
Tolerating Architectural Mismatches 
 

Rogério de Lemos 
University of Kent at 

Canterbury 
UK 

+44-1227-823628 
r.delemos@ukc.ac.uk 

Cristina Gacek 
University of Newcastle upon 

Tyne  
UK 

+44-191-222-5153 
cristina.gacek@ncl.ac.uk 

Alexander Romanovsky 
University of Newcastle upon 

Tyne  
UK 

+44-191-222-8135 
alexander.romanovsky@ncl.ac.uk 

 
 

ABSTRACT 
The integrity of complex software systems built from existing 
components is becoming more dependent on the integrity of the 
mechanisms used to interconnect these components, in particular, 
on the ability of these mechanisms to cope with architectural 
mismatches that might exist between components. This paper is 
based on the assumption that architectural mismatches always 
exist in such systems, so the need to handle them in run-time. 
When developing complex software systems, the problem is not 
only to identify the appropriate components, but also to make sure 
that these components are interconnected in a way that allows 
mismatches to be tolerated. The resulting architectural solution 
should be a system based on existing components, which are 
independent in their nature, but are able to interact in well-
understood ways. To find a solution to this problem we apply 
general principles of fault tolerance in the context of dealing with 
architectural mismatches 

1. INTRODUCTION 
There are several concepts that are relevant to addressing the 
tolerance of architectural mismatches in software systems. In this 
section we introduce the concepts of software architectures, 
architectural mismatches, and dependability which are pivotal for 
understanding the need for tolerating architectural mismatches in 
software systems, as well as the approach we are taking to tackle 
this problem. 

Software architecture can be defined as the structure(s) of a 
system, which comprise software components, the externally 
visible properties of those components and the relationships 
among them [1]. A software architecture is usually described in 
terms of its components, connectors and their configuration. The 
way a software architecture is configured defines how various 
connectors are used to mediate the interactions among 
components.  

As a result of combining several architectural elements using a 
specific configuration, architectural mismatches may occur [6]. 
Architectural mismatches are logical inconsistencies between 
constraints of various architectural elements being composed. An 
architectural mismatch occurs when the assumptions that a 
component makes about another component, or the rest of the 
system, do not match. That is, the assumptions associated with the 
service provided by a component are different from the 
assumptions associated with the services required by a component 
for behaving as specified [8]. These assumptions can be related to 
the nature of components and connectors (control and data 
models, and synchronisation protocols), the global system 
structure, or the process of building the system [6, 9]. 
Traditionally, mismatches have been dealt with statically [5, 3], 
by means of analysis and removal. 

Dependability is a vital property of any system justifying the 
reliance that can be placed on the service it delivers [7]. A system 
failure occurs when a system service deviates from the behaviour 
expected by the user. An error is the part of the system state that 
is liable to lead to the subsequent failure. The adjudged or 
hypothesized cause of an error is a fault. Fault tolerance is a 
method of achieving dependability working under assumptions 
that a system contains faults (e.g. ones made by humans while 
developing or using systems, or caused by aging hardware) and 
aiming at providing the required services in spite of them. Fault 
tolerance is carried by error processing, aiming at removing errors 
from the system state before failures happen, and fault treatment, 
aiming at preventing faults from being once again activated. Error 
processing typically consists of three steps: error detection, error 
diagnosis and error recovery. Providing system fault tolerance 
plays an ever-growing role in achieving system dependability as 
there are many evidences proving that it is not possible to rid the 
system and system execution from faults. These include the 
growing complexity of software, operators’ mistakes, and failures 
in the environment in which the system operates. 

There are many reasons to support our claim that it is impossible 
to detect and correct all possible architectural mismatches 
statically, and because of this, we believe that it is vital to be able 
to build systems that can tolerate such mismatches. This is mainly 
due to the complexity of modern systems and restricted 
applicability of the static methods of correcting mismatches (c.f. 
software design faults). First of all, complex applications have 
complex software architectures in which components are 
interconnected in complex ways and have many parameters and 
characteristics to be taken into account while building, they have 

 

 



to meet many functional and non-functional requirements which 
often have to be expressed at the level of software architecture. 
Secondly, architects make mistakes while defining software 
architectures, in general, and while dealing with mismatches, in 
particular. Thirdly, there is a strong trend in using off-the-shelf 
elements while building complex applications and because of the 
very nature of such elements some information about their 
architectural characteristics may be unavailable. Lastly, current 
software systems may undergo dynamic reconfiguration, adding 
uncertainty about the various architectural elements present at any 
point in time. In this paper we show that architectural mismatches 
can be tolerated. 

2. ARCHITECTURAL MISMATCHES 
All Architectural mismatches occur because of inconsistencies 
among the given architectural elements. These inconsistencies can 
be stated in terms of the features (or characteristics) exhibited by 
the parts at hand. Features of architectural elements and their 
groupings may be inherent to the architectural style(s) used, or 
specific to the application at hand. This occurs because 
architectural styles impose constraints on the kinds of 
architectural elements that may be present and on their 
configurations [9], yet they do not prescribe all the features that 
may be present in an application [5]. During software 
development, the software architecture is incrementally refined 
following the refinement of the system’s definition. Initially, the 
software architecture is defined in terms of architectural styles, 
thus binding the style specific features. Subsequently, as the 
architecture is further refined towards the life-cycle architecture, 
application specific features are bound. This is exemplified on 
Table 1 (adapted from [4]). Every time an architectural feature is 
bound there exists the potential for an architectural mismatch to 
be introduced. Hence, we refer to architectural mismatches as 
being: style-specific if their presence is brought about by some 
architectural feature(s) the style(s) imposes; or as application-
specific if their presence is due to architectural decisions imposed 
by the application at hand (not the particular style(s) used). 

We believe that in the context of dependability, an architectural 
mismatch is an undesired, though expected, circumstance, which 
must be identified as a design fault (in the terminology from [7]). 
When a mismatch is activated, it produces an error caused by 
mismatch (ECM) that can either be latent or detected. Similarly to 
errors, only a subset of ECMs can be detected as such (see Figure 
1). Additional information is needed to allow an error to be 
associated with a mismatch. Eventually, there is a system failure 
when the ECM affects the service delivered by the system. 

 

 

 

 

For describing the means for dealing with architectural 
mismatches, we draw an analogy with faults, which can be 
avoided, removed or tolerated. Faults are tolerated when they 
cannot be avoided, and their removal is not worthwhile or their 
existence is not known beforehand. The same kind of issues 
happens with architectural mismatches. Mismatches can be 
avoided by imposing strict rules on how components should be 
built and integrated, which leads to bespoke products. Mismatches 
can be removed when integrating arbitrary components by using 
static analysis methods and techniques [5, 3]. However, this does 
not guarantee the absence of mismatches since risk and cost 
tradeoffs may hinder their removal, or system integrators may not 
be aware of their existence (similarly, research has shown that 
residual faults in software systems are inevitable). Consequently, 
mismatches should be tolerated by processing ECMs and treating 
mismatches, otherwise the system might fail. 

3. MISMATCH TOLERANCE 
The tolerance of architectural mismatches during runtime relies on 
ECM processing, which comprises three steps [7]. These are: 

•  The detection of ECMs, which identifies erroneous states 
that were caused by mismatches.  

•  The diagnosis of ECMs, which assesses the system 
damages caused by the detected ECMs.  

•  The recovery from ECMs, which brings the system to an 
error-free state.  

However, error processing is not sufficient if we want to avoid the 
recurrence of the same architectural mismatch, also there is the 
need to treat mismatches, in the same way that faults are treated 
[7]. Mismatch treatment involves diagnosis, which determines the 
cause (localization and nature) of the ECM, isolation that prevents 
a new activation of the mismatch, and reconfiguration, which 
modifies the structure of the system for the mismatch free 
components to provide an adequate, perhaps degraded, service. 

The intent of fault tolerant techniques is to structure systems to 
inhibit the propagation of errors, and to facilitate their detection 
and the recovery from them. Similarly, when dealing with 
architectural mismatches, there is the need to structure systems at 
the architectural level to avoid the propagation of ECMs, to 
facilitate ECMs detection and recovery, and to make difficult the 
reactivation of architectural mismatches. 

The particular problem associated with mismatch tolerance is that 
we are dealing with two levels of abstraction: the architectural 
level where the mismatches are introduced, and the execution 
level where the ECMs detection and recovery takes place. Hence, 
the needs for identifying what are the potential consequences 
upon the state of the system when an architectural mismatch is 
activated. This additional information is fundamental for 
distinguishing ECMs from other system errors, thus providing the 
basis for defining an architectural solution for tolerating 
mismatches. 

A motivation for specifying mechanisms for handling 
architectural mismatches at the architectural level, instead, for 
example, during implementation, is that the nature of mismatches 
and the context in which they should be fixed would be lost at the 

ECMs 
Detected 
 ECMs 

Errors 

Detected 
 Errors 

Figure 1. Detected errors caused by mismatches 



later stages of software development. Making once again an 
analogy with fault tolerance, it has been shown that the same type 
of problem exists when exception handling is not considered in 
the context of the software lifecycle [2]. Moreover, we cannot 
expect that a general runtime mechanism would be able to handle 
a wide range of architectural mismatches, in the same way that 
there is no sufficiently general fault tolerant mechanism that can 
handle all classes of faults. It is envisaged that different classes of 
mismatches will require different types of detection mechanisms 
and fixes that have to be specified at the architectural level. 

3.1 ECMs’ Processing 
As previously discussed, the detection of an ECM implies the 
presence of a mismatch. For a mismatch to be activated some 
preconditions must be satisfied, which can be defined in terms of 
systems states and features’ inconsistencies [5]. 

Upon error detection, one must first determine whether that 
particular instance is an ECM or not. For an error to be detected 
as an ECM we need additional information at run time, about 
system’s states and features of the relevant architectural elements, 
that would enable to associate that error with a mismatch. This 
ought to be done based on the particular error observed and on the 
presence of the preconditions required to activate it. The level of 
difficulty encountered on recovering from ECMs will very much 
depend on the individual error’s characteristics and the 
architecture at hand. The treatment of faults that do cause ECMs 
will depend on whether the relevant features are style or 
application specific. It is our current belief that ECMs caused by 
style-specific features would require more fundamental changes to 
the system at hand, but this conjecture requires further study to be 
properly supported or contradicted. 

3.2 Examples 
In the rest of this section we briefly outline several simple 
examples demonstrating how our approach can be used. 

First of all, let us consider a simple application-specific mismatch. 
Mismatch “sharing or transferring data with differing underlying 
representations” (mismatch 42 in [5] occurs when, for example, a 
component provides a value in feet and another component 
requires it in meters. In this case, “data transfer” is the conceptual 
feature used for ECM detection and recovery at the level of the 
application. The meta information that is required for detection 
and recovery concerns types of data to be transferred. Fault 
treatment may consist of replacing a connector with a new one 
that transforms the data. 

The second example is that of application and style-specific 
mismatches. It happens, for example, when several components 
are connected in a system but only some of them can be 
backtracked (mismatch 28 from [5]). If any of such interconnected 
components backtracks, it has to inform all the components with 
which it interacts. To detect such a mismatch during run-time it is 
necessary to have additional information on the ability of each 
component to backtrack (conceptual feature “backtracking”), on 
the fact that backtracking is initiated by a component and on a set 
of interconnected components to be involved in backtracking. The 
detection of the ECM can be at the style level, but the recovery 
should be at the application level because, generally speaking, the 
application decides how to proceed with inconsistent data. 

A style-specific mismatch happens, for example, when a non-
reentrant component is called without waiting for the previous call 
to be completed (mismatch 24 from [5]). In this case we have a 
style-specific mismatch that can be detected and recovered if 
additional mechanisms are incorporated into the basic style 
(which can be based on the conceptual feature “re-entrance”). For 
example, an instantiation of a style should be able to detect any 
attempts to re-enter a process being executed. In the context of the 
pipe and filter architecture, it can happen that two filters try to 
access a single process in a third filter (see Figure 2). An extended 
style should provide means for detecting the ECM and for local 
recovery by either ignoring the second request or introducing 
additional concurrency control into the style (the simplest of 
which would be just delaying the second request). 

filterA  

filterB  

filterC  

 
 

 

4. CONCLUSIONS 
The problem of tolerating architectural mismatches during 
runtime can be summarised as follows. When an error caused by 
mismatch (ECM) is detected in the system, mechanisms and 
techniques have to recover the state of the system to an error free 
state, otherwise the erroneous state of the system can propagate, 
eventually leading to a system failure. However, the detection and 
recovery of an error is not enough for maintaining the integrity of 
the system services because if the mismatch, which has caused the 
detected error, is not treated, it can yet again be activated and be 
the cause of other errors. Similarly to fault tolerance in which one 
cannot develop techniques that can tolerate any possible faults, it 
is difficult to develop techniques that are able to deal with all 
types of architectural mismatches, hence assumptions have to be 
made about the types of mismatches that caused the errors to be 
detected and handled during runtime. 

In this paper, we have mainly stated the problems and outlined a 
general approach to handling architectural mismatches during run 
time. Our preliminary analysis shows that a number of particular 
mismatch tolerance techniques can be developed depending on 
the application, architectural styles used, types of mismatches, 
redundancies available, etc. It is clear for us that there will always 
be situations when mismatches should be avoided or removed 
rather than tolerated. In our future work we will be addressing 
these issues, trying to define in a more rigorous way the 
applicability of the approach and to develop a set of general 
mismatch tolerance techniques. Some of the possible approaches 
are to modify how existing architectural styles are applied, to 
design a set of connectors capable of tolerating typical 
mismatches, to extend existing components and connectors with 
an ability to execute exception handling, and to develop a number 
of handlers that are specific for mismatches of different types. 

Figure 2. A non-reentrant component in a pipe-and-filter 
architecture 



ACKNOWLEDGMENTS 
Alexander Romanovsky is supported by European IST DSoS 
project, and Cristina Gacek by the EPSRC (UK) DIRC project. 

REFERENCES 
[1] L. Bass, P. Clements, and R. Kazman. Software Architecture 

in Practice: Addison-Wesley. 1998. 
[2] R. de Lemos, A. Romanovsky. “Exception Handling in the 

Software Lifecycle”. International Journal of Computer 
Systems Science & Engineering 16(2). March 2001. pp. 167-
181. 

[3] A. Egyed, N. Medvidovic, C. Gacek. “Component-Based 
Perspective on Software Mismatch Detection and 
Resolution”. IEE Proceedings on Software 147(6). 
December 2000. pp. 225-236. 

[4] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the 
Definition of Software Architecture”. Proceedings of the 
First International Workshop on Architectures for Software 
Systems – In Cooperation with the 17th International 
Conference on Software Engineering, D. Garlan (ed.), 
Seattle, WA, USA, 24-25 April 1995. pp. 85-95. 

[5] C. Gacek. Detecting Architectural Mismatches during 
System Composition. PhD Dissertation. Center for Software 
Engineering. University of Southern California. Los Angeles, 
CA, USA. 1998. 

[6] D. Garlan, R. Allen, J. Ockerbloom, “Architectural 
Mismatch: Why Reuse is so Hard”. IEEE Software 12(6). 
November 1995. pp. 17-26. 

[7] J.-C. Laprie. “Dependable Computing: Concepts, Limits, 
Challenges”. Special Issue of the 25th International 
Symposium On Fault-Tolerant Computing. IEEE Computer 
Society Press. Pasadena, CA. June 1995. pp. 42-54 

[8] P. Oberndorf, K. Wallnau, A. M. Zaremski. “Product Lines: 
Reusing Architectural Assets within an Organisation. 
Software Architecture in Practice. Eds. L. Bass, P. Clements, 
R. Kazman. Addison-Wesley. 1998. pp. 331-344. 

[9] M. Shaw, D. Garlan. Software Architecture: Perspectives on 
an Emerging Discipline. Prentice-Hall. 1996.  

 

 

 Early Cycle 1 End of Cycle 1 Cycle 2 Cycle 3 

Definition of 
operational 
concept and 
system 
requirements 

Determination of top-
level concept of 

operations 

Determination of top-
level concept of 

operations 

Determination of 
detailed concept of 

operations 

Determination of IOC 
requirements, growth 

vector 

Definition of 
system and 
software 
architecture 

System scope/ 
boundaries/ interfaces 

System scope/ 
boundaries/ interfaces 

Top-level HW, SW, 
human requirements 

Choice of life-cycle 
architecture 

Elaboration of 
software 
architecture 

No explicit architectural 
decision 

Small number of 
candidate architectures 

described by 
architectural styles 

Provisional choice of 
top-level information 

architecture 

Some components of 
above TBD (low-risk 
and/or deferrable) 

Binding of 
architectural 
features 

No architectural features 
explicitly defined  

Fixed architectural 
features that are defined 
by architectural styles, 

others are unknown 

Architectural features 
defined by architectural 
styles are fixed as are 

some application specific 
ones, others are 

unknown 

Most architectural 
features are fixed, the 

few unknown ones relate 
to parts of the 

architecture still to be 
defined 

 Table 1. Refinement of software architecture under a Spiral Model Development 


