
 A Conflict Resolution Control Architecture For Self-
 Adaptive Software

N. Badr
School of Computing and

Mathematical Science,
Liverpool John Moores University,

Byrom Street, Liverpool
L3 3AF, UK

cmsnbadr@livjm.ac.uk

D. Reilly
School of Computing and

Mathematical Science,
Liverpool John Moores University,

Byrom Street, Liverpool
L3 3AF, UK

d.reilly@livjm.ac.uk

A.TalebBendiab
School of Computing and

Mathematical Science,
Liverpool John Moores University,

Byrom Street, Liverpool
L3 3AF, UK

 A.Talebbendiab@livjm.ac.uk

ABSTRACT

An essential feature of dependable software is its adaptive
capability to respond to changes that occur in its operating
environment through the dynamic transformation and
reconfiguration of its components and/or services. Such
adaptive capability is often a design aspect derived from the
software architecture model, which describes the software
components and their interactions, the properties and policies
that regulate the composition of the components and norms
that limit the allowable systems adaptation operations.
Research in reflective middleware architectures and policy-
based distributed systems management has focused on the
use of managerial or meta-level protocols to attain reactive
adaptive behaviour. However, reflective and policy-based
management approaches alone cannot address all of the
needs of self-adaptive software due to their inability to
maintain a faithful runtime model of the system. This paper
considers the development of control architecture for self-
adaptive software, which combines conflict resolution and
control strategies to resolve runtime conflicts. In particular,
the paper describes a prototype service-based architecture,
implemented using Java and Jini technologies, which
provides runtime monitoring and conflict resolution to
support software self-adaptation.
.

1.Introduction
Self-adaptive software can be seen as a new architecture
style, which extends the controller concepts to adapt the
structural configuration and dynamic behaviour of a system.

Structural components can evaluate their behaviour and
environment against their specified goals with capabilities to
revise their structure and behaviour accordingly. Laddaga [7]
defines self-adaptive software as:

“Software that evaluates and changes its own behaviour
when the evaluation indicates that it has not accomplishing
what it is intended to do, or when better functionality or
performance is possible“.

Such a software architecture style presents an attractive
concept to developing self-governing software, which fully
or partially accommodates its own management and
adaptation activities. Research in this area has adopted
control engineering concepts, as typified by Osterweil [9]
who presents an architecture, which uses a controller with a
well-specified control function with feedforward and
feedback loops to enable a target system to be monitored to
regulate its operation in accordance with its given control
model. Osterweil [9] describes the delegation of the
responsibility for testing and evaluation of software
applications from humans onto automated tools and
processes, advocating the automation of the continuous self-
evaluation processes.

However, there are further issues to be addressed in order to
achieve self-adaptation, such as: reasoning, control and
decision-making to assess the gap between a given software
operational model and its requirements, and the use of
appropriate strategies for conflict resolution. This paper
argues, that during any software self-adaptation process, it is
likely that autonomous changes may lead to execution errors
and software integrity conflicts. Thus the self-adaptation of
distributed software requires control and decision-making to
support the monitoring, detection and resolution of conflicts,
which may occur at runtime.

The remainder of the paper provides an overview of our
“work in progress” concerning the development of a service-
based architecture that uses conflict resolution to achieve
self-adaptation. The paper is structured as follows: section 2
provides a brief review of self-adaptive software and conflict

resolution strategies. Section 3 describes the prototype
conflict resolution control architecture and its constituent
services. Section 4 briefly describes a case study, which
illustrates how the architecture achieves runtime self-
adaptation. Finally, Section 5 draws conclusions and
mentions future work.

2. Background
The control theory based paradigm provides a framework for
designing software that supports self-control during the
operation of the software. The self-controlling software
model supports three levels of control: feedback, adaptation,
and reconfiguration [6]. Meng [8] proposed a control system
for self-adaptive software based on a descriptive model of a
self-adaptive control system, which employs the control
system concepts of feedforward and feedback. For example,
if a self-adaptive software system consists of two
components the feedforward process can provide
specifications of the software and its predictability and the
feedback process can gather and measure the software’s
environmental attributes.

Central to this paradigm are the decision-making and
delegation strategies that are used to resolve conflicts, as
considered by Barber et al [2] who discuss different
decision-making strategies required in conflict resolution.
Barber et al describe negotiation as the most popular
strategy, but also consider arbitration, mediation and/or
voting as viable strategies in agent-based systems. Adler et
al. [1] describe the “Independence” strategy, which regards
self-modification as a simple and effective resolution strategy
for use in agent-based systems, which is used when an agent
detects a conflict but does not wish to interact with other
agents to solve the conflict, as the agent would rather resolve
the conflict itself. Other approaches by Williams and Taleb-
Bendiab [13] illustrate the use of meta-languages to support
software agent composition and the runtime reconfiguration
of middleware services.

Recently there has been an increasing research trend in the
development of self-healing software, facilitated through
innovations in operating systems [5] and reflective
middleware architectures through which structural and/or
behavioural models can be modified at runtime. Robertson et
al [12] indicate that whilst reflective architectures share
similar aims with self-adaptation architectures, they differ in
that self-adaptive architectures generate runtime evaluators to
check the deviation of the state of the program against some
measure. A control regime is then used to compute the
distance between the current state and the goal state in order
to maintain stability and robustness. The control regime
makes use of sensor and actuator concepts to feedforward
and feedback the systems states enabling the software
management layer to reconfigure and switch the control
regime itself to suite the systems requirements.

The general model of self-adaptive software can be viewed
from many different aspects, which take the architectural
model as a parameter in the monitoring and repairing
framework to allow the monitoring mechanism to match both
properties of interest and adaptation operators at runtime [3].
Previous work by Cooper and Taleb-Bendiab [4], based on

the same theme as the current research described herein,
focused on a heuristic-based approach to support software
agent self-adaptation. The current research extends this
previous work by concentrating on automated self-adaptation
that can be applied at runtime.

3. Service-Oriented Conflict Resolution
Control Architecture
The development of dependable distributed system is
hindered by the conflicts and faults that may occur at
runtime. With being the case, our approach is based on a
control mechanism which monitors behaviour, detects and
identifies conflicts and formulates remedial action in the
form of a resolution strategy. A service-oriented approach
was adopted to develop the control mechanism and overall
service-based architecture, as shown in Figure 1 overleaf.

The service-based architecture achieves self-adaptation by
detecting, identifying, and resolving conflicts that occur at
runtime, After detection, a conflict is identified and
categorized according to its type before a resolution strategy
is used to minimize the conflict. A monitor element then
provides feedback to guide the conflict resolution tasks,
which are used to implement the conflict resolution process.
The prototype architecture, used to implement the conflict
resolution and control element (figure 1) is based on Java and
Jini middleware1 technologies to provide the following
services.

 Monitor: makes use of a set of control rules against
which behaviour is monitored to detect conflicts.

 Diagnostic: the execution of a control rule implies a
conflict, which activates the diagnosis services that results in:

- Identification of the part of the control rule that
 raised the conflict.
- Identification of the cause of the conflict through
 the examination of service attributes and method
 invocations using Java’s reflection API
 (java.lang.reflect).
- Classification of the type of conflict, which
 provides the basis for the selection of a resolution
 solution strategy.

 Notification: makes use of Jini’s remote event
mechanism to notify clients when conflict resolution
solutions become available.

 Control Rules: serve as the basis for the previous
monitoring and diagnose services. They consist of a number
of rules and gates that execute when a conflict is detected,
which in practice execute when a service method is invoked.
This in turn may result in the firing of a remote event to
notify of the availability of a resolution solution strategy.

 Exception Handling: makes use of Java’s exception
handling facilities to catch exceptions, which are thrown
when a control rule executes due to some kind of fault/attack
that cannot be solved. Exceptions are dealt with according to
priority, which may be low, intermediate or high to
accommodate varying degrees of fault tolerance.

1 Jini is a Java based middleware technology developed by Sun
Microsystems Inc.<http://www.sun.com/jini/specs>

Figure 1: Self-Adaptive Control Architecture

Figure 2 illustrates a flow chart of the reasoning that takes
place in a typical conflict resolution solution strategy. The
flowchart begins with a client request for an application
service and if the request succeeds, then no conflict has
occurred so the client responds. If a conflict does occur an
attempt is made to provide the client with an alternative
service, which performs the same function. If this also results
in a conflict then the client may choose a renewable notify
option, whereby the client is notified when a suitable service
becomes available or the client may renew the notification
period when its lease expired.

 Figure 2: Example of Control Resolution Strategy

4. Case Study
We illustrate the architectures capabilities to accommodate
self-adaptation through an industrial case-study, which

involves a dependable software system developed out of the
EmergeITS project. EmergeITS is concerned with the
development of an adaptable software architecture to provide
In-Vehicle Telematics Systems (IVTS) capabilities to
emergency service response teams [11]. Figure 3, provides
an overview of the EmergeITS services, which use Jini
services to provide: remote hardware control, remote
database access (through Java Servlets and XML documents)
and mobile communication management capabilities. The
IVTS Manager oversees the overall operation of the system
and provides capabilities to add additional services, as well
as limited control and adaptation facilities. IVTS Clients
(typically remote vehicles) may request the use of any
service that the IVTS Manager has to offer.

One crucial service for the IVTS architecture is the 3-in-1
phone service (palowireless2001) [10], which allows a
portable wireless phone or PDA to be used as a cellular
phone, WAP device or walkie-talkie. An IVTS Client may
request the use of a 3-in-1-phone service whenever a physical
device such as a mobile phone or PDA is to be used from a
moving or stationary vehicle. The client may request to use
the device in one of the 3 different modes for which the 3-in-
1 phone service must adapt accordingly. The 3-in-1 phone
service essentially implements the conflict resolution and
control strategies by examining: 1) user operation mode
requested, 2) client location and 3) bearer service location
and availability (e.g. BTCellNet, , GSM or Tetra3) and each
of these three parameters manifest as remote method
invocations made on the 3-in-1 phone service. The outcome
of the initial resolution strategy may result in IVTS client
notification that the request was successful, or else that a
further conflict occurred, leading to further control rules

2 EmergeITS is a collaborative project involving our own
research group within the School of Computing and
Mathematical Sciences at Liverpool John Moores University
and the Merseyside Fire Service
<http://www.cms.livjm.ac.uk/emereits>
3 Tetra is a digital network under consideration by Police and Fire
emergency services in the UK

Jin i Core Services

Lookup
Service

Java Space
Service

Transaction
Service

JA
V

A

M
on

ito
rin

g

D
ia

gn
os

in
g

N
ot

ifi
ca

tio
n/

E
ve

nt
H

an
dl

e

C
on

tro
l R

ul
es

In
co

ns
is

te
nc

y/
E

xc
ep

tio
n

H
an

dl
e

R
es

ou
rc

e
M

an
ag

em
en

t

P
ub

lis
he

r
M

an
ag

em
en

t

G
ra

ph
ic

al
 U

se
r I

nt
er

fa
ce

A m odel Contains a number of services for im plem enting the control
m echanism services

To
ol

s&
A

pp
lic

at
io

n
D

ev
el

op
m

en
t

S
up

po
rt

C
on

tr
ol

 M
ec

ha
ni

sm
S

er
vi

ce
s

A
pp

lic
at

io
n

S
er

vi
ce

s

executing for which a conflict resolution must be sought,
such as the initiation of a more comprehensive search for a
bearer service to resolve the conflict. Eventually a situation is
reached whereby the system has attained a configuration that
best meets the needs of the initial request.

 Figure 3: IVTS Services

5. Conclusion and Future Work
In this paper we have described a prototype service-based
architecture, based on Java and Jini technologies, that uses
conflict resolution and control strategies to detect, identify
and resolve conflicts that occur at runtime. We intend to
extend our architecture, in future related research, by
considering the negotiation aspects in the control decision
making of self-adaptation. It is anticipated that this will
increase the flexibility of our architecture, which we intend
to evaluate through further case studies from our
complementary group research area of intelligent-networked-
vehicles

References
[1] Adler, M., et al. Conflict- Resolution Strategies for

Nonhierarchical Distributed Agents. in In Distributed
Artificial Intelligent ||,. 1989. London.

[2] Barber, K.S., T.H.liu, and D.C.Han. Strategic Decision-
Making for Conflict resolution in Dynamic Organized
Multi-Agent Systems. in GDN 2000 PROGRAM. 2000.

[3] Cheng, S.W., et al., Using Architectural Style as a Basis
for System Self-repair, . 2002.

[4] Cooper, S. and A.Taleb-bendiab. A High Level
ControlMechanism For Managing Conflict Resolution
In Concurrent Product Design. In Proceedings of the
fourth ISPE International conference on Concurrent
Engineering :Research and Application (CE97). 1997

[5] eLizaProject,
 http://www-1.ibm.com/servers/introducing/eLiza .

[6] Kokar, M., K. Baslawski, and Y. Eracar, Control Theory-
Based Foundation of Self- Controlling Software. IEEE
Intelligent Systems, 1999: p. 37-45.

[7] Laddaga R. Active Software. in First International
Workshop on Self-Adaptive Software, (IWSAS2000).
2000.

[8] Meng, A.C. On Evaluation Self-Adaptive Software. in
First International Workshop on Self-Adaptive
Software, (IWSAS2000), April 2000. 2000.

[9] Osterweil, L.J. and Clarke, L.A. Continuous Self-
Evaluation for the Self-Improvement of Software. in "
First International Workshop on Self-Adaptive
Software, (IWSAS2000). 2000.

[10] palowireless:Bluetooth Resource Center

[11] Reilly, D.and A. Taleb-Bendaib, A Service Based
 architecture for in-Vehicle Telematics Systems

Submitted in "A Special Issue of CERA Journal: A.
Complex Systems Perspective on Concurrent

 Engineering", 2002

[12] Robertson, P., Laddaga, R., and Shrobe H..
Introduction: the First International Workshop On Self-
Adaptive Software. in First International Workshop on
Self-Adaptive Software, (IWSAS2000). 2000.

[13] Williams, M. and A.Taleb-Bendiab. A Toolset for
Architecture Independent, Reconfigurable Multi-Agent
systems. in First International Workshop on Mobile
Agents. 1998.

IVTS MANAGER

LOW LEVEL
SERVICES

IS SERVICE 3 - in - 1 Phone
Services

Power
Management

Service

Vehicle
Recorder

Database/
XML

Servlet

Incident
Responce
Database WAP

Walkie-
talkie

AVL

IVTS CLIENT

Cellular

	1.Introduction
	2. Background
	3. Service-Oriented Conflict Resolution Control Architecture
	4. Case Study
	5. Conclusion and Future Work
	References

