
Model-driven approaches to
large-scale e-business
system development
Steve Cook
IBM Distinguished Engineer
Visiting Professor, UKC

Agenda

Why models?

The anatomy of models

From models to code

Standards and maturity

e-business systems are developed in a
large, multi-dimensional space

Communications

Distribution

Financial Services

Industrial

Public

Sector

Category
Buy and

Supply

Enterprise
R

esources

Sell and
Support

Architecture

Message
broker

w
orkflow

management

The architecture is complex and layered
and almost always involves legacy and
package integration

How can we “mass-customize” solutions
in this complex space?

Product
Change

Dynamic

Stable

Stable Dynamic
Process
Change

Mass
Customization

Mass
Production

Invention

Continuous
Improvement

Various approaches have been tried

Reusable Code (Objects and Components)

Code is too context-dependent to be very reusable

Level of abstraction (code) is too fixed and physical

It is too difficult to find the part you need

“Knowledge Management”

Representation tends to be in disconnected silos,
hierarchical, using text and pictures with no semantics

Stored elements have no semantic foundation, and no
notions of refinement or composition

My thesis

There is a “middle way” which has the potential
to deliver a much greater degree of reuse

This “middle way” is based on modelling as a
fundamental technology

Models:

Are a formal representation of some aspect of a system from
a particular viewpoint

Must be precise, abstract and verifiable

Should be easy to understand

Must be capable of composition and refinement

Agenda

Why models?

The anatomy of models

From models to code

Standards and maturity

There are many kinds of inter-related
model that apply at many levels

PLANPLAN DESIGNDESIGN IMPLEMENTIMPLEMENT RUNRUNASSESSASSESS

BUSINESSBUSINESS

ITIT

business processes

system context

strategic capabilities

functional architecture
operational architecture

Process dimension

Abstraction dim
ension

What are these arrows?

Each model is constructed from
elements defined by a meta-model

Meta-model for language A

Model in language A

«instance»

Meta-model for language B

Model in language B

«instance»

Meta-model for language C

Model in language C

«instance»

Models can only be related precisely if
their languages are related precisely

Meta-model for language A

Model in language A

«instance»

Meta-model for language B

Model in language B

«instance»

Meta-model for language C

Model in language C

«instance»

Standard meta-meta-model

«instance»

«instance»

«instance»

*
*

*
*

A modelling language has three main
aspects

Modelling language definition

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

A modelling language (meta-model) has
three main aspects

Modelling language definition

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Diagrammatic syntax (shapes,
connectors, layout etc)

or textual syntax
(bnf, xml etc)

A modelling language (meta-model) has
three main aspects

Modelling language definition

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics MappingDefinitions of modelling
constructs (package, class, link

etc)

A modelling language (meta-model) has
three main aspects

Modelling language definition

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Definition of semantic
domain : the abstract logical
space in which the models

find their meanings

A modelling language (meta-model) has
three main aspects

Modelling language definition

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

F : C -> A

A modelling language (meta-model) has
three main aspects

Modelling language definition

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

Concrete syntax Abstract syntax Semantics

Concrete-Abstract Mapping Abstract-Semantics Mapping

M : A -> S

A standard meta-meta-model should fully support
the precise definition of modelling languages

Definition of concrete syntax(es) (shapes and
layout, physical interchange formats)

Definition of abstract syntax (concepts and
relationships, well-formedness rules)

Definition of semantics (semantics domain)

Definition of mappings between domains

Agenda

Why models?

The anatomy of models

From models to code

Standards and maturity

Conventional approaches for mapping
models to code are much too simplistic

Model

Code

forward engineeringreverse engineering

Abstracting platform differences is
necessary, but not sufficient

Platform Independent Model

Platform Specific Model

Recursive Design (Shlaer-Mellor)
Model-Driven Architecture (OMG)

Numerous work products must be
produced on the way from requirements
to implementation and operation

Non-Functional Requirements

Performance Model

Deployment Unit

Architectural Template

Reference Architecture Fit/Gap Analysis

S tandards

Component Model

Architecture Overview Diagram

Use Case Model

Class Diagram

Operational Model

Current IT Environment
Service Level Characteristic Analysis

Technical Prototype

System Context

UI Design Guidelines
UI Conceptual Model

Viability Assessment

Numerous work products must be
produced on the way from requirements
to implementation and operation

Non-Functional Requirements

Performance Model

Deployment Unit

Architectural Template

Reference Architecture Fit/Gap Analysis

S tandards

Component Model

Architecture Overview Diagram

Use Case Model

Class Diagram

Operational Model

Current IT Environment
Service Level Characteristic Analysis

Technical Prototype

System Context

UI Design Guidelines
UI Conceptual Model

Viability Assessment

Each transformation
involves a (possibly
partially automated)

process

Each artifact has its
own language (or

profile)

A model of the process can be coupled to
metamodels for the work products

input1

input2

outputtask

M1

M2

M3

Agenda

Why models?

The anatomy of models

From models to code

Standards and maturity

Mass-customization requires mature
value networks in the industry

Mass-customization requires maturity of
the development organisation

Basic processes (marketing, sales, design, delivery,
maintenance, operations)

Common methodology, terminology and
standards

Reused models

Mass-customized solutions

m
aturity

The emerging standards in the modelling
area are UML, MOF, XMI, and CWM

UML : Unified Modeling Language

and its profiles

MOF : Meta-Object Facility

XMI : XML Metadata Interchange

CWM : Common Warehouse Metamodel

UML is:

Notation

Abstract syntax (metamodel defined using MOF)

Well-formedness rules (Object Constraint
Language)

Semantics (natural language)

IDL interface

UML is positioned in the OMG’s “4-layer
architecture”

M3

M2

M1

M0

Meta-Object
Facility

UML, CWM,
SPE

My model

What I’m
modelling

Metametamodel

Metamodel

Model

User objects

MOF is:

A standard language for describing metadata

MOF metametamodel (M3) defined in itself

MOF reflective IDL interfaces for generic
manipulation of metadata

MOF to IDL mappings for type-safe manipulation
of metamodel specific information

MOF to XML mapping: OMG XMI (XML Metadata
Interchange) specification

MOF to Java mapping: Sun JSR-40, JMI (Java
Metadata Interchange)

XMI (XML Metadata Interchange) is:

The standard format for interchanging MOF
metamodels and their instances

It uses XML for the transfer syntax and
interchange format
Specify XML Document Type Definitions (DTD) to enable
transfer and verification of
• UML based models (eg. mymodel.xml, using uml.dtd)
• MOF based metamodels (eg. uml.xml, using mof.dtd)
• Models based on other MOF-based metamodels (e.g.

mymodel.xml using cwm.dtd)

XML schema version is in the works

CWM (Common Warehouse Metamodel)
is:

A standard model for data warehouse metadata
management

Defined using MOF, interchanged using XMI, and
reusing aspects of the UML metamodel

UML is in fact a family of languages, all
built using MOF

“Core”UML

UML-CORBA

UML-SPE

UML-EJB

CWMUML-EAI

UML-EDOC

“UML profiles”

“UML extension”

The Request for Proposals for UML
version 2 has been issued and work is in
progress

UML 2 Infrastructure

UML 2 Superstructure

UML 2 Object Constraint Language

UML 2 Diagram Interchange

UML 2 Infrastructure calls for:

Architectural alignment and restructuring
• strict alignment with 4-layer model

• make MOF abstract syntax a subset of UML abstract syntax

• restructure the metamodel in order to separate concerns

• identify “semantic variation points”

• backwards compatible with XMI 1.x

Extensibility
• specify profiles

• specify “first class extensions”

So what is missing to achieve the vision
of large-scale model-driven development?

Standard modelling languages that cover the
entire space of development
Especially architecture description & process description

Precise definition of modelling languages
Theory, practice and standards for composition,
refinement and transformation of models
Tools that support modelling languages properly
Integration of tools
including composition, refinement and transformation

Process standardisation

IBM funded a feasibility study by pUML
(precise UML group)
See www.cs.york.ac.uk/puml/ for the document “A
Feasibility Study in Rearchitecting UML as a Family
of Languages using a Precise OO Meta-Modeling
Approach”, (Clark, Evans, Kent, Brodsky, Cook) and
associated tools

The study proposed a new meta-modelling facility
(MMF) containing:

Meta-Modelling Language (MML)
Meta-Modelling Tools (MMT): a satisfaction checker - does instance
X satisfy constraint C from model M?

check that a model satisfies its metamodel
check that a metamodel satisfies the MML rules
check that MML satisfies the MML rules

Useful links

OMG - www.omg.org

UML forum - www.celigent.com/uml/

pUML group - www.cs.york.ac.uk/puml/

