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Agenda

� System architecture with components

� The Requirements workflow

� The Specification workflow

� Modelling components with UML
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Presentation focus:
How do you design
this part?
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Supports multiple UIs
Transient Dialog State
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Allows multiple Dialogs
(including Batch)
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Data
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Management and Development Processes

� Management Processes
� Schedule work and plan deliveries

� Allocate resources

� Monitor progress

� Control risk

� Development Processes
� Create working software from requirements

� Focus on software development artifacts

� Described independently of the management process

� Defines ordering constraints and dependencies

� Organized into Workflows

Specification
WorkflowBusiness Concept

models

Component specs
& architectures

Use Case
models

Concept model
Use Case model
Component specs
Components

0% 100%% complete
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Specification Provisioning Assembly
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Workflows in the development process

Workflow (c.f. RUP)

Artefact
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Business Concept Model
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[suitable
room]

Check
availability

Make
reservation

Take up
reservation

Cancel
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Amend
reservation

[else]

customer arrives/

cancel request/

amendment
 request/

Wait for
event

enquiry/

Process no
show

no show/

Confirm
reservation Notify billing

system

Identify Use Cases
A use case describes the interaction that follows from a
single business event. Where an event triggers a number
of process steps, all the steps form a single use case.
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Reservation system

ReservationMaker

Guest

BillingSystem

ReservationAdministrator

Cancel a
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Process no
shows
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Use Case
diagram

  email:john@syntropy.co.uk                          Syntropy Limited

Name
Initiator
Goal

Make a Reservation
Reservation Maker
Reserve a room at a hotel

Main success scenario
1. Reservation Maker asks to make a reservation
2. Reservation Maker selects hotel, dates and room type
3. System provides availability and price
4. Reservation Maker agrees to proceed
5. Reservation Maker provides name and postcode
6. Reservation Maker provides contact email address
7. System makes reservation and gives it a tag
8. System reveals tag to Reservation Maker
9. System creates and sends confirmation by email

Steps

or
Extension

Points

Extensions
3. Room Not Available
    a) System offers alternative dates and room types
    b) Reservation Maker selects from alternatives

6. Customer already on file
    a) Resume 7
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Provisioning

Specification
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The Specification Workflow
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Make a 
Reservation

Use case

identify room requirements
system provides price
request a reservation

Use
case

steps

Make
Reservation

<<interface type>>
IMakeReservation

getHotelDetails()
getRoomInfo()
makeReservation()

Dialog
Type

System
Interface

Identify System Interfaces and Operations

System interfaces act as facades - they are the point of
contact for the UI and other external agents. They are
supported by components in the system services layer.
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Develop the Business Type Model
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<<type>>
Customer

<<type>>
Hotel

<<type>>
RoomType

name: String
price(Date): Currency
stayPrice(DateRange): Currency
available(DateRange): Boolean

<<core>>
Customer

name: String
postCode: String
email: String

1

<<interface type>>
IHotelMgt *

<<interface type>>
ICustomerMgt

*

<<core>>
Hotel

name: String

<<type>>
Room

number: String
<<type>>

Reservation
resRef: String
dates: DateRange

1..*
*

* 0..1
*

allocation

1
*

1..*
1

*

Responsibility for holding
this association has been
allocated to IHotelMgtResponsibility for business

types is shown by containment

Identify business interfaces

1

11
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<<comp spec>>
HotelMgr

IHotelMgt

<<comp spec>> 
CustomerMgr

ICustomerMgt

<<comp spec>>
BillingSystem IBilling

<<comp spec>>
Reservation 

System
IMakeReservation

ITakeUpReservation

Component architecture
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<<comp object>>
:HotelMgr

IHotelMgt

<<comp object>> 
:CustomerMgr

ICustomerMgt

<<comp object>>
:BillingSystem IBilling

<<comp object>>
:Reservation

System
IMakeReservation

ITakeUpReservation

Minimal component object architecture
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Component
InteractionDiscover Business

Operations

Refine
Component Specs
& Architecture

Business
Interfaces

Component Specs
& Architecture

System
Interfaces

Refine
Interfaces & Ops

Component Specs
& ArchitectureInterfaces

Component Interaction
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/IMakeReservation:ReservationSystem

makeReservation ( )

/ICustomerMgt

1:getCustomerMatching( )

<<interface type>>
 IMakeReservation

getHotelDetails (in match: String): HotelDetails [ ]
getRoomInfo (in res: ReservationDetails, out availability: Boolean, out price: Currency)
makeReservation (in res: ReservationDetails, in cus: CustomerDetails, out resRef: String): Integer

<<interface type>>
IHotelMgt

getHotelDetails (in match: String): HotelDetails [ ]
getRoomInfo (in res: ReservationDetails, out availability: Boolean, out price: Currency)
makeReservation (in res: ReservationDetails, in cus: CustId, out resRef: String): Boolean

/IHotelMgt

2:makeReservation( )

<<data type>>
CustomerDetails

name: String
postCode[0..1]: String
email[0..1]: String

3:notifyCustomer( )
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Component
Specification

Interfaces

Specify Operation
Pre/Post-Conditions

Interfaces

Specify Component-
Interface constraints

Define Interface
Information Models

Business
Type Model

Component Specs
& Architecture

Component Specs
& Architecture

Component Specification
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<<interface type>>
ICustomerMgt

getCustomerMatching (in custD: CustomerDetails, out cusId: CustId): Integer
createCustomer(in custD: CustomerDetails, out cusId: CustId): Boolean
getCustomerDetails (in cus: CustId): CustomerDetails
notifyCustomer (in cus: CustId, in msg: String)

Customer

id: CustId
name: String
postCode: String
email: String

*

Interface information model

Defines the set of information assumed to be held by a
component object offering the interface, for the
purposes of specification only.

Implementations do not have to hold this information
themselves, but they must be able to obtain it.

The model need only be sufficient to explain the effects of
the operations.

The model can be derived from the Business Type Model.
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context ICustomerMgt::getCustomerDetails (in cus: CustId): CustomerDetails

pre:
-- cus is valid
customer->exists(c | c.id = cus)

post:
-- the details returned match those held for customer cus
Let theCust = customer->select(c | c.id = cus) in
result.name = theCust.name
result.postCode = theCust.postCode
result.email = theCust.email

Pre- and post-conditions

� If the pre-condition is true, the post-condition must be true

� If the pre-condition is false, the post-condition doesn�t
apply

� A missing pre-condition is assumed �true�

� Pre- and post-conditions can be written in natural language
or in a formal language such as OCL
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Requirements

Business Concept Model

Use Case Model

Specification

Business Type Model

Interface Specifications

Component Specifications

Component Architecture

Interactions

Use Case
Diagrams

Use Case 
Diagram

Package 
Diagram

Component
Specification

Diagrams

Interface
Specification

Diagrams
Class 
Diagram

Component
Architecture

Diagram

Business
Concept Model

Diagram Class 
Diagram

Business
Type Model

Diagram

Interface
Responsibility

Diagram

Component
Interaction
Diagrams

Collaboration 
Diagram

UML diagrams
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Want to know more?

� UML Components by John Cheesman and John
Daniels, Addison-Wesley

� http://www.umlcomponents.com


