
Evaluation of Dependable Layered Systems with Fault
Management Architecture

Olivia Das, C. Murray Woodside
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

email: odas@sce.carleton.ca, cmw@sce.carleton.ca
ABSTRACT
The need for a separate fault-management system, that is
able to carry out both failure detection and reconfiguration,
is becoming imperative due to the increasing complexity of
fault-tolerant distributed applications. Such practice would
eliminate the intricacies of the failure detection mecha-
nisms from the application and would avoid repeating them
in every program. The dependability of such an application
depends on the interconnection of components in the fault-
management system, management subsystem failures,
delays incurred due to system reconfiguration and failure
information propagation in the management architecture,
as well as on the structure of the application itself. This
position paper describes avenues for evaluating the
dependability of a multi-layered service system that uses a
separate fault-management architecture.

1. INTRODUCTION
Distributed software systems are usually structured in
layers with some kind of user-interface tasks as the
topmost layer, making requests to various layers of
servers. Client server systems and Open distributed
processing systems such as DCE, ANSA and CORBA are
structured this way. [2, 1, 12] introduced an approach to
express the layered failure and repair dependencies in
these systems. However, the work done there is limited by
the assumption of instantaneous perfect detection and
reconfiguration, and independent failures and repairs.

This position paper describes avenues to incorporate the
effect of fault management architecture in the
dependability evaluation of layered systems. The fault
management architecture influences the dependability in
the following ways:

• management component failures and the interconnections
among the management components affects the success-
ful system recovery.

• delays for system reconfiguration and detection propaga-
tion in the management architecture increases the system
downtime.

Our earlier work in [3] considered the delays for detection
and reconfiguration by a separate detection architecture for
layered systems. However, it was restricted to a particular
detection architecture that would support full coverage of
the failures by the system. If arbitrary connections among
fault management components are considered, then it is
possible that due to the loss of connectivity in the
management architecture, the system may not be able to
detect a failure and therefore would fail even if adequate
redundancy exists. This issue has been addressed in this
work that extends the work in [3] by taking into account
arbitrary fault management architectures.

Other work analyzes the effect of software architecture
(and not the management architecture) on reliability and is
given by Trivedi et. al. [4, 5].

As in [3], this work considers only crash-stop failures, in
which an entity becomes inactive after failure, and not to
the other more complex failure modes such as Byzantine
failure [9].

2. LAYERED MODELS CAPTURING
FAILURE OCCURRENCE AND REPAIR
BEHAVIOR
Figure 1 shows an example of a layered model using a
notation proposed in [1, 2] with two groups of users (50
UserA users and 100 UserB users, which may be people at
terminals or at PC workstations) accessing applications

which in turn access back-end servers. The rectangles in
this figure represent tasks (i.e. operating system processes)
such as AppA or Server1 with entries, which are service
handlers embedded in the task. For instance, eA-1, eB-1 are
entries of task Server1. An arrow represents a request-reply
interaction, such as an RPC. Processors are represented by
ovals. The numbering #1, #2 on the request arcs indicate
primary/backup choice for a service. Server1 is the primary
server while Server2 is the backup, implying that if Server1
fails, both “serviceA” and “serviceB” would use Server2
until Server1 is working again. Failure and repair rates are
provided for each component (either a task or a processor).

The special property of multi-layered client-server systems
is that a failure of a task or a processor in one layer can
cause many tasks, requiring its services, to fail, unless they
have a backup. The model in Figure 1 captures such
cascaded service operational dependencies.

In order to capture the effect of fault management
architectures, the first step would be to describe the
architecture in some relevant way. The next section
introduces an architectural model to describe various fault
management architectures.

3. FAULT MANAGEMENT
ARCHITECTURE
The generic management components and their
relationships can be depicted as in Figure 2, following [7].
Applications have embedded modules (Subagents) which
may be configured to send heartbeat messages in response
to timer interrupts (indicating they are alive) to a local
Agent, or to a manager directly. A node may have an Agent
task which monitors the operating system health status and
all the processes in the node, and there may be one or more

Manager tasks which collect status information from
agents, make decisions, and issue notifications to
reconfigure. Reconfiguration can be handled by a subagent
(to cause a task or an ORB to retarget its requests) or an
agent (to restart a task, or reboot a node altogether).

The agents and managers are described in this paper as if
they are free-standing processes, even though in practice
some of these components may be combined with other
components in a dependability ORB [8], or an application
management system [11].

Failures of system entities are detected by mechanisms
such as heartbeats, timeouts on periodic polls, and timeouts
on requests between application tasks. Heartbeat messages
from an application task can be generated by a special
heartbeat interrupt service routine which sends a message
to a local agent or to a manager, every time an interrupt
occurs, as long as the task has not crashed. Heartbeat
messages for an entire node can be generated by an agent
configured similarly, to show that the node is functioning;
the agent could query the operating system health status
before sending its message. Heartbeat information once
collected can be propagated among the agents and
managers to act as a basis for decisions, made by
reconfiguration modules.

An entity that cannot initiate heartbeat messages may be
able to respond to messages from an agent or manager; we
can think of these as status polls. The responses give the
same information as heartbeat messages. Polls to a node
could be implemented as pings, for instance.

3.1. Reconfiguration
In this paper, we considered primary-backup replication for
achieving fault-tolerance, i.e. the requests are routed to the
backup server when the primary server fails, for masking
the failure. This alternative targeting of requests is
indicated in Figure 1 by showing an abstraction called
“serviceA” and “serviceB” for the data access service
required by the applications. This service has alternative

userA UserA userBUserB

AppA AppB

Server1 Server2

eA

eA-1 eA-2eB-1 eB-2

procA procB

proc1 proc2

proc3 proc4

serviceA

#1
#1#2

#2

NUserA = 50 NUserB = 100

eB

Figure 1. A layered model of a client-server system
with two groups of users. Server2 is the backup of
Server1.

serviceB

Figure 2. Management components and relationships

Manager Application

Agent

Agent Subagent Server1 Server2

Agent

request arrows attached to it, with labels “#n” showing the
priority of the target. A request goes to the highest-priority
available server, which is determined by a reconfiguration
decision. In this work, the reconfiguration decision will be
made by the management system, and will be conditioned
by its knowledge of status of system components. It can
respond not only to processor failures but also to software
failures (task crashes and operating system crashes).
Network components can be included in the model as well.
A reconfiguration strategy different from the alternative
targeting of requests to the highest-priority available server
can also be analyzed. For instance, a strategy which
involves distributing the workload equally among the
available servers can also be considered.

3.2. Management Architecture
The architecture model described here will be called
MAMA, Model for Availability Management Architectures.
The model has four types of components: application tasks
(which may include subagent modules), agent tasks,
manager tasks, and the processors they all run on (network
failures are for the time being ignored). There are three
types of connectors: alive-watch, status-watch and notify.
These connectors are typed according to the information
they convey, in a way which supports the analysis of
knowledge of the system status at different points in the
management system.

Components have ports which are attached to connectors in
certain roles. The roles are defined as part of the connector
type. The connector types and the roles they support are:

• Alive-watch connectors, with roles monitor and moni-
tored. They only convey data to detect crash failure of the
component in the monitored role, to the component in the
monitor role. A typical example is a connector to a single
heartbeat source.

• Status-watch connectors, also with roles monitor and
monitored. They may convey the same data about the
monitored component, but also propagate data about the
status of other components to the component in the moni-
tor role. A typical example is a connector to a node agent,
conveying full information on the node status, including
its own status.

• Notify connectors, with roles subscriber and notifier. The
component in the notifier role propagates status data that
it has received to a component in a subscriber role, how-
ever it does not include data on its own status.

Manager and Agent tasks can be connected in any role; an
Application task can be connected in the roles monitored,
or subscriber. A Processor is a composite component that
contains a cluster of tasks that execute there. If the

processor fails, all its enclosed tasks fail. The Processor can
only be connected in the monitored role to an alive-watch
connector (which might convey a ping, for example).

Upon occurrence of a failure or repair of a task or a
processor, the occurrence is first captured via alive-watch
or status-watch connections and the information propagates
through status-watch and notify connections, to managers
which initiate system reconfiguration. Reconfiguration
commands are sent by notify connections. Cycles may
occur in the architecture; we assume that the information
flow is managed so as to not cycle. In this work, we note
that if a task watches a remote task, then it also has to
watch the processor executing the remote task, in order to
distinguish between the processor failure and the task
failure.

Figure 3 shows a graphical notation for various types of
components, ports, connectors and roles based on the
customized UML notation for conceptual architecture as
defined in [6]. The component types and connector types
will be shown as classes in this work. In order to avoid
cluttering in the MAMA diagrams, the role names such as
monitor, monitored, notifier and subscriber have been
omitted from them.

Figure 4 shows a centralized management architecture, in
MAMA notation, for the system of Figure 1. Manager1 is
introduced here as the central manager task that collects
status information from the agents ag1-ag4 running on the

Processor
Component

Agent Task
Component

Alive-watch Connector

Status-watch Connector

Notify Connector

Application Task
Component

Manager Task
Component

port connectionrole

AT MT

AGT Proc

monitored monitor
AW

Figure 3. MAMA notations. The graphical notation of
components, ports, connectors and roles are taken
from [6].

monitored monitor
SW

notifier subscriber
Ntfy

processors proc1-proc4. The application tasks AppA and
AppB are also subscribers for the notifications from
Manager1, which control retargeting of requests to the
Servers.

Other management architectures (such as “distributed”,
“hierarchical”, “general network” architectures as
described in [10]) containing several managers and agents
with multiple detection paths can be modeled and analyzed.

4. DETECTION AND RECONFIGURATION
The detection and reconfiguration parameters to be
provided in the model are as follows:

• delay of detection propagation from one component to
another in the fault management architecture, i.e. a delay
parameter associated to each connector in the manage-
ment architecture. It can be computed from the heartbeat
or polling interval for alive-watch and status-watch con-
nectors or from the notification delay for notify connec-
tors.

• delay required by a management component for analyzing
and forwarding data.

• restart delay of each application task.

• reconfiguration delay for each service request that has
alternative targets.

• probability of successful local recovery of an application

task, within a given time interval.

5. MODEL SOLUTION
Let us define a system state to be a vector of the states of
the fault management components and the components in
the software architecture.

The dependability measures for the layered model are then
obtained as follows:

1. Construct a continuous-time Markov chain that describes
the system changes due to failure and repair and includes
the reachable set of system states. It incorporates the
detection and recovery behavior of the system in
between every two system states.

2. Associate the reward rate equal to 1 to each state of the
resulting Markov chain that represents a “working”
configuration of the system. Otherwise associate a
reward rate of zero with the state. The importance of the
fault management architecture is that its failures can
modify the system’s ability to reach “working” states.

3. Solve the resulting Markov reward model to obtain the
desired measures. For example, we can obtain the
steady-state availability of the system by summing up
the probabilities of all the states that has reward rate
equal to 1.

Other interesting measures might be the mean throughput
of the system, mean response time for a client, mean outage
time for a client of the system etc.

Solvers for these (and more general) measures are presently
being developed.

6. CONCLUSION
An approach to incorporate the effect of fault management
architectures, that does both failure detection and
reconfiguration, in the dependability evaluation of layered
systems has been considered. The value of including the
management architecture in the analysis is first to account
for failures and repairs of managers and agents, and second
to evaluate limitations in the fault management
architecture.

Current work is to develop a model for capturing the effect
of failures and repairs of the management subnet on system
dependability measures. The key question to be answered
is the complexity of the solution to determine the state
probabilities.

7. REFERENCES
[1] Das, O., and Woodside, C.M. The Fault-tolerant layered

queueing network model for performability of

AppA:AT ag1:AGT

proc1:Proc c1:AW

c5:Ntfy

AppB:AT ag2:AGT

proc2:Proc c2:AW

c6:Ntfy

Server1:AT ag3:AGT

proc3:Proc
c3:AW

Server2:AT ag4:AGT

proc4:Proc
c4:AW

c11:AW

c12:SW c13:Ntfy c16:Ntfy

c14:AW

c15:SW

c7:AW c8:SW

c9:AW

c10:SW

m1:MT

Figure 4. MAMA Model of a centralized management
architecture for the system in Figure 1.

proc5:Proc

distributed systems. IEEE International Computer
Performance and Dependability Symposium
(IPDS’98), Sept. 1998, pp. 132-141.

[2] Das, O., and Woodside, C.M. Evaluating layered
distributed software systems with fault-tolerant
features. Performance Evaluation, 45 (1), May 2001,
pp. 57-76.

[3] Das, O., and Woodside, C.M. Failure detection and
recovery modelling for multi-layered service systems.
Fifth International Workshop on Performability
Modeling of Computer and Communication Systems,
Erlangen, Germany, Sept. 2001, pp. 131-135.

[4] Gokhale, S.S., Wong, W. E., Trivedi, K. S. and
Horgan, J. R. An analytical approach to architecture-
based software reliability prediction. IEEE
International Computer Performance and
Dependability Symposium (IPDS’98), Sept. 1998, pp.
13-22.

[5] Goseva-Popstojanova, K. and Trivedi, K. S.
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation, 45 (2-
3), 2001, pp. 179-204.

[6] Hofmeister, C., Nord, R., and Soni, D. Applied
Software Architecture. Chapter 4, Addison-Wesley,
2000.

[7] Kreger, H. Java management extensions for application
management. IBM Systems Journal, 40(1), 2001, pp.
104-129.

[8] Moser, L.E., Melliar-Smith, P.M., and Narasimhan, P.
A fault tolerance framework for CORBA. Proc. of
29th Annual Int. Symposium on Fault-Tolerant
Computing, 1998, pp. 150-157.

[9] Schneider, F.B. What good are models and what
models are good. Sape Mullender, Editor, Distributed
Systems, ACM Press, 1993.

[10] Stamatelopoulos, F., Roussopoulos, N. and Maglaris,
B. Using a DBMS for hierarchical network
management. Engineer Conference,
NETWORLD+INTEROP’95, March 1995.

[11] Tivoli Systems Inc., 9442 Capital of Texas Highway
North, Arboretum Plaza One, Austin, Texas. See
http://www.tivoli.com.

[12] Woodside, C.M. Performability modelling for multi-
layered service systems. Third International
Workshop on Performability Modeling of Computer
and Communication Systems, Bloomingdale, Illinois,
Sept. 1996.

	Evaluation of Dependable Layered Systems with Fault
	Management Architecture
	Olivia Das, C. Murray Woodside
	Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
	email: odas@sce.carleton.ca, cmw@sce.carleton.ca
	1. INTRODUCTION
	2. LAYERED MODELS CAPTURING FAILURE OCCURRENCE AND REPAIR BEHAVIOR
	3. FAULT MANAGEMENT ARCHITECTURE
	Figure 2. Management components and relationships
	3.1. Reconfiguration
	3.2. Management Architecture
	4. DETECTION AND RECONFIGURATION
	5. MODEL SOLUTION
	6. CONCLUSION
	7. REFERENCES

