
Architectural Prescriptions for
Dependable Systems

by

Manuel Brandozzi
and

Dewayne E. Perry

UT ARISE

The University of Texas at Austin

Outline

� Introduction to Architectural
Prescriptions

� Overview of Preskriptor and KAOS
� Dependability and Prescriptions
� Current and Future work

What is an Architectural
Prescription?

� It’s the architectural design of a system in
terms of:
� The high level components
� The properties of the components and their

interrelationships
� The constraints (expressed in the vocabulary of

the requirements) on the system’s components
and on their interrelationships

� An Architectural Prescription provides the
very basic framework of the system to
satisfy the requirements

Differences between a
Prescription and a Description

� A prescription makes the step from
requirements to architecture easier to
formalize and to perform

� Problem domain vs. Solution domain
� A prescription enables the use of

new, innovative solutions
� It enables a higher degree of

reusability by fewer constraints on
the solution space

KAOS

� The domain is modeled as objects
and operations

� First the goals of the overall system
(software, people, engines, etc.) are
specified

� Then these goals are refined till their
sub-goals are assignable to some
agents (requirements and
assumptions)

Sample Preskriptor Component

� Component StockValues [1,1]
� Type Data
� Constraints

Maintain[StoreStockValues],
Maintain[AuthorizedAccessesOnly],
…

� Composed of DB [1,1], Server [1,1]
� Uses MarketConnect to interact with

StockMarket

The Preskriptor Process

Step 1

Step 2

Root Goal(s)

KAOS Objects

Root Component(s)

Step 3KAOS Goals

Potential Sub- component(s)

Architectural Prescription

feedback to requirements
specification phase

from requirements
specification phase

The Preskriptor Process –cont.

Step 4

Problem Oriented Prescription

feedback to Step 3

From Step 3

Solution Oriented Prescription

Architectural Goals
Architectural Styles
Compatibility Goals

From Non Problem Domain
specifications

Dependability Requirements

� Non-functional requirements:
reliability, performance, reusability,
etc.

� Effects:
� Add new components
� Transform existing topology

� i.e. change interactions between components
and/or the components’ number of instances

� Further constrain existing components

Types of Non-Functional
Requirements (NFR)
� Additive NFR

� Can be achieved by adding to the system new
components and their relationships to the existing
components. They may also change the number of
instances of the components already in the system.

� E.g.: fault tolerance
� Separation NFR

� Affect only a subset of the system identifiable by a
property

� E.g.: performance
� Integral NFR

� They either affect the whole system, or it’s not
possible to clearly identify the subsystem they affect

� E.g.: Dynamically reconfigurable
Can be achieved by: Dynamic reconfiguration style

ANFR example - before
BankerClient 1 BankerClient 2 BankerClient 3

StockValuesAccess

Stock Values

MarketConnect

StockMarket 1 StockMarket 2

Legend

Uses Connector

Processor Data

ANFR example - after

Connector

StockValues 1StockValuesAccess

InterCopyCoordinator StockValues 2

StockValues 3

MarketConnect

StockMarket 1 StockMarket 2

Legend

Uses

Processor Data

BankerClient 3BankerClient 2BankerClient 1

Some Key Advantages of Our
Methodology

� Easiness
� Conformance to requirements
� Separation of concerns
� Customization
� Evolution
� Reusability

Current and Future work

� Validate our methodology with
empirical studies

� Find out ways to compositionally
transform architectures to achieve
the most common ANFRs

� Develop a tool to guide and to
automate parts of the requirements
to prescription process

