
XP meets UML Alan Cameron Wills 1

eeb 2001      1

XP meets UML

© 2001 Trireme International Ltd

Do analysis and design have a place in incremental development?

Alan Cameron Wills

TriReme International Ltd

alan@trireme.com

http: //www.trireme.com

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 2

The speaker

qJoint author of Objects, Components and Frameworks – the 
Catalysis approach

qMentor and presenter in software development process

yClients in many fields, both sides of the Atlantic

qTechnical Director of Trireme International Ltd

ySource of process and architecture mentoring to many large companies 
in UK, Europe and beyond

yhttp://www.trireme.com



XP meets UML Alan Cameron Wills 2

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 3

The topic

qXP is increasingly popular and successful

yRigorous testing, frequent refactoring and elaboration
yMinimal documentation

yClose links between customer and developers

qAnalysis, architecture, and design used to seem quite useful –
UML, use-cases, CRC, patterns, and all that

yClarification of goals before rushing into code

yDefinition of interfaces, conventions and standards

yHigh-level descriptions of code

qCan they be used together? Can both sets of benefits be got?

eeb 2001      4

Agenda

Incremental Development and Modelling

Raising Questions with Requirements Models

Testing

Incremental development
Analysis and design front-end
Multi-loop processes



XP meets UML Alan Cameron Wills 3

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 5

Incremental development
q Emphasis on customer feedback during development

y Ensures customer gets what’s really needed 

q The loop is short, so that what’s being delivered remains close to what’s 
being developed

y Features are delivered as they are developed
y Ideal is to have customer working with developers

q Changes in requirements are accepted as normal

y software developers arrange things to be able to cope with changes 

Client

Fast Software Inc

requirements

Softwareincremental delivery

Developer

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 6

Well-defined requirements and design

Client

Brilliant Software Ltd

Softwareincremental delivery
Developer

ideas

queries, animations, scenarios

Requirements
Model

Analyst

requirements

Two loops:
Incremental requirements construction:

• irons out inconsistencies and ambiguities
• sets vocabulary
• provides high-level overview
• focuses on major issues rather than details

Incremental software delivery:
• provide most concrete basis for feedback
• allows for change



XP meets UML Alan Cameron Wills 4

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 7

Coding in UML?

qSome tools maintain a direct correspondence between
UML and program code

yeg. Together/J

yeffectively programming in a UML/Java mix

qBut UML is also useful for:

yAbstract models that don’t contain all the detail

p very useful for high-level ‘domain’ or ‘essential’ models, which 
define business vocabulary and rules

p clear high-level overview of requirements or design, uncluttered 
by the fine detail of the code

yDefining interfaces in frameworks and between components

p These models are about what the components talk to each other 
about – not about their internal structure

qUML programming tools are not so useful for these purposes

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 8

Well-defined requirements and design

Client

Brilliant Software Ltd

Software

incremental delivery

Developer

ideas

queries, animations

Requirements
Model

Analyst

requirements

Requirements model:
• rapidly yields useful questions about the requirements
• gives better high-level overview than spike implementations 
• provides basis for tests
• is basis for high-level OO or component design

Tests



XP meets UML Alan Cameron Wills 5

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 9

…tightening the loop

qCommunicating eXtreme Processes:
o after Steve Foley; DSDM

yEach process is cyclic

eXtreme Business Analysis
– market/impact analysis 
– how to run the eBusiness

eXtreme Systems Analysis

Biz Analyst
Customer

bizspeak

System Analyst

consistency
queries

requirements model – UML

Developer

feasibility,
timings

software

eXtreme Programming

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 10

Tightening the loop

qWe can put a requirements cycle in front of the development 
cycle

qBut it only makes sense if we have ways of getting feedback 
from the model to the customers

qTwo ways:

y ‘Animating’ the model

yConsistency checks <– topic of next section



XP meets UML Alan Cameron Wills 6

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 11

Features, Tasks, and Demonstrable Goals

Task
something a developer will do:
high-level design or architecture;
or design & code a piece of software

estimate : Days

Architectural Goal

refactoring; or 
basic service

Visible Feature

Useful to users.
Use-case | group of use-cases | parts of a use-case | NFR  | biz rule 

Demonstrable
Goal

1
*

Design Goal

high-level design

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 12

Features are central

Feature Feature Feature

Timebox

Task
Task

Task

Task

Task

Task

Task

Task
Task

Developers

Test

Test

Test

Test

Test

U/C clause Rule

NFR

NFR
Rule

U/C clause

U/C clause

Testers

Analysts



XP meets UML Alan Cameron Wills 7

eeb 2001      13

Agenda

Incremental Development and Modelling

Raising Questions with Requirements Models

Testing

Entity-action modelling
Business rules
Consistency checks

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 14

Specifications don’t model implementation

qAnalysts write Requirements Models

ydon’t assign operations to classes inside the system
ydon’t define collaborations inside the system

ydo define collaborations external to the system

ydo define operations or transactions visible at system interface

p just define what they achieve, not how they work

user

our system / component

Requirements Model

Describes what’s visible
from outside

Requirements Model defines 
these interactions (with 
storyboards, stories, 
use-cases, postconditions, …)

some external
system / component

Requirements Model defines these
interactions (with activity diagrams,
sequences, postconditions, …)

Requirements Model doesn’t
describe what happens inside



XP meets UML Alan Cameron Wills 8

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 15

Requirements Models vs Implementation Models

qDesigners determine internal structure & collaborations

Requirements Model

Describes what’s visible
from outside

Design Model

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 16

Requirements Model: types and instances

qTypes are sets of objects with something in common;
instances are individual entities

qSnapshot must conform to type diagram

Hotel

Person Room
0..1
occupant 0..1

accommodation   1..* 

1

0..*  guests

0..1
hilton: Hotel

jo: Person
101: Room

occupant

accommodation

guests

sam: Person

pat: Person

102: Room

103: Room

occupant

type diagram instance diagram == “snapshot”

& uml-d-p132



XP meets UML Alan Cameron Wills 9

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 17

Requirements Model: use-cases

Person

check in

Hotel

Scenario

Use-case: Person checks into Hotel

1. Person approaches Hotel entrance

2. Retinal scanner identifies Person as 
not being a current guest

3. System plays verbal request for credit 
card

4. Person swipes credit card at machine

5. System assigns an unassigned room

6. Assigned room henceforward can be 
opened with same credit card

Post-condition

Use-case: Person checks into Hotel

Outcome: person is a guest of the 
hotel, with access to a room that was 
previously inaccessible to guests.

Example:

jo:Person 101:Room

hilton:Hotel

jo:Person 101:Room

hilton:Hotel
guests

occupant

accomm

accomm

check in
before

after

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 18

Associations in a Requirements Model

qAssociations and attributes declare factual queries about 
the business concepts

y I can ask for any Customer’s name: the answer will be a String.

y I can ask for any Customer’s accounts: the answer will be 1 or more 
Accounts.

y I can ask for any Account’s holder: the answer will be 1 Customer.

qInstance diagrams used to illustrate specific situations:

Customer
name: String

Account
1 1..*
holder accounts

:Customer
name = pat

4567:Account

2345:Account

accounts

holder

:Customer
name = chris 1253:Account

accounts
holder



XP meets UML Alan Cameron Wills 10

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 19

Postconditions óó objects, associations and attributes

Sale
Postconditions: 

• Customer has goods from Supplier
• eWarehouse has price of goods from Customer
• eWarehouse owes Supplier cost of goods

Customer

eWarehouse

Supplier

jo: Customer
pocket = £20  £18

sock:Thing

thingsRus:Supplier

button:Thing

breadstick:Thing

possessions

box:Thing

doughnut:Thing

eWarehouse:Edealer
bankBalance: £200 £202

:AccountEntry
value= £1

creditor

debtor

stock

“Before/after snapshot” illustrates an occurrence:

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 20

Postconditions óó class diagram
jo: Customer

pocket = £20  £18

sock:Thing

thingsRus:Supplier

button:Thing

breadstick:Thing

possessions

box:Thing

doughnut:Thing

eWarehouse:Edealer
bankBalance: £200 £202

:AccountEntry
value= £1

creditor

debtor

stock

Classes needed to describe sales operation:

Supplier

Thing

Customer
pocket: Money

stock
0..*

possessions
0..*

Edealer

AccountEntry
value: Money

1  creditor
debtor   1

ogLedger
0..*

icLedger
0..*



XP meets UML Alan Cameron Wills 11

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 21

Object statecharts – > use-cases

qConsider what can happen that affects an object

yeach transition is a use-case

qStatechart expresses dynamic business rules

pending dispatch dispatched fulfilled

cancel

make order dispatch pay

debt

failed payment
return

pay

returned returnrefund

Order

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 22

q

Unoccupied

Occupied

Dirty

Maintenance

reinstate

withdraw

withdraw

clean

check in

check out

Room

build



XP meets UML Alan Cameron Wills 12

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 23

Use-cases and objects – consistency

q what else 
do they do/
happens to them ?

-- draw statecharts

who/what
is affected?
-- write postconditions, look at terms used

Use cases
borrow

Objects, 
attributes 
& associations

Member

LibraryBook

use case
borrow(member, library, book)

post
book is on loan to member

Book

Member

onLoanTo 0..1

*

what happens?
--tasks, jobs, use-cases

what objects are there?
--things, concepts, relationships

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 24

Static business rules
q Static rules (“invariants”): 

statements always true about associations and attributes

y Look for loops in class diagrams
y Look for instance diagrams that would conform to class diagram but be wrong 

within the business

q Use the vocabulary of the class diagram to express the rules

Flight
date

length

Aircrew
captain

1
copilot

captain != copilot

Airline

schedule  0..* 0..* flyingStaff

employer
1

operator
1

operator == captain.employer sum of lengths of Flights
on any one date < 10 hours

0..*
0..*



XP meets UML Alan Cameron Wills 13

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 25

Static business rules

qLook for instance diagrams that conform to class diagram 
but would be wrong in the domain

captain
1

copilot
Flight
date

length

Aircrew

Airline

schedule  0..* 0..* flyingStaff

employer
1

operator
1

0..*
0..*

BA552: Flight
date=23/2/01

length=130mins

jo: Aircrew

captain

captain

copilot

BA431: Flight
date=14/3/01

length=240mins

BA563: Flight
date=14/3/01

length=360mins

pat: Aircrew

chris: Aircrew

copilot

captain

steve: Aircrewcopilot

BA : Airlineoperator Sabena : Airline

employer

employer

schedule

flyingStaff

flyingStaff

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 26

Business rule example

q

Flight Pilot

Plane PlaneModel

e.g. G-LAPM e.g. Airbus A720E

*    licenses

*

*
schedule

e.g. BA51 on 2/3/99 e.g. Jo

*

starting context
"for every Flight…"

*

1   plane

captain
1

Every Flight must be flown by a captain who is 
qualified to fly the plane

Flight :: captain.licenses→→includes (plane.model)

attributes of Flight
navigation to next link

set operation (licenses is a *-arity)

1

implicit name
not needed

constraint:
as OCL
expression

UML:
vocabulary
of constraint



XP meets UML Alan Cameron Wills 14

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 27

Loops => invariants

qAny loops in the type diagram suggest an invariant might be 
appropriate – raise questions to the customer

Flight Pilot
captain   1

Airport

origin   1

destination  1

??

Airline
employer

provider 1
1

?

0..*

0..*

0..*

copilot   1

0..*

0..*

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 28

Loops => invariants

qAny loops in the type diagram suggest an invariant might be 
appropriate

Flight Pilot
captain   1

Airport

origin   1

destination  1

Flight::
captain<>copilot

Airline
employer

provider 1
1

Flight::
captain.employer==provider ?

0..*

0..*

0..*

copilot   1

0..*

0..*

Flight::
origin<>destination ?
or do we allow circular flights?



XP meets UML Alan Cameron Wills 15

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 29

Rule objects
q Implementing invariants about business rules

p How to ensure invariants are always observed?
Basic method: just write all the code so that invariants are never broken

p But some business rules can vary between countries & organisations –
must be possible to change them independently of software

q Represent rule by an object that observes its parameters

p Rule object re-evaluates whenever subjects (parameters) change
p Scheme 1: subjects go ahead as though rule didn’t exist

o Rule raises an exception if undesired situation occurs
o Subjects have to be able to roll back if exception is raised

p Scheme 2: subjects ask permission before making change

o can be difficult to do all of a complex transaction in ‘what-if’ mode

[(f:Flight) f.captain�f. copilot] : Rule

ba123: Flight jo: Pilot
captain

copilotobservers

pat: Pilot

3. notify

2

1. setCopilot (jo)

4. ?pilot, ?copilot
5. aarghh!

6. undo

7

8. nak

eeb 2001      30

Agenda

Incremental Development and Modelling

Raising Questions with Requirements Models

Testing
Test monitors and harnesses
When to test rules
What data to use



XP meets UML Alan Cameron Wills 16

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 31

Well-defined requirements and design

Client

Brilliant Software Ltd

Software

incremental delivery

Developer

ideas

queries, animations

Requirements
Model

Analyst

requirements

Clearly-stated requirements set tests
How to translate from requirements to tests?

Tests

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 32

Rigorous Testing

qIncremental development relies on rigorous testing

component 
under test

adaptor

component 
under test

Test case
generator

Testing everything in and out, 
in the running system
(like Eiffel)

Testing Offline
(like JUnit)

test
monitor

Test Harness

test
monitor

to other components

adaptor



XP meets UML Alan Cameron Wills 17

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 33

Test case generation

qWhite box testing

ychecks each path through code
p no good if you can’t see the code (as in CBD)

qBlack box testing 

ypartition state space into zones, check representative points

210 4 8 16 256

number of Items on Purchase Order

PP

PPPP PP PP

sample points

to
ta

l v
al

ue
 o

f P
O

100

100000

PP

PP PP

PP PP

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 34

Test monitors: general scheme

q
:TestMonitor :TestSubject

message

message

get state

get pre-state

return

check invariant

check invariant,
compare with pre-state

-- or use Eiffel



XP meets UML Alan Cameron Wills 18

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 35

Translating requirements to tests

qBusiness rules state what should be true

Flight :: captain != copilot

qHow to translate to actual tests?

yHow to interpret the attributes?

yWhen to test it?

p Just when setting captain and copilot?

p After every operation?

yWhat data to use to test it?

p What sequences of operations might cause the code to break it?

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 36

Interpreting the attributes

qThe model is not necessarily a picture of the internal structure

yComponent is a black box:
We don’t know anything about how Flight, captain and copilot are 
implemented inside the component

qThe model says what questions the component can answer:

AirCrewName getCaptain (FlightId fid);

AirCrewName getCopilot (FlightId fid);

Scheduler Requirements model

Flight Aircrew
captain

copilot

10..*



XP meets UML Alan Cameron Wills 19

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 37

Retrievals: applying abstract postconditions
q Program code may be much more complex than the abstract model

q But the associations and attributes of the model can be abstracted from the 
code by read-only functions

y all the information in the abstract model is there in the code

q Postconditions expressed in terms of the abstract model can be tested by 
applying the abstraction functions

Before

Abstract
Model

Real
Code

abstraction
functions

abstraction
functions

After

real
operation

Postcond. compares
abstract before/after

invariants
check state

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 38

Translating model to tests

qSo this rule in the model:

Flight :: captain != copilot 

qmeans that for any Flight ID fid, in any scheduler component, at
any time:

scheduler.getCaptain(fid) != 
scheduler.getCopilot(fid)

qThe requirements model:

y tells the test team what to test;

y tells the design team what requirements to meet;
ydoesn’t necessarily tell them how to design it



XP meets UML Alan Cameron Wills 20

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 39

Translating model to tests

qPostconditions, invariants and statecharts:
useful to express rules in requirements model

qRules can translate to tests; but must add:

ywhat data to test with

ywhen to test each rule

Test harness

adaptor

© 2001 TriReme International Ltd http://www.trireme.com eeb 2001 40

UML for abstraction

qThe high level view helps think clearly about designs

• UML for specification
– What's required / provided

• Test programs
– What's required / provided

– How to check it's provided

• Program code
– How to do it

• UML pictures of 
program code

"reverse
engineering"

More succinct

More determined

apply tests

decide test data and strategy



XP meets UML Alan Cameron Wills 21

eeb 2001      41

Summary

Requirements modelling works well as a front end to incremental development

– better overview of requirements
– faster checks of consistency in requirements

Makes sense only if you use techniques that check consistency

– Action postconditions – > objects & associations; statecharts – > actions
– Finding static and dynamic business rules

Models at the requirements level tell the testers what to test

– but they have to decide what test data to use, and when to apply tests

– requirements models tell what to implement, though not necessarily how

TriReme International Ltd        http://www.trireme.com


