoidal profunctor construction and a representation the-
orem for profunctors.

3.1 A monoid on monoidal profunctors
The unit and the multiplication of this monoid are a direct
consequence of Yoneda’s lemma and Proposition 4.

Proposition 5. Let (C, ⊗, I) be a small monoidal category,
P : Cop × C → Set be a profunctor, and S,T two objects of C.
Then C(J(S,T ), P(S,T )) � P(I , I).

Proof.

C(J(S,T ), P(S,T )) � C(S, I) × C(I ,T ) → P(S,T )

� C(S, I) → C(I ,T ) → P(S,T )

� C(S, I) → P(S, I)

P(I , I)

�

With all categorical tools in hand, the central notion of this
works emerges from the category of monoidal profunctors.

Definition 6. Let (C, ⊗, I) be a small monoidal category. A
monoid in the monoidal profunctor category is a profunctor
P , a unit given by the natural transformation between the
profunctors J and P , e : J → P , equivalent to e : P(I , I)
by Proposition 5, and the multiplication is m : P ? P → P
which is isomorphic to the family of morphismsV (m)ABCD =
P(A,B)×P(C,D) → P(A⊗C,B ⊗D). Such a monoid is called
a monoidal profunctor.

As an example, consider (C, ⊗, I) any monoidal category
and the Hom profunctor P(A,B) = A → B, a monoid in the
monoidal profunctor category Pro f (Cop, C) is obtained if
we set

e : I → I

e(x) = I

V (m)ABCD : (A → B) × (C → D) → ((A ⊗ C) → (B ⊗ D))

V (m)ABCD(f ,д) = f ⊗ д

Internal homs exists in the monoidal profunctor category
Pro f (Cop, C) and can be calculated:

Proposition 6. Let (C, ⊗, I) be a small monoidal category,
and P,Q monoidal profunctors, then

(P ⇒ Q)(X ,Y ) =
∫
CD P(C,D) → Q(X ⊗ C,Y ⊗ D)

defines an internal hom on the monoidal profunctor category.

This proposition means that the monoidal category of
profunctors is closed.

3.2 Free monoidal profunctor
The notion of a fixpoint of an initial algebra enables a defini-
tion of the free structure for a monoidal profunctor.

Definition 7. Let C be a category, given an endofunctor F :
C → C, a F-algebra consists of an object A of C, the carrier
of the algebra, and an arrow α : F (A) → A. A morphism
h : (A,α) → (B, β) of F-algebras is an arrow h : A → B in C

such that h ◦ α = β ◦ F (h).

F (A)
F (h) //

α
��

F (B)

β
��

A
h // B

The category of F-algebras and its morphisms on a category C

are called F −Alд(C).

The existence of a free monoidal profunctor is guaranteed
by the following proposition [25].

Proposition 7. Let (C, ⊗, I) be a monoidal category with
exponentials. If C has binary coproducts, and for each A ∈

ob(C) the initial algebra for the endofunctor I +A ⊗ − exists,
then for each A the free monoid A∗ exists and its carrier is the
carrier of the initial algebra.

Pro f (Cop, C), when C is a small monoidal category, is
monoidal with the Day convolution ? and the profunctor I
as its unit, and also have binary products and exponentials.
The least fixed point of the endofunctor Q(X ) = J + P ?X
in Pro f (Cop, C) gives the free monoidal profunctor.

3.3 RepresentationTheorem
In the work of O’Connor and Jaskelioff [8], a representation
theorem was derived that helps to obtain optics. In this work,
the unary version of this representation theorem is needed.

Theorem 1. Theorem 3.1 (Unary representation) Consider an
adjunction −∗ ` U : E → F , where F is small and E is
a full subcategory of SetSet such that the family of functors
RA,B(X ) = A × (B → X ) is in E. Then, we have the following
isomorphism natural in A,B, and X .∫

F (A → U (F (B))) → U (F (X )) � U (R∗
A,B)(X )

This isomorphism ranges over any structure upon small
functors F , such as pointed functors and applicatives, and
is used to change representations from ends involving func-
tors to simpler ones. It is possible to obtain the same unary
representation for profunctors [21].
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Theorem 2. (Unary representation for profunctors) Consider
an adjunction between profunctors −∗ ` U : E → F , where
F is small and E is a full subcategory of Pro f (Set, Set), the
family of profunctors IsoA,B(S,T ) = (S → A) × (B → T )
gives the following isomorphism natural inA,B, and dinatural
in S,T . ∫

P UP(A,B) → UP(S,T ) � Iso∗A,B(S,T )

Where Iso∗ is the a free profunctor generated by Iso.

Since the free monoidal profunctor exists and is in the
form

P∗(S,T ) = (J + P ? P∗)(S,T ),

this theorem helps us to find the unary representation for
monoidal functors.

Proposition 8. The unary representation for monoidal pro-
functors is given by the isomorphism:∫

P P(A,B) → P(S,T ) �
∑
n∈N

(S → An) × (Bn → T )

where P ranges over all monoidal profunctors.

4 Programming examples
We now turn to Haskell code and show how to implement
the ideas of the previous section.

4.1 Profunctor typeclass
In Haskell, a profunctor is an instance of the following class

class Profunctor p where
dimap :: (a → b) → (c → d) → p b c → p a d

As we know that a profunctor is a functor, dimap needs
to satisfy the functor laws as well.

dimap id id = id

dimap (f ◦ g) (h ◦ i) = dimap g h ◦ dimap f i

Note that dimap has the left and right actions definitions
of a profunctor together. In the profunctors library [10]
there are two functions name lmap and rmap corresponding
to those actions. The profunctor interface lifts pure functions
into both type arguments, the first in a contravariant manner,
and the second in a covariant way. A morphism in the Pro f
category can be represented in Haskell as the type below.

type ({) p q = ∀x y .p x y → q x y

The hom-functor, in Haskell (→), is the most basic exam-
ple of a profunctor.

instance Profunctor (→) where
dimap ab cd bc = cd ◦ bc ◦ ab

One notion captured by a Profunctor is that of a struc-
tured input and output of a function (Kleisli arrow allows
a pure input and a structured output, for example). A type
representing these functions will be called, SISO.

data SISO f g a b = SISO {unSISO :: f a → g b }

instance (Functor f , Functor g) ⇒
Profunctor (SISO f g) where
dimap ab cd (SISO bc) = SISO (fmap cd ◦ bc ◦ fmap ab)

Two specializations of SISO are known in the Haskell’s
profunctor library, Star when f is the identity functor and
Costar when g is.

Another profunctor example is a fold.

data Fold m a b = Fold ((b → m) → a → m)

instance Profunctor (Fold m) where
dimap ab cd (Fold bc) = Fold (λdm → bc (dm ◦ cd) ◦ ab)

This amounts to foldMap when m is a monoid and the
type a∼f b for Foldable f .

4.2 The Day convolution type
In Haskell, the Day convolution is represented by the exis-
tential type

data Day p q s t = ∀a b c d .
Day (p a b) (q c d) (s → (a, c)) (b → d → t)

Since C(A, I) is isomorphic to a singleton set (unit of the
cartesian product ×), and C(I ,B) � B, one can write, in
Haskell, the type

data I a b = I {unI :: b }

as the unit of the Day convolution. The following functions
are representations of the right and left units.

ρ :: Profunctor p ⇒ Day p I { p
ρ (Day pab (I d) sac bdt) =
dimap (fst ◦ sac) (λb → bdt b d) pab

λ :: Profunctor q ⇒ Day I q { q
λ (Day (I b) qcd sac bdt) =

dimap (snd ◦ sac) (λd → bdt b d) qcd

The associativity of the Day convolution and its symmetric
map also can be represented in Haskell as the functions
below.

α :: (Profunctor p, Profunctor q, Profunctor r) ⇒
Day (Day p q) r { Day p (Day q r)

α (Day (Day p q s1 f ) r s2 g) =
Day p (Day q r f1 f2) f3 f4
where

f1 = first ′ (snd ◦ s1) ◦ s2
f2 d1 d2 = (d2, λx → f x d1)
f3 = first ′ (fst ◦ s1 ◦ (fst ◦ s2)) ◦ diag
f4 b1 (d2, h) = g (h b1) d2

γ :: (Profunctor p, Profunctor q) ⇒ Day p q { Day q p
γ (Day p q sac bdt) = Day q p (swap ◦ sac) (flip bdt)

where swap (x, y) = (y, x)
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Since ρ, λ, and α are natural isomorphisms its inverses
exist and are represented by the following Haskell functions.

ρ−1 :: Profunctor p ⇒ p { Day p I
ρ−1 pab = Day pab (I ()) diag (curry fst)

λ−1 :: Profunctor p ⇒ p { Day I p
λ−1 pcd = Day (I ()) pcd diag (curry snd)

α−1 :: (Profunctor p, Profunctor q, Profunctor r) ⇒
Day p (Day q r) { Day (Day p q) r

α−1 (Day p (Day q r s1 f ) s2 g) =
Day (Day p q f1 f2) r f3 f4
where
f1 = second ′ (fst ◦ s1) ◦ s2
f2 d1 d2 = (d1, λx → f d2 x)
f3 = second ′ (snd ◦ s1 ◦ (snd ◦ s2)) ◦ diag
f4 (d1, h) b1 = g d1 (h b1)

4.3 MonoPro typeclass
As a consequence, the type p () () is a representation in
Haskell of P(I , I) and the Proposition 4 gives the multiplica-
tion

∫
ABCD P(A,B) × P(C,D) → P(A ⊗ C,B ⊗ D) allowing

to write the following class in Haskell.

class Profunctor p ⇒ MonoPro p where
mpempty :: p () ()

(?) :: p b c → p d e → p (b, d) (c, e)

satisfying the monoid laws
• Left identity:

dimap diag snd (mpempty ? f ) = f

• Right identity:

dimap diag fst (f ?mpempty) = f

• Associativity:

dimap assoc−1 assoc (f ? (g ? h)) = (f ? g)? h

where assoc, assoc−1 and diag are given by the Haskell func-
tions below.

diag :: x → (x, x)
diag x = (x, x)

assoc−1 :: ((x, y), z) → (x, (y, z))
assoc−1 ((x, y), z) = (x, (y, z))

assoc :: (x, (y, z)) → ((x, y), z)
assoc (x, (y, z)) = ((x, y), z)

If one focus on the second argument, i.e., fixing a profunc-
tor p and an type s, MonoPro p s inherits the applicative
functor behavior naturally represented by the function

appToMonoPro ::MonoPro p ⇒

p s (a → b) → p s a → p s b
appToMonoPro pab pa =

dimap diag (uncurry ($)) (pab ? pa)

with pure being mpempty .
TheMonoPro class provides an abstraction of parallel com-

position and inherits the “zippy” nature of an Applicative
(Monoidal) functor.

Another way to understand MonoPro is that it lifts pure
functions with many inputs to a binary constructor type,
while a profunctor only lifts functions with one type as input
parameter. That fact is easily seen by comparing the two
functions below.

lmap :: Profunctor p ⇒ (a → b) → p b c → p a c

lmap2 :: ((b, bb) → b′) → p a b → p c bb → p (a, c) b′

lmap2 f pa pc = dimap id f $ pa ? pc

A monoidal profunctor has a straightforward instance for
the Hom profunctor

instance MonoPro (→) where
mpempty = id
f ? g = λ(a, b) → (f a, g b)

A pratical use for this instance is writing expressions in
a pointfree manner, one can write an unzip′ function, for
example, for any functor containing a pair type.

unzip′ :: Functor f ⇒ f (a, b) → (f a, f b)
unzip′ = (fmap fst ? fmap snd) ◦ diag

The datatype SISO is another example of a monoidal pro-
functor.

instance (Functor f ,Applicative g) ⇒
MonoPro (SISO f g) where

mpempty = SISO (λ → pure ())
SISO f ? SISO g = SISO (zip′ ◦ (f ? g) ◦ unzip′)

where zip′ is the applicative functor multiplication given by

zip′ :: Applicative f ⇒ (f a, f b) → f (a, b)
zip′ (fa, fb) = pure (, ) ⊗ fa ⊗ fb

as one can observe, the most basic notion of a monoidal
profunctor is represented by this instance. It tells us that
the input needs to be a functor instance because of unzip′,
the functions f and g are composed in a parallel manner
using the monoidal profunctor instance for (→) and then re-
grouped together using the applicative (monoidal) behavior
of zip′.

4.4 Free MonoPro
By expanding [16], the free monoidal profunctor is repre-
sented, in Haskell, by the following Generalized Abstract
Data Type

data FreeMP p s t where
MPempty :: t → FreeMP p s t
FreeMP :: (s → (x, z)) → ((y,w) → t)

→ p x y
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→ FreeMP p z w
→ FreeMP p s t

where MPempty is the equivalent of mpempty, and FreeMP
is the multiplication expanding the definition of Day convo-
lution for P and P∗. This interface stacks profunctors, and in
each layer, it provides pure functions to simulate the parallel
composition nature of a monoidal profunctor.

The following functions provide the means to build the
free construction on monoidal profunctors, toFreeMP insert
a single profunctor into the free structure, and fromFreeMP
provides a way of evaluating the structure, collapsing into a
single monoidal profunctor.

toFreeMP :: Profunctor p ⇒ p s t → FreeMP p s t
toFreeMP p = FreeMP diag fst p (MPempty ())

fromFreeMP ::MonoPro p ⇒ FreeMP p s t → p s t
fromFreeMP (MPempty t) =

dimap (λ → ()) (λ() → t) mpempty
fromFreeMP (FreeMP f g p mp) =

dimap f g (p ? fromFreeMP mp)

A free construction behaves like list and, of course,MonoPro
should provide a way to embed a plain profunctor into the
free context.

consMP :: Profunctor p ⇒ p a b → FreeMP p s t
→ FreeMP p (a, s) (b, t)

consMP pab (MPempty t) = FreeMP id id pab (MPempty t)
consMP pab (FreeMP f g p fp) =

FreeMP (id ? f ) (id ? g) pab (consMP p fp)

and with it, an instance of MonoPro for the free structure
can be defined as

instance Profunctor p ⇒ MonoPro (FreeMP p) where
mpempty = MPempty ()

MPempty t ? q =

dimap snd (λx → (t, x)) q
q ?MPempty t =

dimap fst (λx → (x, t)) q
(FreeMP f g p fp)? (FreeMP k l pp fq) = dimap t1 t2 t3
where

t1 = (assoc ′ ◦ (f ? k))
t2 = (sw ◦ (l ? g) ◦ associnv)
t3 = (consMP p (consMP pp (fp ? fq)))

where assoc :: ((x, z), c) → (z, (x, c)) and associnv ′ ::
(y, (w, d)) → ((w, y), d). Hence, a free monoidal profunctor
is indeed a monoidal profunctor.

A free monoidal profunctor FreeMP p, when p is an arrow,
also can be derived. To achieve this instance, one needs to co-
lapse all parallel profunctors in order to make the sequential
composition as one can observe in the following functions.

instance (MonoPro p,Arrow p) ⇒
K .Category (FreeMP p) where

id = FreeMP (λx → (x, ())) fst (arr id) (MPempty ())

mp ◦mq = toFreeMP (fromFreeMP mpK . ◦ fromFreeMP mq)

instance (MonoPro p,Arrow p) ⇒
Arrow (FreeMP p) where

arr f = FreeMP (λx → (x, ())) fst (arr f ) (MPempty ())

(∗ ∗ ∗) = (?)

5 Applications
5.1 Type-safe lists
An application for the monoidal profunctor is to handle
tuples instead of lists which give type-safety concerning its
size. This techinique is found in the packages opaleye [4]
and product-profunctors [5].

The monoidal profunctor interface lacks a function lift-
ing like in arr , from Arrow type-class. One can understand
Default as a type-class that picks a distinguished computa-
tion of the form p a b representing a lifted function basing
on the structure of p.

class Default p a b where
def :: p a b

Given two default computations, p a b and p c d , it is
possible to overload def with the help of the GHC extension
MultiParamTypeClasses to derive an instance for
p (a, c) (b, d).

instance (MonoPro p,Default p a b,Default p c d) ⇒
Default p (a, c) (b, d) where

def = def ? def

If one has more than two computations, it is possible to
overload it with the monoidal profunctor product and flatten-
ing functions like flat3i, flat3l, flat4i, flat4l, and so on (see
Appendix). Those boilerplate codes can also be derived with
the help of generics, template Haskell and quasi-quotations.

instance (MonoPro p,
Default p a b,
Default p c d,
Default p e f ) ⇒
Default p (a, c, e) (b, d, f ) where

def = dimap flat3i flat3l (def ? def ? def )

instance (MonoPro p,
Default p a b,
Default p c d,
Default p e f ,
Default p j k) ⇒
Default p (a, c, e, j) (b, d, f , k) where

def = dimap flat4i flat4l (def ? def ? def ? def )
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As examples, the functions replicate [5], iterate, and zipWith
can have type-safe versions using this technique.

A Replicator is a type that enables the type-safe version
of replicate.

newtype Replicator r f a b = Replicator (r → f b)

A profunctor instance for Replicator r f , noting that a is
a phantom type argument since this, amounts to a functor
applied to a type b. The phantom type a argument is needed
to match the desired kind.

instance Functor f ⇒ Profunctor (Replicator r f ) where
dimap h (Replicator f ) =
Replicator ((fmap ◦ fmap) h f )

Whenever r∼f b, one can choose Replicator id as its de-
fault value.

instance Applicative f ⇒

Default (Replicator (f b) f ) b b where
def = Replicator id

A Replicator is aMonoProwhen f is applicative; itsmonoidal
profunctor product is just zip.

The function replicateT does the trick. It uses def ′, which
is deconstructed to Replicator f , to overload the monoidal
product basing on a type given in runtime.

replicateT :: Default (Replicator r f ) b b ⇒ r → f b
replicateT = f

where Replicator f = def ′

def ′ :: Default p a a ⇒ p a a
def ′ = def

For example, wemay get three integers from the command
line by

replicateT (readLn :: IO Int) :: IO (Int, Int, Int)

The number of integers varies with the type. In the case of
iterators, it is important to note that this implementation
differs slightly from the original iterate from Data.List,
since the first element here is ignored.

data It a z b = It ((a → a) → a → (a, b))

An It a is a profunctor on b and has a trivial instance
omitted here. A monoidal profunctor instance for It a works
with the return type a, the first component of the tuple,
acting as a state.

instance MonoPro (It a) where
mpempty = It $ λh x → (h x, ())
It f ? It g = It $ λh x →

let (y, b) = f h x
(z, c) = g h y

in (z, (b, c))

A default computation for It is one step iteration, and
this will keep the iteration happening when computed the
monoidal product.

instance Default (It a) z a where
def = It $ λf a → (f a, f a)

Using the overloaded def again and deconstructing its
type with the help of itExplicit , the function iterT is the
type-safe version of iterate.

iterT :: Default (It a) b b ⇒

(a → a) → a → b
iterT = itExplicit def

where
itExplicit :: It a b b → (a → a) → a → b
itExplicit (It h) f a = snd $ h f a

Evaluating

iterT (2∗) 3 :: (Integer, Integer, Integer, Integer),

gives (6, 12, 24, 48) which is exactly four iterations.
It is also possible to construct a type-safe version of the

function zipWith relying on the type Grate. This example
shows a connection with this technique and optics (more
details in the next section).

data Grate a b s t = Grate (((s → a) → b) → t)

The datatype Grate a b is a profunctor on s and t and
relies on a continuation-like style.

instance Profunctor (Grate x y) where
dimap f g (Grate h) =

Grate (λk → g (h (λt → k (t ◦ f ))))

Its monoidal profunctor product instance unzips the input
function and passes it to the monoidal product of f and g.

instance MonoPro (Grate x y) where
mpempty = Grate $ λ → ()

Grate f ?Grate g =

Grate (λh → (f ? g) (k (unzip′ (Aux h))))
where
k = unAux ? unAux

The typeAux is just a helper type that makes the definition
of ? easier.

data Aux x y a = Aux {unAux :: (a → x) → y }

Applying id to an input function is the default computation
for a Grate whenever s a and t∼b.

instance Default (Grate a b) a b where
def = Grate (λf → f id)

The same pattern of Replicator and It also occurs with
Grate.

grateT :: Default (Grate a b) s t ⇒ (((s → a) → b) → t)
grateT = grateExplicit def

where
grateExplicit :: Grate a b s t → (((s → a) → b) → t)
grateExplicit (Grate g) = λf → g f
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A type-safe zipWith, called zipWithT , can be constructed
using the grateT .

zipWithT :: (Int → Int → Int)
→ (Int, Int, Int)
→ (Int, Int, Int)
→ (Int, Int, Int)

zipWithT op s1 s2 = grateT (λf → op (f s1) (f s2))

This connection with optics has an obvious limitation
that it can only generate functions with explicit types like
zipWithT to avoid ambiguous types. It is interesting to note
that the same construction can be used to create type-safe
traversals (which is also an optic). One needs to consider the
above type Traverse, and Traverse ($) as default computa-
tion.

data Traverse f r s a b = Traverse ((r → f s) → a → f b)

5.2 Monoidal profunctor optics
Data accessors are an essential part of functional program-
ming. They allow reading and writing a whole data structure
or parts of it [24]. In Haskell, one needs to deal with Al-
gebraic Data Types (ADTs) such as products (fields), sums,
containers, function types, to name a few. For each of these
structures, the action of handling can be a hard task and not
compositional at all. To circumvent this problem, the notion
of modular (composable) data acessors [24] helps to tackle
this problem with the help of some tools category-theoretic
constructions such as profunctors.

An optic is a general denotation to locate parts (or even
the whole) of a data structure in which some action needs
to be performed. Each optic deals with a different ADT, for
example, the well-known lenses deal with product types,
prisms with sum types, traversals with traversable contain-
ers, grates with function types, isos deals with any type but
cannot change its shape, and so on.

The idea of an optic is to have an in-depth look into get/set
operations, for example, if one has a “big” data structure s, it
is possible to extract a piece of it, say a, which can be written
as a function get :: s → a. Whereas, if one focus in a “big”
structure s providing a value of b (part of f ) it can turn in
another “big” structure t (this may not change, and the data
can still be s), a good manner to represent that is via the
function set :: s → b → t .

Both functions can be amalgamated in terms of a binary
type constructor p giving the type ∀p.p a b → p s t , an optic
amount in a suitable type class to constrain the polymorphic
type p, for example, if p is Strong, p a b → p s t is a lens.
If one plugs for p, the contravariant hom-functor which is
Strong (also known as the data constructor Forget :: (a →

r) → Forget r a b in the Haskell ecosystem), and use first ′ ::
p a b → p (a, x) (b, x) as a lens. One can see that gives
the projection of the first component from a product type,
producing, in this case, the function get :: (a, x) → a.

Lenses help to give the intuition behind this profunctorial
optics machinery, but this work will solely focus on the
mixed optic derived from a monoidal profunctor with ⊗ = ×,
which combines grates and traversals. It will be called a
mono.

Those two optics have the following types.

type Iso s t a b = ∀p.Profunctor p ⇒ p a b → p s t

type Mono s t a b = ∀p.MonoPro p ⇒ p a b → p s t

Every Mono is an Iso. The latter provides us the necessary
tool for handling isomorphisms between types.

swap :: Profunctor p ⇒ p (b, a) (c, d) → p (a, b) (d, c)
swap = dimap sw sw

associate :: Profunctor p ⇒

p ((w, y), d) ((x, z), c) → p (y, (w, d)) (z, (x, c))
associate = dimap associnv assoc

The swap iso represents the isomorphism A × B � B ×A.
It takes a profunctor and reverses the order of all product
types involved, and associate iso represents an associative
rule of product types. The units () can be treated as well but
will be omitted.

AMono locates every position from a product (tuple) type
(which can be generalized to a finite vector [8]).

each2 ::MonoPro p ⇒ p a b → p (a, a) (b, b)
each2 p = p ? p

each3 ::MonoPro p ⇒ p a b → p (a, a, a) (b, b, b)
each3 p = dimap flat3i flat3l (p ? p ? p)

each4 ::MonoPro p ⇒ p a b → p (a, a, a, a) (b, b, b, b)
each4 p = dimap flat4i flat4l (p ? p ? p ? p)

As one can observe, each2 deals with parallel composition
with the argument p with itself using the monoPro interface.
The focus id on tuples of size 2. The monos each3 and each4
deal with tuples of size 3 and 4 and depends on the functions
flattening functions defined earlier.

Actions can be performed on a mono, given the desired
location; one can read/write any product (tuple) type.

foldOf ::Monoid a ⇒ Mono s t a b → s → a
foldOf mono = runForget (mono (Forget id))

This action tells that given a Mono (location) one can
monoidally collect many parts a from the big structure s (in
this case, tuples). It is nice to remember that Forget is just
the contravariant hom-functor, an instance of a SISO, when
f = Id , and g = Const r the constant applicative functor,
whenever r (the covariant part of the SISO) is a monoid. For
example,

foldOf each3 ::Monoid a ⇒ (a, a, a) → a

behaves in the same way as the function fold do with lists, its
evaluation on the value ("AA", "BB", "CC") gives "AABBCC"
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as expected. A mono called foldMapOf can also behave like
its list counterpart foldMap,

foldMapOf ::Monoid r ⇒
Mono s t a b → (a → r) → s → r

foldMapOf lens f = runForget (lens (Forget f ))

locating all elements of a 3-element tuple gives

foldMapOf each3 ::Monoid r ⇒ (a → r) → (a, a, a) → r

as mentioned.
Every profunctorial optic has a van Laarhoven [21], func-

torial representation, the base of the whole lens package [9].
Such representation can be extracted from a mono, obtained
by the function

convolute :: (Applicative g, Functor f ) ⇒
Mono s t a b → (f a → g b) → f s → g t

convolute mono f = unSISO (mono (SISO f ))

following the same pattern as in foldMapOf changing the
Forget by a SISO. This representation was found in [20] and is
called FiniteGrate relying on a typeclass called Power which
is similar to MonoPro but without the monoidal profunctor
semantics.

If we specialize convolute to the identity functor f = Id ,

traverseOf :: Applicative g ⇒

Mono s t a b → (Id a → g b) → (Id s → g t)
traverseOf mono = convolute mono

one gets the definition of a Traversal, which is a member of
the lens package. Specializing convolute to the applicative
functor g = Id ,

zipFWithOf :: Functor f ⇒

Mono s t a b → (f a → Id b) → (f s → Id t)
zipFWithOf mono = convolute mono

gives the van Laarhoven representation for grates (which
depends on a Closed typeclass of Profunctors) [20].

class Profunctor p ⇒ Closed p where
closed :: p a b → p (x → a) (x → b)

Monoidal profunctors with ⊗ = × captures the essence of
a grate and a traversal. Grates have a structured contravari-
ant part (input) while traversals, the covariant one (output). A
structured input and structured output function SISO played
a significant role in this construction.

6 Conclusion
Although not providing specific syntactic tools like do nota-
tion, arrow notation [23], and applicative do [14], this work
centralized many studies related to monoidal profunctors,
some applications and derived connections to optics. A step
further towards the use of such a structure is made. An inves-
tigation towards using other monoidal profunctors (when
varying the tensor products) with distributive laws is needed.

A study in this direction can provide another way to rea-
son about mixed optics [1] and fruitful applications such as
static parser [27]. Monoidal alternative profunctors, and its
free version, could be derived in the same way as this work
does provide an interesting tool to be used alongside with
monoidal profunctors.
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ABSTRACT
Operational properties of lazily-evaluated programs are hard to
predict at compile-time. This is an obstacle to a broad adoption
of non-strict programming languages. In 2012 it was introduced
a novel type-and-effect analysis for predicting upper-bounds on
memory allocation costs for programs in a simple lazily-evaluated
functional language [17]. This analysis was successfully applied to
several programs, but limited to bounds that are linear in the size
of the input. Here we overcome that shortcoming by extending this
system to polynomial resource bounds.
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1 INTRODUCTION
Lazy evaluation offers known advantages in terms of modularity
and higher abstraction [10]. However, operational properties of
programs (such as time and space behaviour) are more difficult
to predict than for strict languages. This can be an obstacle to a
more widespread use of non-strict programming languages, such
as Haskell.

Previous work on type-based amortised analysis for lazy lan-
guages has enabled the automatic prediction of resource bounds
for lazy higher-order functional programs with linear costs on the
number of (co)data constructors [12, 17]. While this system is an
important contribution, it is limited to linear bounds, which means
that functions with polynomial costs can not be typed. Because
many functions fall under this category, it is important to overcome
this limitation.
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As a motivating example, consider the two functions attach and
pairs (adapted to Haskell from [6]):

pairs :: [a] −> [(a , a)]
pairs [] = []
pairs (x : xs) = attach x xs ++ pairs xs

attach :: a −> [a] −> [(a , a)]
attach _ [] = []
attach y (x : xs) = (x ,y ): attach x ys

The function pairs takes a list and computes a list of pairs that
are two-element sub-lists of the given list; this uses an auxiliary
definition attach that pairs a single element to every element of the
argument list.

It is straightforward that attach consumes time and space that is
linear on the length 𝑛 of the input list. Moreover, a precise bound
can be derived by the type system in [12] through a type annotated
with a constant potential associated with each list node of the input
list. Function pairs, however, exhibits quadratic time and space on
the length its input. Hence, it does not admit a type derivation in
the mentioned system.

In this paper we extend type-based amortised analysis of non-
strict languages to polynomial resource bounds by following the
approach of Hoffman for the strict setting [2, 7]. The analysis is
presented for a small lazy functional language with higher-order
functions, pairs, lists and recursion. Finally, we give examples of
the application of our analysis to programs exhibiting polynomial
resource behaviour.

The rest of the paper is organised as follows. Section 2 surveys
relevant background and related work about amortised analysis.
Section 3 presents the language and its annotated operational se-
mantics. Section 4 presents the main contribution of this paper: a
type and system for resource analysis of lazy evaluation with poly-
nomial bounds. In Section 5, we show several worked examples of
the analysis. Finally, we conclude and present some future work.

2 BACKGROUND AND RELATED WORK
2.1 Type-based Analysis
Type-based analysis [14] is an approach to static analysis that at-
taches static analysis information to types.

One main advantage of this approach is the fact that it facilitates
modular analysis since types allow the expression of interfaces
between components. It also helps the communication with the
programmer by extending an already-known notation, namely,
types.

Other advantages revolve around efficiency and completeness.
Types provide an infrastructure from which the analysis can be

1
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done. For example, in a type and effect system, each typing rule
provides a localised setting for the analysis. Furthermore, the cor-
rectness of the analysis is subsumed by the correctness of the type
system, which means that the correctness of the analysis can be
formulated and proven using the well-studied methods in type
systems. Overall, these systems improve the information given by
types by decorating them with annotations so that they express
more about the program being analysed.

2.2 Classic Amortisation
Amortised analysis [15, 18] is a method for analysing the complexity
of a sequence of operations. While worst-case analysis considers the
worst case for each operation, and average-case analysis considers
the average cost over all possible inputs, amortised analysis is
concerned with the overall worst-case cost over a sequence of
operations. The motivation for this type of analysis arises from
the fact that some operations can be costly, while others can be
faster or "cheaper", and in the end, they can even each other out.
In some cases, analysing the worst-case per operation may be too
pessimistic.

In an amortised analysis we define a notation of "amortised cost"
for each operation that satisfies the following equation:

𝑚∑
𝑛=1

𝑎𝑛 ≥
𝑚∑
𝑛=1

𝑡𝑛

With 𝑎 as the amortised cost and 𝑡 as the actual cost, this means
that, for each sequence of operations, the total amortised cost is
an upper bound of the total actual cost. As a consequence, in each
intermediate step of the sequence, the accumulated amortised cost
is an upper bound of the accumulated actual cost. This allows
for the existence of operations with an actual cost that exceeds
their amortised cost, these are called expensive operations. Cheap
operations are operations with a cost lower than their amortised cost.
Expensive operations can only occur when the difference between
the accumulated amortised cost and the accumulated actual cost
(accumulated savings) is enough to cover the "extra" cost.

There are three different methods for amortised analysis: the
aggregate method (total cost), the accounting method (banker’s view)
and the potential method (physicist’s view). The choice of which to
use depends on how convenient each is to the situation.

Potential method. This method defines a function Φ that maps
each state of the data structure 𝑑𝑖 to a real number (potential of
𝑑𝑖 ). This function should be chosen such that the potential of the
initial state is 0 and never becomes negative, that is, Φ(𝑑0) = 0 and
Φ(𝑑𝑖 ) ≥ 0, for all 𝑖 . This potential represents a lower bound to the
accumulated savings.

The amortised cost of an operation is defined as its actual cost
(𝑡𝑖 ), plus the change in potential between 𝑑𝑖−1 and 𝑑𝑖 , where 𝑑𝑖 is
the state of data structure before operation 𝑖:

𝑎𝑖 = 𝑡𝑖 + Φ(𝑑𝑖 ) − Φ(𝑑𝑖−1)

This means that:

𝑗∑
𝑖=1

𝑡𝑖 =

𝑗∑
𝑖=1

(𝑎𝑖 + Φ(𝑑𝑖−1) − Φ(𝑑𝑖 ))

=

𝑗∑
𝑖=1

𝑎𝑖 +
𝑗∑
𝑖=1

(Φ(𝑑𝑖−1) − Φ(𝑑𝑖 ))

=

𝑗∑
𝑖=1

𝑎𝑖 + Φ(𝑑0) − Φ(𝑑 𝑗 )

Note that the sequence of potential function values forms a
telescoping series and thus all terms except the initial and final
values cancel in pairs. And because Φ(𝑑 𝑗 ) is always equal or greater
than Φ(𝑑0), then Σ(𝑎𝑖 ) ≥ Σ(𝑡𝑖 ).

Note that with the right choice of a potential function, the amor-
tised analysis gives a tighter bound for a sequence of operations
than simply analysing each operation individually.

2.3 Automatic Amortised Analysis
In 2003, Hofmann and Jost [8] proposed a system for static auto-
matic analysis of heap space usage for a strict first-order language.
This system was able to obtain linear bounds on the heap space
consumption of a program by using a type system refined with
resource annotations. This annotated type system allowed the anal-
yser to predict the amount of heap space needed to evaluate the
program by keeping track of the memory resources available. This
form of analysis would later be recognised as automatic amortised
resource analysis (AARA).

Further work has since then been done using this approach,
which is, more specifically, based on the potential method of amor-
tised analysis. The main idea behind this method is the association
of potential to data structures. This potential is assigned using type
annotations, where the annotations serve as coefficients for the
potential functions. The key to a successful analysis is the choice of
a ‘’good” potential function, ‘’good” being a potential function that
simplifies the amortised costs. Because the inference of suitable
annotations can be reduced to a linear optimisation problem, it is
possible to automatically infer the potential function.

Following work by the same authors [9] used the same approach
to obtain heap space requirements for Java-like programs with
explicit deallocations. The data is assigned a potential related to
its input and layout, and the allocations are then paid with this
potential. This way, the potential provides an upper bound on the
heap space usage for the given input. Whereas in the previous work
a refined type consisted of a simple type together with a number,
object-oriented languages require a more complex approach due
to aliasing and inheritance, and so a refined type in this context
consists of a number together with refined types for the attributes
and methods.

Later, Atkey [1] presented a system that extends AARA to pointer-
manipulation languages by embedding a logic of resources based
on intuitionistic logic of bunched implications within separation
logic.

In 2010 [7], the same authors address the biggest limitation on
previous article [8]: restriction to linear bounds. Their new system
infers polynomial upper bounds on resource usage for first-order
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programs as a function of their input and is generic in terms of re-
sources. This extension is done without losing expressiveness. The
inferred polynomial bounds result in linear constraints, meaning
that the inference of polynomial bounds can still be reduced to a
linear optimisation problem.

Jost et al [11] presented the first automatic amortised analysis
able to determine linear upper-bounds on the use of quantitative
resources for strict, higher-order recursive programs.

In [4] it is studied how AARA can be used to derive worst-case
resource usage for procedures with several arguments, and the pre-
vious inference of bounds is generalised for arbitrary multivariate
polynomials (with limits like𝑚 ∗ 𝑛). The drawbacks of an univari-
ate analysis are the fact that many functions have multivariate
characteristics, and the fact that, if data from different sources is
interconnected in a program, multivariate bounds like (𝑚 +𝑛)2 will
appear.

In 2016, Hoffman et al. [5] presented a resource analysis system
based on AARA that derives worst-case polynomial bounds for
higher-order programs with user-defined inductive types, which
was integrated into Inria’s OCaml compiler.

In [17], AARA is extended to compute linear bounds for lazily
evaluated functional languages. This is an important extension
because it tries to remove an obstacle to the broader use of lazy
languages: the fact that resource usage for their execution is very
hard to predict. This system improves the precision of the analysis
for co-recursive data by combining two previous analyses that con-
sidered the allocation costs of recursive and co-recursive programs.
The system was subsequently extended to a parametric cost model
and for tracking self-references in co-recursive definitions [12, 19],
which is essential to model the graph reduction techniques that are
typically used in lazy functional language implementations.

2.4 Polynomial potential
In this section, we briefly explain Hoffman’s approach to polynomial
potential [7]. We go over the main contributions of this system and
what influenced our approach.

This article presents a technique for inferring polynomial bounds,
that still relies only on linear constraints. This is a very important
feature because, until then, it was considered that the dependence
on linear programming imposed a limitation to linear bounds.

One key aspect of this work is the use of binomial coefficients as
a basis for polynomials, rather than the more common monomial
basis 𝑥𝑛 for 𝑛 >= 0

First, let us consider a list of type 𝐿 ®𝑝 (𝐴). This is a simple list
type, refined with a resource annotation ®𝑝 = (𝑝1, . . . , 𝑝𝑘 ), where
(𝑝1, . . . , 𝑝𝑘 ) represents a vector of coefficients that will be used to
calculate the potential of the list. We can translate this annotated
type to: the number 𝑞1 is the potential assigned to every element
of the list, 𝑞2 is the potential assigned to every element of every
suffix of the list, 𝑞3 is the potential assigned to every element of
every suffix of the suffixes of the list, and so on.

The main advantage of using binomial coefficients is the fact
that it simplifies the definition of the additive shift. The additive
shift is an operation on the coefficients represented by a resource
annotation, that corresponds to the change in potential for typing
branches of a pattern match. Let us consider a vector of coefficients

®𝑝 = (𝑝1, . . . , 𝑝𝑘 )

Σ;𝑥ℎ :𝐴, 𝑥𝑡 :𝐿⊳( ®𝑝) 0
𝑝1+𝐾𝑐𝑜𝑛𝑠

cons(𝑥ℎ, 𝑥𝑡 ):𝐿 ( ®𝑝) (𝐴)
T:Cons

®𝑝 = (𝑝1, . . . , 𝑝𝑘 )

Σ; Γ;𝑥ℎ :𝐴, 𝑥𝑡 :𝐿⊳( ®𝑝) (𝐴)
𝑞′+𝐾𝑚𝑎𝑡𝐶

2

𝑞+𝑝1−𝐾𝑚𝑎𝑡𝐶
1

𝑒1:𝐵

Σ; Γ
𝑞′−𝐾𝑛𝑖𝑙

𝑞−𝐾𝑛𝑖𝑙

𝑒2:𝐵

Σ;𝑥 :𝐿 ( ®𝑝)
𝑞′
𝑞

match 𝑥 with cons(𝑥ℎ, 𝑥𝑡 ) -> 𝑒1 | nil -> 𝑒2:𝐵
T:MatL

Figure 1: Rules T:Cons and T:MatL

®𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑘 ), the additive shift of vector ®𝑝 is

⊳®𝑝 = (𝑝1 + 𝑝2, 𝑝2 + 𝑝3, . . . , 𝑝𝑘−1 + 𝑝𝑘 , 𝑝𝑘 )

The idea is that the potential assigned to the tail 𝑥𝑠 :𝐿⊳®𝑝 of a list 𝑥 ::
𝑥𝑠:𝐿 ®𝑝 is used to pay for recursive calls, calls to auxiliary functions
and constant costs before and after recursive calls.

Similarly to the other works on AARA, the inference of con-
straints on the resource annotations is done during type inference,
so it is also important to explain how these concepts were intro-
duced in the type rules and why. As mentioned, the additive shift
allows the typing of the branches of a pattern match, so naturally,
we see these concepts arise in match rules and constructor rules.
In his analysis, Hoffman works with list and tree data structures,
but because we only consider lists in our analysis, we are only
interested in the rules written for lists. We can see them in Fig. 1.

Some things to mention before explaining the particularities of
these rules, note how the turnstile is annotated with values, one
above and another below. Those are the values that keep track
of resource usage during type inference. To be more specific, a
judgement of the form Γ 𝑧

𝑧′
𝑒:𝐶 can be read as: considering a

typing environment Γ and with 𝑧 resource units available, we can
infer the type 𝐶 for the expression 𝑒 and infer that the evaluation
of 𝑒 consumes 𝑧 − 𝑧′ resource units.

T:Cons infers the type of a list constructor and illustrates the
fact that one has to pay for the potential that is assigned to the
new list. To do so, they require that the tail of the list 𝑥𝑡 is typed
with the additive shift of the potential of the new list and that
there are 𝑝1 resource units available. The parameter 𝐾𝑐𝑜𝑛𝑠 is a
parametric constant, it is there to formalise the fact that we need to
pay for the cost of allocating space for the new list. The rule T:MatL
complements T:Cons, and shows how to use the potential of a list
to pay for resource usage, particularly in the "cons" branch. The
tail of the list is annotated with the additive shift of the potential
of the list, allowing recursive calls (with annotation ®𝑝) and calls to
auxiliary functions (with annotation (𝑝2, 𝑝3, . . .)), furthermore, 𝑝1
resource units become directly available.

To summarise, we have explained the idea behind the additive
shift and described how Hoffmann introduced it in the type infer-
ence rules. The way it is inserted into the type system through a
vector of coefficients, and the way the type rules use these values
during inference is used in our system in a mostly identical manner.

3
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2.5 Lazy evaluation
In [12], Jost et al. approach the problem of inferring strict cost
bounds for lazy functional languages by taking advantage of an
AARA system to keep track of resource usage. In this section, much
like in the previous one, we briefly explain this approach, focusing
mainly on the key points that we took advantage of for our system.

The main contributions of this system deal with the particulari-
ties of the mechanics that define lazy evaluation, namely, how it
delays the evaluation of arguments and uses references to prevent
multiple evaluations of the same terms.

One very important contribution is the introduction of an anno-
tated thunk structure to the type system. This structure essentially
denotes a delayed evaluation of a term and maintains the cost of
evaluating the delayed term. T𝑝 (𝐴) means: to evaluate the delayed
expression of type A, we need 𝑝 resource units available.

The use of resource annotations is also crucial, much like in other
AARA systems. They are used during type inference to keep track
of the resource usage of an expression, and attached to the types of
functions to denote the overall cost evaluating the function.

Γ 𝑧
𝑧′
𝑒:𝐶

This judgement means, under the environment Γ and with 𝑧 re-
source unit available, the evaluation of 𝑒 has type 𝐶 and leaves 𝑧′
resource units available.

Finally and possibly the most important contribution, the type
rule Prepay. This is a structural rule that allows the cost of a thunk
to be paid in advance, preventing that same cost to be accounted in
further uses of the same thunk, "simulating" this way the memoiza-
tion of a call-by-need evaluation.

Γ, 𝑥 :T𝑞0 (𝐴)
𝑝′
𝑝
𝑒: 𝐶

Γ, 𝑥 :T𝑞0+𝑞1 (𝐴)
𝑝′
𝑝+𝑞1

𝑒: 𝐶
(Prepay)

These are the main points that we considered to understand how
we could handle lazy evaluation in our analysis. Supplementary
to these elements, we also took advantage of most syntactic and
semantic choices of this article to write our system and the language
that supports it. We will come back to these choices next when we
explain our language and operational semantics.

3 LANGUAGE AND OPERATIONAL
SEMANTICS

In this section, we present the language and operational semantics
against which our analysis is done.

We start by introducing a simple lazy functional language (SLFL)
composed by the syntactical terms 𝑒 and 𝑤 , presented in Fig. 2.
Our expressions 𝑒 include variables, lambda expressions, list con-
structors, let-expressions, and pattern matching. The values𝑤 are
in weak head normal form and include constant values, pairs, list
constructors and lambda expressions. To simplify the presentation
of our expressions, sometimes we will be using a semicolon instead
of in in let-expressions.

As mentioned, our syntax and cost model are largely based on
Jost et al.’s semantics [12], which in its turn, is based on Sestof’s

𝑒 ::= 𝑐 | 𝜆𝑥 . 𝑒 | 𝑒 𝑦 | let 𝑥 = 𝑒1 in 𝑒2
| (𝑥1, 𝑥2) | cons(𝑥ℎ, 𝑥𝑡 ) | nil

| match 𝑒0 with (𝑥1, 𝑥2) -> 𝑒1
| match 𝑒0 with cons(𝑥ℎ, 𝑥𝑡 ) -> 𝑒1 | nil -> 𝑒2

𝑤 ::= 𝑐 | 𝜆𝑥. 𝑒 | (𝑥1, 𝑥2) | cons(𝑥ℎ, 𝑥𝑡 ) | nil

Figure 2: Syntax for SLFL expressions and normal forms

revision [16] of Launchbury’s operational semantics for lazy evalu-
ation [13]. The main difference is the restriction to list and pairs
constructors rather than more general recursive types. This was
done to simplify the presentation, and we believe it would be a
straightforward task to extend this system to more general data
structures.

3.1 Operational semantics
In this section, we present the rules that define the operational
semantics for SLFL. Before we explore the rules in more detail, it
is important to explain the structure of our judgements and its
meaning:

H, S,L
𝑚′
𝑚

𝑒 ⇓ 𝑤,H′

The relation can be read as follows: under a heap H, a set of
bound variables S and a set of locations L, an expression 𝑒 is eval-
uated to value 𝑤 , in weak head normal form, consuming𝑚 −𝑚′

resource units and producing a new heap H’. The semantic rules
in Fig. 3 illustrate how an expression is evaluated.

A heap H is a mapping from variables to thunks. As was men-
tioned in Section 2, a thunk is a delayed evaluation of an expression,
meaning that our heap saves expressions that are possibly not yet
evaluated. A set of locations L is used to keep track of the locations
of the expressions that are being evaluated (See rule Var⇓), this is
done to prevent cyclic evaluation. We also use a set of variables S
to keep track of bound variables.

The operational semantics is instrumented by a counting mech-
anism that keeps track of resource usage for each expression. The
resource usage tracked in these rules is the target of our cost anal-
ysis. For simplicity, we decided that our analysis would only be
interested in calculating cost bounds on the number of allocations
used in an expression. Note that, however, the system could eas-
ily be extended to consider multiple cost parameters, such as the
number of steps, number of applications, and others. This could
be done by assigning different constants to each reduction rule to
specify how many resource units should be available when consid-
ering a specific cost parameter. We can see this parametrization be
used in Hoffman’s [7] and Jost et al.’s [12] analyses. In our system
we consider only one constant, 1, in the reduction rules Let and
Letcons.

Discussing the evaluation rules. As mentioned above, these rules
are largely based on the semantics from [12], their construction
and meaning are mostly identical. The main differences can be seen
in the definition for rules Match-L⇓, Match-P⇓ and Letcons⇓.

4
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H, S,L 𝑚
𝑚
𝑤 ⇓ 𝑤,H

(whnf⇓)

H, S,L ∪ {𝑙} 𝑚
𝑚
𝑒 ⇓ 𝑤,H′

H[𝑙 → 𝑒], S,L
𝑚′
𝑚

𝑙 ⇓ 𝑤,H′[𝑙 → 𝑤]
(Var⇓)

𝑙 is fresh H[𝑙 → 𝑒1 [𝑙/𝑥]], S,L 𝑚′
𝑚

𝑒2 [𝑙/𝑥] ⇓ 𝑤,H′

H, S,L
𝑚′
𝑚+1 let 𝑥 = 𝑒1 in 𝑒2 ⇓ 𝑤,H′

(Let⇓)

H, S,L
𝑚′
𝑚

𝑒 ⇓ 𝜆𝑥 . 𝑒 ′,H′ H′, S,L
𝑚′′
𝑚′

𝑒 ′[𝑦/𝑥] ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚

𝑒 𝑦 ⇓𝑤,H′′

(App⇓)

H, S ∪ ({𝑥1, 𝑥2} ∪ BV(𝑒1) ∪ BV(𝑒2)),L 𝑚′
𝑚

𝑒0 ⇓ cons(𝑙1, 𝑙2),H′

H′, S,L
𝑚′′
𝑚′

𝑒1 [𝑙1/𝑥1, 𝑙2/𝑥2] ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚 match 𝑒0 with cons(𝑥1, 𝑥2) -> 𝑒1 | nil -> 𝑒2 ⇓ 𝑤,H′′

(Match-L⇓)

H, S ∪ ({𝑥1, 𝑥2} ∪ BV(𝑒1) ∪ BV(𝑒2)),L 𝑚′
𝑚

𝑒0 ⇓ nil,H′

H′, S,L
𝑚′′
𝑚′

𝑒2 ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚 match 𝑒0 with cons(𝑥1, 𝑥2) -> 𝑒1 | nil -> 𝑒2 ⇓ 𝑤,H′′

(Match-N⇓)

H, S ∪ ({𝑥1, 𝑥2} ∪ BV(𝑒1) ∪ BV(𝑒2)),L 𝑚′
𝑚

𝑒0 ⇓ (𝑙1, 𝑙2),H′

H′, S,L
𝑚′′
𝑚′

𝑒1 [𝑙1/𝑥1, 𝑙2/𝑥2] ⇓ 𝑤,H′′

H, S,L
𝑚′′
𝑚 match 𝑒0 with (𝑥1, 𝑥2) -> 𝑒1 ⇓ 𝑤,H′′

(Match-P⇓)

Figure 3: Operational semantics for SLFL

Rule whnf⇓: A lambda expression, a constructor and a constant
are already final values so they evaluate to themselves and leave
the heap unmodified. This incurs no cost.

Rule Var⇓: A variable 𝑙 that is linked to an expression 𝑒 in the
initial heap, evaluates to a value𝑤 if the evaluation of 𝑒 reaches that
same value. The final heap will have the expression 𝑒 that is linked
to 𝑙 , replaced by the value𝑤 , this way we avoid re-evaluations of 𝑒 ,
obtaining lazy evaluation. This means that the cost of evaluating a
variable is the cost of evaluating the expression that is associated
with it.

Rule Let⇓: the expression 𝑒1 bound to 𝑥 is not evaluated, instead
a thunk is allocated and associated with a fresh location 𝑙 in the
heap. The rules proceed to evaluate the expressions 𝑒2. Because the
purpose of our analysis is to infer cost bounds on the number of

allocations, the evaluation of these rules needs to cost at least 1
resource unit, plus the cost of evaluating 𝑒2.

Rule Match-P⇓ and Match-L⇓: In both these rules, the variables
bound by the pattern matching are replaced in each branch by
the respective locations that result from the evaluation of 𝑒0 and
are stored in the heap. The final value and heap are the result of
evaluating the branch taken.

Example 3.1. Consider the term:

let 𝑓 = let 𝑧 = 𝑧; (𝜆𝑥.𝜆𝑦.𝑦) 𝑧
in let 𝑖 = 𝜆𝑥.𝑥 ; let 𝑣 = 𝑓 𝑖 ; 𝑓 𝑣

.
We can see how this term evaluates to 𝜆𝑥 . 𝑥 under the rules of

Fig. 3, leaving a heap Θ = [𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥.𝑥, 𝑙3 → 𝜆𝑥.𝑥].

[𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥 .𝑥, 𝑙3 → 𝑙1 𝑙2 ] 0
0
𝜆𝑥 .𝑥⇓𝜆𝑥.𝑥, [𝑙1 → 𝜆𝑦.𝑦]

Whnf⇓ (1)

[𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥 .𝑥, 𝑙3 → 𝑙1 𝑙2 ] 0
0
𝑙2⇓𝜆𝑥.𝑥, [𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥 .𝑥]

Var⇓ (1) (2)

[𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥.𝑥, 𝑙3 → 𝑙1 𝑙2 ] 0
0
𝜆𝑦.𝑦⇓𝜆𝑦.𝑦, [𝑙1 → 𝜆𝑦.𝑦]

Whnf⇓ (3)

[𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥.𝑥, 𝑙3 → 𝑙1 𝑙2 ] 0
0
𝑙1 ⇓ 𝜆𝑦.𝑦, [𝑙1 → 𝜆𝑦.𝑦]

Var⇓ (3) (4)

[𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥.𝑥, 𝑙3 → 𝑙1 𝑙2 ] 0
0
𝑙1 𝑙2 ⇓ 𝜆𝑥 .𝑥, [𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥.𝑥]

App⇓ (4,2) (5)

[𝑙1 → 𝜆𝑦.𝑦, 𝑙2 → 𝜆𝑥 .𝑥, 𝑙3 → 𝑙1 𝑙2 ] 0
0
𝑙3⇓𝜆𝑥.𝑥, [. . . , 𝑙3 → 𝜆𝑥.𝑥]

Var⇓ (5) (6)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥.𝜆𝑦.𝑦) 𝑧 , . . . , 𝑙4 → 𝑧] 0
0
𝜆𝑦.𝑦⇓𝜆𝑦.𝑦

Whnf⇓ (7)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥 .𝜆𝑦.𝑦) 𝑧 , . . . , 𝑙4 → 𝑧] 0
0 (𝜆𝑥 .𝜆𝑦.𝑦)⇓𝜆𝑥 .𝜆𝑦.𝑦

Whnf⇓ (8)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥.𝜆𝑦.𝑦) 𝑧 , . . . , 𝑙4 → 𝑧] 0
0 (𝜆𝑥 .𝜆𝑦.𝑦) 𝑙4 ⇓𝜆𝑦.𝑦

App⇓ (8,7) (9)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥.𝜆𝑦.𝑦) 𝑧 , . . .] 0
1 let 𝑧 = 𝑧; (𝜆𝑥 .𝜆𝑦.𝑦) 𝑧 ⇓𝜆𝑦.𝑦

Let⇓ (9) (10)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥 .𝜆𝑦.𝑦) 𝑧 , . . .] 0
1
𝑙1⇓𝜆𝑦.𝑦, [𝑙1 → 𝜆𝑦.𝑦]

Var⇓ (10) (11)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥 .𝜆𝑦.𝑦) 𝑧 , 𝑙2 → 𝜆𝑥.𝑥, 𝑙3 → 𝑙1 𝑙2 ] 0
1
𝑙1 𝑙3 ⇓𝜆𝑥 .𝑥,Θ

App⇓ (11,6) (12)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥 .𝜆𝑦.𝑦) 𝑧 , 𝑙2 → 𝜆𝑥.𝑥] 0
2 let 𝑣 = 𝑙1 𝑙2 ; 𝑙1 𝑣 ⇓𝜆𝑥.𝑥,Θ

Let⇓ (12) (13)

[𝑙1 → let 𝑧 = 𝑧; (𝜆𝑥 .𝜆𝑦.𝑦) 𝑧 ] 0
3 let 𝑖 = 𝜆𝑥 .𝑥 ; let 𝑣 = 𝑙1 𝑖 ; 𝑙1 𝑣 ⇓𝜆𝑥.𝑥,Θ

Let⇓ (13) (14)

0
4 let 𝑓 = let 𝑧 = 𝑧; (𝜆𝑥 .𝜆𝑦.𝑦) 𝑧 ; let 𝑖 = 𝜆𝑥 .𝑥 ; let 𝑣 = 𝑓 𝑖 ; 𝑓 𝑣 ⇓𝜆𝑥.𝑥,Θ

Let⇓ (14) (15)
5
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4 LAZY EVALUATION WITH POLYNOMIAL
POTENTIAL

In this section, we present our type system to analyse resource
usage and provide a detailed description of how the analysis works
using some illustrating examples.

4.1 Annotated Types
Here, we present the syntax for the annotated types of our language
and the type rules used to perform the cost analysis. Types include
primitives, function types, thunks, pairs and lists.

𝐴, 𝐵 ::= int | 𝐴
𝑞
−→ 𝐵 | T𝑞 (𝐴) | 𝐴 × 𝐵 | L𝑞 ( ®𝑝,𝐴)

The variables 𝑞 and ®𝑝 stand for cost annotations. More precisely,
®𝑝 stands for list potential and actually represents a vector of cost
annotations, ®𝑝 = (𝑝1, . . . , 𝑝𝑛).

The annotation 𝑞 on function types is an upper bound on the
cost of applying that function. Thunk types represent a delayed
evaluation of an expression of type A and are also annotated with
an upper bound on the cost of evaluating the delayed expression.
List types are annotated with a simple annotation 𝑞, representing
the cost of evaluating one constructor of the list, and a vector
annotation ®𝑝 , which represents the potential associated with that
list. The primitive type int is free of cost annotations and type pairs
is a pair of any type.

We define the additive shift of a vector of coefficients ®𝑝 as Hoff-
mann (see section 2.4):

⊳(𝑝1, 𝑝2, . . . , 𝑝𝑛) = (𝑝1 + 𝑝2, 𝑝2 + 𝑝3, . . . , 𝑝𝑛−1 + 𝑝𝑛, 𝑝𝑛)

We also define an addition operation on vectors of coefficients of
equal length:

(𝑝1, . . . , 𝑝𝑛) + (𝑞1, . . . , 𝑞𝑛) = (𝑝1 + 𝑞1, 𝑝2 + 𝑞2, . . . , 𝑝𝑛 + 𝑞𝑛)

In Fig. 4 and Fig. 5 we present the type rules used to derive these
types and their cost annotations.

4.2 The sharing relation
Before we go on to explain how the type system works, it is impor-
tant to explain the concept of sharing: 𝐴 / {𝐵1, . . . , 𝐵𝑛}. In short,
sharing allows the potential of a type 𝐴 to be distributed amongst
other types {𝐵1, . . . , 𝐵𝑛}. The rules presented in Fig. 6 illustrate how
the sharing relation applies depending on the types it is used on,
and they follow very strictly the construction and explanation of
the sharing rules presented in [12]. The main difference is present
in the rule regarding list types (because Jost et al. system deals with
possibly recursive algebraic data types, and not only lists). In our
sharing relation, the Sharelist rule allows for the potential of a
certain list 𝐴, to be shared amongst types 𝐵𝑖 .

4.3 Subtyping
The subtyping relation is a particular case of sharing. It allows us
to relax the annotations associated to a type by requiring them
to be greater or equal than those of that type. We say a type 𝐴1
is a subtype of a type 𝐴 when 𝐴1 <: 𝐴, this relation could also be
represented as 𝐴1 / {𝐴,𝐴′}, where 𝐴′ is a type with annotations

0
0
𝑛 : int

(Const)

𝑥 :T𝑝 (𝐴) 0
𝑝
𝑥 : 𝐴

(Var)

Γ
𝑧′
𝑧
𝑒 : 𝐴

𝑝
−→ 𝐶

Γ, 𝑦 : 𝐴
𝑧′
𝑧+𝑝

𝑒 𝑦 :𝐶
(App)

Γ, 𝑥 :𝐴 0
𝑝
𝑒 : 𝐶 𝑥 ∉ Γ Γ / {Γ, Γ}

Γ 0
0
𝜆𝑥.𝑒 : 𝐴

𝑝
−→ 𝐶

(Abs)

𝐴 / {𝐴,𝐴′} 𝑥 ∉ {Γ,Δ} 𝑒1 is not a constructor
Γ, 𝑥 : T0 (𝐴′) 0

𝑝
𝑒1 : 𝐴 Δ, 𝑥 : T𝑝 (𝐴)

𝑧′
𝑧
𝑒2 : 𝐶

Γ,Δ
𝑧′
𝑧+1 let 𝑥 = 𝑒1 in 𝑒2 : 𝐶

(Let)

→
𝑞 = (𝑞1, . . . , 𝑞𝑘 ) 𝐴 = L𝑝 ( ®𝑞, 𝐵) 𝐴 / {𝐴, 𝐴′}

Γ, 𝑥 : T0 (𝐴′) 0
0 cons(𝑥ℎ, 𝑥𝑡 ) : 𝐴 Δ, 𝑥 : T0 (𝐴)

𝑧′
𝑧
𝑒 : 𝐶

Γ,Δ
𝑧′

𝑧+1+𝑞1
let 𝑥 = cons(𝑥ℎ, 𝑥𝑡 ) in 𝑒 : 𝐶

(Letcons)

𝑥1:𝐴1, 𝑥2:𝐴2 0
0 (𝑥1, 𝑥2) : 𝐴1 ×𝐴2

(Pair)

0
0 nil : L𝑞 ( ®𝑝,𝐴)

(Nil)

𝑥ℎ :𝐵, 𝑥𝑡 :T𝑝 (L𝑝 ( ®⊳𝑞, 𝐵)) 0
0 cons(𝑥ℎ, 𝑥𝑡 ) : L𝑝 ( ®𝑞, 𝐵)

(Cons)

Γ
𝑧′
𝑧
𝑒0 : 𝐴1 ×𝐴2 Δ, 𝑥1 : 𝐴1, 𝑥2 : 𝐴2 𝑧′′

𝑧′
𝑒1 : 𝐶

Γ,Δ
𝑧′′
𝑧 match 𝑒0 with (𝑥1, 𝑥2) -> 𝑒1 : 𝐶

(Match-P)

®𝑞 = (𝑞1, . . . , 𝑞𝑘 )
Γ
𝑧′
𝑧
𝑒0 : L𝑝 ( ®𝑞,𝐴)

Δ, 𝑥ℎ : 𝐴, 𝑥𝑡 : T𝑝 (L𝑝 ( ®⊳𝑞,𝐴))
𝑧′′
𝑧′+𝑞1

𝑒1 : 𝐶
Δ

𝑧′′
𝑧′
𝑒2 : 𝐶

Γ,Δ
𝑧′′
𝑧 match 𝑒0 with cons(𝑥ℎ, 𝑥𝑡 ) -> 𝑒1 | nil -> 𝑒2 : 𝐶

(Match-L)

Figure 4: Syntax directed type rules
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Γ, 𝑥 :T𝑞0 (𝐴)
𝑝′
𝑝
𝑒: 𝐶

Γ, 𝑥 :T𝑞0+𝑞1 (𝐴)
𝑝′
𝑝+𝑞1

𝑒: 𝐶
(Prepay)

Γ
𝑝′
𝑝
𝑒:𝐶

Γ, 𝑥 :𝐴
𝑝′
𝑝
𝑒: 𝐶

(Weak)

Γ, 𝑥 :𝐴1, 𝑥 :𝐴2 𝑝′
𝑝
𝑒: 𝐶 𝐴 / {𝐴1, 𝐴2}

Γ, 𝑥 :𝐴
𝑝′
𝑝
𝑒: 𝐶

(Share)

Γ
𝑝′
𝑝
𝑒: 𝐴 𝑞 ≥ 𝑝 𝑞 − 𝑝 ≥ 𝑞′ − 𝑝 ′

Γ
𝑞′
𝑞
𝑒: 𝐴

(Relax)

Γ
𝑝′
𝑝
𝑒: 𝐴 𝐴 <: 𝐵

Γ
𝑝′
𝑝
𝑒: 𝐵

(Subtype)

Γ, 𝑥 :𝐵
𝑝′
𝑝
𝑒: 𝐶 𝐴 <: 𝐵

Γ, 𝑥 :𝐴
𝑝′
𝑝
𝑒: 𝐶

(Supertype)

Figure 5: Structural type rules

greater than or equal to zero. We can say that subtyping has the
following properties:

int <: int

T𝑞1 (𝐴1) <: T𝑞2 (𝐴2) if 𝑞1 ≥ 𝑞2 and 𝐴1 <: 𝐴2
𝐴1 ×𝐴2 <: 𝐵1 × 𝐵2 if 𝐴1 <: 𝐵1 and 𝐵1 <: 𝐵2

𝐴1
𝑞1−−→ 𝐵1 <: 𝐴2

𝑞2−−→ 𝐵2 if 𝑞1 ≥ 𝑞2 and 𝐴1 <: 𝐴2 and 𝐵2 <: 𝐵1

L𝑞1 ( ®𝑝1, 𝐴1) <: L𝑞2 ( ®𝑝2, 𝐴2) if 𝑞1 ≥ 𝑞2 and ®𝑝1 ≥ ®𝑝2 and 𝐴1 <: 𝐴2

We say ®𝑞 ≥ ®𝑝 if, | ®𝑞 | = | ®𝑝 | = 𝑛 and ∀1≤𝑖≤𝑛, 𝑞𝑖 ≥ 𝑝1.

4.4 Type System
The type rules required for our analysis are presented in Fig. 4.
These rules are complemented with the structural rules in Fig. 5,
which introduce some flexibility to our analysis in ways that we
will later explain. Our judgements have the form Γ 𝑝

𝑝′
𝑒 : 𝐴 and

can be read as follows: considering a typing context Γ, and with
𝑝 resource units available, we can derive the annotated type 𝐴
for expression 𝑒 , leaving 𝑝 ′ resource units available. These rules
result from combining the ones presented in the two previous
systems [7, 12] While many rules are identical to previous work,
there are important differences in rules that concern the use of
potential, namely, Letcons, Cons and Match.

𝐴 / ∅
(ShareEmpty)

𝐴 / {𝐴1, . . . , 𝐴𝑛} 𝐵 / {𝐵1, . . . , 𝐵𝑛}
𝐴 × 𝐵 / {𝐴1 × 𝐵1, . . . , 𝐴𝑛 × 𝐵𝑛}

(SharePair)

𝐵𝑖 = L𝑝𝑖 ( ®𝑞𝑖 , 𝐴𝑖 ) 𝐴 / {𝐴1, . . . , 𝐴𝑛}
→
𝑞 ≥ ∑𝑛

𝑖=1 ®𝑞𝑖 𝑝𝑖 ≥ 𝑝

L𝑝 ( ®𝑞,𝐴) / {𝐵1, . . . , 𝐵𝑛}
(ShareList)

𝐴𝑖 / {𝐴} 𝐶 / {𝐶𝑖 } 𝑞𝑖 ≥ 𝑝 (1 ≤ 𝑖 ≤ 𝑛)

𝐴
𝑝
−→ 𝐶 / {𝐴1

𝑞1−−→ 𝐶1, . . . , 𝐴𝑛
𝑞𝑛−−→ 𝐶𝑛}

(ShareFun)

𝐴 / {𝐴1, . . . , 𝐴𝑛} 𝑞𝑖 ≥ 𝑝 (1 ≤ 𝑖 ≤ 𝑛)
T𝑝 (𝐴) / {T𝑞1 (𝐴1), . . . , T𝑞𝑛 (𝐴𝑛)}

(ShareThunk)

Γ / ∅
(ShareEmptyCtx)

𝐴 / {𝐵1, . . . , 𝐵𝑛} Γ / Δ

𝑥 : 𝐴, Γ / (𝑥 : 𝐵1, . . . , 𝑥 : 𝐵𝑛, Δ)
(ShareCtx)

Figure 6: Sharing rules

We now describe each rule informally, focusing on on how
type annotations express resource usage. Recall that we consider
cost bounds for the number of allocations, i.e. the number of let-
expressions evaluated.

Rule Const does not consume any resources as evaluating a
primitive value incurs no additional allocations.

Rule Var deals with the elimination of a thunk type, so it is
necessary to pay for the cost associated with that thunk.

Rules Let and Letcons deal with the allocation of a thunk for
subexpressions. Both rules require at least 1 unit to be available
(corresponding to the newly allocated thunk) and recursive use of
the bound variable 𝑥 is allowed. Note also that the side condition
𝐴 / {𝐴, . . . , 𝐴′} that guarantees that the type 𝐴′ does not have
potential is required to ensure soundness (so that self-referencing
structures are assigned zero potential [12]). Rule Let allows the cost
of 𝑒1 to be paid for only once, even in the case of self-reference; the
intuition for this is that any productive uses of the bound variable
in self-referencing definitions must be to an evaluated form [19].

Rule Letcons formalises the fact that one has to pay for the
allocation of a new list constructor, which requires paying for the
potential associated with the new list. We do so by requiring 𝑞1
units to be available and complementing it with rule Cons, to be
applied on the first expression 𝑒1, which must be a list constructor.
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Rules Cons and Pair are simple references to a constructor so
they do not consume any resources. In rule Cons we do require the
tail of the list to be annotated with the additive shift of its potential,
complementing rule Letcons.

Rule App requires that the cost associated with a function is paid
for each time the function is applied.

Rule Abs captures the cost of the expression in the type annota-
tion of the function.

Rule Match-L shows how to use the potential of a list to pay
for resource consumption. To do so, we require that the branch
matching with the list constructor gains the excess potential 𝑞1.
We also annotate the tail of the list with the additive shift of the
list potential, to allow future recursive calls or calls to auxiliary
functions. This rule requires that both branches are of the same type
𝐶 and that the amount of resources 𝑧′′, available after the evaluation
of each branch, is the same, which may require relaxation of the
costs (See structural rule Relax in Fig. 5).

Rule Match-P deals with pattern matching against a pair con-
structor. Like in Match-P, we require that both branches are of the
same type 𝐶 and that the amount of resources 𝑧′′ is the same.

5 WORKED EXAMPLES
To better understand how the analysis works, let us take a look at
some examples.

Example 5.1. Let us consider function pairs in Fig. 7. This function
is a translation into SLFL of the example from Section 1. Function
pairs takes a list as an argument and computes a list of pairs that are
two-element sub-lists the given list, while function attach combines
each element of a list with the first argument. Note that the auxiliary
function app′ is the translation of list append with the argument
order flipped, i.e. app′ = flip (++); this is done so that recursion
is over the second argument and the type rules allow assigning
potential to this argument.1.

To facilitate the presentation of annotated type assignments,
we have added potential annotations to list variables in Fig. 7: 𝑙 ®𝑞
means that variable 𝑙 has type L0 ( ®𝑞, 𝐵) for some 𝐵, i.e. 𝑙 is a list
with potential ®𝑞 and zero thunk cost for the spine. Since we expect
function pairs has quadratic cost on the argument list length, we
annotate it with pair of coefficients ®𝑞 = (𝑞1, 𝑞2). Conversely, we
expect functions attach and app′ to have linear cost, hence we
annotated these with a single coefficient.

Function app′ is defined by structural recursion on the second
argument 𝑙2 and uses a single let-expression for each constructor
in the argument; this means that 𝑙2 should have a potential of at
least 1 resource unit for each constructor. In attach we can see two
let-expressions being used, which means the input potential should
be at least 2. However, when analysing the body of function pairs,
we can see that the output of attach is also the second input of
app’. This means that to be able to type pairs, the output of attach
must be compatible with the input of app’, and because of that, its
potential should be at least 1. Because the output potential needs
to be accounted for in the input, we need to add it to the potential
2 we mentioned before.

1In particular, the side condition for rule Abs requires that the typing context Γ has
no potential.

attach = 𝜆𝑛. 𝜆𝑙 .match 𝑙𝑘1 with
nil->nil
cons(𝑥, 𝑥𝑠 𝑗1 )-> let 𝑝 = (𝑥, 𝑛); 𝑓 = attach 𝑛 𝑥𝑠𝑛1

in cons(𝑝, 𝑓 )

app′ = 𝜆𝑙1 . 𝜆𝑙2 .match 𝑙𝑣1
2 with

nil->𝑙1
cons(𝑥, 𝑥𝑠𝑤1 )-> let 𝑓 = app′ 𝑙1 𝑥𝑠𝑚1

in cons(𝑥, 𝑓 )

pairs = 𝜆𝑙 .match 𝑙 (𝑞1,𝑞2) with
nil->nil
cons(𝑥, 𝑥𝑠 (𝑟1,𝑟2) )-> let 𝑓1 = pairs 𝑥𝑠 (𝑠1,𝑠2) ;

𝑓2 = attach 𝑥 𝑥𝑠 (𝑝1,𝑝2)

in app′ 𝑓1 𝑓2

Figure 7: Translation of the pairs function and auxiliary def-
initions into SLFL.

Using the annotations for attach and app′ in Fig. 7, we derive
the following constraints:

𝑗1 = 𝑘1 (additive shift)
𝑗1 = 𝑛1 (share)
𝑛1 = 𝑘1 (recursive call)
𝑘1 ≥ 2 + 𝑣1

(two let-expressions plus the potential of the output of attach/input
of app’)

𝑤1 = 𝑣1 (additive shift)
𝑤1 =𝑚1 (share)
𝑚1 = 𝑣1 (recursive call)
𝑣1 ≥ 1 (single let-expression)

We can solve this system of equations with 𝑣1 = 𝑚1 = 𝑤1 = 1
and 𝑞1 = 𝑟1 = 𝑠1 = 3 and derive the following annotated types:

app′ : T0 (L0 (0, 𝐵 × 𝐵)) 0−→ T0 (L0 (1, 𝐵 × 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)

attach : 𝐵 0−→ T0 (L0 (3, 𝐵)) 0−→ L0 (1, 𝐵 × 𝐵)

To better understand how the analysis works, we are going to
illustrate the inference steps with more detail. The rules are applied
in a very straightforward way, but it is important to pay attention
to how resource usage is passed from and onto the judgements. Let
us start by assuming:

Γ = app′ : T0 (L0 (0, 𝐵 × 𝐵)) 0−→ T0 (L0 (1, 𝐵 × 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)

Σ = attach : 𝐵 0−→ T0 (L0 (3, 𝐵)) 0−→ L0 (1, 𝐵 × 𝐵)

We will derive a type for pairs as follows:

Θ = pairs : T0 (L0 ((𝑞1, 𝑞2), 𝐵)︸           ︷︷           ︸
𝐿𝐼𝑛

)
𝑝
−→ L0 ((0, 0), 𝐵 × 𝐵)︸              ︷︷              ︸

𝐿𝑂𝑢𝑡

For simplicity, sometimes we omit certain elements of the type
context that are not needed for the derivation in question. We also

8
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divide the definition of pairs into two sub-expressions as shown:

pairs = 𝜆𝑙 .

𝑒1︷                                                   ︸︸                                                   ︷
match 𝑙 with

nil->nil

cons(𝑥, 𝑥𝑠)->

𝑒2︷                     ︸︸                     ︷
let 𝑓1 = pairs 𝑥𝑠 ;

𝑓2 = attach 𝑥 𝑥𝑠
in app′ 𝑓1 𝑓2

We start by stating the typing obligation for the outer part of
the recursive definition:

Γ, Σ 0
1 let 𝑝𝑎𝑖𝑟𝑠 = 𝜆𝑙 . 𝑒1 in 𝑝𝑎𝑖𝑟𝑠 :T0 (𝐿𝐼𝑛)

𝑝
−→ 𝐿𝑂𝑢𝑡 (1)

By rule Let, we need to prove:

Γ, Σ,Θ 0
0
𝜆𝑙 . 𝑒1 : T0 (𝐿𝐼𝑛)

𝑝
−→ 𝐿𝑂𝑢𝑡 (2)

The later follows from rule Abs if we prove:

Γ, Σ,Θ, 𝑙 :T0 (𝐿𝐼𝑛) 0
𝑝
𝑒1 : 𝐿𝑂𝑢𝑡 (3)

By rule Match-L we get three new obligations; the first two corre-
spond to the scrutinised list and the right-hand side of nil-case:

𝑙 :T0 (𝐿𝐼𝑛) 0
0
𝑙 :𝐿𝐼𝑛 (Var)

0
0 nil:𝐿𝑂𝑢𝑡 (Nil)

The remaining case for non-empty lists is:

Γ, Σ,Θ, 𝑥 :𝐵, 𝑥𝑠:T0 (L0 ((𝑞1 + 𝑞2, 𝑞2), 𝐵)) 0
𝑞1
𝑒2:𝐿𝑂𝑢𝑡 (4)

We now apply the Share rule to distribute the potential of the
tail 𝑥𝑠 for the two uses in right-hand side expression 𝑒2. The side
condition is:

L0 ((𝑞1 + 𝑞2, 𝑞2), 𝐵) / {L0 ((𝑝1, 𝑝2), 𝐵), L0 ((𝑠1, 𝑠2), 𝐵)} (5)

for some annotations 𝑝1, 𝑝2, 𝑠1, 𝑠2 such that 𝑞1 +𝑞2 ≥ 𝑝1 + 𝑠1 ∧𝑞2 ≥
𝑝2 + 𝑠2. The two contexts are:

Δ1 = 𝑥𝑠 :T0 (L0 ((𝑠1, 𝑠2), 𝐵)) (for the recursive call to pairs)

Δ2 = 𝑥𝑠 :T0 (L0 ((𝑝1, 𝑝2), 𝐵)) (for the call to attach)

We can now type the recursive right-hand side 𝑒2:

Γ, Σ,Θ, 𝑥 :𝐵, Δ1,Δ2 0
2 let 𝑓1 = pairs 𝑥𝑠 ;

𝑓2 = attach 𝑥 𝑥𝑠
in app′ 𝑓1 𝑓2

: 𝐿𝑂𝑢𝑡 (6)

The cost annotation on the turnstile correspond to the two uses of
let for 𝑓1 and 𝑓2, as will be confirmed from the remaining derivation.
We continue by typing the bound sub-expressions:

Θ,Δ1 0
0 pairs 𝑥𝑠 : L0 ((0, 0), 𝐵 × 𝐵) (7)

Σ,Δ2, 𝑥 :𝐵 0
0 attach 𝑥 𝑥𝑠 : L0 (0, 𝐵 × 𝐵) (8)

Judgments (7) and (8) follow immediately from Var and App. Note
that, while the annotations on the turnstile are zero, the uses of
App impose constraints on the annotations in Δ1 and Δ2: 𝑝1 = 3,
𝑝2 = 0, 𝑠1 = 𝑞1 and 𝑠2 = 𝑞2. It remains to type the inner expression:

Δ2, Γ,Θ, 𝑓1:T0 (𝐿𝑂𝑢𝑡 ) 0
1 let 𝑓2 = 𝑎𝑡𝑡𝑎𝑐ℎ 𝑥 𝑥𝑠 in 𝑎𝑝𝑝 ′ 𝑓1 𝑓2:𝐿𝑂𝑢𝑡

(9)

This follows from the rules Var and App twice:
Γ, 𝑓1:T0 (𝐿𝑂𝑢𝑡 ), 𝑓2:T0 (L0 (1, 𝐵 × 𝐵)) 0

0
𝑎𝑝𝑝 ′ 𝑓1 𝑓2:𝐿𝑂𝑢𝑡 (10)

With this detailed illustration it is easy to see where the con-
straints mentioned before come from. From (7), (8) and (9) we get
𝑝1 = 3, 𝑝2 = 0, 𝑠1 = 𝑞1 and 𝑠2 = 𝑞2. From (4) and (6) we get 𝑞1 ≥ 2.
From (5) we get that 𝑞1 + 𝑞2 = 𝑠1 + 𝑝1 and 𝑞2 = 𝑠2 + 𝑝2. These con-
straints admit the solution 𝑝1 = 𝑠2 = 𝑞2 = 3, 𝑠1 = 𝑞1 = 2, 𝑝2, 𝑝 = 0,
giving us the following typing:

pairs : T0 (L0 ((2, 3), 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)
This typing ensures that pairs can be applied to an input list 𝑙
with potential 2 × |𝑙 | + 3 ×

( |𝑙 |
2
)

leaving no leftover potential. This
corresponds to a quadratic cost bound of 2 × 𝑛 + 3 ×

(𝑛
2
)
+ 0 =

2×𝑛+ 3
2 ×𝑛× (𝑛−1) expressed as a function of the input list length

𝑛 = |𝑙 |.

Example 5.2. In the previous derivation we choose zero annota-
tions for the thunks in the list spine; this corresponds to deriving
a cost bound for the case where the spine of the input list is fully
evaluated. Let us now consider the case where the input list 𝑙 is
annotated with L1 ((𝑞1, 𝑞2), 𝐵), i.e., evaluating each list successive
constructor costs 1.

Because of the rule Match, when we introduce the tail element
of the list to our environment it will be associated with a unitary
cost thunk. We can use the structural rule Prepay to pay for its
thunk cost only once, rather than for each use, before using Share
to duplicate it. Because the rule Prepay is structural, we could have
chosen not to use it and the inference would still have obtained an
acceptable but less precise type.

Again, we are going to illustrate the inference steps with more
detail. Note that, again, we omit certain elements of the type context
that are not needed for the derivation in question. The expression
is divided into 3 sub-expressions as illustrated before.

As before we assume annotated type for the auxiliary functions:2

Γ = app′ : T0 (L0 (0, 𝐵 × 𝐵)) 0−→ T0 (L0 (1, 𝐵 × 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)

Σ = attach : 𝐵 0−→ T0 (L1 (4, 𝐵)) 0−→ L0 (1, 𝐵 × 𝐵)
let us derive a type for pairs as follows:

Θ = pairs : T𝑝 (L1 ((𝑞1, 𝑞2), 𝐵)︸           ︷︷           ︸
𝐿𝐼𝑛

) 𝑎−→ L0 ((0, 0), 𝐵 × 𝐵)︸              ︷︷              ︸
𝐿𝑂𝑢𝑡

The derivation is very similar to the previous example. It is when
we reach the point of sharing the potential of the list that the main
difference appears.

Γ, Σ,Θ, 𝑥 :𝐵, 𝑥𝑠:T𝑝 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵)) 0
𝑞1
𝑒2:𝐿𝑂𝑢𝑡 (11)

Because this time the list is associated with a unitary cost thunk
rather than a 0 annotated thunk, if we applied the rule Share as
before, that cost would be replicated for both lists, meaning that we
would have to pay for both uses. To prevent this from happening,
we use the structural rule Prepay right before we use Share. We
can see how the lists that result from sharing end up associated
with a 0 annotated thunk:
2Note that we need a slightly different annotation for the input list of attach.
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Γ, Σ, 𝑥 :𝐵, 𝑥𝑠:T1 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵)) 0
3
𝑒2:𝐿𝑂𝑢𝑡 (Prepay)

Γ, Σ, 𝑥 :𝐵, 𝑥𝑠:T0 (L1 ((𝑞1, 𝑞2), 𝐵)) 0
2
𝑒2:𝐿𝑂𝑢𝑡 (Share)

The use of Share creates the following condition:
T0 (L1 ((𝑞1 + 𝑞2, 𝑞2), 𝐵)) / {T0 (L1 ((𝑝1, 𝑝2), 𝐵)), T0 (L1 ((𝑠1, 𝑠2), 𝐵))}

(12)
Note that, although the outermost thunks have been reduced by
the use of Prepay, the list spine thunks still cost 1. This is because
sharing distributes list potential but not thunk costs (See Fig. 6).

The remaining derivation is:

Γ, Σ, 𝑥 :𝐵, 𝑥𝑠:T0 (L1 ((𝑝1, 𝑝2), 𝐵)), 𝑥𝑠:T0 (L1 ((𝑠1, 𝑠2), 𝐵)) 0
2
𝑒2:𝐿𝑂𝑢𝑡

(13)
The main constraints that result from this derivation are very

similar to the ones from the example above, with the exception of
𝑝1 = 4 (because of the different type assumption for attach) and
𝑞1 ≥ 3 (because of the use of Prepay after (13)). These constraints
can be solved by 𝑝1 = 𝑠2 = 𝑞2 = 4, 𝑠1 = 𝑞1 = 3, 𝑝2 = 0, 𝑝 = 0, giving
us the type

pairs : T0 (L1 ((3, 4), 𝐵)) 0−→ L0 (0, 𝐵 × 𝐵)
This type corresponds to a cost bound of 3 × 𝑛 + 4 ×

(𝑛
2
)
+ 0 =

3 × 𝑛 + 2 × 𝑛 × (𝑛 − 1) for list of length 𝑛.
Comparing this result the bound obtained for the previous ex-

ample, we note an over-estimation of the cost: we would expect
paying only extra 𝑛 units for evaluating a list spine of length 𝑛;
instead the difference between the bounds is 3 × 𝑛 + 2 × 𝑛 × (𝑛 −
1) − ( 3

2 × 𝑛 × (𝑛 − 1)) = 𝑛 + 1
2 × 𝑛 × (𝑛 − 1).

The overestimation results from the sharing of the list tail 𝑥𝑠 be-
tween pairs and attach: the two uses do not account for the repeated
evaluation of 𝑥𝑠 . Note, however, that simply changing the sharing
rule to distribute the list spine costs, i.e. sharing 𝑥𝑠:T0 (L1 (. . ., 𝐵))
to 𝑥𝑠1:T0 (L0 (. . ., 𝐵)) and 𝑥𝑠2:T0 (L1 (. . ., 𝐵)) would, in general, be
unsound because we may discard the variable 𝑥𝑠2 and use only 𝑥𝑠1,
thus underestimating the cost.

6 FINAL REMARKS AND FURTHER WORK
In this paper, we present a first extension of amortised resource
analysis for higher-order lazy functional programs from linear to
polynomial bounds. We show how we combine main concepts
from previous systems in order to reach this goal: the usage of
thunk types and prepaying for lazy evaluation and the additive
shift for polynomial potential. Although our type system has been
successfully applied to some small examples. We are developing a
prototype implementation, which we believe will be an advantage
in the analysis of larger examples.

We do not have a formal proof of soundness yet, thus, an obvious
next step would be to develop a soundness proof; previous work
in [12] could be adapted to the polynomial potential case.

Another limitation of our analysis as presented here is the fact
that it does not allow resource polymorphic recursion, i.e., recursive
calls with different resource annotations; as in the strict setting,
we expect that this will cause many programs that are not in tail-
recursive form to fail to admit an annotated type [3, 7]. For example,
if we consider our definition of pairs and change the order in which

the arguments are sent to app’, the inference of annotations even-
tually reaches some inconsistency. This problem was addressed by
Hoffmann in the strict setting by using a cost-free resource metric
that assigns zero costs for each evaluation step and extending the
algorithmic type rules with resource polymorphic recursion. We
believe that the same approach could be used in our system.

Example 5.2 illustrated a cost overestimation caused by duplica-
tion of thunk costs inside data structures. We leave investigating
mitigations for this issue as future work.
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Abstract
When developing a Haskell IDE we hit upon an idea – why
not base an IDE on an build system? In this paper we’ll
explain how to go from that idea to a usable IDE, including
the difficulties imposed by reusing a build system, and those
imposed by technical details specific to Haskell. Our design
has been successful, and hopefully provides a blue-print for
others writing IDEs.

1 Introduction
Writing an IDE (Integrated Development Environment) is
not as easy as it looks. While there are thousands of papers
and university lectures on how to write a compiler, there is
much less written about IDEs ([1] is one of the exceptions).
We embarked on a project to write a Haskell IDE (originally
for the GHC-based DAML language [4]), but our first few
designs failed. Eventually, we arrived at a design where the
heavy-lifting of the IDE was performed by a build system.
That idea turned out to be the turning point, and the subject
of this paper.

Over the past two years we have continued development
and found that the ideas behind a build system are both
applicable and natural for an IDE. The result is available as
a project named ghcide1, which is then integrated into the
Haskell Language Server2.

In this paper we outline the core of our IDE §2, how it
is fleshed out into an IDE component §3, and then how we
build a complete IDE around it using plugins §4. We look
at where the build system both helps and hurts §5. We then
look at the ongoing and future work §6 before concluding
§7.
1https://github.com/digital-asset/Ghcide
2https://github.com/haskell/haskell-language-server

IFL’20, September 2–4, 2020, Online
2020.

2 Design
In this section we show how to implement an IDE on top of
a build system. First we look at what an IDE provides, then
what a build system provides, followed by how to combine
the two.

2.1 Features on an IDE
To design an IDE, it is worth first reflecting on what features
an IDE provides. In our view, the primary features of an IDE
can be grouped into three capabilities, in order of priority:

Errors/warnings The main benefit of an IDE is to get
immediate feedback as the user types. That involves
producing errors/warnings on every keystroke. In a
language such as Haskell, that involves running the
parser and type checker on every keystroke.

Hover/goto definition The next most important fea-
ture is the ability to interrogate the code in front of
you. Ways to do that include hovering over an iden-
tifier to see its type, and clicking on an identifier to
jump to its definition. In a language like Haskell, these
features require performing name resolution.

Find references Finally, the last feature is the ability to
find where a symbol is used. This feature requires an
understanding of all the code, and the ability to index
outward.

The design of Haskell is such that to type check a module
requires to get its contents, parse it, resolve the imports, type
check the imports, and only then type check the module itself.
If one of the imports changes, then any module importing it
must also be rechecked. That process can happen once per
user character press, so is repeated incredibly frequently.

Given the main value of an IDE is the presence/absence of
errors, the way such errors are processed should be heavily
optimised. In particular, it is important to hide/show an error
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as soon as possible. Furthermore, errors should persist until
they have been corrected.

2.2 Features of a build system
The GHC API is a Haskell API for compiling Haskell files,
using the same machinery as the GHC compiler [17]. There-
fore, to integrate smoothly with the GHC API, it is important
to choose a build system that can be used as a Haskell library.
Furthermore, since the build graph is incredibly dynamic,
potentially changing on every key stroke, it is important to
be a monadic build system [12, §3.5]. Given those constraints,
and the presence of an author in common, we chose to use
Shake [11].

The Shake build system is fully featured, including paral-
lelism, incremental evaluation and monadic dependencies.
While it has APIs to make file-based operations easy, it is
flexible enough to allow defining new types of rules and
dependencies which do not use files. At its heart, Shake is a
key/value mapping, for many types of key, where the type
of the value is determined by the type of the key, and the
resulting value may depend on many other keys.

2.3 An IDE on a build system
Given the IDE and build system features described above,
there are some very natural combinations. The monadic
dependencies are a perfect fit. Incremental evaluation and
parallelism provide good performance. But there are a num-
ber of points of divergence which we discuss and overcome
below.

2.3.1 Restarting. A Shake build can be interrupted at any
point, and we take the approach that whenever a file changes,
e.g. on every keystroke, we interrupt the running Shake build
and start a fresh one. While that approach is delightfully
simple, it has some problems in practice, and is a significant
divergence from the way Shake normally works.

Firstly, we interrupt using asynchronous exceptions [14].
Lots of Haskell code isn’t properly designed to deal with
such exceptions. We had to fix a number of bugs in Shake
and other libraries and are fairly certain some still remain.

Secondly, when interrupting a build, some things might be
in progress. If type checking a big module takes 10 seconds,
and the user presses the key every 1 second, it will keep
aborting 1 second through and never complete. In practice,
interrupting hasn’t been a significant hurdle, although we
discuss possible remedies in §5.3.

2.3.2 Errors. In normal Shake execution an error is thrown
as an exception which aborts the build. However, for an IDE,
errors are a common and expected state. Therefore, we want
to make errors first class values. Concretely, instead of the
result of a rule such as type checking being a type checked
module, we use:
([Diagnostic], Maybe TcModuleResult)

Where TcModuleResult is the type checked module result
as provided by the GHC API. The list of diagnostics stores
errors and warnings which can occur even if type checking
succeeded. The second component represents the result of
the rule with Nothing meaning that the rule could not be
computed either because its dependencies failed, or because
it failed itself.

In addition, when an error occurs, it is important to track
which file it belongs to, and to determine when the error goes
away. To achieve that, we make all Shake keys be a pair of a
phase-specific type alongside a FilePath. So a type-checked
value is indexed by:
(TypeCheck, FilePath)

where TypeCheck is isomorphic to ().
The second component of the key determines the file the

error will be associated with in the IDE. We cache the error
per FilePath and phase, and when a TypeCheck phase for a
given file completes, we overwrite any previous type check-
ing errors that file may have had. By doing so, we can keep
an up-to-date copy of what errors are known to exist in a
file, and know when they have been resolved.

2.3.3 Performance. Shake runs rules in a random order
[11, §4.3.2]. But as rule authors, we know that some steps
like type checking are expensive, while others like finding
imports (and thus parsing) cause the graph to fan out. Using
that knowledge, we can deprioritise type checking to reduce
latency and make better use of multicore machines. To enable
that deprioritisation, we added a reschedule function to
Shake, that reschedules a task with a lower priority.

2.3.4 Memory only. Shake usually operates as a tradi-
tional build system, working with files and commands. As
standard, it stores its central key/value map in a journal on
disk, and rereads it afresh on each run. That caused two
problems:

1. Reading the journal each time can take as long as 0.1s.
While that is nearly nothing for a traditional build, for
an IDE that is excessive. We solved this problem by
adding a Database module to Shake that retains the
key/value map in memory.

2. Shake serialises all keys and values into the journal,
so those types must be serializable. While adding a
memory-only journal was feasible, removing the seri-
alisation constraints and eliminating all serialisation
would require more significant modifications. There-
fore we wrote serialisation methods for all the keys.
However, values are often GHC types, and contain
embedded types such as IORef, making it difficult to
serialise them. To avoid the need to use value serialisa-
tion, we created a shadow map containing the actual
values, and stored dummy values in the Shake map.

The design of Shake is for keys to accumulate and never be
removed. However, as the IDE is very dynamic, the relevant
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set of keys may change regularly. Fortunately, the Shake
portion of the key/value is small enough not to worry about,
but the shadow map should have unreachable nodes removed
in a garbage-collection like process (see §5.6).

2.4 Layering on top of Shake
In order to simplify the design of the rest of the system, we
built a layer on top of Shake, which provides the shadow
map, the keys with file names, the values with pairs and di-
agnostics etc. By building upon this layer we get an interface
that more closely matches the needs of an IDE. Using this
layer, we can define the type checking portion of the IDE as:

type instance RuleResult TypeCheck =
TcModuleResult

typeCheck = define $ \TypeCheck file -> do
pm <- use_ GetParsedModule file
deps <- use_ GetDependencies file
tms <- uses_ TypeCheck $

transitiveModuleDeps deps
session <- useNoFile_ GhcSession
liftIO $ typecheckModule session tms pm

Reading this code, we use the RuleResult type family [2]
to declare that the TypeCheck phase returns a value of type
TcModuleResult. We then define a rule typeCheck which
implements the TypeCheck phase. The actual rule itself is
declared with define, taking the phase and the filename.
First, it gets the parsed module, then the dependencies of the
parsed module, then the type checked results for the transi-
tive dependencies. It then uses that information along with
the GHC API session to call a function typecheckModule.
To make this code work cleanly, there are a few key functions
we build upon:

• We use define to define types of rule, taking the phase
and the filename to operate on.

• We define use and uses which take a phase and a file
(or lists thereof) and return the result.

• On top of use we define use_ which raises an excep-
tion if the requested rule failed. In define we catch
that exception and switch it for ([], Nothing) to
indicate that a dependency has failed.

• Some items don’t have a file associated with them,
e.g. there is exactly one GHC session, so we have
useNoFile (and the underscore variation) for these.

• Finally, the GHC API can be quite complex. There
is a GHC provided typecheckModule, but it throws
exceptions on error, prints warnings to a log, returns
too much information for our purposes and operates
in the GHC monad. Therefore, we wrap it into a “pure”
API (where the output is based on the inputs), with
the signature:
typecheckModule

:: HscEnv
-> [TcModuleResult]
-> ParsedModule
-> IO ([Diagnostic], Maybe TcModuleResult)

2.5 Error tolerance
An IDE needs to be be tolerant to errors in the source code,
and must continue to aid the developer while the source
code is incomplete and does not parse or typecheck, as this
state is the default while source code it is being edited. We
employ a variety of mechanisms to achieve this goal:

• GHC’s -fdefer-type-errors and
-fdefer-out-of-scope-variables flags turn type er-
rors and out of scope variable errors into warnings,
and let it proceed to typecheck and return usable arti-
facts to the IDE. This flag leads to GHC downgrading
the errors produced to warnings, so we must promote
such warnings back into errors before reporting them
to the user.

• If the code still fails to typecheck (for example due to
a parse error, or multiple declarations of a function
etc.), we still need to be able to return results to the
user. Therefore, we define the useWithStale function
to get the most recent, successfully computed value of
a key, even if it was for a older version of the source.

• The function useWithStale has return type Maybe
(v, PositionMapping) where v is the return type
of the rule, and the type PositionMapping is a set of
functions that help us convert source locations in the
current version of a document back into the version
of the document for which the rule was last computed
successfully, and vice versa. For example, if the user
inserts a line at the beginning of the file, the reported
source locations of all the definitions in the file need
to be moved one line down. Similarly, when we are
querying the earlier version of the document for the
symbol under a cursor, we must remember to shift the
position of the cursor up by one line. We maintain this
mapping between source locations for all versions of a
file for which we have artifacts older than the current
version of the document.

2.6 Responsiveness
An IDE needs to return results quickly in order to be helpful.
However, we found that running all the Shake rules to check
for freshness and recompute results on every single request
was not satisfactory with regards to IDE responsiveness. This
problem was particularly evident for completions, which
need to show up quickly in order to be useful. However, each
keystroke made by a user invalidates the Shake store, which
needs to be recomputed.

For this reason, we added an alternative mechanism to di-
rectly query the computed store of results without rerunning
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all the Shake rules. We defined a function useWithStaleFast
for this purpose, with a signature like useWithStale. This
function first asynchronously fires a request to refresh the
Shake store. Immediately afterwards, it checks to see if the re-
sult has already been computed in the store. If it has, it imme-
diately returns this result, along with the PositionMapping
for the version of the document this result was computed for,
as described in the previous section. If the result has never
been computed before, it waits for recomputation request to
Shake to finish, and then returns its result.

This technique provides a significant improvement in the
responsiveness of requests like hovering, go to definition,
and completions, in return for a small sacrifice in correctness.

3 Integration
To go from the core described in §2 to a fully working IDE
requires integrating with lots of other projects. In this section
we outline some of the most important.

3.1 The GHC API
The GHC API provides access to the internals of GHC and
was not originally designed as a public API. This history
leads to some design choices where IORef values (mutable
references) hide alongside huge blobs of state (e.g. HscEnv,
DynFlags). With careful investigation, most pieces can be
turned into suitable building blocks for an IDE. Over the
past few years the Haskell IDE Engine [18] project has been
working with GHC to upstream patches to make more func-
tions take in-memory buffers rather than files, which has
been very helpful.

One potentially useful part of the GHC API is the “down-
sweep” mechanism. In order to find dependencies, GHC
first parses the import statements, then sweeps downwards,
adding more modules into a dependency graph. The result
of downsweep is a static graph indicating how modules are
related. Unfortunately, this process is not very incremen-
tal, operating on all modules at once. If it fails, the result
is a failure rather than a partial success. This whole-graph
approach makes it unsuitable for use in an IDE. Therefore,
we rewrote the downsweep process in terms of incremental
dependencies. The disadvantage is that many things like pre-
processing and plugins are also handled by the downsweep,
so they had to be dealt with specially. We hope to upstream
our incremental downsweep into GHC at some point in the
future.

3.1.1 Separate type-checking. In order to achieve good
performance in large projects, it’s important to cache the
results of type-checking individual modules and to avoid
repeating the work the next time they are needed, or when
loading them for the first time after restarting the IDE. Our
IDE leverages two features of GHC that, together, enable
fully separate typechecking while preserving all the IDE
features mentioned in §2.1

1. Interface files (so called .hi files) are a by-product
of module compilation and have been in GHC since
the authors can remember. They contain a plethora
of information about the associated module. When
asking the GHC API to type-check a module M that
depends on a module D, one can load a previously
obtained D.hi interface file instead of type-checking
D, which is much more efficient and avoids duplicating
work. Using this file is only correct when D hasn’t
changed since D.hi was produced, but happily GHC
performs recompilation checks and complains when
this assumption isn’t met.

2. Extended interface files (so called .hie files) are also a
by-product of module compilation, recently added to
GHC in version 8.8. Extended interface files record the
full details of the type-checked AST of the associated
module, enabling tools to provide hover and go-to
reference functionality without the need to use the
GHC API at all. Our IDE mines these files to provide
hover and go-to reference for modules that have been
loaded from an interface file, and thus not typechecked
in the current session.

3.2 Setting up a GHC Session
When using the GHC API, the first challenge is to create
a working GHC session. This involves setting the correct
DynFlags needed to load and type-check the files in a project.
These typically include compilation flags like include paths
and what extensions should be enabled, but they also include
information about package dependencies, which need to be
built beforehand and registered with ghc-pkg. Furthermore,
these details are all entirely dependent on the build tool:
The flags that Stack passes to GHC to build a project will
be different from what Cabal passes, because each builds
and stores package dependencies in different locations and
package databases.

Because this whole process is so specific to the build tool,
setting up the environment and extracting the flags for a
Haskell project has traditionally been a very fickle process.
A new library hie-bios [19] was developed to tackle this prob-
lem, consolidating efforts into one place. The name comes
from the idea that it acts as the first point of entry for setting
up the GHC session, much like a system BIOS is the first
point of entry for hardware on a computer. Its philosophy is
to delegate the responsibility of setting up a session entirely
to the build tool — whether that be Cabal, Stack, Hadrian
[13], Bazel [7] or any other build system that invokes GHC.

hie-bios is based around the idea of cradles which describe
a specific way to set up an environment through a specific
build tool. For instance, hie-bios comes with cradles for Stack
projects, Cabal projects and standalone Haskell files, but it
can interface with other build tools by invoking them and
reading the arguments to GHC via stdout. These cradles
are essentially functions that call the necessary functions on
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the build tool to build and register any dependencies, and re-
turn the flags that would be passed to GHC for a specific file
or component. For Cabal and Stack, this information is cur-
rently obtained through the repl commands. The cradle that
should be used for a specific project can be inferred through
the presence of build-tool specific files like cabal.project
and stack.yaml. For more complex projects which comprise
of multiple directories and packages, the cradles used can
be explicitly configured through a hie.yaml file to describe
exactly what build tool should be used, and what compo-
nent should be loaded for the GHC session, for each file or
directory.

3.3 Handling multiple components in one session
Haskell projects are often separated into multiple packages,
and when using Cabal [9], a package consists of multiple com-
ponents. These components might be a library, executable,
test-suite or a benchmark. Each of the components might
require a different set of compilation options and they might
depend on each other. Ideally, we want to be able to use the
IDE on all components at the same time, so that features
like goto-definition and refactoring work sensibly. Conse-
quentially, using the IDE on a big project with multiple sub-
projects should work as expected.

However, the GHC API is designed to only handle a sin-
gle component at a time. This limitation is hard-coded in
multiple locations within the GHC code-base. As it can only
handle a single component, GHC only checks whether any
modules have changed for this single component, assumes
that any dependencies are stored on disk and won’t change
during the compilation. However, in our dynamic usage,
local dependencies might change!

The same problematic behaviour can be found in every-
day usage of an interactive GHC session. Loading an exe-
cutable into the interactive session, and applying changes to
the library the executable depends on, will not cause any re-
compilation in the interactive session. For any of the changes
to take effect, the user needs to entirely shut-down the inter-
active GHC session and reload it. In the IDE context, if the
library component changes the executable component will
not be recompiled, as GHC does not notice that a dependency
has changed and diagnostics for the executable component
become stale. To work around these limitations, we handle
components in-memory and modify the GHC session ad-
hoc. Whenever the IDE encounters a new component, we
calculate the global module graph of all components that are
in-memory. With this graph, we can handle module updates
ourselves and load multiple components in a single GHC
session.

3.4 Language Server Protocol (LSP)
In order to actually work as an IDE, we need to communi-
cate with a text editor. We use the Language Server Protocol
(LSP) [10] for this, which is supported by most popular text

editors and clients, either natively or through plugins and
extensions. LSP is a JSON-RPC based protocol that works by
sending messages between the editor and a language server.
Messages are either requests, which expect a response to be
sent back in reply, or notifications which do not expect any.
For example, the editor (client) might send notifications that
some file has been updated, or requests for code completions
to display to the user at a given source location. The lan-
guage server may then send back responses answering those
requests and notifications that provide diagnostics.

To bridge the gap between messages and the build graph,
ghcide deals with the types of incoming messages differently:

• When a notification arrives from LSP that a docu-
ment has been edited, we modify the nodes that have
changed, e.g., the content of the modified files, and
immediately start a rebuild in order to produce diag-
nostics.

• When a request for some specific language feature
arrives, we append a target to the ongoing build asking
for whatever information is required to answer that
request. For example, if a hover request arrives, we
ask for the set of type-checked spans corresponding
to that file. Importantly, this does not cause a rebuild.

• When the graph computes that the diagnostics for a
particular file have changed, we send a notification to
the client to show updated diagnostics.

3.5 Testing
Our IDE implements a large part of the LSP specification, and
has to operate on a large range of possible projects with all
sorts of edge cases. We protect against regressions from these
edge cases with a functional test suite built upon lsp-test, a
testing framework for LSP servers. lsp-test acts as a client
which language servers can talk to, simulating a session from
start to finish at the transport level. The library allows tests
to specify what messages the client should send to the server,
and what messages should be received back from the server.

Functional testing turns out to be rather important in this
scenario as the RPC-based protocol is in practice, highly
asynchronous, something which unit tests often fail to ac-
count for. Clients can make multiple requests in flight and
Shake runs multiple worker threads, so the order in which
messages are delivered is non-deterministic. Because of this
fact, a typical test might look like:
test :: IO ()
test = runSession "ghcide" fullCaps "test" $ do

doc <- openDoc "Foo.hs" "haskell"
skipMany anyNotification
let prms = DocumentSymbolParams doc
rsp <- request TextDocumentDocumentSymbol prms
liftIO $ rsp ^. result `shouldNotSatisfy` null

In this session, lsp-test tells ghcide to open up a document,
and then ignore any notifications it may send with skipMany
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anyNotification. A session is actually a parser combina-
tor [8] operating on incoming messages under the hood,
which allows the expected messages from the server to be
specified in a flexible way that can handle non-deterministic
ordering. It then sends a request to the server to retrieve the
symbols in a document, waits for the response and finally
makes some assertion about the response.

An additional benefit of having testing at the transport
level is that we can reuse much of the test suite in IDEs
building on top of Ghcide for free, since we only need to
swap out what server the tests should be run on. lsp-test
is also used not only for testing, but also for automating
benchmarks (See §5.7).

4 Plugins
The IDE described in §3 corresponds to the Haskell library
Ghcide, which is currently used in at least four different
roles:

• With a thin wrapper as a stand alone IDE for GHC.
• As the engine powering the IDE for DAML.
• As the foundation of a compiler for DAML.
• As the GHC layer for a more full-featured Haskell IDE

(Haskell Language Server, HLS).

The key to supporting all these use cases is a rich plugin
mechanism.

4.1 LSP extensibility
The Language Server Protocol is extensible, in that it pro-
vides sets of messages that provide a (sub) protocol for de-
livering IDE features. Examples include:

• Context aware code completion
• Hover information. This is context-specific informa-

tion provided as a separate floating window based on
the cursor position. Additional analysis sources should
be able to seamlessly add to the set of information pro-
vided.

• Diagnostics. The GHC compiler provides warnings
and errors. It should be possible to supplement these
with any other information from a different analysis
tool. Such as hlint, or liquid haskell.

• Code Actions. These are context-specific actions that
are provided based on the current cursor location. Typ-
ical uses are to provide actions to fix simple compiler
errors reported, e.g. adding a missing language pragma
or import. But they can also provide more advanced
functionality, like suggesting refactorings of the code.

• Code Lenses. These operate on the whole file, and offer
a way to display annotations to a given piece of code,
which can optionally be clicked on to trigger a code
action to perform some function. In ghcide these are
used to display inferred type signatures for functions,
and allow you to add them to the code with one click.

The standardised messaging allows uniform processing
on the client side for features, but also means new features
should be easy to add on the server side.

4.2 Ghcide plugins
Internally, ghcide is two things, a rule engine, and an interface
to the Language Server Protocol (§3.4).

So to be extensible, there must be a way to add rules to
the rule database, and additional message handlers to the
LSP message processing.

A plugin in ghcide is thus defined as a data structure hav-
ing Rules and PartialHandlers

A Monoid class is provided for these, meaning they can be
freely combined. There is one caveat, in that order matters
for the PartialHandlers, so the last message handler for a
particular message wins.

In practical terms the plugin uses these features as follows
• It provides rules to generate additional artefacts and

add them to the Shake graph if needed. For most plug-
ins this is unnecessary, as the full output of the under-
lying compiler is available. Typical use-cases for this
would be to trigger additional processing for diagnos-
tics, such as for hlint or similar external analysis.
Note that care must be taken with adding rules, as it
affects both memory usage and processing time.

• It provides handlers for the specific LSP messages
needed to provide its feature(s).

This is a fairly low-level capability, but it is sufficient to
provide the plugins built in to ghcide, and serve as a building
block for the Haskell Language Server.

4.3 Haskell Language Server plugins
The Haskell Language Server makes use of ghcide as its IDE
engine, relying on it to provide fast, accurate, up to date
information on the project being developed by a user.

Where ghcide is intended to do one thing well, Haskell
Language Server is targeted at being the "batteries included"
starter IDE for any Haskell user. HLS is the family car where
ghcide is the sports model.

We will describe here its approach to plugins.
Firstly, a design goal for HLS is to be able mix and match

any set of plugins. The current version (0.3) has a set built in,
but the road map calls for the ability to provide a tiny custom
Main module that imports a set of plugins, puts them in a
structure and passes them in to the existing main programme.

To enable this, it has a plugin descriptor which looks like

data PluginDescriptor =
PluginDescriptor
{ pluginId

:: !PluginId
, pluginRules

:: !(Rules ())
, pluginCommands

6
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:: ![PluginCommand]
, pluginCodeActionProvider

:: !(Maybe CodeActionProvider)
, pluginCodeLensProvider

:: !(Maybe CodeLensProvider)
, pluginHoverProvider

:: !(Maybe HoverProvider)
...
}

The pluginId is used to make sure that if more than one
plugin provides a Code Action with the same command name,
HLS can choose the right one to process it.

The [PluginCommand] is a possibly empty list of com-
mands that can be invoked in code actions.

The rest of the fields can be filled in with just the capabili-
ties the plugin provides.

So a plugin providing additional hover information based
on analysis of the existing GHC output would only fill in
the pluginId and pluginHoverProvider fields, leaving the
rest at their defaults.

4.4 Haskell Language Server plugin processing
The HLS engine converts the HLS-specific plugin structures
to a single ghcide plugin.

It simply combines the Rules monoidally, but does some
specific processing for the other message handlers.

The key difference is that HLS processes the entire set
of PluginHandlers at once, rather than using the pairwise
mappend operation.

This means that when a hover request comes in, it can
call all the hover providers from all the configured plugins,
combine the results and send a single combined reply to the
original request.

The same technique is used as appropriate for each of the
message handlers.

5 Evaluation
We released our IDE and it has become an important part
of the Haskell tools ecosystem. When it works, the IDE pro-
vides fast feedback with increasingly more features by the
day. Building on top of a build system gave us a suitable
foundation for expressing the right things easily. Building
on top of Shake gave us a well tested and battle hardened li-
brary with lots of additional features we didn’t use, but were
able to rapidly experiment with. However, the interesting
part of the evaluation is what doesn’t work.

5.1 Asynchronous exceptions are hard
Shake had been designed to deal with asynchronous excep-
tions, and had a full test suite to show it worked with them.
However, in practice, we keep coming up with new prob-
lems that bite in corner cases. Programming defensively with
asynchronous exceptions is made far harder by the fact that

even finally constructions can actually be aborted, as there
are two levels of exception interrupt. We suspect that in time
we’ll learn enough tricks to solve all the bugs, but it’s a very
error prone approach, and one where Haskell’s historically
strong static checks are non-existent.

5.2 Session setup
The majority of issues reported by users are come from
the failure to setup a valid GHC session — this is the first
port of call for ghcide, so if this step fails then every other
feature will fail. The diversity of project setups in the wild
is astounding, and without explicit configuration hie-bios
struggles to detect the correct cradles for the correct files
(see §3.2). It is a difficult problem, and the plethora of Haskell
build tools out there only exacerbates it further. Tools such
as Nix [5] are especially common and problematic.

Work is currently underway to push the effort upstream
from hie-bios into the build tools themselves, to expose more
information and provide a more reliable interface for set-
ting up sessions: Recently a show-build-info command
has been developed for cabal-install that builds package de-
pendencies and returns information about how Cabal would
build the project in a machine readable format.

In addition, some projects require more than one GHC
session to load all modules — we are still experimenting with
solutions for this problem.

5.3 Cancellation
While regularly cancelling builds doesn’t seem to be a prob-
lem in practice, it would be better if the partial work started
before a cancellation could be resumed. A solution like FRP
[6] might offer a better foundation, but we were unable to
identify a suitable existing library for Haskell (most cannot
deal with parallelism). Alternatively, a build system based on
a model of continuous change rather than batched restarts
might be another option. We expect the current solution
using Shake to be sufficient for at least another year, but not
another decade.

5.4 Runtime evaluation
Some features of Haskell involve compiling and running
code at runtime. One such culprit is Template Haskell [15].
The mechanisms within GHC for runtime evaluation are
improving with every release, but still cause many problems.

5.5 References
As stated in §2.1, an IDE offers three fundamental features –
diagnostics, hover/goto-definition and find references. Our
IDE offers the first two, but not the third. If the IDE was
aware of the roots of the project (e.g. the Main module for a
program) we could use the graph to build up a list of refer-
ences. However, we have not yet done so.
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Figure 1. Heap usage over successive versions of Ghcide

5.6 Garbage collection
Currently, once a file has been opened, it remains in memory
indefinitely. Frustratingly, if a temporary file with errors is
opened, those errors will remain in the users diagnostics
pane even if the file is shut. It is possible to clean up such
references using a pass akin to garbage collection, removing
modules not reachable from currently open files. We have
implemented that feature for the DAML Language IDE [4],
but not yet for the Haskell IDE.

5.7 Memory leaks
A recurring complaint of our users is the amount of memory
used. Indeed one of the authors witnessed >70GB resident
set sizes on multiple occasions on medium/large codebases.
This memory consumption was not only ridiculously ineffi-
cient but also a source of severe responsiveness issues while
waiting 3 for the garbage collector to waddle through the
mud of an oversized heap.

Our initial efforts focused on architectural improvements
like separate type-checking and a frugal discipline on what
gets stored in the Shake graph. But it wasn’t until a laziness
related space leak was identified and fixed in the Haskell
library unordered-containers library that we observed a
material improvement. Figure 1 shows the heap usage of a
replayed Ghcide session over time, for various versions of
Ghcide, where we can see that for versions prior to 0.2.0 it
would grow linearly and without bounds until running out
of memory.

Given how much effort and luck it took to clear out the
space leak, and the lack of methods or tooling for diagnosing

3By default the GHC runtime will trigger a major collection after 0.3 seconds
of idleness; thankfully this can be customized along with many other GC
settings.

leaks induced by laziness, we have installed mechanisms to
prevent new leaks from going undetected:

1. A benchmark suite that replays various scenarios while
collecting space and time statistics.

2. An experiment tool that runs benchmarks for a set
of commits and compares the results, highlighting re-
gressions.

Monitoring and preventing performance regressions is
always a good practice, but absolutely essential when using
a lazy language due to the rather unpredictable dynamic
semantics.

6 Future work
Since the IDE was released, a number of volunteer contrib-
utors have been developing and extending the project in
numerous directions. In addition, some teams in commercial
companies have starting adopting the IDE for their projects.
Some of the items listed in this section are currently under
active development, while other are more aspirational in
nature.

6.1 hiedb
hiedb4 is a tool to index and query GHC extended interface
(.hie) files. It reads .hie files and extracts all sorts of useful
information from them, such as references to names and
types, the definition and declaration spans, documentation
and types of top level symbols, storing it in a SQLite database
for fast and easy querying.

Integrating hiedb with Ghcide has many obvious benefits.
For example, we can finally add support for "find references",
as well as allowing you to search across all the symbols
defined in your project.

In addition, the hiedb database serves as an effective way
to persist information across Ghcide runs, allowing greater
responsiveness, ease of use and flexibility to queries. hiedb
works well for saving information that is not local to a partic-
ular file, like definitions, documentation, types of exported
symbols and so on.

A branch of Ghcide integrating it with hiedb is under
active development.

Ghcide acts as an indexing service for hiedb, generating
.hi and .hie files which are indexed and saved in the database,
available for all future queries, even across restarts. A local
cache of .hie files/type-checked modules is maintained on
top of this to answer queries for the files the user is currently
editing, while non-local information about other files in the
project is accessed through the database.

6.2 Replacing Shake
As we observed in §5, a build system is a good fit for an
IDE, but not a perfect fit. Using the abstractions we built
for our IDE, we have experimented with replacing Shake
4https://github.com/wz1000/HieDb
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for a library based on Functional Reactive Programming [6],
specifically the Haskell library Reflex. Initial results are
promising in some dimensions (seems to be lower overhead),
but lacking (no parallelism). We continue to experiment in
this space.

6.3 Multiple Home Unit in GHC
As described in §3.3, there are limitations in the GHC API
that force us to handle the module graph in-memory. This
is error-prone and complicates the IDE quite a lot. Moving
this code into GHC improves the performance and simplify
support for multiple GHC versions. Moreover, it might prove
useful for follow up contributions to enable GHC to work
as a build server. As such, it can compile multiple units in
parallel without being restarted, while using less memory in
the process.

7 Conclusion
We implemented an IDE for Haskell on top of the build
system Shake. The result is an effective IDE, with a clean
architectural design, which has been easy to extend and
adapt. We consider both the project and the design a success.

The idea of using a build system to drive a compiler is
becoming more widespread, e.g. in Stratego [16] and experi-
ments with replacing GHC --make [20]. By going one step
further, we can build the entire IDE on top of a build sys-
tem. The closest other IDE following a similar pattern is the
Rust Analyser IDE [3], which uses a custom recomputation
library, not dissimilar to a build system. Build systems offer
a powerful abstraction whose use in the compiler/IDE space
is likely to become increasingly prevalent.

Acknowledgments
Thanks to everyone who contributed to the IDE. The list is
long, but includes the Digital Asset team (who did the initial
development), the Haskell IDE engine team (who improved
the GHC API and lead the trail), and the hie-bios team (who
made it feasible to target real Haskell projects). In addition,
many open source contributors have stepped up with bug
reports and significant improvements. Truly a team effort.

References
[1] Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: a

language server for OCaml (experience report). Proceedings of the
ACM on Programming Languages 2, ICFP (2018), 1–15.

[2] Manuel MT Chakravarty, Gabriele Keller, Simon Peyton Jones, and
Simon Marlow. 2005. Associated types with class. In Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 1–13.

[3] Rust IDE Contributors. 2020. Three Architectures for a Responsive IDE.
(20 July 2020). https://rust-analyzer.github.io/blog/2020/07/20/three-
architectures-for-responsive-ide.html.

[4] Digital Asset. 2020. DAML Programming Language. (2020). https:
//www.daml.com/.

[5] Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and
Policy-Free System for Software Deployment. In LISA, Vol. 4. 79–92.

[6] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.
In International Conference on Functional Programming.

[7] Google. 2020. Bazel. (2020). http://bazel.io/.
[8] Graham Hutton and Erik Meijer. 1996. Monadic Parser Combinators.
[9] Isaac Jones. 2005. The Haskell Cabal: A Common Architecture for

Building Applications and Libraries, Marko van Eekelen (Ed.). 340–
354.

[10] Microsoft. 2020. Language Server Protocol. (2020). https://microsoft.
github.io/language-server-protocol/.

[11] Neil Mitchell. 2012. Shake before building: Replacing Make with
Haskell. In ACM SIGPLAN Notices, Vol. 47. ACM, 55–66.

[12] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build
systems à la carte. Proceedings ACM Programing Languages 2, Article
79, 79:1–79:29 pages.

[13] Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Mar-
low. 2016. Non-recursive Make Considered Harmful - Build Systems
at Scale. In Haskell 2016: Proceedings of the ACM SIGPLAN symposium
on Haskell. 55–66.

[14] Simon Peyton Jones. 2001. Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language calls in
Haskell. IOS Press, 47–96.

[15] Tim Sheard and Simon Peyton Jones. 2002. Template meta-
programming for Haskell. In Proceedings of the 2002 Haskell Workshop,
Pittsburgh. 1–16.

[16] Jeff Smits, Gabriël D. P. Konat, and Eelco Visser. 2020. Constructing
Hybrid Incremental Compilers for Cross-Module Extensibility with
an Internal Build System. CoRR (2020). arXiv:2002.06183

[17] The GHC Team. 2020. The GHC Compiler, Version 8.8.3. (2020). https:
//www.haskell.org/ghc/.

[18] The haskell-ide-engine Team. 2020. haskell-ide-engine. (2020). https:
//github.com/haskell/haskell-ide-engine.

[19] The hie-bios Team. 2020. hie-bios. (2020). https://github.com/
mpickering/hie-bios.

[20] Edward Yang. 2016. ghc –make reimplemented with Shake. (2016).
https://github.com/ezyang/ghc-shake.

9

230



Functional Programming Application for Digital
Synthesis Implementation

Evan Sitt, Xiaotian Su, Beka Grdzelishvili, Zurab Tsinadze, Zongpu Xie
Hossameldin Abdin, Giorgi Botkoveli, Nikola Cenikj, Tringa Sylaj, Viktória Zsók

{sitt.evan,suxiaotian31,bekagrdzelishvili0,zukatsinadze,szumixie}@gmail.com
{hossamabdeen17,botko.gio,nicola.cenic,tringasylaj}@gmail.com,zsv@inf.elte.hu

Eötvös Loránd University, Faculty of Informatics
Department of Programming Languages and Compilers

Budapest, Hungary

Abstract
Digital synthesis is a cross-discipline application used in
fields such as music, telecommunication, and others. Digital
synthesis involving multiple tracks, as well as parallel post-
processes, lends itself naturally to the functional program-
ming paradigm. The paper demonstrates this by creating a
fully functional, cross-platform, standalone synthesizer ap-
plication framework implemented in a pure lazy functional
language. The application handles MIDI input and produces
WAV output played by any multimedia player. Therefore,
it can serve as a preprocessor for users who intend to cre-
ate digital signals before transcribing them into digital or
physical media. Sufficient background and implementation
techniques were explored for building software solutions
for digital synthesis in functional programming. We demon-
strate that functional programming concepts such as lazy
evaluation using arrays are efficient for processing digital
audio signals, and they are intuitive for working with music,
using programming language as Clean.

Keywords: Functional Programming, Digital Synthesis, Wave-
forms, MIDI, WAV

1 Introduction
Digital synthesis is a Digital Signal Processing (DSP) technique
for creating musical sounds. In contrast to analog synthesiz-
ers, digital synthesis processes discrete bit data to replicate
and recreate a continuous waveform. The digital signal pro-
cessing techniques used are relevant in many disciplines and
fields including telecommunications, biomedical engineer-
ing, seismology, and others. Digital synthesis is an applica-
tion typically implemented in C++ with many frameworks
provided [8, 14]; however, their algorithms and methods are
less intuitive.

Our project proposes to explore the applications of func-
tional programming and to demonstrate its features in a
framework implementation that can be used in multiple
disciplines, such as broadcasting, mathematics education,
physics education, application-oriented programming, and
many more.

Due to the parallel nature of processing multiple tracks
of audio, the project is designed to replicate synthesis tech-
niques by utilizing all the features and advantages of a purely
lazy functional paradigm. While some algorithms were ref-
erenced, we implemented it from scratch. This is important
as the algorithms used by typical frameworks are not made
to be recursive, and as such, lack the optimizations from
recursion. In addition, an algorithm built from scratch for a
functional paradigm can avoid the many possible side effects
that accompany the procedural algorithms.

This application extends and supports the applications for
the Clean programming community by developing a Func-
tional Programming paradigm framework for digital signal
synthesis based upon analog Fourier series leveraging the
capabilities of the Clean programming language. Additional
contributions made by this project are the LFO, Flanger, Sat-
uration, MusicXML parsing, and Stereo separation.

In this paper, after briefly presenting a general background
of digital synthesis (section 2), the details of each project
component are provided (section 3). These include: intuitive
description of the workflow (section 3.1), diving into the
explanation of the methods used for implementing the digital
synthesis (section 3.2), clarification of amplitude modulation
(section 3.3), providing the details of the MIDI input file
format (section 3.6), description of the methods used for
processing the data (section 3.9) and finally analyzing the
.WAV output file format (section 3.10). These are, later on,
followed by the summary of the results (section 4), by the
related work (section 5), by the conclusions (section 6), and
by the future plans (section 7).

2 Background
Digital synthesis is a field that was pioneered in the 1970s,
and it is still continuously innovated by the music industry.
The purpose of digital synthesizers is to use the power of
microprocessors to replicate analog synthesis. Among the
techniques used are additive synthesis, wavetable lookup syn-
thesis (see subsection 3.2 for details), and physical modeling.

Additive synthesis is a technique for creating waveforms
(see subsection 3.2) via the summation of sine waves. A sine
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wave is a waveform of pure single-frequency value. By sum-
ming multiple sine waves at various frequencies, amplitudes,
and phase shifts, it is theoretically possible to generate all
types of sound waves. The reference [? ] gives more helpful
information about this simple but commonly used concept,
as a general base of generating sounds. Similarly, subtrac-
tive synthesis is a technique for creating waveforms via the
subtraction of sine waves.

Our application utilizes harmonic additive synthesis to
create the basic waveforms commonly used to generate more
complex synths. Harmonic additive synthesis involves using
the Fourier series of a waveform to determine the weighted
summation of sine waves to generate the target waveform.
In other words, it is an expansion of those waves using their
relationship and the concept of orthogonality. The usage
of it is breaking up an arbitrarily long and periodical se-
quence into smaller, simple chunks that can be processed
individually. Also, the Fourier series, when used with appro-
priate weights, can be applied as a function approximator
[? ]. These sine waves are called harmonics, so-called be-
cause their frequencies are integer multiples of a standard
fundamental frequency.

In order to generate the waveforms efficiently, digital
waveform synthesis is typically implemented using wavetable
lookup synthesis. In contrast to calculating a specific value
of a waveform at a specific point of time, a waveform table is
used to store one duty cycle of a waveform. The value of the
waveform can be accessed by using the frequency to modify
the access point of the waveform table and then multiply by
the appropriate amplitude. With this method, it is far more
efficient to generate a waveform by use of constant time
array access instead of repeated calculations. In section 3.2
the details of each waveform are given.

3 Project details
3.1 The Process Flow from MIDI Input to WAV

Output
Figure 1 depicts the structure of the application’s process
flow. The important phases of the digital synthesis are as in
the following:
MIDI Input: it opens the MIDI input file. Reads notation
information and stores within a list.
Digital Signal Process Chain (DSP Chain): it handles the signal
generation and the data processing.
• Sine Wavetable: The Sine Wavetable contains a hard-

coded array of values corresponding to amplitude val-
ues of one cycle of a fundamental sine wave.
• Waveforms: Using the data of the wavetable and user-

specified Fourier series, the Waveforms module does
weighted summation to generate new waveforms.
• Envelope: Using an envelope profile, the Envelope mod-

ule applies an ADSR envelope to the signal (see section
3.3 for details).

• Render: The Render module generates signals from
data passed from the MIDI Input module and it outputs
a final render for writing to file.

Transcode: it transcodes the render data into the proper en-
coding for 8, 16, or 32 bit PCM WAV format.
WAV Output: it opens the WAV output file and writes the
transcoded render data to the final WAV output file.

Figure 1. The Signal Flow Modules

3.2 Wavetable Lookup Synthesis
A periodic waveform can be decomposed into an infinite sum
of varying frequencies and amplitudes of sine waves. This is
the foundation of a technique called Wavetable Lookup Syn-
thesis, in which a specific waveform is stored in a wavetable,
and it exploits the relation between frequency and sampling
rate to quickly build new waveforms. A waveform is the
shape of a signal’s graph, which shows the changes in ampli-
tude over a certain amount of time. Sine wave is the simplest
of all waveforms, and it contains only a single frequency
and no harmonics. We used other simple waveforms (gener-
ated from the sine wave), which will make building complex
sounds much more straightforward. We had to figure out
how to sample from the stored wavetable and how to build
new waveforms efficiently. In the following section, we dis-
cuss our approach of making sampling wavetable as efficient
as possible.

3.2.1 Implementation. Based on the methods for design-
ing wavetables of [17], our implementation chooses to set
the size of the table as 2205, i.e., we store a table of 2205
real numbers, representing consecutive amplitudes within
one single vibration of the sound wave. Thus, achieving the
minimum sound frequency that humans can hear, which is
20 Hz. The single cycle sine wavetable, shown in Figure 2,
is the basis for our additive and subtractive synthesis. As
mentioned above, all the other waveforms can be efficiently
generated from the sine wave by utilizing Fourier series [12].

For each waveform, we generate a list of indices, which
we need to sample from the wavetable, using the getIndexes

function (listing 3.2.2). These indices depend on the fre-
quency and harmonic, and they are not necessarily integers.
The getValues function (listing 1) takes wavetable, frequency,
harmonic, and duration as parameters, and it uses generated
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indices, while linear interpolation solves the complication
caused by real indices.
getValues :: {Real } Frequency Int Samples → [Real]
getValues waveTable frequency harmonic dur =

[ (getValue i waveTable ) \ \ i ← indexes]
where

indexes = getIndexes frequency harmonic dur

Listing 1. Function getValues

getIndexes :: Frequency Harmonic Samples → [Real]
getIndexes frequency harmonic dur =

map (𝜆x = realRem x (toReal tableSize ) )
(take dur [0.0 , rate.. ] )

where
newRate = toReal SAMPLING_RATE

/ ( (toReal harmonic )*frequency )
rate = toReal (tableSize ) /newRate

Listing 2. Function getIndexes

The wavetable is implemented as an array. Even though
lists offer much more functionality, they are actually linked-
lists, and they do not give us access to the elements in con-
stant time.

Figure 2. Sine wavetable

3.2.2 Wave Forms. Besides sine wave, we use square, tri-
angle and sawtooth as our building blocks. The project also
includes parameters to generate pulse, silence, and noise
waves [? ]. In the implementation, a waveform type is repre-
sented as an algebraic data structure:
:: Wave = Sine | Square | Triangle | Noise

| Pulse | Sawtooth | Silence

This is a parameter of our interface function, which gen-
erates waves as a list of Real numbers. Each waveform has
a list of harmonics and a list of amplitudes. In the case of
square, triangle, sawtooth, and silence, these lists are easily
defined, while for pulse and noise, there is a need for more
sophisticated techniques, such as phase-shifting for noise
and subtracting sawtooth wave from a phase-shifted version
of itself for a pulse wave.

Sawtooth: Frequency components are all harmonics. Rel-
ative amplitudes are inverses of harmonic numbers and all
harmonics are in-phase

Square: Frequency components are odd-numbered har-
monics, relative amplitudes are inverses of the squares of
the harmonic numbers, and all harmonics are in phase

Triangle: Frequency components are odd-numbered har-
monics, relative amplitudes are inverse harmonic numbers
and every second harmonic is 180 degrees out of phase

Pulse: For the Pulse wave generation, a Sawtooth wave,
and phase-shifted version of itself are subtracted from it. For
this, an efficient helper function, shiftLeft, is defined. It
moves every element of a list by the given number to the
left.

Noise: For generating the Noise wave, all amplitudes are
equal to 1, and harmonics are random numbers. Again using
the shiftLeft function, lists are shifted by a random number
of places before summing them up. Clean provides func-
tions to generate pseudo-random numbers using Mersenne
Twister Algorithm [9] in the module Math.Random.
harmonics_amplitudes :: Wave → ( [Real] , [Real ] )
harmonics_amplitudes Sine =

([1.0] , [1.0 ] )
harmonics_amplitudes Sawtooth =

([1.0 , 2.0..50.0] ,
[ (-1.0 )^ (k+1.0 )*(1.0/k ) \ \ k←[1.0 , 2.0..50.0 ] ] )

harmonics_amplitudes Square =

([1.0 , 3.0..100.0] ,
[1.0/x \ \ x←[1.0 , 3.0..100.0 ] ] )

harmonics_amplitudes Triangle =

([1.0 , 3.0..100.0] ,
[ (-1.0 )^ (i+1.0 )*(1.0 / (k^2.0 ) )
\ \ k←[1.0 , 3.0..100.0] & i←[1.0.. ] ] )

Listing 3. Function that returns respective lists of harmonics
and amplitudes for different waves

Figure 3. Noise waveform

3.3 Envelopes
The rendering process handles the data extracted from the
MIDI files. This process converts the given data to a sequence
of numbers, which represents the sum of all waves after nor-
malization. Before the summation, envelopes modify each

3
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waveform to get the actual sound of the musical instrument.
In music, an envelope describes the varying level of a sound
wave over time. It is the envelope of a wave that establishes
the sound’s uniqueness, and it has a significant influence on
how we interpret music. Classic envelopes consist of 4 main
phases: Attack, Decay, Sustain, and Release. Sustain refers
to a level, while the other phases represent time intervals.
The attack phase is the period during which a sound needs
to reach its peak from zero after the key is pressed. After the
attack, the decay phase starts when the sound level decreases
to its sustain level. The sound level stays unchanged during
the sustain phase until the key is released. The final phase of
the envelope is the Release phase, which continues until the
sound fades to silence. Almost every musical instrument has
a distinct envelope. For example, a quick attack with little
decay makes a sound similar to an organ, while a longer
decay is characteristic of a guitar. This application includes
an envelope generator, which is a common feature of syn-
thesizers and electronic musical instruments used to control
the different stages of sound.

3.3.1 ADSR Envelope. The first type of envelope imple-
mented at the beginning of the project is ADSR. It is the
simplest form of an envelope, which provides good bases for
other more complex types, which are introduced later. The
getADSR function is used to generate an ADSR envelope, Fig-
ure 4. It has only four basic steps: Attack, Decay, Sustain, and
release. This function gets a beat, time signature, tempo, and
ADSR record as parameters. At first thet are used to calculate
the duration of the note. noteToSamples, one of the utility
functions, is used to convert these parameters to the number
of samples in this time interval. After that, the number of
samples for each step of the envelope is calculated.

Since the release is independent of the note duration, it
is enough to convert the given release duration to samples
directly, but the other three steps need different approaches.
Instead of directly using the given duration of each step in-
dependently, the number of samples is calculated based on
the offset from the starting time and subtracting the sum of
samples of the previous steps. This approach is essential to
avoid losing samples during flooring of real numbers, and it
makes sure that the number of total samples is equal to the
sum of each step’s samples. After calculating the list of sam-
ples, each step of the envelope is calculated independently.
Concatenating these results produces the entire envelope
excluding the release tail, however as the key may be re-
leased any time during the first three steps, including attack
or decay, it might be necessary to shorten it. Finally, the re-
lease tail list is generated in the same way as the attack and
decay, and it is concatenated to the others to get a complete
envelope.
getADSR :: Beat TimeSignature Tempo ADSR → [Real]
getADSR beat timeSig tempo adsr

= shortenedEnv

++ [... \ \ x ← [1 ,2..releaseSamples]]
where

noteDur = noteToSamples beat timeSig tempo

attackSamples = secondsToSamples adsr.att

decaySamples = secondsToSamples (adsr.att+adsr.dec )
- attackSamples

...

wholeEnv =

[toReal x / (adsr.att * (toReal SAMPLING_RATE ) )
\ \ ...

++ [adsr.sus \ \ x ← [1 ,2..sustainSamples]]
shortenedEnv = take noteDur wholeEnv

endValue | noteDur == 0 = 0.0
| noteDur ≤ attackSamples

= toReal noteDur

/ (adsr.att * toReal SAMPLING_RATE )
...

= adsr.sus

Listing 4. The getADSR implementation

3.3.2 DAHDSR Envelope. The getDAHDSR function gen-
erates another type of envelope, which has two more steps
than the ADSR envelope: delay and hold. Delay is the time
interval before the attack, when the sound stays silent, while
the hold phase comes after the attack and indicates the dura-
tion of the sound maintaining its peak. The implementation
is similar to getADSR function and the data is stored as the
::DAHDSR record. Each step is generated using list compre-
hensions, and they are concatenated. The whole envelope is
generated, then we take its prefix to make sure that the key
can be released at any time.

3.3.3 Casio, 8 step Envelope. Casio, Figure 4, is a more
modern type of envelope which allows more flexibility and a
wide variety of configurations. It is different from the types
mentioned above. It has eight steps, each consisting of a
rate of change value and a target level value. The rate is
used instead of duration. The rate and level pairs make it
possible for the same phase to be ascending or descending
depending on the needs of the users. Implementation of
the Casio envelope differs from the other two envelopes, as
the structure is different. The CasioCZ record provides data
necessary for creating it. The first five steps represent the
front part of the envelope, while the last three steps are used
to generate the release tail after sustain. The generateLine

function is used to generate point values of a line between
two levels using the current rate. This function returns not a
list of points, but a tuple of the list and real value. The second
return value plays an essential role in interpolation. The last
value of the line may not have an integer index. Hence, it
cannot be included in the list. Due to the reason mentioned
above, instead of directly using the previous endpoint as the
beginning for the current line, we need to recalculate it based
on the second value of the generateLine function using the
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formula: casio.level1 − rt2 ∗ (snd line1). In the end, similarly
to other envelopes, we need to take the exact amount of
samples according to the note duration.

Figure 4. ADSR and 8-Step Casio Envelopes

3.3.4 Generalized Envelope. The last type of envelope
data structure is a Generalized Envelope, which is similar
to Casio but provides even more flexibility during sound
synthesizing. Both of them use rate and level values to de-
scribe each step, but generalized envelopes do not have a
fixed number of steps like the other previous structures. The
GenEnv record uses a list to store data, where each element
is an EnvLevel record type, containing rate and level values.
Also, as generalized envelopes do not have a fixed number
of steps before the release tail, the GenEnv record contains a
value for the index indicating sustain level. Generating data
for each step is done similarly to the Casio envelope, but the
rate and starting value cannot be recalculated manually, so
data preprocessing is needed before using it. Therefore, the
implementation, which is shown below (listing ??), is a bit
different. parseData recursively traverses the initial list and
generates a new one, which can be directly used to generate
lines for each step using a similar method as in the Casio
envelope.

Four data structures were created to support the different
types of envelopes: ADSR, DAHDSR, Casio, and the Gen-
eralized envelope. A demonstration of DAHDSR followed
by ADSR being applied to a sine wave is shown in Figure 5.
Several types of envelopes provide a flexible environment
for sound synthesizing and generate more sophisticated and
better sounds.

3.3.5 Low-frequency Oscillator. Low-frequency oscilla-
tor (LFO) produces regularly repeating wave-forms at a low
frequency. Those waves can be applied to generated wave-
forms during rendering. To encapsulate and handle param-
eters more easily several ADTs were implemented. LFOs
are similar to envelopes. Both of them are used to modify
sound to add some effects. But, they have different apply-
ing procedures. While envelopes are applied to each chunk
independently, LFO is appllied to final list at the end of the
rendering. applyLFOand applyD ualLFO functions are used to
modify sound based on the LFO Profiles and they give capa-
bilities to create effects, such as tremelo, vibrato, or ripple.

3.3.6 Rendering waves and applying envelope. The
rendering process consists of several steps. The first step
is to calculate the whole length of the sound, as each wave
can start at a different moment and can have distinct lengths.
This value is used later to generate a silent track, which acts
as the base during the summing of all wave samples. The
next step is to process data stored in each NoteChunk to gen-
erate sound waves and sum all of them up. Each NoteChunk

stores wave type, time signature, tempo, envelope, and other
data extracted from MIDI files, which are needed for gener-
ating wave and applying an envelope to it (Figure 5). Values
for each wave can be calculated using already programmed
functions for envelopes and sound synthesizing. After gener-
ating all the waves, we need to sum them up into a single list.
If we use arrays, each wave’s starting time is an index offset,
but the same approach is not useful with lists. To easily sum
up lists, they need to be of the same size. Therefore, the ap-
propriate amount of silent samples should be appended on
both sides of the list. The last step is the normalization, i.e.
converting values to the [−1.0, 1.0] range. After summing
the lists up, some samples might go out of those bounds,
which is why the final list needs to be normalized at the end
of the process. After normalization, the sound rendering is
finished, and it can be used for later processing.

Figure 5. Sine wave modified by different envelopes

3.4 Sound reverberation
Reverb is a result of sound being reflected of some surface
creating delayed sounds waves with lower amplitudes that in-
teracting with each other enrich the sound quality by adding
tone. The reverberation process implemented in this project
depends on few parameters: delay (time interval, the differ-
ence between the starting wave and its first reflection), decay
(real number between zero and one, representing the ratio
between the amplitude of one wave and the amplitude of
its preceding one) and the number of bounces (number of
newly generated reflections which interfere with the starting
sound). The implementation is based on repeating the same
step, which is interfering single reflection with the resulting
wave. Each new reflection is generated by shifting to the
right and scaling down the last reflection (or the original
wave in the case of generating first reflection) depending on
the delay and decay respectively.
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3.5 Stereo Separation and Audio Panning
The method of sound reproduction with the purpose of cre-
ating an illusion of multi-directional audible perspective,
is called Stereophonic sound or, simply, stereo. This is ac-
complished by utilizing a minimum two autonomous sound
channels to form the impression of sound being heard from
various directions.

Stereo panning intents to adapt to the natural human way
of accepting audio signals from two focal points, the left and
the right ear. It modifies the digital signal and then distributes
it to the appropriate channel, achieving a perception that a
particular sound might come from the left, from the right,
or from the center, hence producing a desired sound effect.

There are three main types of panning:
• Amplitude Panning: Tends to make a sound appear

on the left/right by mimicking the natural phenom-
enon of a sound appearing louder on the side of the
source and quieter on the opposite direction. This is
done by manipulating with the volume of the channels
which is represented as the amplitude of waves. To be
more specific, if we want to pan a sound on a direction,
i.e. on the left, by a specific amount, then we increase
the amplitude on the left and decrease it by the same
amount on the right. The right case would be similarly.
• Delay Panning: Intents to make a sound appear as

coming from the left/right by relying in the fact that
the sound arrives faster on the side of the sound source
but is delayed by a small amount on the opposite di-
rection. Specifically, if a sound is to be panned on one
direction by a delay then we would shift the wave
values on the opposite direction by the panning value.
• Mixed Panning: Utilizes both amplitude and delay

panning. However, in order to avoid awkward silences
we also consider a mix value.

seperation :: [Real] Real → ( [Real ] , [Real ] )
seperation origSamples amt = result

where

c_dist =sqrt ( 2.0*115.5625 - 2.0*115.5625
*cos ( (1.0-amt ) * 90.0 ) )
b_dist = sqrt ( 2.0*115.5625 - 2.0*115.5625
*cos ( (1.0+amt ) * 90.0 ) )
c_loudness = 0.5 + 0.5*(1.0- ( b_dist/10.75 ) )
c_phaseOff = SAMPLING_RATE * (c_dist/soundSpeed )

b_loudness = 0.5 + 0.5*(1.0 - ( c_dist/10.75 ) )
b_phaseOff = SAMPLING_RATE * (b_dist/soundSpeed )
c_samples = repeatn (toInt ( (c_phaseOff -

min (c_phaseOff , b_phaseOff ) ) ) ) 0.0
++ (map (𝜆x = x*c_loudness ) origSamples )

b_samples = repeatn (toInt ( (b_phaseOff -

min (c_phaseOff , b_phaseOff ) ) ) ) 0.0

++ (map (𝜆x = x*b_loudness ) origSamples )
result = (c_samples , b_samples )

Listing 5. The seperation implementation

The method ”separation” takes a list of real numbers, that
is the signal sent from the sound source, the second argu-
ment is real which denotes the direction of the given sound
source. The method returns the tuple of a list of real numbers,
one of them is the signal that is modified from the original
one according to the direction, angle, and so on. So we get
two different signals one of them is for the left ear and the
second one is for the right one. There are some trigonometric
calculations to get the angles, cosines, and sines, that’s to cal-
culate the distance between the sound source and left-right
ears. If the sound source is closer to the left ear than the left
ear will receive earlier than the right ear, so to have such a
difference, phase shifting adds some zeroes in the list which
is sent to the right ear. This makes a little time difference.
To calculate the right amount of zeroes for shifting, distance
difference should be divided to the sound speed and multi-
plied to the rate of the signal. The time complexity of the
function is O(N) because it iterates over the list.

3.6 Parsing MIDI file Input
MIDI is short for Musical Instrument Digital Interface, which
is related to audio devices for playing, editing, and recording
music. The byte order is big-endian (as in [11]).

MIDI files are the standard format across all computing
platforms for transferring MIDI data amongst users. MIDI
files contain the standard channel-based MIDI messages,
along with sequencer-related data (e.g. tempo, time and key
signature, track names, etc.) and System Exclusive messages.
Each message (also referred to as an event) is time-stamped.
Any decent MIDI sequencer should allow MIDI files to be
loaded and saved, in addition to the use of any proprietary
file format. MIDI files differ from most other types of music
files in that they do not contain encoded sound (e.g., as in a
WAV file). Consequently, compared with WAV or even MP3
files, MIDI files are extremely compact.

The content of a MIDI file is structured as a series of blocks
of data referred to as chunks. Each chunk begins with a 4-
character ASCII type. It is followed by a 32-bit length, most
significant byte first. There are two main types of chunks
defined in MIDI, as illustrated in the table below.

type
structure type

(4 bytes)
length
(4 bytes)

data
(variable length of bytes)

Header Chunk MThd 6 <format><tracks><division>
Track Chunk MTrk <length> <delta_time><events>...

Table 1. Three types of MIDI Events

3.6.1 Information in MIDI file. The following introduces
the most critical information in a MIDI file.

6
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Format types of MIDI files: This describes the chunk struc-
ture of a MIDI file and determines how the following MTrk
chunks relate to one another (as in [5]).
• format 0: MIDI files, there should only be one MTrk

chunk, and this can, therefore, contain any valid event -
i.e., all timing-related and note (potentially multi MIDI
channel) data.
• format 1: The first MTrk chunk is a global tempo track

and should contain all timing-related events and no
note data. The second and subsequent MTrk chunks
contain the actual note data, and should not contain
any timing related events. As all tracks are played
together, they all follow the tempo map described in
the global tempo track (the first MTrk chunk).
• format 2: Each track is a separate entity (like drum

patterns within a drum machine), and can each contain
any type of event. There is no global tempo track - each
track may have its tempo map. Any timing-related
events are specific to the track in which they occur.

tracks: Describe the number of track chunks contained
in the MIDI file. Track chunks (identifier = MTrk) contain
a sequence of time-ordered events (MIDI and/or sequencer-
specific data), each of which has a delta time value associated
with it - i.e., the amount of time (specified in tickdiv units)
since the previous event.

delta_time: The delta-time specifies the number of tick-
div intervals since the previous event (or from the nominal
start of the track if this is the first event). If an event is to
occur at the very start of a track, or simultaneously with
the previous event, then it will have a delta-time of 0. The
delta-time is a variable-length quantity in that it is specified
using 1, 2, 3, or 4 bytes, as necessary.

events: There are three main different kinds of events that
can occur in track chunk; each type has a different number
of bytes to store the information. We are not able to know
the length of each specific event until we reach its status
byte, which stores the information indicating what type it is.
• MIDI events (status bytes 0x8n - 0xEn) Corresponding

to the standard Channel MIDI messages, i.e., where
’n’ is the MIDI channel (0 - 15). This status byte will
be followed by 1 or 2 data bytes, as is usual for the
particular MIDI message. Any valid Channel MIDI
message can be included in a MIDI file.
• SysEx events (status bytes 0xF0 and 0xF7) There are a

couple of ways in which system exclusive messages
can be encoded - as a single message (using the 0xF0
status), or split into packets (using the 0xF7 status). The
0xF7 status is also used for sending escape sequences.
• Meta events (status byte 0xFF) These contain additional

information that would not be in the MIDI data stream
itself. E.g., TimeSig, KeySig, Tempo, TrackName, Text,

Marker, Special, EOT (End of Track) events being some
of the most common.

event type
structure status byte byte2 byte3 byte4

MIDI events 0x8n - 0xEn data (data) −
sysex events 0xF0 and 0xF7 length data −
meta events 0xFF type length data

Table 2. Three types of MIDI Events

3.6.2 Challenges for parsing the MIDI file. Unlike reg-
ular audio files like MP3 or WAV files, MIDI files do not
contain actual audio data; therefore, it is much smaller in
size and more compact, which makes it more difficult to parse
it since there are much information to extract and store.

3.6.3 Challenges for parsing Delta Time. Delta time is
represented by a time value, which is a measurement of the
time to wait before playing the next message in the stream
of MIDI file data. Time values are stored as Variable-Length
Values (VLV: a number with a variable width) [16]. Each
byte of delta time consists of two parts: 1 continuation bit
and 7 data bits. The highest-order bit is set to 1 if it needs
to read the next byte, set to 0 if this byte is the last one in
variable-length value.

Solution: To get an integer number represented by a vari-
able length value.

i. convert the first byte in VLV to integer
• if it is greater than 128, put it into a list and read the

next bytes recursively
• if it is not greater than 128, add this byte into a list

and end the recursion
ii. convert the list of bytes into an integer number

iii. return an integer representing delta time and the length
of the track chunk in bytes

3.6.4 Challenges for parsing Running Status of MIDI
Events. While reading bytes coming from a MIDI message,
the STATUS byte can in fact be omitted (except in the first
message of that type).In such a case, we can receive a mes-
sage that only has DATA bytes. The STATUS byte is then
supposed to be the same as the last STATUS byte received.
This is called MIDI RUNNING STATUS. It is useful for in-
stance to optimize transmission when a long series of the
same messages are sent.

If the first (status) byte is less than 128 (hex 80), this implies
that the running status is in effect and that this byte is the
first data byte (the status is carried over from the previous
MIDI event). This can only be the case if the immediately
previous event is also a MIDI event because system exclusive
events and meta events will interrupt (clear) the running
status.

Solution: The length of the track chunk is useful since it
does not only help for processing standard chunks but also
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makes it easier to deal with unexpected chunk types – just
by skipping that amount of bytes, then we can continue to
process next chunk.

3.6.5 The structure of MIDI processing. The following
is a general structure of functions that deal with the infor-
mation contained in MIDI file (see figure 6 and listing 6).

Figure 6. The MIDI processing functions

process :: [Char] → Info

process l | length l > 14 && isHeader (take 4 l )
= { headerInfo = processHeader (drop 8 l ) ,

trackInfo = processTrack (drop 14 l ) }
= abort "not enough information"

processHeader :: [Char] → HeaderInfo

processHeader l =

{ format = calcFormat (take 2 l ) ,
division = calcDivision (take 2 (drop 4 l ) ) }

processTrack :: [Char] → [TrackInfo]
processTrack [] = []
processTrack l | isTrack l = processTrackBody (drop 4 l )

= processTrackBody l

Listing 6. The process, processHeader, processTrack func-
tions

process: This function parses a MIDI file from scratch, ac-
cepting a list of Char (i.e., bytes) and returning an Info record,
which contains information about header and track chunks.
isHeader: This function takes the first four elements from a
list of bytes to see if it is the type of header chunk(MThd). The
first six bytes of the list gives information about the format,
the number of track chunks in total and division.
processHeader: This function stores the first and third value
in the HeadInfo record.
processTrack: This function uses isTrack function to see if
the beginning of a track chunk is currently being processed,
and if so, it drops the first four elements which contain in-
formation of chunk type and continues processing the re-
maining information.

3.7 Parsing MusicXML file Input
MusicXML is an XML-based file format for representing
Western musical notation. It is a digital sheet music inter-
change and distribution format. The goal is to create a uni-
versal format for common Western music notation, similar
to the role that the MP3 format serves for recorded music.
The musical information is designed to be usable by nota-
tion programs, sequencers and other performance programs,
music education programs, and music databases.

3.7.1 Target type for parsing. The tree data structure
for storing final information that being extracted from the
MusicXML file using the parsers. String contains the name
of a tag and the list of ElementAttribute has the attribute in-
formation for the correspondence tag, the XML list contains
the child elements of the parent.

:: XML = Text String

| Element String [ElementAttribute] [XML]

:: ElementAttribute = { name :: String ,
value :: String }

3.7.2 Target type for extracting information. MusicXML
is a simplified version of XML which left out useless infor-
mation and store data in a more useable structure. In this
parser of Clean, we only focus on the part-wise score type of
MusicXML where measures are nested within parts.We use
the record to store the data of measure. For each measure, it
contains several attributes and notes, and the information in
attributes and note are as shown above.

:: MusicXML :== [Measure]
:: Measure = { attributes :: [Attributes] ,

notes :: [Note] }
:: Attributes = { divisions :: Divisions ,

key :: Key ,
time :: TimeSignature }

:: Note = { pitch :: Pitch ,
duration :: Duration ,
type :: Note_type }

3.7.3 Parsing process. Monadic parsing: A minimal monadic
parser combinator library was written in Clean for XML pars-
ing.

Process for parsing: There are two different kinds of tags,
one is self-closing tag the other one has a starting tag and
an ending tag. With the aid of parsers in the library we have
separate parsers for that two types of tags accordingly.

Process for extracting information: After geting the XML
type, we can now try to get the needed

3.8 Saturation Type Distortions in Digital Signal
Saturation is defined as a condition upon which additional
amplitude gain is restricted past a set threshold amount.
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In the book DAFX - Digital Audio Effects when the authors
started talking about their work with tape saturation, they
said " They prefer doing multi-track recordings with analog
tape-based machines and use the special physics of magnetic
tape recording as an analog effects processor for sound design.
One reason for their preference for analog recording is the fact
that magnetic tape goes into distortion gradually Ear761 (pp.
216-218) and produces those kinds of harmonics which help
special sound effects on drums, guitars and vocals."

3.8.1 Implementation. All the implementations that will
be shown in this section can be obtained in any of the wave
forms to produce a saturated sound.

Hard clipping, the implementation of it is very straight
forward as we are following the math function:

𝑓 (𝑥,𝑚𝑎𝑥) =

⎧
⎨
⎩

max : where x > max
-max : where x < max
x : where -max ≤ x ≤ max

Soft Clipping, there are many implementation for it and
to have many choices for the user since every clipping will
give different "character" for the sound, there will be more
than one implementation for the soft clipping. Customized
DAFX approach The solution offered in the DAFX for dis-
tortion is using the formula :

𝑓 (𝑥) = 𝑥/| 𝑥 | (1 − exp(𝑥2/| 𝑥 |))

But looking through the formula and considering our goal,
the formula that was used in the project and that had the
desirable effect was:

𝑓 (𝑥) = 𝑥/| 𝑥 | (1 − exp(−𝑥2/| 𝑥 |))

As it is shown in the graph, the new wave doesn’t hit the
threshold which is 1 anymore, and the transition was very
smooth as expected form the sigmoid function. The only part
that was not satisfying in that distortion that the formula
is giving us limited options in shaping the wave which is
counted as disadvantage.

3.9 Digital Sample Transcoding and Normalization
3.9.1 General information about Transcoding. After
the synthesis part, the signal needs to be converted into a
form that can be recorded onto physical or digital media.
This process is also known as transcoding. In days of analo-
gous signal synthesis, recording equipment transcoded the
electrical signals using various mechanical or electromag-
netic methods. With digital synthesis, the applications have
to transcode the digital waveforms into bits in order to store
them into the appropriate file.

3.9.2 Finding Suitable Form Challenge. Similarly to this
concept, in this implementation, once the program obtains
the wavetable examined in Section 3.2, the next step is to
write this sound data to a WAV file.

As discussed in Section 3.10, three main components sep-
arate the WAV file: the RIFF chunk, the fmt sub-chunk and
the data sub-chunk. The data sub-chunk contains the sound
information, which is stored in bits. In consequence of that,
it was necessary to find a way to convert the result of the
wavetable into appropriate data for the file; hence, there are
transforming functions implemented.

Solution: Initially, only the 8-bit version was created, which
takes the list of output sample values and its maximum value
and converts the values to fit the 8 bits range. In other words,
the values of the samples are converted into an interval
from 0 to 255. Later on, as a precondition for increasing the
quality of the generated sounds, the function 16-bit version
functionality was added, which alters the values to 16 bits
samples stored into the interval 0 to 216 − 1, and to maximize
the quality of the generated sound 32-bit version, which
alters the values to 32 bits samples stored into the interval 0
to 232 − 1.

3.9.3 Multiple Channels Challenge. In a physical as-
pect, a channel is the passage through which a signal or
data is transported. In the case of audio files, it is the pas-
sage or communication channel in which a sound signal
is transferred from the player source to the speaker. Since
humans evolved to hear binaurally, in order to deliver more
depth and spaciousness for enhancing the audio, at least two
channels are needed. That is why the creation of a multiple-
channel version implementation was introduced as our next
challenge.

Solution: To make the project more flexible with the num-
ber of channels in the received input, two versions were
made for the transform function. In the default case, the
sound data obtained as the input will represent only one
channel, meaning that the waveform could be correctly rep-
resented as a list of Reals. On the other hand, in case the
data has two or more channels, then a better representation
would be a list of lists of Real.

3.9.4 Implementation and Mathematical Background
of Transcoding. After some research regarding the oppor-
tunities Clean offers, the best approach proved to be the
concept of vertical graph shifting and multiplying. The most
straightforward vertical graph transformation involves adding
a positive or negative constant to a function. For example,
by adding the same constant 𝑘 to the output value of the
function regardless of the input, the function shifts the graph
of the function vertically by 𝑘 units.

transform_one_channel :: [Real] Real BitVersion → [Byte]
transform_one_channel list max bitVersion

= flatten

(map (toBytes Signed LE

(translated_bit_version/BYTE_SIZE ) )
(map (𝜆x = moving_wave x max bitVersion ) list ) )

where
9
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translated_bit_version

= translating_bit_version bitVersion

Listing 7. The transform_one_channel function

To give a more detailed explanation of the implementation
(Listing 7), it is a good idea to handle the 8, 16, and 32 bits
cases separately. Regarding the 8 bit case, the first step is ap-
plying the moving_wave (Listing 8) function to each element
in the list. The moving_wave function takes three parame-
ters: the targeted_number, the max and the bitVerson. When
passing 8 as a bitVerson parameter to the moving_wave, this
function divides the targeted_number with the max, which
in this implementation denotes the maximal possible limit
of the values in the input list. In the case of real numbers
from [−0.5, 0.5] this value is 0.5. Following this, the func-
tion moving_wave is adding 0.5 to targeted_number over max.
This step represents vertical shifting. After that, this sum
is multiplied by 255 (which is 28 − 1) in order to get real
numbers in [0, 255] interval. But as the expected output is
of type Int, applying the function toInt (build-in function
in Clean) is needed as the last operation performed by the
moving_wave function. After the moving_wave is performed to
each number from the given list the next step in the trans-
formation is mapping the function toBytes that converts an
Int into a list of binary digits of length 8. The last step is
flattening the list of Bytes into a list of bits that can be later
written into the WAV file. If the input is a list of lists instead
of a single list (in case of multiple channels), mapping the
same transformation to every input sub-list is the proper
conversion.

moving_wave :: Real Real BitVersion → Int

moving_wave targeted_number max bitVersion

| translated_bit_version == 8
= toInt (255.0* (targeted_number/max+0.5 ) )

= moving_wave_aux targeted_number

max

translated_bit_version

where
translated_bit_version

= translating_bit_version bitVersion

Listing 8. The moving_wave function

In the 16 bit case, in the moving_wave function instead of using
toInt as a last operation, it is more appropriate to create and
apply the function moving_wave_aux which takes three pa-
rameters (the targeted_number, the max and the bitVersion).
The moving_wave_aux function then returns 215 − 1 if the
targeted_number equals to max or otherwise the lower inte-
ger part of targeted_number multiplied by 215 and divided by
max. Following that, similar to the 8-bit version, the toByte

mapping is performed. The transformation is concluded by
concatenating the sub-lists of bits of length 16 into a single

list. If the input is a list of lists, mapping the same trans-
formation to each sub-list of the input gives the expected
output.

The 32-bit version is almost the same as the 16-bit one,
the only difference is that the moving_wave multiplies by 231

instead of 215 and toByte returns a list of length 32 instead
of 16.

3.9.5 Evolution to the Interface. As stated previously,
we gradually created three individual functions to cover
the 8-bit, 32-bit and 64-bit cases. However, in time, it was
established that the creation of an interface was much more
generic, and hence more reliable. As observed before, the
function transform_one_channel takes the bit version as a
parameter, which makes it much more flexible in case further
changes need to be introduced.

3.10 WAV Output File Format
The WAV file is an instance of a Resource Interchange File
Format (RIFF) defined by IBM and Microsoft. Many audio
coding formats are derived from the RIFF format (i.e., AVI,
ANI, and CDR) [10]. The most common WAV audio format
is uncompressed audio in the linear pulse code modulation
(LPCM). However, a WAV file can contain compressed audio,
on Microsoft Windows, any Audio Compression Manager
codec can be used to compress a WAV file. LPCM audio is a
choice for professional users and audio experts in order to
acquire maximum audio quality. [7].

3.10.1 The WAV File Structure. A RIFF file is a tagged
file format. It consists of a specific container format called
chunk, and the chunk has four character tag (FourCC) and
the size (number of bytes) of itself. The tag specifies how the
data within the chunk should be interpreted, and there are
several standard FourCC tags. Tags consisting of all capital
letters are reserved tags. The outermost chunk of a RIFF file
has a RIFF form tag; the first four bytes of chunk data are
a FourCC that specifies the form type and is followed by a
sequence of subchunks. In the case of a WAV file, those four
bytes are the FourCC WAVE. The remainder of the RIFF data
is a sequence of chunks describing the audio information [10].
The ability to extend the format later is a massive advantage
for a tagged file format, as the mentioned format will not
confuse the file reader. The rules of RIFF reader specifies that
it should ignore all irrelevant tagged chunk and treat it as
valid input.

<WAVE-form> →
RIFF ('WAVE'

<fmt-ck> / / Format
[<fact-ck>] / / Fact chunk
[<cue-ck>] / / Cue points
[<playlist-ck>] / / Playlist
[<assoc-data-list>] / / Associated data list
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<wave-data> ) / / Wave data

Listing 9. RIFF header

The definition has a few interesting points. The format
chunk is necessary since it describes the format of the sam-
ple data that follows. The cue points chunk is optional and
identifies some significant sample numbers in the wave file,
the playlist and fact chunks are also optional. Finally, the
mandatory wave data chunk contains the actual samples.
Unfortunately, the definition of the WAV file is foggy regard-
ing the place of INFO chunk, as well as the CSET chunk,
but the PCM format generated omits this chunk since the
functionality does not depend on it.

The <wave-data> contains the waveform data. It is defined
as in the following [10]:

<wave-data> → { <data-ck> | <data-list> }
<data-ck> → data ( <wave-data> )
<wave-list> →

LIST ( 'wavl' { <data-ck> | / / Wave samples
<silence-ck> } ... ) / / Silence

<silence-ck> →
slnt ( <dwSamples:DWORD> ) / / Count of silent samples

Listing 10. Wave data

In the wave data chuck (Listing 10) produced by the appli-
cation, the implementation changes <data-list> to <wave-list>

in line 1 and <wave-data> to <bSampleData:BYTE> in line 2.
These changes are done in order to avoid any possible re-
cursion of <wave-data> contained in a <data-ck>. WAV files
can contain embedded IFF lists, which can contain several
sub-chunks.

3.10.2 WAV File Format Limitation. The RF64 format
specified by the European Broadcasting Union has been cre-
ated to solve the limited file size issue of the WAV format
since the WAV format can only handle files less than 4 GB
because of its use of a 32-bit unsigned integer to record the
file size header although this is equivalent to about 6.8 hours
of CD-quality audio (44.1 kHz, 16-bit stereo).

WAV format suffers from duplicated information between
chunks. Also, 8-bit data is unsigned, which differs with 16-
bits data which is signed, such inconsistency can be puzzling.
Based on the file specification of the WAV file format, a
set of functions were implemented to create a framework
for writing the data into a file. These functions have been
enumerated in detail in the following pages. In the process of
making the framework for writing to a WAV file, we had to
take into consideration some points, including the functional
way in handling IO operations and language-specific features
of Clean.

3.10.3 Purity in Clean. Due to Clean being a purely func-
tional language, side effects such as writing to a file is not
as straightforward as in imperative languages. Clean deals

with this by using uniqueness typing to preserve referential
transparency [1, 2].

3.10.4 Handling binary data in Clean. The Clean StdEnv

supports basic file manipulation in the StdFile module. It
provides operations for the File type, which can also be a
unique type. There are several operations for writing data,
though most of them are not easy to work with for binary
data. The smallest unit we can write is a Char. We assume a
Char in Clean is a byte, we denote it with a type synonym
(:: Byte :== Char).

3.10.5 Writing byte sequences to file. There is a func-
tion for writing a string (unboxed Char arrays in Clean) to
a file. However, lists are easier to work with, we defined a
function to write a list of Chars to a file 11.

The ! in the type specifies that the arguments are strict, it
can improve program efficiency where laziness is not needed.
♯! is a strict let notation, assigning the output of fwritec b f

to f. This f is not the same variable as the f in the line before.
It introduces a new scope and shadows the previous variable,
encouraged in Clean with unique types, and it makes the
explicit passing of the unique file.

writeBytes :: ![Byte] !*File → *File

writeBytes [] f = f

writeBytes [b:bs] f

♯! f = fwritec b f

= writeBytes bs f

Listing 11. Writing a list of bytes into a file

3.10.6 Integer and byte conversion. We need to manu-
ally define a function to convert a non-negative integer to a
list of bytes in little-endian order for later use (Listing 12). It
takes an argument that specifies how many bytes the num-
ber should be represented, e.g., if the argument is 2, then the
output will represent a 16-bit word, the rest of the number
is truncated. The function uses simple recursion and basic
operators from StdEnv. The first parameter is the number of
bytes, the second one is the integer to be converted.

uintToBytesLE :: !Int !Int → [Byte]
uintToBytesLE i n

| i ≤ 0 = []
= [ toChar (n bitand 255)

: uintToBytesLE (i - 1) (n >> 8) ]

Listing 12. Converting an integer to a list of bytes

3.10.7 Interface for writing a WAV file. We implemented
writing to a Wave file in (L)PCM format due to its simplicity.
The type of the function for writing a Wave file is given in
a dcl file (definition module). It takes some parameters that
specify the structure of the file, and a list of bytes as the
binary data in the data chunk.
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:: PcmWavParams =

{ numChannels :: !Int

/ / Number of channels
, numBlocks :: !Int

/ / Number of samples (for each channel)
, samplingRate :: !Int

/ / Sampling rate in Hz (samples per second)
, bytesPerSample :: !Int

/ / Number of bytes in each sample
}

writePcmWav :: !PcmWavParams ![Byte] !*File → *File

Listing 13. Interface of writing a Wave file in PCM format

All data that the Wave file needs can be calculated from
these parameters. numBlocks represents the total number
of blocks in the data chunk, where each block contains
numChannels samples. bytesPerSample is how many bytes
each sample contains.

3.10.8 Implementation of writing a WAV file. The main
function is composed of three smaller functions. The first
one writes the RIFF header into the file, as in the Listing 14.

writeHeader :: !Int !*File → *File

writeHeader l f

♯! f = fwrites "RIFF" f

♯! f = writeUint 4 l f

♯! f = fwrites "WAVE" f

= f

Listing 14. Writing RIFF header into a file

The first argument is the length of the whole file minus
the first eight bytes. It was calculated in the main function
with 4 (the bytes WAVE) + 24 (size of the format chuk) + 8
(header of the data chunk) + bytesPerSample × numChannels

× numBlocks (size of the binary data) + (1 or 0 depending on
whether the size of the binary data is odd or even). writeUint
is a utility function that combines writeBytes and uintToBytesLE.
The second function writes the format chunk, which contains
writing in the following data [7], using the same method as
the previous function (Table ??).

The last function takes the length and the list of the binary
data, and writes it into the file using writeBytes after writing
in the chunk header. It also takes care of adding a padding
byte if the size of the data in bytes is odd. The main function
composes the smaller functions and evaluates the size of the
binary data so that it does not need to be calculated more
than once in the sub-functions (Listing 15).

writePcmWav :: !PcmWavParams ![Byte] !*File → *File

writePcmWav p d f

♯! l = p.bytesPerSample * p.numChannels * p.numBlocks

♯! f = writeHeader (l + i f (isEven l ) 36 37) f

♯! f = writeFormat p f

♯! f = writeData l d f

= f

Listing 15. The main function for writing Wave files

After running a file through the function, a Wave file is
written, which can be played on a music player software.
The whole process can be seen in Figure 7.

writePcmWav

writeHeader writeFormat writeData

f :: File

Wave file

Figure 7. The process of writing a Wave file in Clean

4 Results
In the initial test runs of the application, we used a hard-
coded notation of Beethoven’s Für Elise as input. The first
16 measures of Für Elise was chosen as an initial test input
as the notation involved only a single instrument, and the
melodic and harmonic lines contained only monophonic
lines. The initial test render of Für Elise with only digital
synthesis signals from the signal generation modules took a
total amount of time ranging between 900 - 1000 seconds to
complete. Further iteration on the application, in which the
wavetable implementation was changed from lists to arrays,
resulted in a subsequent rendering time of 4-6 seconds.

Following later implementation of the MIDI input and
the Envelope modules, we were then able to do test ren-
ders using a variety of MIDI files. The first one we utilized
was 𝑠𝑖𝑚𝑝𝑙𝑒.𝑚𝑖𝑑 , a MIDI file that the team created specifi-
cally to test the synth generation capacity of the program.
𝑆𝑖𝑚𝑝𝑙𝑒.𝑚𝑖𝑑 consisted of a series of A4 (440hz) notes at vary-
ing time intervals, from 1/16 of a beat to a double beat. The
design of 𝑠𝑖𝑚𝑝𝑙𝑒.𝑚𝑖𝑑 was done to test the synth generation
at different lengths of note values. Afterward, a sustained
𝐶𝑀𝑎𝑗 chord is played to test the ability of the program to
layer notes polyphonically.

The next MIDI file that we used to test the program with
is 𝐹𝑢𝑟𝐸𝑙𝑖𝑠𝑒 − 𝑆ℎ𝑜𝑟𝑡 .𝑚𝑖𝑑 . The MIDI file contains the first 16
measures of Für Elise. For the same reason as the hardcoded
version of Für Elise, this MIDI file tests the program’s ca-
pability to render two monophonic lines of melodic and
harmonic content in parallel. The 𝐹𝑢𝑟𝐸𝑙𝑖𝑠𝑒.𝑚𝑖𝑑 file is a MIDI
file that extends this by containing the first 32 measures of
Für Elise. While the melodic and harmonic characteristics do
not change much from the first 16 measures, the additional
length of the track is a good test of complexity efficiency.

5 Related Work
Euterpea [3] is a Haskell library for algorithmic MIDI gener-
ation and low-level sound synthesis. Although it is written

12

242



in a purely functional language similar to our work, it makes
use of functional reactive programming, which is a different
approach relying on interactivity, whereas we focus on music
synthesis using abstraction available in standard functional
programming.

Eric Zuubier’s [17] work has similarities in the genera-
tion of music in Clean while using higher abstraction levels.
Contrarily, our paper utilizes MIDI and WAV files for a more
generalized digital synthesis, whereas Zuubier focuses on a
specialized digital synthesis for just intonation (the tuning
of musical intervals as whole number ratios of frequencies).

Jerzy Karczmarczuk’s work [4] is also written in Clean,
and both share the ability to handle multiple instruments.
Our approach places emphasis on a mathematical model in
contrast to the physics and circuit like implementation were
characteristic of Karczmarczuk’s approach. Finally, while we
were able to generate music, this was not done by Karczmar-
czuk’s work [4].

Maximillian [8] is one of many C++ frameworks [14] that
is similar to our project in that it implements various wave-
form generators and envelopes. While we use similar tech-
niques, the C++ implementation within Maximillian is opti-
mized for the use of the procedural paradigm and live buffers
while ours focuses on letting users create their waveforms
via the Fourier series. Additionally, our implementations for
envelope are far more intuitive to the actual sound design
process.

6 Conclusion
The digital synthesizer application successfully demonstrated
another major application of functional programming. There
were some challenges in the process. These included: the cre-
ation of the framework for writing to WAV, the conversion
of data to bit format, and the integration of the variety of
specifications and conventions within the MIDI and WAV
file formats.

The team was successful in implementing full-featured
frameworks for importing MIDI files, writing to WAV files,
and creating synths via additive synthesis subtractive syn-
thesis, and envelopes.

7 Further Work
The application can be easily extended with further func-
tionality to become more competitive with current offerings
within the digital synthesis ecosystem. Support can be added
for more import file types such as MusicXML and export file
types such as .mp3, .flac, and .ogg. Additional functionality
can be added with filters based on frequency (e.g., passes,
shelves, and EQ), effects based on amplitude (e.g., compres-
sion, gate, and distortion), and effects based on time (e.g.,
delay, reverb, and chorus).

Lastly, adding support for live MIDI input, sample banks,
VST3 support, and a graphical user interface will further
bring the application in line with other digital synthesizers.
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Abstract—We introduce HoCL (Higher order Coordination
Language), a novel, functional, Domain Specific Language for
specifying dataflow graphs. HoCL can be used to describe mixed-
grain, parameterized, hierarchical and recursive graph topolo-
gies. Compared to existing specification formalisms and tools,
the main originality of HoCL is the ability to describe graphs
using a purely functional notation. This style of description
offers a very concise way of denoting graph structures and
allows graph patterns to be encapsulated as user-definable higher
order functions. HoCL also supports Model of Computation
(MoC) specific annotations and its compiler backend is able to
export graph definitions to external tools including Graphviz,
DIF, PREESM and SystemC. Those features make HoCL ready
to use with existing dataflow visualization, analysis or simulation
tools.

Index Terms—Functional programming, Domain specific lan-
guage, Dataflow modeling, digital signal processing.

I. INTRODUCTION

Dataflow modeling is used extensively for designing digital
signal processing (DSP) systems. With this approach, applica-
tions to be implemented are described as graphs of persistent
processing entities, named actors, connected by first in, first
out (FIFO) channels and performing processing (“firing”)
when their incoming FIFOs contain enough data tokens. By
varying the semantics of these firing rules, many dataflow
models of computations (MoCs) can be defined, offering
different trade-offs between expressivity and predictability,
while keeping the key property of dataflow models : their
ability to naturally express the intrinsic parallelism of DSP
applications.

As a result, a wide variety of dataflow-based design tools
have been developed, such as Ptolemy [1], LabView or
Preesm [2], for specification, simulation and synthesis for
hardware or software implementation of dataflow-oriented
applications.

With these tools, the specification of the application is
typically carried out textually, using some form of graph
notation or graphically, using a dedicated Graphical User
Interface (GUI). In both cases, the specification of large or/and
complex graphs quickly become tedious and error-prone.

In this paper, we propose a domain-specific language (DSL),
named HoCL aimed at simplifying and streamlining the
description of dataflow graphs with large and/or complex
topologies. The key feature of this language is the ability
to describe graph structures as functions, so that several
well-known and powerful concepts drawn from functional
programming languages – such as polymorphic typing and
higher order functions – can be applied both to ease and secure
the task of describing these graphs.

The design of the HoCL language was also guided by the
following concerns.

First, the ability to describe hierarchical graphs, i.e. graphs
built from nodes which are either atomic actors (the action
of which is performed as a single, indivisible operation) or
decomposed as a subgraph. Hierarchical specifications are at
core of top-down design methodologies, which are known to
be highly applicable to DSP systems.

Second, ability to describe parameterized graphs, i.e. graphs
for which the behavior of nodes (atomic or subgraph) can be
declared as dependent on a set of dedicated values, distinct
from the data flows. Graph parameterization is at the core of
reconfigurable dataflow MoCs such as PSDF [4] or πSDF [5],
which offer interesting trade-offs between expressivity, pre-
dictability and efficiency for implementing DSP applications.

Third, MoC-agnosticism, i.e. the idea that the language
should be general enough to describe dataflow graphs with
no assumption on the underlying dataflow semantics. The
main goal of HoCL is to act as a coordination language1,
aimed at describing the topology of the graphs independently
of the behavior of the atomic actors appearing in this graph.
This said, and when required, MoC-specific informations (for
example, production and consumption rates for SDF graphs)
can be attached to descriptions by means of annotations.

Fourth, mixed-style descriptions. The HoCL language allows
graph to be described using a functional notation, but it does
not force the programmer to do so. Classical descriptions, in
which graphs are described by explicitly listing nodes and
edges, are still available. Both styles can be freely mixed.

The rest of this paper is organized in seven sections.
Section II is a general, informal presentation of the language,
by means of small examples. Section III gives some insights
on MoC-specific annotations. Section IV is a more formal
presentation of the language, including details on the syntax
and semantics. Section V is a short account on the language
implementation, focusing on the available backends for graph
visualisation and code generation. Section VI describes the
implementation, with HoCL, of a complete DSP application.
Section VII is short review of related work and section VIII
concludes the paper.

II. LANGUAGE OVERVIEW

As an introductory example, consider the dataflow graph
(DFG) depicted in Fig. 1, where
• i (resp. o) is an input (resp. output) node,

1Hence its name
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• nodes labeled f, k and h correspond to dataflow actors,
• clusters labeled g denotes dataflow subgraphs.

g

g

k k

h

k k

i f o

Fig. 1

A structural description of this DFG in HoCL is given in
Listing 1.

1 node f in ( i : t ) out ( o1 : t , o2 : t ) ;
2 node k in ( i : t ) out ( o : t ) ;
3 node h in ( i 1 : t , i 2 : t ) out ( o : t ) ;
4
5 node g in ( i : t ) out ( o : t )
6 s t r u c t
7 wire x : t
8 box n1 : k ( i ) ( x )
9 box n2 : k ( x ) ( o )

10 end ;
11
12 graph t o p in ( i : t ) out ( o : t )
13 s t r u c t
14 wire x1 , x2 : t
15 wire y1 , y2 : t
16 box n1 : f ( i ) ( x1 , x2 )
17 box n2 : g ( x1 ) ( y1 )
18 box n3 : g ( x2 ) ( y2 )
19 box n4 : h ( y1 , y2 ) ( o )
20 end ;

Listing 1: A structural description of Fig.1 in HoCL

Lines 1–3 and 5–10 define node models, from which the
graphs described in the specification are built. Each occurrence
of a node model in a graph creates an instance of the model.
A node declaration comprises an interface and a description.
The interface gives the name of the node and the name and
type of each input and output. In this introductory example,
for simplification, all types have been identified to an abstract
type named t. Nodes with an empty description (such as f, h
or k) describe atomic actors. Such nodes are viewed as black
boxes at the specification level2. A node description can also
be given in the form of a subgraph, as for the g node in the
example. In this case, the corresponding subgraph is expanded
whenever the node is instantiated.

Lines 12–20 define the toplevel graph. A graph declaration
is also made up from an interface and a description but, at
the difference of node declarations, its description is always
a subgraph and the corresponding graph is automatically
(implicitly) instantiated3.

2Backend-specific annotations – such as the name of the sequential function
implementing the actor behavior for simulation for example – can also be
attached to atomic actors.

3A valid specification in HoCL is therefore made up of at least one graph
declaration.

In the example of Listing 1, both the toplevel graph top and
the subgraph associated to node g are defined structurally (as
evidenced by the struct keyword at lines 6 and 13 resp.).
In other words, the corresponding (sub)graphs are described
by explicitly listing all node instances (here called boxes)
composing the graph and all edges (called wires) connecting
these nodes. Describing graphs in a structural manner — be it
textually, by means of wire and box declarations or graphi-
cally, using more or less sophisticated GUIs – quickly becomes
tedious and error-prone. To overcome this problem, HoCL
allows graphs to be specified using a functional notation. This
notation is actually a small, purely functional, higher-order and
polymorphic functional language.

Listing 2 gives another specification of the DFG in Fig. 1
in which both the graph top and the subgraph g are here
described functionally.

1 node f in ( i : t ) out ( o1 : t , o2 : t ) ;
2 node k in ( i : t ) out ( o : t ) ;
3 node h in ( i 1 : t , i 2 : t ) out ( o : t ) ;
4
5 node g in ( i : t ) out ( o : t )
6 fun
7 v a l o = k ( k i )
8 end ;
9

10 graph t o p in ( i : t ) out ( o : t )
11 fun
12 v a l ( x1 , x2 ) = f i
13 v a l y1 = g x1
14 v a l y2 = g x2
15 v a l o = h y1 y2
16 end ;

Listing 2: A functional description of Fig.1 in HoCL

The key idea behind functional dataflow graph description
is that node models are viewed as functions and node instan-
tiation corresponds to function application.

The definition of node g (at lines 6-8) for example, says
that the corresponding (sub)graph is built by
• instantiating node k a first time (k i), creating a box n1

and connecting the input wire i to its input,
• instantiating node k a second time (k (...)), creating

a box n2 and connecting the output of box n1 to its
input,

• connecting the output of box n2 to the output wire o
(val o = ...).

The definition at line 7 can also be written using the reverse
application operator4 . as follows :

v a l o = i . k . k

in which the form of the RHS expression nicely “mimics” that
of the described subgraph.

The definition of the toplevel graph top (at lines 11–16)
uses the val keyword to bind intermediate values, which here
corresponds to naming connecting wires :

4x . f = f x.
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• line 12 respectively binds x1 and x2 to the first and
second output of the f node5,

• lines 13 and 14 respectively bind y1 and y2 to the output
of the first and second instance of the g node, i.e. to the
output of the corresponding subgraphs,

• line 15 binds these two values to the inputs of the h node
and its output to the graph output o.

Thanks to referential transparency, the definition given at
lines 12–15 can be rewritten in a slightly more concise manner,
without explicitly binding y1 and y2, as :

v a l ( x1 , x2 ) = f i
v a l o = h ( g x1 ) ( g x2 )

A. Wiring functions

Values bound by val declarations are not limited to wires
but can also be, as in any functional programming language,
functions.

For example, the definition of subgraph g in Listing 2 can
be rewritten as follows :

node g in ( i : t ) out ( o : t )
v a l o = t w i c e k x

end ;

where twice is the function defined, classically, as :

v a l t w i c e f x = f ( f x )

and has type : (α→ α)→ α→ α

The definition of the top graph in Listing 2 can also be
reformulated as follows, using a function :

graph t o p in ( i : t ) out ( o : t )
fun

v a l diamond l e f t midd le r i g h t x =
l e t ( x1 , x2 ) = l e f t x in
r i g h t ( midd le x1 ) ( midd le x2 )

v a l o = diamond f g h i
end ;

The diamond function takes four arguments : three func-
tions, left, middle, and right and a value x and applies
the given functions to x to form the diamond-shaped pattern
exemplified in Fig. 1. For this, it first applies function left
to x, giving two intermediate values x1 and x2, then applies
function middle, in parallel, both to x1 and x2 and finally
applies function right to the results. This definition is con-
veyed using a local definition (let ... in). The semantics
of local definition is that of classical FPLs : the scope of the
values defined in the let part is limited to the declarations
occurring in the in part. In essence, the diamond function
captures (“encapsulates”) the depicted graph pattern, just as the
twice function was capturing the repetition pattern depicted
in the subgraph g.

Functions like twice or diamond may be viewed as a
means of capturing wiring patterns in dataflow graphs. For

5Strictly speaking, to the first and second output of the box resulting from
the instantiation of node f. For simplification, and unless explicitly noted,
we will now denote a node instance by the name of the corresponding node
model.

this reason, we call them wiring functions, to distinguish them
from “ordinary” functions operating on scalar values.

HoCL comes with a standard library defining several useful
wiring functions encapsulating classical graph patterns such as,
for example :
• iter, for applying a given function n times in sequence;

so that the function twice can actually be defined as :
v a l t w i c e = i t e r 2 f

• pipe, a variant of iter in which a distinct function is
applied at each stage (see Sec. VI),

• map, to apply the same function to a list of values,
• mapf to apply a list of functions to a given value,
• . . .
An important feature is that all these functions are defined

using regular HoCL declarations, i.e. within the language
itself6. For example, the definition of the iter wiring function
is just, and as expected :
v a l r e c i t e r n f x =

i f n=0 t h e n x
e l s e i t e r ( n−1) f ( f x )

The set of available higher order graph patterns is therefore
not fixed but can be freely modified and extended by the
application programmer to suit her specific needs. This is in
strong contrast with most dataflow-based design tools in which
similar abstraction mechanisms rely on a predefined and fixed
set of patterns.

B. Recursive graphs
In a dataflow context, a recursive graphs is a graph in which

the refinement of some specific nodes is the graph itself. A
typical example is provided by Lee and Parks in their classical
paper on dataflow process networks [6].

This example is an analysis/synthesis filter bank under the
SDF (Synchronous Data Flow) model. The corresponding
dataflow graph has a regular structure which can be charac-
terized by its “depth”. Fig. 2, for example, shows a graph of
depth three7.

Fig. 13. A recursive specification of an FFT implemented in the SDF domain in Ptolemy. The 
recursion is unfolded during the setup phase of the execution, so that the graph can be completely 
scheduled at compile time. 

-1 
2 
+ 

aMF--, - 

Fig. 14. A fourti-order decimation-in-time FFT shown graph- 
ically. The order of the FFT, however, is hard-wired into the 
representation. 

1- - - 2 + 
1 - 1 

3 

stylistically identical to that found in functional languages 
like Haskell, albeit with a visual syntax. This can be 
illustrated with another practical example of an application 
of recursion. 

Consider the system shown in Fig. 15. It shows a mul- 
tirate signal processing application: an analysidsynthesis 
filter bank with harmonically spaced subbands. The stream 
coming in at the left is split by matching highpass and 
lowpass filters (labeled “QMF” for “quadrature mirror 
filter”). These are decimating polyphase finite impulse 
response (FIR) filters, so for every two tokens consumed 
on the input, one token is produced on each of two outputs. 
The left-most QMF only is labeled with the number of 
tokens consumed and produced, but the others behave the 
same way. The output of the lowpass side is further split 
by a second QMF, and the lowpass output of that by a 
third QMF. The boxes labeled “F” represent some function 
performed on the decimated stream (such as quantization). 
The QMF boxes to the right of these reconstruct the signal 
using matching polyphase interpolating FIR filters. 

There are four distinct sample rates in Fig. 15 with a ratio 
of 8:l  between the largest and the smallest. This type of 
application typically needs to be implemented in real time 
at low cost, so compile-time scheduling is essential. 

The graphical representation in Fig. 15 is useful for 
developing intuition, and exposes exploitable parallelism, 
but it is not so useful for programming. The depth of the 
filter bank is hard-wired into the visual representation, so 
it cannot be conveniently made into a parameter of a filter- 
bank module. The representation in Fig. 16 is better. A 
hierarchical node called “FB,” for “filterbank” is defined, 
and given a parameter D for “depth.” For D > 0 the 
definition of the block is at the center. It contains a 
self-reference, with the parameter of the inside reference 
changed to D- 1. When D = 0, the definition at the 
bottom is used. The system at the top, consisting of just 
one block, labeled “FB(D = 3),” is exactly equivalent 
to the representation in Fig. 15, except that the visual 
representation does not now depend on the depth. The 
visual recursion in Fig. 16 can be unfolded completely 
at compile time, exposing all exploitable parallelism, and 
incurring no unnecessary run-time overhead. 

F. Higher-Order Functions 
In dataflow process networks, all arcs connecting actors 

represent streams. The icons represent both actors and 
the processes made up of repeated firings of the actor. 
Functional languages often represent such processes using 

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 

. 

79 1 

Fig. 2: A filter bank of depth 3 under the SDF model (from
[6], Sec III-C, p 792)

For the sake of generality, Lee and Parks propose to view
this graph as an instance of a “recursive template”, depicted
in Fig. 3.

6In file lib/hocl/stdlib.hcl technically.
7The meaning of the actor QMF and F and the numbers on the wires are

irrelevant here.
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FB(D > 0) 

Fig. 16. 
This representation uses template matching. 

A recursive representation of the filter bank application. 

Fig. 17. 
lent of the Haskell “scanl f a xs” higher-order function. 

Visual syntax for the dataflow process network equiva- 

higher order functions. For example, in Haskell, 

map f xs 

applies the function f to the list xs. Every single-input 
process in a dataflow process network constitutes an invo- 
cation of such a higher order function, applied to a stream 
rather than a list. In a visual syntax, the function itself is 
specified simply by the choice of icon. Moreover, Haskell 
has the variant 

zipwith f xs ys 

where the function f takes two arguments. This corresponds 
simply to a dataflow process with two inputs. Similarly, the 
Haskell function 

scanl f a x s  

takes a scalar a and a list xs. The function f is applied 
first to a and the head of xs. The function is then applied 
to the first returned value and the second element of 5s. A 
corresponding visual syntax for a dataflow process network 
is given in Fig. 17. 

Recall our proposed syntactic sugar for representing 
feedback loops such as that in Fig. 17 using actors with 
state. Typically the initial value of the state (U) will be a 

192 

bbdo”: RaisedCosine 
where_delined: 
penumrter-map: exmssBW = 1 .o/instance_numbe~ 
input-map: -In 
arqut_map: sig- 

Fig. 18. 
different raised cosine pulses. 

An example of the use of the Map actor to plot three 

Panel 1. Icon for the Map higher-order function in Ptolemy. 

parameter of the node. In fact, dataflow processes with state 
cover many of the commonly used higher-order functions 
in Haskell. 

The most basic use of icons in our visual syntax may 
therefore be viewed as implementing a small set of built-in 
higher-order functions. More elaborate higher-order func- 
tions will be more immediately recognizable as such, and 
will prove extremely useful. Pioneering work in the use 
of higher-order functions in visual languages was done by 
Hills [51], Najork and Golin [75], and Reekie [U]. We 
will draw on this work here. 

We created an actor in Ptolemy called Map that general- 
izes the Haskell map. Its icon is shown in Panel 1. 

It has the following parameters: 

blockname 
wheredejned 

parametermap 

inputmap 
outputmap 

Our implementation of Map is simple but effective. It 
creates one or more instances of a the specified actor (which 
may itself be a hierarchical node) and splices those instance 
into its own position in the graph. Thus we call the specified 
actor the replacement actor, since it takes the place of the 
Map actor. The Map actor then self-destructs. This is done 
in- the setup phase of execution so that no overhead is 
incurred for the higher order function during the run phase 
of execution, which for signal processing applications is the 
most critical. This replacement can be viewed as a form of 
partial evaluation of the program [34]. 

Consider the example shown in Fig. 18. The replacement 
actor is specified to be RaisedCosine, a built-in actor in 

The name of the replacement actor. 
The location of the definition of the 
actor. 
How to set the parameters of the 
replacement actor. 
How to connect the inputs. 
How to connect the outputs. 

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 ,  MAY 1995 

Fig. 3: A recursive template for filter bank of depth D under
the SDF model (from [6], Sec III-C, p 793)

The recursive nature of this description is evidenced by
occurrence, in the definition of the graph labeled FB(D),
of a node labeled FB(D-1). The graph labeled FB(D=0)
provides the base case for the recursion.

This graph structure can be readily encoded in HoCL as
follows :

v a l r e c fb d x =
i f d=0 t h e n

f x
e l s e

l e t ( x1 , x2 ) = qmf x in
qmf ( f x1 ) ( fb ( d−1) x2 )

end ;

so that the graph of Fig.2 can be simply defined as

graph l e e p a r k s 3 in ( i : i n t ) out ( o : i n t )
fun

v a l o = fb 3 i
end ;

C. Cyclic graphs

Recursive definitions can also be used to encode cyclic
graph structures, in which the output of a node is fed back to
one of its input, as exemplified in Fig. 4. The corresponding
graph can be described as follows in HoCL :

graph t o p in ( i : i n t ) out ( o : i n t )
fun

v a l r e c ( o , z ) = f i ( g z )
end ;

The rec keyword is required here because the value z, here
bound to the second output of node f, is also used as an input
of the same node.

f g

o

i

Fig. 4: A graph with a cycle

Mutual recursion is also possible, as exemplified by the
following description of the graph depicted in Fig. 5 :

node f in ( i 1 : t , i 2 : t ) out ( o1 : t , o2 : t ) ;
node g in ( i 1 : t , i 2 : t ) out ( o1 : t , o2 : t ) ;

graph t o p in ( i 1 : t , i 2 : t ) out ( o1 : t , o2 : t )
fun

v a l r e c ( ( o1 , z1 ) , ( z2 , o2 ) ) = f i 1 z2 ,
g z1 i 2

end ;

f
i1
i2

o1
o2 g

i1
i2

o1
o2

o1

o2
i2

i1

Fig. 5: Graph example 7

D. Parameterized graphs

The term parameterized dataflow was introduced in [4]
to describe a meta-model which, when applied to a given
dataflow model of computation (MoC), extends this model
by adding dynamically reconfigurable actors. Reconfigurations
occur when values are dynamically assigned to parameters
of such actors, causing changes in the computation they
perform and/or their consumption and production rates. The
precise nature of changes triggered by reconfigurations and the
instants at which these reconfigurations can occur both depend
on the target MoC. HoCL offers a MoC-agnostic interface to
this feature using a dedicated type to distinguish parameters
from “regular” data flows.

Consider, for example, a node mult, taking and producing
a flow of integers and parameterized by an integer value
corresponding to the factor by which each input is multiplied
to produce an output. Such a node could be declared as
follows :

node mul t in ( k : i n t param , i : i n t ) out ( o : i n t )

with the corresponding function having type

int param→ int→ int

As shown by the above signature, parameters are supplied
to nodes used curried application. The following program, for
instance, instantiates node mult with k=2, giving the graph
depicted in Fig. 6 :

1graph t o p in ( i : i n t ) out ( o : i n t )
2fun
3v a l o = mul t ’2 ’ i
4end ;

In Fig. 6, local parameters are drawn as house-shaped nodes
and parameter dependencies using dashed lines. In the code,
the simple quote around the parameter value 2 is used to
distinguish parameter values from ordinary values8.

8From a typing perspective, the ’.’ operator has type t -> t param.
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mult o

2

i

Fig. 6: A graph with a parameterized node

Because parameterized nodes are viewed as curried func-
tions, they can be partially applied. We could therefore have
written the line 3 of the previous example as :

v a l mul t2 = mul t ’2 ’
v a l o = mul t2 i

or even

v a l o = i . mul t ’2 ’

In this view, partial application has a direct interpretation in
terms of node configuration, a concept which DSP program-
mers are familiar with.

E. Parameters and hierarchy

When a parameterized node is refined as a subgraph,
the value of the parameter(s) can be used to parameterize
the nodes of the subgraph, either directly or by means of
some dependent computations. This allows parameters to be
propagated across graph hierarchies. This is illustrated by the
following program, which expands into the graphs depicted in
Fig. 7.

node sub param ( k : i n t ) in ( i : i n t ) out ( o : i n t )
fun

v a l o = i . mul t k . mul t ( k +1)
end ;

graph t o p in ( i : i n t ) out ( o : i n t )
fun

v a l o = i . sub 2
end ;

In graph sub, k is viewed as an input parameter (drawn
as a dashed input port in Fig. 7) and used to parameterize
both instances of the mult actor, first directly and second by
through the parameter expression k+1. It is important to note
that, although it could make sense in this particular example,
parameter expression are not statically evaluated by the HoCL
compiler since their interpretation ultimately depends on the
target MoC (which controls, in particular, when parameters
are evaluated to trigger the reconfiguration of the dependent
actors).

sub o

2

i
mult o

k+1

mult

k

i

top sub

Fig. 7: A hierarchical graph with parameter passing

Parameter dependencies create dependency trees. The root
of these trees can be either constants, as in the previous exam-
ple, or specified as top level input parameters, as illustrated in
the following program, which is an equivalent reformulation
of the previous example. Note that, at the difference of node
parameters, toplevel parameters must be given a value.

graph t o p
in ( n : i n t param =2 , i : i n t ) out ( o : i n t )

fun
v a l o = i . sub n

end ;

F. Labeled arguments

For nodes having a large number of inputs, passing the
arguments to the corresponding function “in the right order”
may become error-prone. This is specially true if a large
proportion of these inputs have the same type, because the
resulting error(s) will not be caught by the type checker in
this case9.

To circumvent this problem, HoCL supports label-based
passing of arguments. This is illustrated in Listing. 3, in which
the three instantiations of node f are valid and equivalent. Port
binding is done by position at line 7 and by name (label) at
line 8 and 9. The second form allows arguments to be passed
in any order, as shown at line 9.

1 node f in ( x : i n t , y : boo l ) out ( o : boo l ) ;
2
3 graph t o p
4 in ( i 1 : i n t , i 2 : boo l )
5 out ( o1 : bool , o2 : bool , o3 : boo l )
6 fun
7 v a l o1 = f i 1 i 2
8 v a l o2 = f x : i 1 y : i 2
9 v a l o3 = f y : i 2 x : i 1

10 end ;

Listing 3: A HoCL program illustrating label-based passing of
arguments

Labeled arguments also relaxes the constraints on parame-
terized node signatures. Consider, for example, this alternate
definition of the node mult introduced in Sec. II-D, in which
the parameter k is here declared as the second argument :

node m u l t b i s
in ( i : i n t , k : i n t param ) out ( o : i n t )

This definition forbids partial application of node
mult_bis. In particular, it is no longer possible to write :

v a l o = i . m u l t b i s ’2 ’

because, this requires the parameter k to be passed as the
first parameter.

The solution is to pass this parameter with a label :

v a l o = i . m u l t b i s k : ’ 2 ’

9This is frequently the case in DSP applications because the sequential
functions implementing the node behaviors often (over)use the int type to
represent data.
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III. MOC SPECIFIC ANNOTATIONS

As stated in Sec. I, HoCL is essentially MoC-agnostic.
However, the language provides some mechanisms to “inject”
some MoC-specific informations into the graph specifications,
with the idea that these informations will be exploited by
dedicated backends.

In the current state of the project, the language provides
support for the synchronous dataflow (SDF) model.

In SDF, the number of tokens produced and consumed by
an actor at each activation is fixed (known at compile time),
which makes it suitable for modeling multi-rate DSP systems.
To each edge e in an SDF graph are attached two integer-
valued attributes, P (e), C(e), which specify the number of
tokens respectively produced by the node connected at the
source end of e and consumed by the node connected at the
sink end of e.

In HoCL, and because directly annotating edges is not
possible when writing functional graph descriptions (edges
are implicit in this case), production and consumption rates
are specified by annotating the source and destination node of
the corresponding edge.

For example, the graph depicted in Fig. 8, in which the
actor f respectively consumes and produces 3 and 2 tokens
per activation and the actors i and o respectively produce and
consume one token per iteration, will be described as follows :

node i in ( ) out ( o : t [ 1 ] ) ;
node f in ( i : t [ 2 ] ) out ( o : t [ 3 ] ) ;
node o in ( i : t [ 1 ] ) out ( ) ;

graph t o p in ( ) out ( )
fun

v a l = ( ) . i . f . o
end ;

of 13i 21

Fig. 8: A SDF graph

When a node accepts parameters, these parameters can be
used to SDF-annotate some of the actor ports (the semantics
of this annotation being, again, dependent on the chosen
backend). For example, the following node declaration, in
which the consumption rate on the input port of the actor is
fixed by the parameter n is valid in HoCL, and can be viewed
as limited form of dependent typing :

node downsample
in ( n : i n t param , i : t [ n ] ) out ( o : t [ 1 ] ) ;

IV. LANGUAGE DEFINITION

The abstract syntax of the language10 is given in Fig. 9.

A program consists of three sections : type declarations,
global value declarations and node declarations. The first two
can be omitted.

10Here deliberately limited to the subset dealing with functional graph
descriptions.

Type declarations introduce type names, attached to node
IOs and wires. At the specification level, these types are
opaque and only used for checking the consistency of the
graph. The actual semantics of types ultimately depends on
the backend, in relation with the node dynamic behavior. For
convenience, HoCL pre-defines a few basic types such as int
and bool. As introduced in Sec. II-D, type expressions also
include t param, where t is a basic type, for denoting node
parameters.

Node and graph declarations have been introduced in Sec. II.
Their syntax is similar. For graph declarations, values can be
attached to parameter inputs (this is not reflected here but will
be enforced by the type checker).

Value declarations (introduced by the val keyword) can
appear either at the program or node level. In the first case,
the scope of the defined symbol is the whole program. In
the second case, this scope is restricted to the node being
defined. Their semantics is that of let declarations in ML-like
languages, except that left-hand side patterns are here limited
to identifiers, tuples and unit value. They can be recursive and
mutually recursive.

The expression-level language is classical, except that
builtin values are limited to integer and boolean constants and
unit.

〈program〉 ::= 〈type decl〉∗ 〈val decl〉∗ 〈node decl〉+
〈type decl〉 ::= type ident
〈node decl〉 ::= node ident ( 〈io decl〉∗, )

( 〈io decl〉∗, ) [〈node impl〉]
| graph ident ( 〈io decl〉∗, )

( 〈io decl〉∗, ) 〈node impl〉
〈io decl〉 ::= ident : 〈type expr〉 [= 〈const expr〉]

〈node impl〉 ::= 〈val decl〉∗
〈val decl〉 ::= val [rec] 〈binding〉+and
〈binding〉 ::= 〈pattern〉 = 〈expr〉
〈pattern〉 ::= ident

| ( 〈pattern〉+, )
| ( )

〈expr〉 ::= 〈const expr〉
| ident
| 〈expr〉 〈expr〉
| ( 〈expr〉+, )
| fun 〈funpat〉 → 〈expr〉
| let [rec] 〈binding〉+and in 〈expr〉
| ( )

〈funpat〉 ::= ident
〈const expr〉 ::= int

| true
| false

〈type expr〉 ::= 〈base type〉
| 〈base type〉 param

〈base type〉 ::= ident

Fig. 9: Abstract syntax
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Typing rules are classical and not reproduced here. They are
given in [8]. The only distinctive feature is the interpretation of
node declarations as function signatures. At the typing level,
a node declared as

node f
in (i1:τ1, ..., im:τm)
out (o1:υ1 ..., on:υn)

is viewed as a function having type

i1 : τ1 → . . .→ im : τm → υ1 × . . .× υn

A. Semantics

The semantics gives the interpretation of HoCL programs,
described with the abstract syntax given above, as a set of
dataflow graphs, where each graph is defined as a set of
boxes connected by wires. The formulation given here assumes
that the program has been successfully type checked. This
semantics is built upon the semantic domain described in
Fig. 10.

Values in the category Loc correspond to graph locations,
where a location comprises a box index and a selector.
Selectors are used to distinguish inputs (resp. outputs when
the box has several of them.

Nodes are described by
• a category, indicating whether the node is a toplevel graph

or an ordinary node11,
• a list of inputs, each with an attached value12,
• a list of outputs,
• an implementation, which is either empty (in case of

opaque actors) or given as a graph.

Boxes are described by
• a category,
• a input environment, mapping selector values (1,2,. . . ) to

wire identifiers,
• a output environment, mapping selector values to sets of

wire identifiers13,
• an optional value.

Box categories separate boxes
• resulting from the instantiation of a node,
• materializing graph inputs and outputs,
• materializing graph input parameters,
• materializing graph local parameters.
The optional box value is only meaningful for local pa-

rameters bound to constants or for toplevel input parameters
(giving in this case the constant value).

Wires are pairs of graph locations : one for the source box
and the other for the destination box.

Closures correspond to functional values.

11This avoids having two distincts but almost identical semantic values for
nodes and toplevel graphs.

12These values are used to handle partial application.
13A box output can be broadcasted to several other boxes.

Primitives correspond to builtin functions operating on
integer or boolean values (+, =, . . . ).

The environments E, B and W respectively bind

• identifiers to semantic values,
• box indices to box description,
• wire indices to wire description.

Fig. 11 gives the most salient inference rules describing
the semantics. The complete version is available at [8]. In
these rules, all environments are viewed as partial maps from
keys to values. If E is an environment, the domain of E is
denoted by dom(E). The empty environment is written ∅.
[x 7→ y] denotes the singleton environment mapping x to y.
E(x) denotes the result of applying the underlying map to x
(for ex. if E is [x 7→ y] then E(x) = y) and E ⊕ E′ the
environment obtained by adding the mappings of E′ to those
of E, assuming that E and E′ are disjoints.

Rule Program gives the semantics of programs. Global
values are first evaluated to give a value environment (boxes
and wires resulting from this evaluation are here ignored).
Nodes declarations are evaluated in this environment. The
result is an environment associating a node description to each
defined node. The initial environment E0 contains, the value
of the builtin primitives (+, =, . . . ).

Rules NodeDecl1 and NodeDecl2 gives the semantics of
node declaration. The former concerns nodes with no attached
definition. These are are mapped to opaque actors. The Unit
value initially attached to inputs here means “yet uncon-
nected”). The latter concerns nodes with an attached definition.
This definition is evaluated in an environment augmented with
its input and output declarations, and the resulting graph (a pair
of boxes and wires) is attached to the node description.

Rule Binding gives the semantics of bindings occurring
in value declarations. The ←−⊕ operator used in this rule
merges box descriptors. If a box appears in both argument
environments, the resulting environment contains a single
occurrence of this box in which the respective input and output
environments have been merged. For example

[l 7→ Box〈actor, [1 7→ 0], [1 7→ {2}]〉]
←−⊕ [l 7→ Box〈actor, [1 7→ 4], [1 7→ {3}]〉]
= [l 7→ Box〈actor, [1 7→ 4], [1 7→ {2, 3}]〉]

Rules EAppN1 and EAppn2 gives the semantics of applica-
tion when the LHS refers to a node. The former concerns
the partial application of nodes. The value resulting from
the evaluation of the arguments (which must be a graph
location) is simply “pushed” on the list of supplied inputs. The
latter concerns the complete application of nodes. It creates a
new box and a set of wires connecting the parameters and
arguments to the inputs of the inserted box (parameters first,
then arguments).
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Variable Set ranged over Definition Meaning
v Val Loc+ Node+ Tuple+ Clos Value

Unit+ Int+ Bool+ Prim
` Loc 〈bid, sel〉 Graph location
n Node 〈NCat, {id 7→ Val}, {id},NImpl〉 Node description
κ NCat node+ graph Node category
vs Tuple Val+ Tuple
cl Clos 〈pattern, expr,Env〉 Closure
E Env {id 7→ Val} Value environment
η NImpl actor + Graph Node implementation
g Graph 〈Boxes,Wires〉 Graph description
B Boxes {bid 7→ Box} Box environment
W Wires {wid 7→Wire} Wire environment
L Locs Loc∗ Location set
b Box 〈BCat, {sel 7→ wid}, {sel 7→ wid∗},Val〉 Box
c BCat actor + graph+ src+ snk+ rec Box category

inParam+ localParam
w Wire 〈〈bid, sel〉, 〈bid, sel〉〉 Wire (src loc, dst loc)

l, l’ bid {0, 1, 2, . . .} Box id
k, k’ wid {0, 1, 2, . . .} Wire id
s, s’ sel {0, 1, 2, . . .} Slot selector

Int {. . . ,−2,−1, 0, 1, . . .} Integer value
β Bool {true, false} Boolean value
π Prim {Value 7→ Value} Primitive function

Fig. 10: Semantic domain

V. IMPLEMENTATION

A prototype compiler, implementing the semantics de-
scribed in the previous section has been written in OCaml.
The source code is available at [7]. The distribution includes
a command-line compiler, hoclc, turning HoCL source files
into various dataflow graph representations, and a toplevel
interpreter, supporting interactive building of dataflow graphs.

The command-line compiler comes with four distinct back-
ends.

A dot backend produces graphical representations of the
generated graphs in .dot format. All the graph representa-
tions used in this paper have been produced by this backend
from the corresponding programs.

A Dif backend produces representations in the Dataflow
Interchange Format (DIF). DIF [9] provides a standard, tex-
tual, notation for dataflow graphs aimed at fostering tool
cooperation. By using DIF as an intermediate format, graphs
specified in HoCL can be passed to a variety of tools for
analysis, optimisation and implementation.

A Preesm backend directly generates code for
PREESM [2], an open source prototyping tool for
implementing dataflow-based signal processing applications
on heterogeneous multi/many-core embedded systems.

A SystemC backend generates executable SystemC code
for the simulation of simple DDF (Dynamic DataFlow) and
SDF (Synchronous DataFlow) graphs (for which the behavior
of the actors is described in C or C++).

VI. A COMPLETE EXAMPLE

In order to demonstrate the gain in abstraction and program-
mer’s productivity offered by the HoCL language, we consider
a small DSP application consisting in applying in parallel a
sequence of three filters on a single data stream and selecting
the “best” output according to a given criterion. Apart from the
fact that it’s typical of the kind of processing performed in the
DSP domain, this application was chosen because we already
had a working implementation, obtained with the Preesm [2]
tool.

The dataflow graph, initially specified “by hand” using the
Preesm GUI is depicted in Fig. 12, where :
• gray boxes denote actors,
• orange boxes denote dedicated broadcasting nodes,
• blue triangle-shaped boxes denote parameter sources,
• black arrows denote data wires and
• dashed, blue arrows denote parameter wires.
Input data, generated by the src node, is passed, through

the bcast node to three parallel chains of nodes. In the
first chain (bottom), data goes first through filter f1, then
f2 and finally f3. In the second (middle), the order is f3,
then f1 and finally f2. In the third (top), it is f2, f3, f1.
The respective output data are finally given as input to the
select node. Each filter node f takes a parameter input
named p. For simplicity, the value of this parameter has here
been considered as constant for all filters. The select node
also takes a parameter, named thr.
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Listing 4 gives a possible description of the graph depicted
in Fig. 12 in HoCL.

1 type f16 ;
2
3 node s r c in ( ) out ( o : f16 ) ;
4 node snk in ( o : f16 ) out ( ) ;
5 node f1 in ( p : i n t param , i : f16 ) out ( o : f16 ) ;
6 node f2 in ( p : i n t param , i : f16 ) out ( o : f16 ) ;
7 node f3 in ( p : i n t param , i : f16 ) out ( o : f16 ) ;
8 node s e l e c t
9 in ( t h r : i n t param , i 1 : f16 , i 2 : f16 , i 3 : f16 )

10 out ( o : f16 ) ;
11
12 graph t o p
13 in ( p : i n t param =2 , t h r : i n t param =128)
14 out ( )
15 fun
16 v a l f s = [ f1 p ; f2 p ; f3 p ]
17 v a l c h a i n s x = x . p i p e ( s h u f f l e s f s )
18 v a l s e l c1 c2 c3 x =
19 s e l e c t t h r ( c1 x ) ( c2 x ) ( c3 x )
20 v a l o = ( ) . s r c . s e l ( c h a i n [ 0 ; 1 ; 2 ] )
21 ( c h a i n [ 1 ; 2 ; 0 ] )
22 ( c h a i n [ 2 ; 0 ; 1 ] )
23 end ;

Listing 4: A description of the graph depicted in Fig. 12 in
HoCL

Lines 3–10 declare the involved atomic actors. We have
assumed here that all processed data has type f16 (a shorthand
for the fix16 type used in the original implementation). Both
the p parameter of the f1, f2 and f3 actors and the thr
parameter of the select actors are here declared as int.

The graph itself is described in the top declaration, lines
12–23. The global parameters p and thr, with a default
value (here arbitrarily set to 2 and 128), are declared as input
parameters of this graph.

The value fs, defined at line 16, is a list made of the three
filters, with their supplied parameter.

The wiring function chain, defined at line 17, is used to
build the horizontal chains of filters depicted in Fig. 12. It
takes a list of integers s and a input wire x and connects x
to the sequence of nodes obtained by permuting the elements
of the fs list. Permutation is done by the shuffle function
and chaining by the pipe function. These functions can be
defined informally by :
shuffle [k1, ..., kn] [x1, ..., xn]

= [xk1, ..., xkn]

pipe [f1, ..., fn] x
= fn (... f2 (f1 x) ...)

The code of these functions, which are defined in the HoCL
standard library, is reproduced is Appendix A.

The wiring function sel, defined at lines 16–18, encodes
the main graph pattern : it applies its arguments c1, c2 and
c3 in parallel to its argument x and routes the three results
to the select actor.

The top level graph is built, at lines 20–22 by applying the
sel function to the three chains of filters, themselves obtained

by applying the chain function to the corresponding lists of
permutation indices.

The program in Listing 4 is only 23 lines. All wiring errors
are caught immediately by the type checker, allowing imme-
diate correction. As a result, obtaining the correct dataflow
graph took less than 10 minutes. By contrast, describing
the initial version of the graph using the Preesm GUI took
more than 45 minutes. This times includes the definition of
the node interfaces (4), the placement of the nodes (14) on
the canvas and, above all, the manual, cumbersome, drawing
of the connexions between the nodes. This represent a four
time increase in productivity. Moreover, and most importantly,
whereas it’s straightforward, with the HoCL formulation, to
modify the graph (adding or modifying the number of chains,
changing the permutation choices, etc.) to test new application
configurations, this task is much more tedious and error-prone
with the purely GUI-based representation.

VII. RELATED WORK

In [6], Lee and Parks relates functional languages to
dataflow process networks in two ways. First, for interpreting
the behavior of actors operating on streams and second for de-
scribing graphs resulting from the replication of a given actor
on parallel streams, using the map higher order function. The
second idea is similar, in principle, to that used in HoCL but,
in [6], no attempt is made to generalize the correspondence
between functional expressions and graph structures beyond
the particular pattern captured by the map HOF.

The work of Sane et al. [10] is more closely related to
ours. They propose an extension to the DIF [9] notation
supporting the use of so-called topological patterns for explicit
and scalable representation of regular structures in DFGs. The
definition of these patterns explicitly relies on a indexing
mechanism for nodes and edges. HoCL is more general in the
sense that any dependency pattern can be described, and not
only those based on explicit indexing. Moreover, in the work
described in [10], patterns are built-in and the set of available
patterns is therefore fixed. By contrast, patterns are first class
values in HoCL, and can therefore be defined directly by the
programmer, within the language14.

The HoCL language was inspired, in part, by the network
description language used in the CAPH language for dataflow-
based high-level synthesis [3]. Some design decisions were
also motivated by conclusions of a retrospective assessment
of the CAPH project reported in [11]. The idea of mixed-
style description, for example, in which functional descriptions
can co-exist with structural ones, can be viewed as a way to
limit the “disruptiveness” of a purely functional notation, by
presenting them as a possible alternative to the classical struc-
tural notation (with the idea that programmers will eventually
“switch” to the former when they realize the benefits). The
early adoption of DIF as a target backend can also be viewed

14Mention is made, in [10], of “user-defined patterns”, by means of external
“procedural Java or C code” but no detail is given on how the corresponding
definitions are injected into the DIF language and semantics and we have not
able to find examples of this mechanism in the literature.
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as an answer to the “invasiveness” problem mentioned at the
end of [11].

VIII. CONCLUSION

The design and development of the HoCL language started
very recently and this paper should be viewed more as a draft
specification than as a definite language reference.

In particular, the way MoC-specific features can be “in-
jected” into the language without compromising its generality
is an important issue which remain to be fully investigated. It
is still uncertain, for example, whether relying on annotations,
such as presented in Sec. III, is always feasible or whether
some specific MoCs may require deeper changes to the syntax
or semantics of the language itself.

Work is undergoing for reformulating in HoCL complex
DSP applications, initially developed with tools using lower-
order specification formalisms, such as Ptolemy, DIF or
Preesm, in order to further assess the gain in expressivity and
in the effort required by the specification of the input dataflow
graph.
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APPENDIX A

shuffle : int list → α list → α list

val rec shuffle ks xs = match ks with
[] -> []

| k::ks -> nth k xs :: shuffle ks xs

where nth is the function returning the kth element of a list.

pipe : (α → α) list → α → α

val rec pipe fs x = match fs with
[] -> x

| f::fs -> pipe fs (f x)

253



E0,∅ ` valdecls⇒ E,B,W
E,∅ ` nodedecls⇒ E′

` program typedecls valdecls nodedecls⇒ E′
(PROGRAM)

n = Node〈node, [id1 7→ Unit, . . . , idm 7→ Unit], [id′1, . . . , id
′
n], actor〉

E,B ` node id (id1 : t1, . . . , idm : tm) (id’1 : t’1, . . . , id’n : t’n) ⇒ E⊕ [id 7→ n],B
(NODEDECL1)

B `i (id1 : t1, . . . , idm : tm)⇒ Ei,Bi

Bi `o (id’1 : t’1, . . . , id’n : t’n)⇒ Eo,Bo

E⊕ Ei ⊕ Eo, B⊕ Bi ⊕ Bo ` valdecls⇒ B′, W′

n = Node〈node, [id1 7→ Unit, . . . , idm 7→ Unit], [id′1, . . . , id
′
n],Graph〈B′,W′〉〉

E,B ` node id (id1 : t1, . . . , idm : tm) (id’1 : t’1, . . . , id’n : t’n) valdecls⇒ E⊕ [id 7→ n],B⊕ Bi ⊕ Bo

(NODEDECL2)

E,B ` expr⇒ v,B′,W′

E,B←−⊕B′ `p pat, v⇒ E′,B′′,W′′

E,B ` pat = expr⇒ E′, B′←−⊕B′′, W′ ⊕W′′
(BINDING)

E,B ` exp1 ⇒ Node〈κ, [id1 7→ `1, . . . , idk−1 7→ `k−1, idk 7→ Unit, . . . , idm 7→ Unit], [id′1, . . . , id
′
n], η〉,Bf ,Wf

k < m− 1
E,B ` exp2 ⇒ `,Ba,Wa

Node〈κ, [id1 7→ `1, . . . , idk−1 7→ `k−1, idk 7→ `, . . . , idm 7→ Unit], [id′1, . . . , id
′
n], η〉

E,B ` exp1 exp2 ⇒ n,Bf
←−⊕Ba,Wf ⊕Wa

(EAPPN1)

E,B ` exp1 ⇒ Node〈κ, [id1 7→ `1, . . . , idm−1 7→ `m−1, idm 7→ Unit], [id′1, . . . , id
′
n], η〉,Bf ,Wf

E,B ` exp2 ⇒ `m,Ba,Wa

l 6∈ Dom(B)
∀j. 1 ≤ j ≤ m, kj 6∈ Dom(W), wj = 〈`j , Loc〈l, j〉〉

b = Box〈cat(κ), [1 7→ k1, . . . ,m 7→ km], [1 7→ ∅, . . . , n 7→ ∅]〉
B′ = [l 7→ b]

W′ = [k1 7→ w1, . . . , km 7→ wm]
v′ = 〈Loc〈l, 1〉, . . . , Loc〈l, n〉〉

E,B ` exp1 exp2 ⇒ v′,Bf
←−⊕Ba

←−⊕B′,Wf ⊕Wa ⊕W′
(EAPPN2)

Fig. 11: Selected semantics inference rules
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Fig. 12: The DFG of the multifilt application, as specified using the Preesm CAD tool
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Fig. 13: The DFG resulting from the compilation of the program in Listing 4
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