Integration of Architecture Specification, Testing and
Dependability Analysis

Swapna S. Gokhale, Joseph R. Horgan
Telcordia Technologies
445 South Street
Morristown, NJ, 07960, USA

swapna,jrh@research.telcordia.com

ABSTRACT

Software architectural choices have a profound influence on
the quality attributes supported by a system. Architecture
analysis can be used to evaluate the influence of the design
decisions on important quality attributes such as maintain-
ability, performance, and dependability. As software archi-
tecture gains appreciation as a critical design level for soft-
ware systems, techniques and tools to support testing, un-
derstanding, debugging, and maintaining these architectures
are expected to become readily available. In addition to pro-
viding the desired support, data collected from these tools
also provides a rich source of information from the point of
view of performance and dependability analysis of the ar-
chitecture. The present paper presents a performance and
dependability analysis methodology which illustrates the use
of such data. The methodology thus seeks a three way in-
tegration of distinct and important areas, namely, formal
specification, specification simulation/testing and depend-
ability /performance analysis. We illustrate the important
steps in the methodology with the help of an example.

1. INTRODUCTION

As software systems ! continue to grow in size and com-
plexity, software architecture is increasingly appreciated as
a method of understanding and analysis. The architecture
of a software system defines its high level structure, exposing
its gross organization as a collection of interacting compo-
nents [4]. Software architecture represents the design deci-
sions that are made in the early phases of a system. These
decisions are usually difficult to change or reverse and have
a profound influence on the non functional attributes that
can be supported by the system. It is becoming increasingly
clear that software architecture analysis is the best vehicle to
assess important quality attributes such as maintainability,
reliability, reusability and performance. Architectural de-

!System and application are used interchangeably in this
paper.

Kishor S. Trivedi
Dept. of ECE, CACC
Duke University
Durham, NC 27708, USA

kst@ee.duke.edu

scription languages (ADLs) are formal languages that can
be used to represent the architecture of a software system.
They focus on the high-level structure of the overall system
rather than the implementation details of any specific source
module. ADLs are intended to play an important role in
the development of software by composing source modules
rather than by composing individual statements written in
conventional programming languages. A number of archi-
tectural description languages have been proposed recently,
such as Rapide [9], UniCon [13] and WRIGHT [1]. As soft-
ware architecture design gains prominence, the development
of techniques and tools to support understanding, testing,
debugging, reengineering, and maintaining software archi-
tecture will become an important issue. Li et. al. propose
a tool for understanding, testing, debugging and profiling
software architectural specifications in SDL [8]. Zhao et. al.
propose a technique for architecture understanding based
on program dependence graphs for ACME [19]. They also
propose a slicing methodology to extract reusable software
architectures [20].

Software architectures specified in ADLs such as SDL and
LOTOS, and other modeling languages such as UML can
also be used for performance and dependability analysis, by
constructing quantitative models from these specifications.
Wohlin et. al. develop a performance analysis methodol-
ogy for specifications written in SDL [18]. Marsan et. al.
present an extension of LOTOS, which enables a mapping
from the extended specifications to performance models [10].
Steppler develop a tool for the simulation and emulation of
formation specifications in SDL, with an eye towards ana-
lyzing these specifications for the non functional attribute of
performance [14]. Heck et. al. describe a hierarchical per-
formance evaluation approach for formally specified commu-
nication protocols in SDL [6]. Bondavalli et. al. present a
dependability analysis procedure based on UML designs [2].
Wang et. al. discuss a performance and dependability anal-
ysis mechanism for specifications in Estelle [17]. The major
drawback of the analysis approaches mentioned above is the
lack of adequate information to parameterize the quanti-
tative models constructed from the software specifications.
As the techniques for software architecture testing become
mature and tools become readily available, the data gen-
erated during testing can provide a rich source of infor-
mation for subsequent model parameterization. A similar
approach has been demonstrated at the source code level,
where execution trace data collected from extensive testing



SDL
Specification @

N AW

Simulation/ Transformation
@ Tegetir:g @ to SRN Moclzlel
N\ "4

Model I
@ Parameterization
v

@ Reach. Graph
Generation

Info. from
other sources

A 4

@ Perf. & Depend.
Analysis

Figure 1: Steps in the methodology

of the application was used to extract and parameterize the
architectural model of the system [5]. Our present paper
outlines an approach which seeks a three way integration,
namely, formal specification/modeling, architecture simula-
tion/testing and performance/dependability analysis. The
glue between specification, performance analysis and test-
ing is provided by using the measurements obtained during
simulation/testing to parameterize the quantitative model
of the system. Our methodology is facilitated by Telcordia
Software Visualization and Analysis Tool Suite (TSVAT),
developed at Telcordia Technologies for architectural speci-
fications in SDL [8].

We describe the steps involved in the analysis methodology
in the extended abstract. The illustration of the methodol-
ogy to assess the performance and dependability of an ap-
plication specified in SDL will be presented at the workshop.

2. METHODOLOGY

The methodology centers around a system specified using
the Specification and Description Language (SDL) and the
quantitative modeling paradigm of Stochastic Reward Nets
(SRNs). The steps involved in the methodology can be de-
picted pictorially as shown in Figure 1. We briefly describe
the steps shown in Figure 1 in this section.

2.1 SystemSpecificationin SDL

An architecture can be specified using an informal nota-
tion (box and arrow diagrams). However, such notations
are error-prone and ambiguous. An architecture specified

in a formal specification language eliminates the ambiguity
and provides a clear basis for analysis. We choose Specifica-
tion and Description Language (SDL) as a Communicating
Extended Finite State Machine (CEFSM) specification lan-
guage to specify the software architecture. The choice of
SDL as an architecture description language is motivated
due to the following reasons: i) SDL is an International
Telecommunication Union (ITU) standard [15]. Many tele-
com system software specifications are rendered in SDL, ii)
SDL is a formal language with a well-defined semantics. Sev-
eral commercial off-the-shelf tools can be used to investigate
architectural models formalized in SDL, iii) SDL meets the
requirements for an executable architectural specification
language [9]. SDL allows dynamic creation and termination
of process instances and their corresponding communication
paths during execution. Hence it is capable of modeling the
architectures of dynamic systems in which the number of
components and connectors may vary during system exe-
cution, iv) SDL can present all four views of software ar-
chitecture [7]. For example, SDL uses delay and non-delay
channels to indicate the relative physical locations of com-
ponents. The first step in the methodology is the specifica-
tion of the application to be assessed in SDL 2. This step is
marked as “1” in Figure 1.

2.2 SpecificationSimulation/Testing

The next step in the methodology (marked “2” in Figure 1)
is to simulate/test the system specified in SDL and collect
trace data during the simulation process. We use the SDL
version of the Telcordia Software Visualization and Anal-
ysis Tool Suite (TSVAT) [8], developed to support archi-
tectural specification, debugging and testing to collect the
trace data. TSVAT contains a suite of tools, xSlice, xVue,
xProf, xRegress, and xATAC. We primarily use YATAC in
our methodology. The technique underlying this tool suite
is the creation of a flow graph of the specification, thus lay-
ing out its execution structure. We use the simulator from
Telelogic [21] to simulate the SDL specification of the appli-
cation. The simulator is then instrumented to collect execu-
tion traces. The trace file records how many times a given
part of the specification, such as a process, a transition, a
decision, a state input, or a data flow, has been exercised
in each simulation of the specification, or at the end of the
testing process. xATAC reports coverage with respect to
the following well-known criteria: function coverage, basic
transition coverage and decision coverage. Function cover-
age simply checks that each process of the SDL specification
has been executed at least once. A basic transition is simply
a statement sequence of the specification that is always exe-
cuted sequentially, including states and decision constructs
(no internal branching constructs). Basic transition cover-
age checks that each basic transition has been executed at
least once, which implies that each statement has been exe-
cuted at least once. Decisions are conditional branches from
one basic transition to another. Decision coverage checks
that each such situation, decision matching or input match-

21t should be noted that our methodology which proposes a
three way integration of architecture specification, simula-
tion/testing and dependability analysis is not limited to the
use of SDL. Any architecture specification language which
provides capabilities similar to SDL can be used in this
methodology.



ing is executed, so that all true and false paths have been
taken as well as all input alternatives and decision alterna-
tives.

The execution traces collected during the testing of the spec-
ification can then be used to extract branching probabilities
of the various decisions in the specification. If the simula-
tion process of the specification is guided by an operational
profile [11] of the system, then these branching probabili-
ties would be characteristic of what would be observed in
the field. Regression test suites from earlier releases of the
product and/or expert opinion could also be used to guide
the design of test cases for simulation.

2.3 Translation from SDL Specificationto a
SRN Model

The SDL representation of the architecture of the system
is then translated to a stochastic reward net (SRN) model
for performance and dependability analysis. This step is
marked “3” in Figure 1. Stochastic reward nets (SRNs) are
a generalization of generalized stochastic Petri Nets (SPNs),
which in turn are a generalization of stochastic Petri Nets
(SPNs) [16]. Stochastic Reward Nets (SRNs) provide the
same capabilities as Markov Reward Models [12] which can
be used to compute various reliability, safety and perfor-
mance measures of interest. We define rules to translate an
SDL specification at the process level to a stochastic reward
net (SRN) model.

2.4 SRN Model Parameterization

The next step in the process is to parameterize the SRN
model. This step is marked “4” in Figure 1. The param-
eters of the SRN model can be broadly classified into five
categories, depending on the sources of information used for
the parameterization:

e Execution time parameters: These parameters are as-
sociated with the execution of the tasks and decisions
in the SDL specification, and are heavily dependent
on the implementation details. SDL specifications can
also be used to generate code in a semi-automatic fash-
ion, and the measurements obtained from the execu-
tion of this partial code can be used to determine the
distributions and the values of these parameters.

e User inputs: These parameters model the inputs re-
sulting from the actions of the user. These inputs are
expected by the system at various stages of execution.
The distributions and the actual values of these pa-
rameters can be derived from historical data, or can
be based on the knowledge of the experts who are in-
timately familiar with the system and its field usage.
In the event that the system is the first of its kind and
not much information is available about the system,
these parameters can be guestimated.

e Branching probabilities: These reflect the probabili-
ties of occurrence of the various outcomes of a deci-
sion. These values can also be derived from histori-
cal data, or can be based on expert knowledge. The

trace data collected during the simulation/testing of
the SDL specification can be used to determine these
branching probabilities. The SDL version of Telcordia
Software Visualization and Analysis Tool Suite (TS-
VAT) facilitates the collection of such trace data.

e Inputs from other components/processes: Most real
life software systems are inherently distributed, and
hence require interactions between the various com-
ponents of the system. Since the SRN model is con-
structed from process level specification, it is natural
for some of the parameters of the model to draw from
the execution of the other processes in the system.

e Failure/repair parameters: These parameters model
the failure/repair behavior of the processes and/or each
task within a process and are necessary to compute
various measures such as the reliability, availability
and safety of an application. This information can be
obtained by consulting with experts who are familiar
with the application or can be guestimated.

2.5 Reachability Graph Generation

The next step in the analysis methodology is the generation
of a reachability graph, and the step is marked “5” in Fig-
ure 1. The reachability graph of a Petri net is the set of
states that are reachable from the other states. The reach-
ability graph is generated using the tool SPNP (Stochastic
Petri Net Package) [3], which is also used for performance
and dependability analysis. The Stochastic Petri Net Pack-
age is a versatile modeling tool for the solution of stochastic
Petri net (SPN) models . The SPN models are described
in the input language for SPNP called CSPL (C-based SPN
language). The CSPL is an extension of the C program-
ming language with additional constructs which facilitate
easy description of SPN models. The SPN models specified
to SPNP are actually “SPN Reward Models” or Stochas-
tic Reward Nets (SRNs), which are based on the “Markov
Reward Models” paradigm. This provides a powerful mod-
eling environment for dependability (reliability, availability,
safety), performance and performability analysis.

2.6 Dependability Analysis
The parameterized stochastic reward net (SRN) model of
the application can then be used for performance and de-

pendability analysis. The Stochastic Petri Net Package (SPNP)

can be used to compute various measures of interest such as
the reliability, availability and safety [3]. The performance
and dependability analysis step is marked “6” in Figure 1.

3. CASE STUDY

We illustrate the steps described in the previous section with
the help of a PBX system specified in SDL. Figure 2 shows
the block level specification of the PBX system in SDL.

The PBX system consists of two distributed blocks. The
block CallHandler controls the call processing functions and
the block ResManager involves inventory control and re-
mote database access. The CallHandler block receives three
signals over channel c¢l, namely, offhook, dig and hangUp.
The first signal announces the caller’s intent to place a call,



the second signal is a digit of a telephone number and the
hangUp signal is sent either after the call is complete, if
there is a change in the caller’s intention to pursue the call,
due to the unavailability of the resources required to place
a call, or due to the unavailability of the callee to accept
the call (callee is busy). The CallHandler block outputs the
signals dialT, busyT, connt, ringT and ring over the channel
¢2. Communication between the CallHandler block and the
ResManager block occurs over channels ¢3 and c4. Channel
¢3 is used to communicate the request and release messages
for resources and channel ¢4 is used to send reply messages
regarding the availability of the resources to proceed with
the call. Channels ¢3 and ¢4 are delaying channels which in-
dicates that the two blocks can be implemented on different
CPUs with a non-negligible delay. This reflects the reality
that the database information can be stored remotely. The
process level specification of the CallHandler and ResMan-
ager blocks as well as the other steps in the methodology
will be presented at the workshop.

4. CONCLUSIONS AND FUTURE

In this paper we present a methodology which integrates
three distinct areas in architecture design: specification,
simulation/testing, and performance/dependability analy-
sis. Our future research includes extending the methodology
to analyze other non functional attributes such as maintain-
ability and flexibility.

5. REFERENCES
[1] R. Allen. “A formal approach to software
architecture”. PhD thesis, Dept. of Computer Science,
Carneige Mellon University, Pittsburgh, NC, 1997.

[2] A. Bondavalli, I. Mura, and I. Majzik. “Automated
dependability analysis of UML designs”. In Proc. of
Second IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing,
1998.

[3] G. Ciardo, J. Muppala, and K. S. Trivedi. “SPNP:
Stochastic Petri Net Package”. In Proceedings of the
International Workshop on Petri Nets and
Performance Models, pages 142-150, Los Alamitos,
CA, December 1989. IEEE Computer Society Press.

[4] D. Garlan and M. Shaw. Advances in Software
Engineering and Knowledge Engineering, Volume 1,
edited by V. Ambriola and G. Torotora, chapter An
Introduction to Software Architecture. World
Scientific Publishing Company, New Jersey, 1993.

[5

—_

S. Gokhale, W. E. Wong, K. S. Trivedi, and J. R.
Horgan. “An analytic approach to architecture-based
software reliability prediction”. In Proc. of Intl.
Performance and Dependability Symposium (IPDS
’98), pages 13-22, Durham, NC, September 1998.

[6] E. Heck and D. Hogrefe. ”Hierarchical performance
evaluation based on formally specified communication
protocols”. IEEE Trans. on Computers,
40(4):500-513, April 1991.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

P. B. Krutchen. ”The 441 view model of
architecture”. IEEE Software, pages 42-50, November
1995.

J. J. Li and J. R. Horgan. “A toolsuite for diagnosis
and testing software design specifications”. In Proc. of
Dependable Systems and Networks (DSN2000,
FT(CS31), New York, NY, June 2000.

D. Luckham, L. A. Augustin, J. Kenney, J. Veera,
D. Bryan, and W. Mann. ”Specification and analysis
of system architecture using rapide”. IEEE Tran. on
Software Engineering, 21(4):336-355, April 1995.

M. A. Marsan, A. Bianco, L. Ciminera, R. Sisto, and
A. Valenzano. ”A LOTOS extsnsion for the
performance analysis of distributed systems”.
IEEE/ACM Transactions on Networking,
2(2):151-165, April 1994.

J. D. Musa. “Operational profiles in
software-reliability engineering”. IEEE Software,
10(2):14-32, March 1993.

A. Reibman, R. Smith, and K. S. Trivedi. “Markov
and Markov Reward Model Transient Analysis: An
Overview of Numerical Approaches”. European

Journal of Operational Research, 40:257-267, 1989.

M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. “Abstractions for software
architecture and tools to support them”. IEEE Trans.
on Software Engineering, 21(4):314-335, April 1995.

M. Steppler and B. Walke. “Performance analysis of
communications systems formally specified in SDL”.
In Proc. of the Workshop on Software and
Performance, Santa Fe, NM, 1998.

International Telegraph and Telephone Consulative
Committee. ”SDL User Guideliness”. International
Telecommunication Union, November 1989.

L. A. Tomek and K. S. Trivedi. Software Fault
Tolerance, Edited by M. R. Lyu, chapter Analyses
Using Stochastic Reward Nets, pages 139-165. John
Wiley and Sons Ltd., New York, 1995.

C. Y. Wang and K. S. Trivedi. “Integration of
specification for modeling and specification for system
design”. In Proc. of Fourteenth Intl. Conference on
Applications and Theory of Petri Nets, pages 24-31,
1993.

C. Wohlin and D. Rapp. “Performance analysis in the
early design of software”. In Proc. of Intl. Conference
on Software Engineering for Telephone Switching
Systems”, pages 114-121, 1992.

J. Zhao. New Technologies on Computer Software, M.
Li, Editor, chapter “Using Dependence Analysis to
Support Software Architecture Understanding”, pages
135-142. International Academic Publishers,
September 1997.



system PBX

c2

-

SIGNAL

dialT, busyT, connt, ringT, ring
reqT, relT, reqG, relG, gt, ngt
offhook, dig, hangup;

ialT, busyT, connt
ingT, ring

H

CallHandler

cl

c3 D’t’ ngﬂ

reqT,

relT,

eq c4

elG
ResManager

B)ffhook, dig, hangup[l

Figure 2: Block level SDL specification of a PBX system

[20] J. Zhao. ” A slicing-based approach to extracting
reusable software architectures”. In Proc. of 4th
European Conference on Software Maintenance and
Reengineering, pages 215-233, Zurich, Switzerland,

February 2000.

[21] http://www.telelogic.com.




