

Dependability in the Web Service Architecture

Ferda Tartanoglu1, Valérie
Issarny2

INRIA, UR Rocquencourt
 Domaine de Voluceau - B.P. 105

78153 Le Chesnay France
1Galip-Ferda.Tartanoglu@inria.fr,

2Valerie.Issarny@inria.fr

Alexander Romanovsky
University of Newcastle upon

Tyne
Department of Computing

Science, NE1 7RU, UK

Alexander.Romanovsky@
newcastle.ac.uk

Nicole Levy
Université de Versailles Saint-

Quentin en Yvelines
45 avenue des Etats-Unis

78035 Versailles Cedex, France

Nicole.Levy@prism.uvsq.fr

ABSTRACT
In comparison with the state of the art in the field of Web Services
architectures and their composition, we propose to exploit the
concept of CA Actions to enable to dependable composition of
Web Services. CA Actions introduce a mechanism for structuring
fault tolerant concurrent systems through the generalization of the
concepts of atomic actions and transactions, and are adapted to
the composition of autonomous services.

1. INTRODUCTION
The Web service architecture targets the development of
applications based on the XML standard [15], which eases the
construction of distributed systems by enabling the dynamic
integration of applications distributed over the Internet,
independent of their underlying platforms. Currently, the main
constituents of the Web service architecture are the following: (i)
WSDL (Web Service Description Language) is a language based
on XML that is proposed by the W3C for describing the interfaces
of Web services [14]; (2) UDDI (Universal Description,
Discovery and Lookup) is a specification of a registry for
dynamically locating and advertising Web services [12]; (3)
SOAP (Simple Object Access Protocol) defines a lightweight
protocol for information exchange [13]. SOAP sets the rules of
how to encode data in XML; it also includes conventions for
partly pre-scribing the invocation semantics (either synchronous
or asynchronous) as well as the SOAP mapping to HTTP.

There already exist platforms that are compliant with the Web
service architecture, including .NET [6] and J2EE [10]. In
addition, integration within CORBA is being addressed [9]. Even
though the Web service architecture is quite recent and not fully
mature, it is anticipated that it will play a prominent role in the

development of next generation distributed systems mainly due to
the strong support from industry and the huge effort in this area.
However, there is clearly a number of research challenges in
supporting the thorough development of distributed systems based
on Web services. One such challenge relates to using Web
services in developing business processes, which requires a
support for composing Web services in a way that guarantees
dependability of the resulting composed services. This calls for
developing new architectural principles of building such
composed systems, in general, and for studying specialized
connectors “glueing” Web services, in particular, so that the
resulting composition can deal with failures occurring at the level
of the individual service components by allowing co-operative
failure handling.

Solutions that are being investigated towards the above goal
subdivide into (i) the definition of XML-based languages for the
specification of Web services composition and (ii) revisiting
classical transactional support so as to cope with the specifics of
Web services (e.g., crossing administrative domains, Web
latency), i.e., defining connectors offering transactional properties
over the Internet. The two next sections respectively overview
existing solutions to the two aforementioned points, and assess
them with respect to Web service composition and its
dependability. In particular, it is emphasized that while the
transaction concept offers a powerful abstraction to deal with the
occurrence of failures in closed systems, it imposes too strong
constraints over component systems in open environment such as
Web services. The main constraint relates to supporting backward
error recovery that, firstly, requires isolating component systems
for the duration of the embedded (nested) transaction in which
they get involved and hence contradicts the intrinsic autonomy of
Web services, and, secondly, relies on returning the service state
back, which is not applicable in many real-life situations which
involve documents, goods, money as well as humans (clients,
operators, managers, etc.).

In the light of the above, the paper puts forward a solution based
on forward error recovery, which enables dealing with
dependability of composed Web services, and has no impact on
the autonomy of the Web services, while exploiting their possible
support for dependability (e.g., transaction support at the level of

each service). Our solution, introduced in Section 4, lies in system
structuring in terms of co-operative actions that have a well-
defined behavior, both in the absence and in the presence of
service failures. Finally, Section 5 discusses our current and future
work aiming at enhancing the Web service architecture for the
sake of dependability.

2. COMPOSING WEB SERVICES
Composing Web services relates to dealing with the assembly of
autonomous components so as to deliver a new service out of the
components’ primitive services, given the corresponding
published interfaces. In the current Web service architecture,
interfaces are described in WSDL and published through UDDI.
However, supporting composition requires further addressing: (i)
the specification of the composition, (ii) ensuring that the services
are composed in a way that guarantees the consistency of both the
individual services and the overall composition. There are three
main proposals in the area:

• WFSL (Web Services Flow Language) addresses the former
issue. It enables describing the composition of Web services
through two complementary models [4]: (i) a flow model that
serves specifying a sequence of actions over services in a
way similar to workflow schema, and (ii) a global model that
further describes the interactions between service providers
and requesters and hence details the realization of each
action of the flow model.

• XLANG deals with the latter issue by enriching the
description of Web services’ interfaces with behavioral
specification. It aims at allowing the formal specification of
business process as stateful long-running interactions [11].
Business processes always involve more than one participant.
Hence, the full description of a process must not only show
the behavior of each participant but also the way these
behaviors match to produce the overall process. The focus is
on the publicly visible behavior in the form of exchanged
messages. More precisely, the interface of a Web service is
enriched with the specification of how to consistently use the
Web service, stating the necessary sequence of interactions.
This is quite similar to the work done in the area of
Architecture Description Language [5], when concerned with
the formal specification of port and role behavior for
checking the consistency of the architecture.

• XL is a language targeting the specification of Web service
composition. It is fully based on XML for the specification
and composition of Web services [3] and is built upon
concepts of imperative programming languages, the CSP
process algebra and workflow management.

There are other efforts towards supporting the composition of
Web services: similar to the aforementioned solutions, these
proposals rely on a new language and supporting environment,
which are still under definition. While there is not yet a consensus
about how Web services composition should be supported,
existing work allows us to identify two major trends: (i)
composition based on workflow management, (ii) using
transactions to enforce dependability. The former trend justifies
from the concern of supporting business processes but also by the
fact that the composition process applies to autonomous services
belonging to distinct administrative domains. However, the

needed extension to WSDL still requires investigation. For
instance, the behavioral specification for individual services
introduced by XLANG complements the composition
specification introduced by WFSL for checking composition
consistency and also to possibly automate the generation of
interactions. The next section shows why, from our standpoint,
transactions do not offer solutions to the dependable composition
of Web services.

3. TRANSACTIONS FOR THE
DEPENDABLE COMPOSITION OF WEB
SERVICES
Transactions have been proven successful in enforcing
dependability in closed distributed systems. The base transactional
model that is the most used guarantees ACID (atomicity,
consistency, isolation, durability) properties over computations.
Enforcing ACID properties typically requires introducing
protocols for: (i) locking resources (i.e., two-phase locking) that
are accessed for the duration of the embedding transaction, and
(ii) committing transactions (i.e., two or three phases validation
protocols). However, such a model is not suited for making the
composition of Web services transactional for at least two
reasons:

• The management of transactions that are distributed over
Web services requires cooperation among the transactional
support of individual Web services –if any-, which may not
be compliant with each other and may not be willing to do so
given their intrinsic autonomy and the fact that they span
different administrative domains.

• Locking accessed resources (i.e., the Web service itself in the
most general case) until the termination of the embedding
transaction is not applicable to Web services, still due to
their autonomy, and also the fact that they potentially have a
large number of concurrent clients that will not stand
extensive delays.

Enhanced transactional models may be considered to alleviate the
latter shortcoming. In particular, the split model where
transactions may split into a number of concurrent sub-
transactions that can commit independently allows reducing the
latency due to locking. Typically, sub-transactions are matched to
the transactions already supported by Web services (e.g.,
transactional booking offered by a service) and hence transactions
over composed services do not alter the access latency as offered
by the individual services. Enforcing the atomicity property over a
transaction that has been split into a number of sub-transactions
then requires using compensation over committed sub-
transactions in the case of sub-transaction abortion. Using
compensation comes along with the specification of compensating
operations supported by Web services for all the operations they
offer. Such an issue is in particular addressed by XLANG [11].
However, it should be further accounted that using compensation
for aborting distributed transactions must extend to all the
participating Web services (i.e., cascading compensation by
analogy with cascading abort), which is not addressed by XLANG
due to its focus on the behavioral specification of individual Web
services for assisting their composition.

Developing transactional supports for dependable Web service
composition is an active area of research that is still in its infancy.
Ongoing work includes BTP (Business Transaction Protocol) [8],
TIP (Transaction Internet Protocol) [2] and extension to the
OMG/J2EE Activity Service [7]. However, proposed solutions do
not cope with all the specifics of Web services. From our
standpoint, a major source of difficulty lies in the use of backward
error recovery in an open system such as the Internet, which is
mainly oriented towards tolerating hardware faults but poorly
suited to the deployment of cooperation-based mechanisms over
autonomous component systems that often require cooperative
application-level exception handling among component systems.
An alternative then lies in relying on the existing support of Web
services for managing internal concurrency control so as to
guarantee keeping the consistency of services, while relying on
forward error recovery for ensuring the dependability of service
composition. The next section introduces such a solution, which
builds upon the concept of Coordinated Atomic (CA) Actions
[16].

4. USING CA ACTIONS FOR THE
DEPENDABLE COMPOSITION OF WEB
SERVICES
The CA Actions [16] are a structuring mechanism for developing
dependable concurrent systems through the generalization of the
concepts of atomic actions and transactions. Basically, atomic
actions are used for controlling cooperative concurrency among a
set of participating processes and for realizing coordinated
forward error recovery using exception handling, and transactions
are used for maintaining the coherency of shared external
resources that are competitively accessed by concurrent actions
(either CA Actions or not). Then, a CA Action realizes an atomic
state transition where: (i) the initial state is defined by the initial
state SPi of the participants Pi and the states SRj of the external
resources Rj at the time they were accessed by the CA Action, (ii)
the final state is defined by the state of the participants (SPi‘) at
the action’s termination (either standard or exceptional) and the
state of the accessed external resources (SRj‘ in the case of either
standard termination or exceptional termination without abortion,
SRj in the case of exceptional termination with abortion).

CA Action naturally fits the specification of Web service
composition:

• Each participant specifies the interactions with each
composed Web service, stating the role of the specific Web
service in the composition. In particular, the participant
specifies actions to be undertaken when the Web service
signals an exception, which may be either handled locally to
the participant or be propagated to the level of the
embedding CA Action. The latter then leads to co-operative
exception handling according to the exceptional specification
of the CA Action.

• Each Web service is viewed an external resource. However,
unlike the base CA Action model, interactions are not
enforced to be transactional. The interactions adhere to the
semantics of the Web service operations that are invoked. An
interaction may then be transactional if the given operation

that is called is. However, transactions do not span multiple
interactions.

• The standard specification of the CA Action gives the
expected behavior of the composed Web service in either the
absence of failures or in the presence of failures that are
locally handled (i.e., either system-level exceptions or
programmed exceptions signaled by Web services operations
that do not need to be cooperatively handled at the CA
Action level).

• The exceptional specification of the CA Action states the
behavior of the composed Web service under the occurrence
of failure at one or more of the participants, that need
cooperative exception handling. The resulting forward
recovery may then realize a relaxed form of atomicity (i.e.,
even when individual operations of the Web service are
transactional, its intermediate states may be accessed by
external actions between such operations executed within a
given action) when Web services offer both transactional and
compensating operations (to be used in cooperative handling
of exceptions).

To apply the general concept of CA actions in the context of
composing Web services, we introduce the concept of WSCA
(Web Service Composition Action). WSCAs differ from CA
Actions in (i) relaxing the transactional requirements over external
interactions (which are not suitable for wide-area open systems)
and (ii) introducing composition of WSCAs where each
participant may actually be a WSCA, which is abstracted as a
single unit of computation from the standpoint of peer
participants.

In order to illustrate the use of WSCAs for specifying the
composition of Web services, we take the classical example of a
travel service. We consider joint booking of accommodation and
flights using respective hotel and airline Web services. Then, the
composed Web service is specified using nested WSCA as
follows. The outermost WSCA TravelAgent comprises the User
and the Travel participants. The Travel participant is a nested
WSCA that composes the Airline and the Hotel participants. A
diagrammatic specification of the WSCAs is shown in Figure 1.

In TravelAgent, the User participant requests the Travel
participant to book a return ticket and a hotel room for the
duration of the given stay. Then, the two Travel WSCA
participants respectively request the Hotel Web service for a hotel
room and the Airline Web service for a return ticket, given the
departure and return dates provided by the user. Each participant
request is subdivided into reservation for the given period and
subsequent booking if the reservation succeeds. In the case where
either the reservation or the booking fails, the participant raises
the unavailable exception that is cooperatively handled at the level
of the Travel WSCA. If both participants signal the unavailable
exception, then Travel signals the abort exception so that the
exception gets handled by TravelAgent in a cooperation with the
User (e.g., by choosing a alternative date). If only one participant
raises the unavailable exception, cooperative exception handling
includes an attempt by the other participant to find an alternative
booking. If this retry fails, the booking that has succeeded is

cancelled and the abort exception is signaled to the embedding
TravelAgent WSCA for recovery with user intervention.

5. CO
The Web
developin
architectu
appertaine
requireme
distribute
be reusab
Hence, m
the thoro
number o

This pape
which is
understan
Web ser
distribute
when con
occurrenc
environm
recovery
services a
in terms
address d
undermin
individua

Further w
to depend
is on the
notation
behavior
atomicity
architectu
on WSCA
We will
descriptio

Trave
TravelAgent
Figure 1. WSCA for com

NCLUSIONS
service architecture is expected to play a major role in
g next generation distributed systems. However, the
re needs to evolve to support all the requirements
d to distributed systems. Addressing such
nts relates, in particular, in reusing solutions from the
d system community. However, most solutions will not
le as is, mainly because of the openness of the Internet.
aking evolve the Web service architecture to support
ugh development of distributed systems raises a

f challenges.

r has addressed one of the issues raised in this context,
the dependable composition of Web services, i.e.,

ding how fault tolerance should be addressed in the
vice architecture. While dependability in closed
d systems is conveniently addressed by transactions
cerned with both concurrency control and failure

es, it can hardly rely on such a mechanism in an open
ent. Our solution to this concern lies in forward error
that enables accounting for the specific of Web
nd that leads to structure Web services-based systems
of co-operative actions. In particular, we are able to
ependable service composition in a way that neither
es the Web service’s autonomy nor increases their
l access latency.

ork is still needed towards offering a complete solution
ability in the Web service architecture. Our next step
 formal specification of WSCAs using the B formal
[1] so as to precisely characterize the dependable
of WSCAs, and in particular the relaxed form of
that is introduced. Our aim is to propose an

ral style for specifying architectures of systems based
s by defining associated connectors and components.
then investigate the definition of an architecture

n language and associated methods and tools for

Retry

alternate

e

e

l

Airline

request

l

unavailable

Exception
propagation

Messages
between
participants

Call to an
external
Web Service

Cooperative
exception
handling
involving the
user

cancel
book
res.
res.
Airline WebServic
Hotel WebServic
User
Hote
posing Web

supportin
Web serv

6. AC
This rese
project (I

7. RE
[1] Abr

Mea

[2] Eva
Dist
Wor

[3] Flor
Lan
Com
Tech

[4] Ley
IBM
4.ib
200

[5] Med
Com
Des
Eng

[6] Mic

[7] Mik
Com
Web
Wor

1 http://w

abort

 confirm

cancel

Cooperative Exception
Handling
 Services

g the development of dependable systems based on the
ice architecture.

KNOWLEDGMENTS
arch is partially supported by the European IST DSoS
ST-1999-11585) 1.

FERENCES
ial, J. R. The B Book – Assigning Programs to
nings. Cambridge University Press. 1996.

ns, K. Transaction Internet Protocol: Facilitating
ributed Internet Applications. Proceedings of the W3C
kshop on Web services. 2001.

escu, D., and Kossmann, D. An XML Programming
guage for Web Services Specification and
position. Bulletin of the IEEE Computer Society
nical Committee on Data Engineering. 2001.

mann, F. Web Services Flow Language (WSFL 1.0).
 Software Group. http://www-

m.com/software/solutions/webservices/pdf/WSFL.pdf.
1.

vidovic, N. and Taylor, R. N. A Classification and
parison Framework for Software Architecture

cription Languages. IEEE Transactions on Software
ineering. 2000.

rosoft. .NET. http://msdn.microsoft.com/net/.
alsen, T., Rouvellou, I., and Tai, S. Reliability of
posed Web Services – From Object Transactions to
 Transactions. Proceedings of the OOPSLA’01
kshop on Object-Oriented Web Services. 2001.

ww.newcastle.research.ec.org/dsos/

[8] Oasis Committee. Business Transaction Protocol. Draft
Specification. January 2002. http://www.oasis-
open.org/committees/business-transactions/

[9] OMG. Corba Web Services. OMG TC Document
orbos/2001-06-07. http://www.omg.org. 2001.

[10] Sun Microsystems Inc. Java 2 Platform, Enterprise Edition
(J2EE). http://java.sun.com/j2ee/

[11] Thatte, S. XLANG: Web Services for Business Process
Design. Microsoft Corporation.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm. 2001.

[12] UDDI Specification. Version 2.0.
http://www.uddi.org/specification.html. 2001.

[13] W3C. Simple Object Access Protocol (SOAP) 1.1. W3C
Note. http://www.w3.org/TR/SOAP/. 2000.

[14] W3C. Web Services Description language (WSDL) 1.1.
W3C Note. http://www.w3.org/TR/2001/NOTE-wsdl-
20010315. 2001.

[15] W3C. Second Edition of the Extensible Markup Language
(XML). 1.0 Specification. W3C Recommendation.
http://www.w3.org/TR/2000/REC-xml-2001006. 2000.

[16] Xu, S., Randell, B., Romanovsky, A., Rubira, C. M. F.,
Stroud, R. J., and Wu, Z. Fault Tolerance in Concurrent
Object-Oriented Software through Coordinated Error
Recovery. Proceedings of the IEEE Symposium on Fault
Tolerant Computing. 1995.

	INTRODUCTION
	COMPOSING WEB SERVICES
	TRANSACTIONS FOR THE DEPENDABLE COMPOSITION OF WEB SERVICES
	USING CA ACTIONS FOR THE DEPENDABLE COMPOSITION OF WEB SERVICES
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

