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ABSTRACT
In order to maintain the popularity and reputation of a web
site, the quality of service perceived by users, especially the
service availability, is a success factor. A service that is
frequently unavailable may have negative effects on the rep-
utation of the service provider, or result in loss of business
opportunities. From the user’s perspective, a service that
exhibits poor quality is virtually equivalent to an unavail-
able service. In this work, we present the overall architec-
ture and the evaluation of a middleware infrastructure which
provides quality-of-service differentiation among classes of
communication-bound processes. By communication-bound
processes we mean processes whose activity is typically dom-
inated by network communication, e.g. a video server. The
proposed architecture supports different classes of service,
each with different quality attributes concerning the network
data delivery performance. In particular, the architecture is
able to provide a class of service, namely guaranteed service
class, which is suitable for increasing the service availabil-
ity for a group of premium users, especially in overloaded
servers (in absence of external faults).
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.

The Internet world is moving toward a scenario where
users and applications have very diverse service expecta-
tions, making the current best-effort model inadequate and
limiting. In fact, new web applications demand for deliv-
ery of multimedia data in real-time (e.g. streaming stored
video and audio), and the information transfer via the Inter-
net is becoming one of the principal paradigm for business:
electronic sales, banking, finance, collaborative work, are
examples of this. In this scenario, in order to maintain the
popularity and reputation of a web site, the quality of ser-
vice perceived by users, especially the service availability, is
a success factor [5]. The principal QoS attributes that users
perceive include those related to the service availability and
timeliness: a service that is frequently unavailable may have
negative effects on the reputation of the service provider,
resulting in loss of business opportunities. From the user’s
perspective, a service that exhibits poor quality is virtually
equivalent to an unavailable service.

The performance perceived by the users of a Web ser-
vice depends on the network infrastructure (possibly QoS-
enabled) but especially on the management of the servers’
resources [13]. It is thus desirable that network servers (e.g.,
Web, Video on Demand, and FTP servers) should be able
to differentiate their services in a variety of classes, replac-
ing the current simple best-effort paradigm. This leads to
a model in which applications and users are treated differ-
ently, in a way that best meets their quality and pricing
constrains. This paper presents the overall architecture and
the experimental evaluation of an operating system exten-
sion for service differentiation of communication-bound pro-
cesses. The architecture provides server application devel-
opers with a communication library (similar to the standard
socket), named cosSocket (class of service-enabled Socket),
which is able to realize different classes of service using fea-
tures of a real-time operating system. A service differenti-
ation scheme can be applied to different applications, or to
different users in the context of the same application. Ser-
vice differentiation is obtained by assigning different CPU
time-slices to applications I/O tasks. The underlying idea is
that it is possible to decrease time-slice assigned to a given
process in order to reduce its communication throughput,
freeing server’s resources in favor of processes with a bet-
ter class of service. Real-time features are achieved through
a Rate Monotonic Algorithm for CPU scheduling, included



in the TimeSys Linux/RT kernel [www.timesys.com], which
also offers a complete support for POSIX threads.

The paper is organized as follows. In section 2 we in-
troduce the web service correctness and related problems.
The failure mode assumptions we adopted is presented in
section 3. In section 4 we describe the overall architecture;
experimental results are provided in section 5. Section 6 dis-
cusses related work in this field. Finally, section 7 provides
some concluding remarks related to the obtained results,
along with information on future work.

2. WEB SERVICE CORRECTNESS
Before illustrating the design and the implementation of

the proposed middleware infrastructure, it is worth clari-
fying the definition of the web service availability, starting
from the position stated in [14] by D. Powell. Availability
deals with the readiness for correct service. In particular, it
is a function A(t), which is the probability that the system
is operational (i.e., delivers the correct service) at instant
of time t. This function quantifies the alternation between
deliveries of correct service and incorrect service. A sys-
tem can fail to deliver a correct service due to the following
reasons:

• the presence of faults, caused by system errors;

• the presence of overloading condition, i.e. the server
is so much busy that it is not able to deliver a correct
service.

Throughout this paper we focus only on system failures,
stemming from overload conditions. This kind of failures is
strictly tied with the delivered quality of service because, if
the QoS falls down under a certain threshold, the service can
be considered unavailable. The architecture we propose pro-
vides an efficient and flexible resources management strat-
egy, which aims at improving the quality of the delivered
service, reducing the QoS degradation perceived by some
premium users. The result is a higher probability of deliv-
ering to these users a correct service, improving the system
availability. The architecture does not prevent system from
hardware/software faults, hence it does not guarantee the
service availability. In order to achieve this further goal, a
redundant scheme has to be also implemented, as described
in section 7.

As stated in [14] and in [4], in order to analyze the avail-
ability of a system it is essential to clarify what does correct
service mean. Starting from definition given by Powell, the
service delivered by a system can be defined in terms of a
sequence of service items si, i = 1, 2...., each characterized
by a tuple < vsi, tsi >, where vsi is the value or content of
service item si and tsi is the time or instant of observation
of service item si. Assuming the presence of an omniscient
observer that has a complete knowledge of the specified se-
quence of service items the system should deliver, a service
si is defined correct if:

(vsi ∈ SVi) and (tsi ∈ STi)

where SVi and STi are respectively the specified sets of
values and times for service item si. For a general system,
SVi and STi are functions of the sequence of system inputs.
As far as modern web-based systems with QoS constraints
are concerned, this definition is certainly suitable, but sets
SVi and STi have to be extended.

Indeed, modern web-based systems are implemented over
a QoS-enabled network. In this context, the term QoS is
related to the quality of communication service, such as
a certain value of packet loss, latency, jitter, and assured
bandwidth, appearing at the communication endpoints like
a point-to-point connection or a virtual “leased line” with
the requested quality attributes. In this scenario, it should
be possible to provide the same service with different qual-
ity attributes to several classes of users. In this way, the
correctness of a service also depends on the specified class
of users which request it. We can thus define the correctness
of a web service, for a certain class j of users, as:

(vsi ∈ SV ∗
i,j) and (tsi ∈ ST ∗i,j)

where:

SV ∗
i,j = f(SVi, CUj)

ST ∗i,j = f(STi, CUj)

and where CUj represents the class j to which the user
belongs. It is thus desirable to have an architecture in which
applications and users are treated differently, in a way that
best meets their quality and pricing constrains. The pro-
posed middleware architecture, using features of a real-time
operating system, is able to realize different classes of service
inside the web server too. A service differentiation scheme
is provided to different applications, or to different users in
the context of the same application.

3. FAILURE MODE ASSUMPTIONS
This section gives a formal definition of the failure modes

of a web server we adopted. By web server it is meant a
server, such as multimedia or HTTP server, that provides its
services via a web infrastructure. According to [14], a failure
mode is defined in terms of an assertion on the sequence of
value-time tuples that a server is supposed to deliver. Let us
assume the following class of users exist: Cn(normal user),
Cm (medium user), Cp (premium users). Assertions may be
defined in the value domain and in the time domain. Effects
of value errors are not considered afterward. As already
mentioned, we investigate failures caused by server overload
conditions, i.e. the server process or host is too busy for
delivering the correct service to a certain class of user.

3.1 Timing errors assertion
These assertions are the most important in the considered

context.

• No timing errors can occur:
τnone := ∀i,∀j tsi ∈ STi,j

• Omission errors can occur:
τO := ∀i, ∀j (tsi ∈ STi,j) or (tsi = ∞)

• Late timing errors can occur:
τL := ∀i (∀j, tsi ∈ STi,j) or [∃j ∈ {m, p} : (tsi >
maxTimej)]

The omission error assertion depicts a fail silent behaviour:
in such a situation if the system does not supply the service
si in STij it will never supply it at all. Similary, a late timing
error can occur if a service item si is delivered at a medium



or premium user after a threshold, named maxTime, de-
pending on user requirements.

It should be emphasized that late timing errors can occur
only when medium (Cm) and premium users (Cp) request
the service. This means that a service delivered to users
belonging to class Cn, is correct even though it is delayed
for a time greater than maxTime.

4. OVERALL SYSTEM ARCHITECTURE
As mentioned, we focus on Internet-based data delivery

servers (Web, FTP, Video on Demand servers). For these
kinds of servers, controlling I/O activities is essential to
achieve a pre-determined behaviour. We propose an ar-
chitecture which provides differentiated communication ser-
vices according to a number of service classes. The real-
time scheduler assigns to each service class a CPU amount
depending on its service level. By doing so, it is possible
to schedule processes in a deterministic way. However, as-
signing a service level to the entire process does not en-
sure real-time communication. In fact, the performance
of a communication-bound process mainly depends on the
scheduling of its I/O tasks, as indicated in [7, 8]. The archi-
tecture we propose is in charge of managing I/O activities
of all processes residing on the end-system. In fact, process
I/O tasks consist of a sequence of system call invocations
which require the execution of an operating system thread
serving the request. Our strategy relies on the capability of
controlling the number of system calls issued for requesting
I/O tasks.

The proposed architecture is able to completely separate
I/O from the CPU activities, by providing application de-
velopers with a new communication library (cosSocket) sim-
ilar to the standard TCP/IP socket library. Once separated
these activities, I/O tasks can be scheduled by the real-
time kernel. As for the design methodology, we adopted an
object-oriented approach, namely Concurrent Object Mod-
eling and Architectural Design Method (COMET), particu-
larly suited for designing concurrent and real-time distributed
systems [9]. The static model for the overall architecture is
depicted in figure 1.

As shown in figure 1, user applications can create one or
more instances of class cosSocket. From user point of view,
such a class is able to perform I/O operations with a speci-
fied quality of service. The cosManager, which inherits from
a POSIX thread class, is in charge of handling an instance
of cosSocket. In other words, by means of cosSocket each
application delegates, or defers, all the I/O activities to an
instance of cosManager. I/O operations of cosManager are
then performed using standard socket libraries. The activ-
ities of cosManager, which are mainly I/O calls, are opti-
mized and then scheduled by the real-time kernel by means
of the cosDaemon. This daemon is the only architecture’s
entity, capable of using real-time features in order to control
all cosManagers present on the end-system. The cosDaemon
is also in charge of implement admission control policies for
guaranteed services.

We defined a class service model which consists of two
kinds of service classes: Adaptive and Guaranteed. They
are presented in the following subsections.

4.1 Adaptive class service
By adaptive we mean a service class that can be requested

without any admission control mechanism [2]. According to
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Figure 1: COMET Static Diagram of the proposed
architecture.

this class definition, we allocate CPU shares in a weighted
way. This means that we set preliminary n weights, W1 <
W2 < ... < Wn, associated to each of n classes (class n has
the highest priority). The adaptive service does not provide
hard guarantee on the effective throughput of each process;
however, it allows to define several classes, providing a guar-
anteed differentiation between them on the basis of assigned
weight.

4.2 Guaranteed service class
By guaranteed service class we mean a class subject to an

admission control policy. In this case, each instance requires
a specific throughput. The request can be accepted or re-
jected according to the specific policies implemented in the
admission control module. If accepted, the service has to be
guaranteed by the system during all its life cycle. This kind
of service is particularly suitable for applications that re-
quire a constant throughput (e.g. multimedia applications)
or for satisfying a group of premium users, leaving the ser-
vice always available to them independently of the system
workload (in absence of external faults).

The mechanism for providing Guaranteed services class
is implemented by a self-regulating utilization control loop.
The throughput control loop determines the CPU amount
necessary for obtaining a Constant Bit Rate (CBR). Let y0

the desired throughput, and y the current throughput ob-
tained by the cosManager. For the sake of simplicity, the
cosManager was modeled like a “black box”. The value e is
the “throughput error”, e = y0 − y. The cosDaemon, which
acts as the controller, samples the current throughput y,
and computes the corresponding error e at fixed time inter-
vals, then produces an output, u, that regulates the CPU
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Figure 2: Self-regulating control loop for providing
Guaranteed service.

to be assigned to the cosManager. We used a proportional-
integral (PI) controller in our loop. The controller produces
an output that is proportional to the last error and to the
sum of the previous m errors. At each sampling time the
controller performs the following computation, diminishing
the medium quadratic error: u = u + k ∗ e where k is a
constant. The adopted scheme is illustrated in figure 2.

4.3 Implementation models
As far as implementation is concerned, two main issues

have been addressed: the synchronization mechanism be-
tween cosSocket and cosManager, and data buffer manage-
ment. The solution of these problems resulted in three dif-
ferent implementation models, as shown in [6]:

• Synchronous model ;

• Asynchronous model ;

• Asynchronous Aggregated model.

We implemented all the three models and evaluated them
in order to investigate which of ones is best suited for the
considered applications. Experimental results, reported in [6],
show how best performance are obtained with the last one.
Therefore we adopted the Asynchronous Aggregated model,
and results discussed in section 5 refer to this model.

5. AVAILABILITY EXPERIMENTS
In this section we present measurements which aim to

demonstrate how the proposed middleware architecture is
able to improve availability of service delivered to the pre-
mium user class.

The testbed used is composed of three different kinds of
COTS PC, as described in the following:

• One HTTP server (named Tigri): is a Pentium III
at 600 Mhz with 256 Mb of RAM and Linux/RT by
Timesys installed.

• One HTTP client (named Eufrate): is a Pentium III
at 600 Mhz with 256 Mb of RAM and Linux/RT by
Timesys installed.

• Five HTTP clients: Celeron 700 Mhz with 128 Mb of
RAM and Windows 2000 Professional installed.

All PCs are on the same LAN at 100 Mbit/s full switched.
On the Server Tigri we installed our architecture. We also

used a simple HTTP-server application which replies to the
client requests on different port numbers, one for each class
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Figure 3: Performance measurements in presence of
variable workload.

of service, as previously described: Cn(normal user), Cm

(medium user), Cp (premium users).
The Windows clients are used only to generate the work-

load on the target server. To this aim, each Client run one
or more instances of a http-client application requiring a file
transfer service belonging to the Cn class. The same HTTP-
client was also used on the Linux client machine, where mea-
sures are taken, in order to require a new service belonging
each time to one of the three possible classes. We used a
Linux client with the real-time extension in order to obtain
a high-precision timer. All requests issued concern the same
service: the transfer of a file of 10 Mbyte. The Windows
clients repeat such a request in a cyclic way, to obtain a
constant workload for all tests. Each test was repeated five
times and the final result is the average value.

Tests were performed by evaluating the bandwidth ob-
tained by the Linux client and the correspondent service
time, with different workload due to the variable number
of Cn connections. The Cn and the Cm classes are han-
dled in a adaptive way, so in these cases the architecture
do not provide a guaranteed quality of the service delivered,
but only a service differentiation. Effective performance, for
users belonging to Cn and Cm classes, depend on the total
workload. Instead, at each premium user (Cp) is assigned an
instance of the Guaranteed service class with a throughput
of 5 Mbit/s.

We were interested to effective service time and band-
width, establishing for both an expected value in absence of
workload. Then we made test and compared real value with
those expected. The results, for each service class, are de-
picted in figure 3 as the ratio between effective and expected
service time.

As the figure shows, in presence of operating system trash-
ing conditions (i.e., increasing the number of connection re-
quests) there are differences between expected and effective
values (ratio greater than 1). This difference increases more
rapidly for users belonging to Cn and Cm classes than for
users belonging to Cp one.

In particular, we assumed to have a Late Timing Error,
τL, when the effective service time is three time greater then
the expected one, and to have an Omission Error, τO, when
this ratio is greater than five. Althought, as explained in
section 3, these tresholds are defined only for medium and
premium users, they can be useful to compare the service



degradation between the different classes.
According to these rules, the Cm service experiences a

Late Timing Error with a workload of about 48 Cn requests
instead of only 25 needed for the Cn service. Similarly, an
Omission Error occurs with 87 requests for Cm and only 59
for Cn.

On the contrary, a workload of 100 requests is not enough
to cause a LateTiming Error for the Premium user class Cp.

It is clear from the figure that the proposed architecture
is able to prevent the class Cp from overload conditions by
guaranteeing the availability of the service even in the case
of server overload.

6. RELATED WORK
Quality of Service provisioning for data delivery and real-

time applications have received considerable attentions in
[1] and [2]. There are been appreciable progresses in QoS
support separately for Web Server [1]. Many works like
[13] as well as our previous experience in quality of ser-
vice support [7], highlights needs to service differentiation
even in the end system. Different architectures have been
proposed and implemented in order to support QoS guaran-
tees in the end-system. For example, in [12] are proposed
some architectural mechanisms to manage communication
resources for guaranteed-QoS connections, and in [10, 15]
has been addressed the problem of scheduling real-time ap-
plications on general-purpose Operating System in order to
provide different classes of communication services. Both
architectures did not address the implementation issues of
a mechanism to control the bandwidth assigned to different
class of service. In all revised works, resources control was
used to increase performance or to provide class differenti-
ation, without considering the lack of availability due to a
poor control of communication QoS.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we focused on Internet-based data delivery

services (e.g., services provided by Web, FTP, and video-
on-demand servers). These services are run by processes
whose activity is typically dominated by network communi-
cation; we called them communication-bound processes. We
presented an overall description of an operating system ex-
tension for quality-of-service differentiation among classes of
communication-bound processes. Our strategy relies on the
capability of controlling the I/O activity performed by appli-
cations. We defined three Class of Service corresponding to
different priorities in I/O-resources utilization. An extended
evaluation demonstrated that such an architecture is useful
to improve the satisfaction of premium users, increasing the
effective availabilty in presence of system overload. Finally,
we are currently investigating the behaviour of the cosSocket
architecture with respect to other performance parameters
as response time and jitter. We are also evaluating the in-
fluence of architecture setup on this parameters.
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