
RAIC: Architecting Dependable Systems through
Redundancy and Just-In-Time Testing

Chang Liu

Information of Computer Science
University of California, Irvine

Irvine, CA 92697, USA
+1(949)824-2703

liu@ics.uci.edu

Debra J. Richardson
Information of Computer Science

University of California, Irvine
Irvine, CA 92697, USA

+1(949)824-7353

djr@ics.uci.edu

ABSTRACT
Redundant Arrays of Independent Components (RAIC) is a
technology that uses groups of similar or identical distributed
components to provide dependable services. RAIC allows
components in a redundant array to be added or removed
dynamically during run-time, effectively making software
components “hot-swappable” and thus achieves greater overall
dependability. RAIC controllers use the just-in-time component
testing technique to detect component failures and the
component state recovery technique to bring replacement
components up-to-date. This position paper gives a brief
overview of RAIC and a proof-of-concept example to illustrate
how problems occur during run-time can be masked by RAIC
and would not affect smooth operations of the application.

1. INTRODUCTION
Software dependability has become a sufficiently important
aspect of computer systems to warrant attention to the
architectural level. Architectural representations capture overall
designs of software systems while abstracting away low-level
details [2,15]. Architectural representations can assist in
improving software dependability in a number of ways. For
example, architectural representations can be used in testing and
verification of both the designs and the systems to help achieve
higher dependability [3,13,14]. Furthermore, system
dependability can be enhanced by adopting appropriate
architectures and architecture styles. Redundant arrays of
independent components (RAIC) is an attempt to achieve higher
dependability and other desirable properties through a specific
architecture style [8,9]. RAIC uses groups of similar or identical
distributed components to provide higher dependability, better
performance, or greater flexibility than what can possibly be
achieved by any of those individual components.

With the introduction of Microsoft .NET platform and the
release of tools such as Visual Studio .NET that bring the
creation of XML web services to the masses, it is reasonable to

expect more software applications to be built on top of remote
third-party software components or XML web services. Unlike
in-house components or off-the-shelf ones, these remote third-
party components are not under the control of application
developers. They can be upgraded without notice even when
applications are running. This makes it even more important to
ensure that application dependability is not affected by
component failures. RAIC is designed to solve this problem
through an architectural approach.

In this position paper, RAIC is briefly explained. A proof-of-
concept Light example is given to illustrate the functions of
RAIC controllers and how failures in Light components are
detected and masked while the Light applications run smoothly.

2. RAIC OVERVIEW
A redundant component array (also referred to as RAIC) is a
group of similar or identical components. The group uses the
services from one or more components inside the group to
provide services to applications. Applications connect a RAIC
and use it as a single component. Applications typically do not
have any knowledge of the underlying individual components.

Depending on the types and relations of components in a RAIC,
it can be used for many different purposes under different types
of RAIC controllers. A RAIC controller contains software code
that coordinates individual software components in a RAIC. Not
all types of RAIC controllers apply to all combinations of
component types and relations. It is essential to determine
component types and relations prior to configuring a RAIC.

Component types. There are mainly two types of components
in terms of whether or not they maintain internal states: stateless
components and stateful ones.

In a stateful component, each public method can be either state-
preserving, state-changing, or state-defining. The return value
of a method can be either state-dependent or state-independent.

A RAIC can be either static or dynamic. Components in a static
RAIC are explicitly assigned by mechanisms outside the RAIC,
whereas components in a dynamic RAIC may be discovered and
incorporated by the RAIC controller during run-time. Dynamic
RAIC controllers may use directories such as UDDI to locate
new components [16]. Either way, RAIC controllers allow
addition or removal of components during run-time and take
care of component state recovery when necessary as new
stateful components are added. Note that components may be

added to or removed from a static RAIC at runtime. The
difference between a static RAIC and a dynamic RAIC is that in
a dynamic RAIC, the RAIC controller takes responsibility of
component discovery, whereas in a static RAIC, components are
explicitly assigned to the RAIC controller.

Component state recovery. Component types and method
properties help RAIC controllers to decide what to do in the
event of component state recovery [10]. For stateless
components, no state recovery is necessary. A newly created
component can be used in place of another component right
away. For stateful components, their states must be restored
before they are used in lieu of other components. There are
primarily two ways to perform state recovery: snapshot-based
recovery and invocation-history-based recovery. The snapshot-
based approach assumes that the state of a component is
represented by its snapshot, which is a copy of all of its internal
variables. The invocation-history-based approach assumes that
placing an exact same call sequence to equivalent components
results in the same component state. This implies that
components are deterministic.

An invocation can have a method property of state-defining,
state-changing, or state-preserving. Method properties help
reduce the amount of call histories that are needed for state
recovery purposes.

State-defining methods change the state of a component to
specific states regardless of the previous state of the component.
Different method parameters may bring the same components to
different states. But same method parameters always bring
components to the same states even though their previous state
may be different.

State-changing methods may change the state of a component.
Invocations of state-changing methods must be stored for future
state recovery, unless invocations to state-defining methods are
placed later.

State-preserving methods do not change the state of a
component at all. Thus, it is not necessary to re-invoke calls to
methods of this type. All state-preserving invocations can be
safely trimmed off.

Component relations. There are many aspects of relations
between components. Nearly universally applicable are aspects
such as interfaces, functionalities, domains, and snapshots. Not
applicable to all components, but important nonetheless, are
aspects such as security, invocation price, performance, and
others. Relations of multiple components can be derived from
binary relations among components.

As an example, interfaces of two components can have the
following relations: identical (≡), equivalent (=), similar (≈),
inclusionary (≤), or incomparable (≠).

While it is possible to programmatically determine interface
relations by analyzing interface specifications, other relations,
such as functionality relations, sometimes can only be manually
determined.

The component relations are used to determine the integration
strategy, i.e. to choose how the components interact. For
example, RAIC controllers can partition components inside a

RAIC into equivalent classes and use only components inside
the same class to replace each other until they run out.

RAIC levels. Most of these RAIC strategies and policies are
configurable. RAIC levels describe the level and the purpose of
the integration of components in RAIC. The following is a list
of RAIC levels:

• RAIC-1: Exact mirror redundancy

• RAIC-2: Approximate mirror redundancy

• RAIC-3: Shifting lopsided redundancy

• RAIC-4: Fixed lopsided redundancy

• RAIC-5: Reciprocal redundancy

• RAIC-6: Reciprocal domain redundancy

• RAIC-0: No redundancy

RAIC controllers can also use different invocation models,
including:

• RAIC-a: Sequential invocation

• RAIC-b: Synchronous parallel invocation

• RAIC-c: Asynchronous parallel invocation

RAIC controllers need to make judgment about the return values
from individual components in the redundant array to determine
whether or not to invoke another component, which result to
select, or how to merge return values. To do that, RAIC
controllers need to evaluate return values at run-time. Just-in-
time component testing is designed for this purpose [6].

Just-in-time component testing is different from traditional
software testing. Traditional software testing techniques use
various methods to determine, through test execution, if a
software application, a software component, or an even smaller
unit of software code behaves as expected. Usually this is done
by feeding the software-code-under-test with some pre-
determined data, or test input, and comparing the result with
pre-determined expected output, or test oracle. Traditional
software testing happens in the development phase, when
software is still under development and has not been deployed
to the end user. Code that is used for testing purposes, or test
harnesses, are usually removed or filtered out through
conditional compilation or by other means before the final
software product is deployed. Just-in-time component testing
differs from traditional testing in the following aspects:

1. JIT testing happens even after application deployment. Code
responsible for JIT testing is an integral part of the final
software product and is shipped as such.

2. JIT testing uses mostly live input data that are unknown
ahead of time. Thus it is difficult, sometimes impossible, to
know if the result value is correct. Therefore, heuristics and
other means must be used in place of traditional test oracles.

3. When in rare cases that predetermined test inputs are used in
JIT testing, it is extremely important to ensure that test runs on
these test inputs are very efficient, because any test execution on
predetermined data is pure overhead during run-time and will
directly place a negative impact on application performance. In

comparison, test case efficiency weighs much less in traditional
software testing. In addition, any fabricated test data must not
change the state of the component-under-test unless the pending
invocation is a state-defining one with state-independent return
results.

public interface ILight
{
 [MethodProperty(MthdProperty.StateDefining)]
 int TurnOn();

 [MethodProperty(MthdProperty.StateDefining)]
 int SetIntensity(int intensity);

 [MethodProperty(MthdProperty.StateDefining)]
 int TurnOff();
}

public class Light: MarshalByRefObject, ILight
{
 // ...
}

JIT component testing happens in run-time. This is very similar
to another type of testing - perpetual testing. Perpetual testing is
a class of software testing techniques that seeks seamless,
perpetual analysis and testing of software products through
development, deployment, and evolution [12]. The difference
between JIT testing and perpetual testing is that perpetual
testing is optional and removable, whereas JIT testing is an
integral part of the final product. The purpose of perpetual
testing is to obtain more insight of the software-product-under-
test, which is usually under full control of testers, through
monitoring in the real environment and thus gain data that are
not available from laboratories. JIT testing, on the other hand,
tries to determine on-the-fly if the result from a foreign software
component is trustworthy. The foreign software component is
usually not under control of the application programmer. Even
their availabilities are not guaranteed.

There are two versions of the Light component. The first version
allows arbitrary method invocations. An upgrade to the Light
component, however, requires TurnOn() to be called before
SetIntensity() or TurnOff() can be called2. Similarly, TurnOff()
cannot be called if the light is already off. An exception would
be thrown if these requirements are not met.

There are also two applications that use the Light component.
The first application, LightApp1, simply calls TurnOn(),
SetIntensity(), and TurnOff() repeatedly. JIT component testing is also different from certain self-

checking built-in mechanisms [7,19]. The difference is that JIT
testing code resides in the RAIC controller instead of the actual
components.

public class LightApp1
{
 public static void Main(string[] args)
 {
 int pause_in_seconds = 3;

 Light light = new Light();

 for (int i=1; i<=100; i++)
 {
 light.TurnOn();
 Thread.Sleep(pause_in_seconds * 1000);
 light.SetIntensity(50);
 Thread.Sleep(pause_in_seconds * 1000);
 light.TurnOff();
 Thread.Sleep(pause_in_seconds * 1000);
 }
 }
}

RAIC can be used for purposes such as fault-tolerance, result
refinement, and performance enhancement, to name just a few,
where it is desirable to put components with incomparable
interfaces or exclusionary domains in the same RAIC. When
used for dependability-enhancing purposes only, however, it is
likely that all components in a RAIC have similar interface
relations, identical domain relations, and non-incomparable
functionalities so that they can be used interchangeably. It is
also unlikely that there is a need to invoke different versions of
components-under-upgrade simultaneously except when just-in-
time testing needs component voting to verify return results.
Therefore, for dependability purposes, “RAIC-2a[≈i,≡d]”, a
special case of RAIC, is most commonly used [8].

The second application, LightApp2, is similar to LightApp1. The
difference is that LightApp2 does not call TurnOn() at all.

3. THE LIGHT EXAMPLE1
There is a Light component that provides a simple software light
service, which simulates an adjustable light. The light can be
turned on and turned off. The intensity of the light can be
adjusted through another method invocation. The following is a
skeleton code in C# that defines the Light component [4]. The
MethodProperty attributes specify that all three methods are
state-defining, meaning that they change the state of the
component to a specific state regardless of which state the
component was in prior to the method invocation.

public class LightApp2
{
 public static void Main(string[] args)
 {
 int pause_in_seconds = 3;

 Light light = new Light();

 for (int i=1; i<=100; i++)
 {
 light.SetIntensity(50);
 Thread.Sleep(pause_in_seconds * 1000);
 light.TurnOff();
 Thread.Sleep(pause_in_seconds * 1000);
 }
 }
}

2 In this example, we only consider normal states when deciding
method properties. Therefore, in the new version, all three
methods are still state-defining.

1 The Light component example was used in [18].

Apparently, both Light applications work well with the first
version of the Light component. The upgrade of the Light
component would break LightApp2 but would not affect
LightApp1.

In a distributed system where LightApp1 and LightApp2 run
side-by-side, if an on-line upgrading of the Light component is
attempted, LightApp2 will undoubtedly be interrupted. An
attempt to revert the Light component to its original version
would fix LightApp2, but would deny LightApp1’s access to
upgraded features of the Light component. By using RAIC,
these problems can be avoided. Here is what happens with
RAIC:

Figure 1. With RAIC, the Light applications uses

component LightRAIC instead of component Light.

First, instead of using the concrete Light component directly, the
light applications use a new component LightRAIC, which has
the same interface ILight as Light, as shown in Figure 1.

public class LightRAIC
 : MarshalByRefObject, IRAIC, ILight
{
 //...
}

LightRAIC light = new LightRAIC();

for (int i=1; i<=100; i++)
{
 //...
 light.SetIntensity(50);
 //...
}

Second, in a system-wide configuration, LightRAIC is defined
as “RAIC-2a[]”, which means it uses the sequential invocation
model and treats all components inside as stateful. Its policy is
set to “latest version first”. Then, the first version of the Light
component is added to the RAIC as its only member component.
After that, both LightApp1 and LightApp2 can run smoothly
using their own instances of LightRAIC.

Third, during the on-line upgrading, the upgraded version of the
Light component is added to LightRAIC. In LightApp1, the
RAIC controller switches to the new component because its
policy asks it to always try to use the component with the latest
version. It first brings the status of the new component up-to-
date by placing all calls in its trimmed invocation history to the

new component. Then it places the current call to the new
component and thus switches the application to the new
component. LightApp1 only experiences a brief delay during the
switch. The operation of LightApp1 continues without any
disruption. The length of the delay depends on the number of
items in the trimmed invocation history. In this case, since all
three method invocations are state-defining, there is only one
item in the trimmed invocation history no matter how long the
invocation history is.

In LightApp2, the RAIC controller also tries to switch to the
new component because of the same “latest version first”
invocation policy. Its just-in-time component testing mechanism
detects an exception when the first SetIntensity() method call is
placed without a preceding TurnOn() call. JIT testing treats the
exception as a failure. The RAIC controller then tries the next
available component in the RAIC, which is the original Light
component. Since the state of that component is already up-to-
date, the RAIC controller goes ahead and places the current
method call and returns the result to LightApp2. During the on-
line upgrading, LightApp2 does not experiment any failure at
all. The exception in the upgraded component was masked by
the RAIC controller. LightApp2 notices only a brief delay, the
length of which is approximately one method call to the
upgraded component. After that, all subsequent calls go to the
original component without delay. To LightApp2, the on-line
upgrading never happened.

Note that in this scenario, there is no application-or component-
specific configuration definition that specifies which application
works with which component.

In the pre-.NET era, two versions of the same component (DLL)
cannot appear on one system on Windows platforms, which
means it would be impossible to have LightApp1 using the
upgraded version of the Light component and LightApp2 using
the original one on the same system, let alone upgrading the
component at run-time.

On .NET platforms, with the support for side-by-side execution
of different versions of the same component, it is now possible
to do so. To achieve this, however, extra efforts are required
from component developers, application developers, or system
administrators to explicitly specify which application should use
which version of the component. In addition, to avoid problems
that may be created by over-paranoid component developers,
application developers, or system administrators, .NET platform
allows them to override decisions made by each other, which
undoubtedly could further require more efforts from all of them.
In short, even on the currently state-of-art .NET platforms, this
is achievable but not pain-free.

With RAIC, this scenario is not just achievable, it is trivial with
the help of just-in-time testing and component state recovery.

In this example, the two Light components used are two
versions of the same component. It demonstrates that problems
in on-line upgrading can be avoided by using RAIC [11]. RAIC,
however, is not limited to arrays of different versions of the
same components. In fact, the two Light components here can
be regarded as two different components that provide similar
services and all the results still hold. Examples that use different
Light components can be found at [5].

4. LIMITATIONS AND PENDING TASKS
Currently, both the just-in-time component testing technique
and the component state recovery technique have significant
limitations. For example, if a component is connected to a
persistent external storage such as a database, neither snapshot-
based nor invocation-history-based state recovery technique can
fully recover component states3. While some limitations are
fundamental to the approach and cannot be removed by
improving these two techniques alone, we feel that both
techniques work or could work under broad enough
circumstances that this work could produce practical results. In
addition, many limitations may be lifted by improved
techniques. We are working to add better heuristics to just-in-
time testing and more approaches to component state recovery.
For example, we are considering using component dependency
information to broaden applicability of the component state
recovery technique [17].

5. SUMMARY
In summary, dependability-through-redundancy can be achieved
by adopting a special RAIC architecture style. Just-in-time
component testing and component state recovery techniques can
be used to coordinate redundant components so that applications
are not exposed to the complexity of the integration of
redundant components.

6. REFERENCES

[1] R. Barga and D.B. Lomet, “Phoenix: Making
Applications Robust,” Proceedings of 1999 ACM SIGMOD
Conference, Philadelphia, PA (June 1999) (562-564).

[2] L. Bass, P. Clements, and R. Kazman, “Software
Architecture in Practice”, SEI Series, Addison-Wesley January
1998. ISBN: 0201199300.

[3] A. Bertolino, F. Corradini, P. Inverardi, H. Muccini,
“Deriving Test Plans From Architectural Descriptions”,
Proceedings of the 22nd international conference on Software
engineering, p.220-229, June 04-11, 2000, Limerick, Ireland.

[4] ECMA, “Standard ECMA-334: C# Language
Specification”, December 2001.
http://www.ecma.ch/ecma1/STAND/ecma-334.htm.

[5] C. Liu, "The RAIC Web Site," 2002,
http://www.ics.uci.edu/~cliu1/RAIC.

[6] C. Liu, “Just-In-Time Component Testing and Redundant
Arrays of Independent Components”, Doctoral Dissertation,
Information and Computer Science, University of California,
Irvine (in progress).

[7] C. Liu and D. J. Richardson, "Software Components with
Retrospectors," International Workshop on the Role of Software
Architecture in Testing and Analysis, Marsala, Sicily, Italy,
July, 1998.

[8] C. Liu and D. J. Richardson, “Redundant Arrays of
Independent Components”, Technical Report 2002-09,

3 This problem was addressed by Phoenix [1].

Information and Computer Science, University of California,
Irvine, March 2002.

[9] C. Liu and D. J. Richardson, “The RAIC Architectural
Style”, Submitted to the 10th International Symposium on the
Foundations of Software Engineering (FSE-10), March 2002.

[10] C. Liu and D. J. Richardson, “Specifying Component
Method Properties for Component State Recovery in RAIC”,
Accepted by the Fifth ICSE Workshop on Component-Based
Software Engineering: Benchmarks for Predictable Assembly
(ICSE2002), Orlando, Florida, USA, May 19-20, 2002.

[11] C. Liu and D. J. Richardson, “Using RAIC for
Dependable On-line Upgrading of Distributed Systems”,
Submitted to the Dependable On-line Upgrading of Distributed
Systems Workshop held in conjunction with COMPSAC 2002
(August 26-29 2002, Oxford, England), March 2002.

[12] L. J. Osterweil, L. A. Clarke, D. J. Richardson, and M.
Young, "Perpetual Testing," Proceedings of the Ninth
International Software Quality Week, 1996.

[13] M. D. Rice, S. B. Seidman, “An Approach To
Architectural Analysis And Testing”, Proceedings of the third
international workshop on Software architecture, p.121-123,
November 01-05, 1998, Orlando, Florida, United States.

[14] D. J. Richardson and A. L. Wolf, “Software Testing At
The Architectural Level”, Joint proceedings of the second
international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software
development (Viewpoints '96) on SIGSOFT '96 workshops, p.68-
71, October 16-18, 1996, San Francisco, California, United
States.

[15] M. Shaw and D. Garlan, “Software Architecture:
Perspectives on an Emerging Discipline”, Prentice-Hall,
Englewood Cliffs, NJ, 1996. ISBN: 0131829572.

[16] UDDI, “UDDI 2.0 Specification”, 2001.
http://www.uddi.org/specification.html.

[17] M. Vieira, M. Dias, D. J. Richardson, “Describing
Dependencies in Component Access Points”, Proceedings of the
4th Workshop on Component Based Software Engineering, 23rd
International Conference on Software Engineering (ICSE'01,
Toronto, Canada), May, 2001 pp.115-118.

[18] C. H. Wittenberg, “Testing Component-Based Software”,
International Symposium on Software Testing and Analysis
(ISSTA'2000), Portland, Oregon, 22-25 August 2000.

[19] S. S. Yau and R. C. Cheung, "Design of Self Checking
Software," In Proceedings of the International Conference on
Reliable Software, April, 1975, pp. 450-457.

http://www.ecma.ch/ecma1/STAND/ecma-334.htm
http://www.ics.uci.edu/~cliu1/RAIC
http://www.uddi.org/specification.html

