An Idealized Fault-Tolerant Architectural Component

Paulo Asterio de C. Guerra

Cecilia Mary F. Rubira
Instituto de Computacao
Universidade Estadual de Campinas, Brazil

{asterio,cmrubira}@ic.unicamp.br

ABSTRACT

Component-based systems built from existing software
components are being used in a wide range of applications that
have high dependability requirements. In order to achieve the
required levels of reliability and availability, it is necessary to
incorporate into these complex systems means for coping with
software faults. However, the problem is exacerbated if we
consider the current trend of integrating third-party software
components, which allow neither code inspection nor changes.
To leverage the reliability properties of these systems, we need
solutions at the architectural level that are able to guide the
structuring of unreliable components into a fault tolerant
architecture. In this paper, we present an approach for structuring
fault tolerant component-based systems based on the C2
architectural style.

1. INTRODUCTION

Modern computer systems require evolving software that is
built from existing software components, developed by
independent sources [6]. Instead of relying on traditional software
assurance technology that has shown not to be effective for this
kind of systems [24], alternative approaches have to be sought in
order for obtaining trustworthy systems. One of these approaches
is fault-tolerance, which is associated with the ability of a system
to deliver services according with its specification in spite the
presence of faults [12]. In this paper, we employ the concept of
idealized fault tolerant component [1] for describing fault-tolerant
component-based systems, at the architectural level.

For representing software systems at the architectural level,
we have chosen the C2 architectural style for its ability to
incorporate heterogeneous off-the-shelf components [15].
However, this ability of combining existing components is
achieved through rules on topology and communication between
the components (communication through broadcasting of
asynchronous messages) that complicate the incorporation of
fault-tolerance mechanisms into C2 software architectures,
especially those mechanisms for error detection and fault
containment [6, 9].

Rogério de Lemos

Computing Laboratory
University of Kent at Canterbury, UK

r.delemos@ukc.ac.uk

Research into describing software architectures with respect to
their dependability properties has gained attention recently
[17,20,21]. Nonetheless, rigorous specification of exception
handling models and of exception propagation at the architecture
level remains an open issue [11].

Particularly related to the architectural approach presented in
this paper, there has been work on exception handling and
software fault tolerance. The work on exception handling has
focused on configuration exceptions, which are exceptional events
that have to be handled at the configuration level of architectures
[11]. In terms of software fault tolerance, the principles used for
obtaining software diversity have also been employed in the
reliable evolution of software systems, specifically, the upgrading
of software components. While the core idea of the Hercules
framework [8] is derived from concepts associated with recovery
blocks [17], the notion of multi-versioning connectors (MVC)
[16], in the context of C2 architectures, is derived from concepts
associated with N-version programming [3]. The architectural
approach presented in this paper is distinct from the work referred
above since its focus is on structuring concepts to be applied in a
broader class of exceptional conditions and fault-tolerance
mechanisms. The aim is to structure, at the architecture level,
fault-tolerant component-based systems that use off-the-shelf
components. For that, we define an idealized C2 component with
structure and behaviour equivalent to the idealized fault-tolerant
component [1]. This idealized C2 component can then be used as
a building block for a system of design patterns that implement
the idealized fault-tolerant component for concurrent distributed
systems [5].

The rest of this paper is structured as follows. Section 2 gives
a brief overview of fault-tolerance and the C2 architectural style.
Section 3 describes the proposed architectural solution of the
idealized component, along with an small illustrative example.
Final conclusions are given in section 4.

2. BACKGROUND

The capability of a system to tolerate faults is highly
dependent on the software architecture [4]. Though, the structure
of the system should allow fault tolerant mechanisms to operate in
an orchestrated way with the system functions, without
unnecessarily increasing the complexity of the system [17].

2.1. Fault Tolerance

The basic strategy to achieve fault tolerance in a system can be
divided into two steps [13]. The first step, called error processing,
is concerned with the system internal state, aiming to: detect
errors that are caused by activation of faults, the diagnosis of the

External Exceptions

Service Normal

Requests Responses Interface Failure

Exceptions Exceptions

Error Recovery

Normal Abnormal
Behavior Behavior
Internal
Exceptions Intert |
Service Normal nterface Failure
Requests Responses Exceptions Exceptions

External Exceptions
Figure 1. Idealized Fault-Tolerant Component

erroneous states, and recovery to error free states. The second
step, called fault treatment, is concerned with the sources of faults
that may affect the system and includes: fault localization, and
fault removal.

Our work mainly concentrates on providing error processing
at the architectural level of software systems. The idealized fault-
tolerant component [1] is a structuring concept for the coherent
provision of fault tolerance in a system (Figure 1). Through this
concept, we can allocate fault-tolerance responsibilities to the
various parts of a system in an orderly fashion, and model the
system recursively, such that each: component can itself be
considered as a system on its own, which has an internal design
containing further sub-components [1].

The communication between idealized fault-tolerant
components is only through request/response messages. Upon
receiving a request for a service, an idealized component will
react with a normal response if the request is successfully
processed or an external exception, otherwise. This external
exception may be due to an invalid service request, in which case
it is called an interface exception, or due to a failure in processing
a valid request, in which case it is called a failure exception.
Internal exceptions are associated with errors detected within a
component that may be corrected, allowing the operation to be
completed successfully; otherwise, they are propagated as
external exceptions.

An idealized component must provide appropriate handlers
for all exceptions it may be exposed to. Thus, the internal
structure of an idealized component has two distinct parts: one
that implements its normal behaviour, when no exceptions occur,
and another that implements its abnormal behaviour, which deals
with the exceptional conditions. This separation of concerns,
applied recursively to components, subsystems and the overall
system, greatly simplifies the structuring of fault tolerance
systems, allowing their complexity to be manageable.

Notification events

Component Component

Conector

Component
Request events

Figure 2. C2 style basic elements.

2.2. The C2 Architectural Style

The C2 architectural style is a component-based style directed
at supporting large grain reuse and flexible system composition,
emphasizing weak bindings between components [23]. In this
style components of a system may be completely unaware of each
other, as when one integrates various commercial off-the-shelf
components (COTS), which may have heterogeneous style and
implementation language. These components communicate only
through asynchronous messages mediated by connectors that are
responsible for message routing, broadcasting and filtering.
Interface and architectural mismatches are dealt with by using
wrappers for encapsulating each component [9].

Both components and connectors in the C2 architectural style
(Figure 2) have a top interface and a bottom interface. Systems
are composed in a layered style, where the top interface of a
component may be connected to the bottom interface of a
connector and its bottom interface may be connected to the top
interface of another connector. Each side of a connector may be
connected to any number of components or connectors.

There are two types of messages in C2: requests and
notifications. Requests flow up through the system's layers and
notifications flow down. In response to a request, a component
may emit a notification back to the components below, through its
bottom interface. Upon receiving a notification, a component may
react, as if a service was requested, with the implicit invocation of
one of its operations.

3. PROPOSED ARCHITECTURE

3.1. Overall Structure of the Idealized C2
Component

The objective of this section is to define an idealized C2
component (iC2C), which should be equivalent, in terms of
behaviour and structure, to the idealized fault-tolerant component
(iFTC) [1]. The implementation of an iC2C should be able to use
any C2 component without any restrictions. Furthermore, it
should also be possible for integrating idealized C2 components
into any C2 configurations, thus allowing the interaction of iC2Cs
with other idealized and/or regular C2 components.

The first task was to extend the C2 message type hierarchy to
allow for the various message types defined for the iFTC. This
was a relatively simple task, since service requests and normal

Interface Failure
Exceptions Exceptions

VA

Service Normal
Requests Responses

[iC2C top |
NormalActivity
Internal
Exceptions
iC2C_internal
Return to
Normal
AbnormalActivity
iC2C_bottom |
Service Normal Interface Failure

Requests Responses Exceptions Exceptions

Figure 3. Idealized C2 Component (i2C2)

responses of an iFTC were directly mapped as requests and
notifications in the C2 architecture. As interface and failure
exceptions of an iFTC flow in the same direction as a normal
response, they were considered subtypes of notifications in the C2
architecture.

In order to minimize the impact of fault tolerance provisions
on the system complexity we have decoupled the normal activity
and abnormal activity parts of the idealized component. This
outcome has lead to an overall structure for the iC2C that has two
distinct components and three connectors, as shown in Figure 3.

The iC2C NormalActivity component implements the normal
behaviour, and is responsible for error detection during normal
operation, and the signalling of interface and internal exceptions.
The iC2C AbnormalActivity component is responsible for error
recovery, and the signalling of failure exceptions. For consistency,
the signalling of an internal exception by an iFTC was mapped as
a subtype of notification, and, the “return to normal” , flowing in
the opposite direction, was mapped as a request. In the course of
error recovery, the AbnormalActivity component may also emit
requests and receive notifications, which are not represented in
Figure 3. More specifically, this design allows the
AbnormalActivity component to be notified about state changes
of the NormalActivity component and request operations which
may change that state.

The connectors of our iC2C shown in Figure 3 are
specialized, reusable, C2 connectors with the following roles:

(i) The iC2C_bottom connector connects the iC2C with
the lower components of a C2 configuration, and serializes the
requests received. Once a request is accepted, this connector
queues new requests that are received until completion of the first
request. When a request is completed, a notification is sent back,

| normal_top |

Collaborating
Component

|

BasicNormal

| normal_bottom

ormal Activity
omponent

Oz

Figure 4. Normal Activity Component

which may be a normal response, an interface exception or a
failure exception.

(i) The iC2C_internal connector controls message flow
inside the iC2C, selecting the destination of each message
received based on its originator, the message type and the
operational state of the iC2C (either under normal or abnormal
operation).

(iii) The iC2C_top connector connects the iC2C with the
upper components of a C2 configuration, which may provide
services to the NormalActivity and/or AbnormalActivity
components.

The overall structure defined for the idealized C2 component
makes it fully compliant with the component's rules of the C2
architectural style. This allows an iC2C to be integrated into any
C2 configuration and interact with components of a larger system.
When this interaction establishes a chain of iC2C components the
external exceptions raised by a component can be handled by a
lower level component (in the C2 sense of “upper” and “lower”)
allowing hierarchical structuring of error recovery activities. An
iC2C may also interact with a regular C2 component, either
requesting or providing services.

3.2. Structuring the Normal Activity
Component

In this section, we describe in more detail how the
NormalActivity component can be implemented from existing C2
components.

As previously mentioned, the NormalActivity component is
responsible for the implementation of the normal behaviour of the
idealized C2 component, and the detection of errors that may
affect the normal behaviour. Since a NormalActivity component
should be built from existing C2 components, and these
components might not have error detection capabilities, there is
the need to add error detection capabilities to the existing C2
component. The architectural solution for implementing a
NormalActivity component is shown in Figure 4, for a particular
configuration of two components. The existing C2 component,
identified as the BasicNormal component, and any other
component required for the provision of additional error detection
capabilities, are wrapped by a pair of special-purpose connectors

[PumpNormal_top |
I]

WaterFlow

[
i

i

i

i

Pump Sensor |
i

i

i

i

I I
[PumpNormal_bottom |

LowWater
Sensor

[iP_internal |
T

Pump
Abnormal

[iP_bottom |

Pump
ControlStation

[conn3]

Figure 5. C2 Configuration for Fault Tolerant
PumpControlStation

(normal_top and normal_bottom), following the pattern of the
multi-versioning connector (MVC) [16]. These connectors
coordinate the collaboration between the components, and provide
the NormalActivity component with the capabilities for error
detection. These capabilities can be associated to the operations
provided either by the BasicNormal component or the other
collaborating components. Errors are detected by checking the
pre- and post-conditions, and invariants associated to the
operations [21]. The proposed approach was inspired by the
concepts of coordination contracts [2] and co-operative
connectors [14].

On top of the above architecture for an ideal C2 component
(iC2C), the Normal Activity component could also interact with
other components outside the scope of the iC2C. In this case, the
component should be placed higher in the C2 configuration, and
the normal_top connector should act as a proxy of the component
in the context of the NormalActivity component.

Another special case is when components placed at lower
levels of a C2 architecture require to access services provided by
other collaborating components wrapped into the NormalActivity
component. In this case, the interface of the iC2C can extend that
of the BasicNormal for including the required services.

3.3. A Small Example

In order to illustrate the structuring concepts presented in this
paper, we refer to a small example extracted from the Mine Pump
Control System [20]. The subsystem that we consider is
responsible for draining the sump of the mine, and contains the
following existing C2 components:

(i) PumpControlStation - controls the draining of the
sump by turning on/off a physical pump according to the level of
the water in the sump.

(i) LowWaterSensor - signals when the level of water is
low.

(iii) Pump - commands the pump to be turned on/off.

(iv) WaterFlowSensor - signals whether water flows from
the sump.

The fault model for the above subsystem assumes that
transient faults can affect the operation of the physical pump when
reacting to commands from Pump.

The C2 architecture of the subsystem is shown in Figure 5,
where the IdealPump is implemented as an idealized C2
component (iC2C). The NormalActivity component of
IdealPump, which is PumpNormal, consists of components
Pump and WaterFlowSensor that are joined into a collaboration
that is coordinated by the PumpNormal_bottom connector. This
same connector is responsible for detecting errors in IdealPump,
checking the WaterFlowSensor status after a pump on/off
requested, and raising an internal exception when the expected
condition is not met.

The AbnormalActivity component (PumpAbnormal) is
responsible for processing the error, by issuing retry requests to
the Pump until either the normal operation is resumed or the
exception is propagated to PumpControlStation.

4. CONCLUSIONS

In this paper, we have investigated the structuring of fault-
tolerant component-based systems, at the architectural level. For
the purpose of our work we have employed the C2 architectural
style [23], which is a style that promotes the development of
component-based systems using off-the-shelf components. The
intent was to provide an idealized C2 component with structure
and behaviour equivalent to the idealized fault-tolerant
component [1].

The communication rules between components in the C2
style, namely the synchronicity and broadcasting of messages,
although desirable from the point of view of component-based
design, they complicate the incorporation of fault-tolerance
mechanisms into architectures that are instantiations of this style
[6, 9]. Another difficulty that we encountered was the restrictions
imposed by the C2 topology rules. For solving these problems we
employed constructs similar to multi-versioning connector [16],
consisting of pairs of collaborating connectors to define fault
containment boundaries within the system, and synchronized
communications within the idealized C2 component using
notifications as acknowledgments of requests. In addition to the
work describe above, we have also defined an idealized C2
connector. This fault tolerant architectural element is especially
useful considering that connectors in the C2 architectural style are
more than simple communication primitives, and that the
architectural approach advocated in this paper requires connectors
to be also a place of computation.

Our results demonstrate the feasibility of the proposed
approach for the C2 architectural style, and suggest their
application to other architectural styles also belonging to the
interacting processes style category, which are styles dominated
by communication patterns among independent, usually
concurrent, processes [19].

ACKNOWLEDGMENTS

Paulo Guerra is partially supported by CAPES/Brazil. Cecilia
Rubira and Paulo Guerra are supported by the FINEP/Brazil
“Advanced Information Systems” Project (PRONEX-SAI-
7697102200). Cecilia Rubira is also supported by CNPgq/Brazil
under grant no. 351592/97-0.

REFERENCES

[1] T. Anderson, and P. A. Lee. Fault Tolerance: Principles and
Practice. Prentice-Hall, 1981.

[2] L. F. Andrade, and J. L. Fiadeiro. Feature modeling and
composition with coordination contracts. In Proceedings
Feature Interaction in Composed System (ECOOP 2001),
pages 49--54. Universitat Karlsruhe, 2001.

[3] A. Avizienis. The N-Version Approach to Fault Tolerant
Software. IEEE Transactions on Software Engineering,
11(2):1491--1501, December 1995.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 1998.

[5] D. M. Beder, B. Randell, A. Romanovsky, and C. M. F.
Rubira. On Applying Coordinated Atomic Actions and
Dependable Software Architectures for Developing Complex
Systems. In Proceedings of the 4th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2001), Magdeburg, Germany, May 2-4,
2001, pp. 103-112, IEEE Computer Society Press.

[6] A. W. Brown, and K. C. Wallnau. The current state of CBSE.
IEEE Software, 15(5):37--46, September / October 1998.

[7] T. D. Chandra. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225--267,
March 1996.

[8] J. E. Cook, and J. A. Dage. Highly reliable upgrading of
components. In Proceedings of the 21st International
Conference on Software Engineering (ICSE'99), pages 203--
212, New York, NY, May 1999. ACM Press.

[9] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch: Why reuse is so hard. IEEE Software, 12(6):17--
26, November 1995.

[10] F. C. Gértner. Fundamentals of fault-tolerant distributed
computing in asynchronous environments. ACM Computing
Surveys, 31(1):1--26, March 1999.

[11] V. Issarny, and J.-P. Banatre. Architecture-based exception
handling. In Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS'34).
IEEE, 2001.

[12] J. C. Laprie. Dependability: A Unifying Concept for Reliable
Computing and Fault Tolerance, chapter 1, pages 1--28.
Blackwell Scientific Publications Ltd., 1989.

[13] J. C. Laprie. Dependability: Basic concepts and terminology.
In Special Issue of the Twenty-Fifth International Symposium
on Fault-Tolerant Computing (FTCS- 25). IEEE Computer
Society Press, 1995.

[14] R. de Lemos. Describing evolving dependable systems using
co-operative software architectures. In Proceedings of the
IEEE International Conference on Software Maintenance
(ICSM'01), pages 320--329. 2001.

[15] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-
the-shelf components in C2-style architectures. In
Proceedings of the 1997 Symposium on Software Reusability
(SSR'97), 1997.

[16] M. Rakic, and N. Medvidovic. Increasing the confidence in
o-the-shelf components: A software connector-based
approach. In Proceedings of the 2001 Symposium on
Software Reusability (SSR'01), pages 11--18.
ACM/SIGSOFT, May 2001.

[17] B. Randell, and J. Xu. The evolution of the recovery block
concept, In Software Fault Tolerance, chapter 1. John Wiley
Sons Ltd., 1995.

[18] T. Saridakis, and V. lIssarny. Developing Dependable
Systems using Software Architecture. Technical report,
INRIA/IRISA, 1999.

[19] M. Shaw, and P. Clements. A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for
Software Systems. In Proceedings of the COMPSAC97, First
International Computer Software and Applications
Conference, 1997.

[20] M. Sloman, and J. Kramer. Distributed Systems and
Computer Networks. Prentice Hall, 1987.

[21] D. Sotirovski. Towards fault-tolerant software architectures.
In R. Kazman, P. Kruchten, C. Verhoef, and H. Van Vliet,
editors, Working IEEE/IFIP Conference on Software
Architecture, pages 7--13, Los Alamitos, CA, 2001.

[22] V. Stavridou, and R. A. Riemenschneider. Provably
dependable software architectures. In Proceedings of the
Third ACM SIGPLAN International Software Architecture
Workshop, pages 133--136. ACM, 1998.

[23] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and D.
L. Dubrow. A component- and message-based architectural
style for GUI software. IEEE Transactions on Software
Engineering, 22(6):390--406, June 1996.

[24] G. Vecellio, and W. M. Thomas. Issues in the assurance of
component-based software. In Proceedings of the 2000
International Workshop on Component-Based Software
Engineering. Carnegie Mellon Software Engineering
Institute, 2000.

