
Software Architectures of
Dependable Systems:
From Closed to Open Systems

V. Issarny et al.
INRIA
Rocquencourt, France

Architecture-based Development
of Complex Software Systems
� Benefits wrt systems robustness

� Methods and tools supporting analysis,
and the mappings of architectures to their
implementations

� Focus is on the standard behaviour of
the software systems

Supporting the Development of
Dependable Systems

� Crucial to account for the occurrence
of failures in architecture-based
development
� Application-transparent fault tolerance

using middleware infrastructures
� Provide base services for managing failure

detection & error recovery
�Customized middleware architectures wrt

composed services

Aiding the Development of
Middleware Architectures
� Middleware infrastructures

� Customized composition of services
through component-based middleware
containers

�Still, there is the need of supporting the
development of containers
�Right composition of services
�Achieved quality

Systematic Composition of
Middleware Architectures
� A supporting environment [CACM 06/02]

� ADL for modeling middleware architectures
• Repository of architectural descriptions of

middleware infrastructures
� Automated support for:

• Composing middleware services
• Analyzing the quality of composed

architectures

Modeling Middleware
Architectures
� Traditional base modeling elements

� Component, connector, configuration
• Subtypes defining middleware-specific

architectural abstractions (stubs, RPC
connectors, …)

� UML-based notation
� Component: subsystem
� Connector: association + refinement
� Configuration: collaboration

Tool Support

� Rational Rose tool for the graphical
specification of software architectures
� Implemented an add-in that eases the

specification of architectural descriptions using the
stereotypes discussed so far

� Use of an existing add-in to generate XML textual
specs from ADL specs
� XML specs serve as input to other tools integrated in our

environment

� Implemented in OCAML a verifier of OCL
constraints

Example

Secure communication using
Encode/Decode

Fault tolerance using
Fork/Merge

Composing Middleware Services

� Approaches to architecture composition
� Horizontal = parallel composition [Qian et al., 95]

• Secure communication // multi-cast communication
� Serial composition for linear architectures [Steffen

& Beec 97]
• FT architecture is not linear

� Explicit interposition [Spitznagel & Garlan, 01]
� Need for an automatic solution to identify

valid interpositions of components

Automating Composition

� Solution [WICSA’01]
� Composition through model checking
� Constrain composition through structure

� Additional benefits
� Allows identifying unexpected

compositions
� Allows understanding interaction of

qualities

Example

Analyzing the Quality of
Middleware Architectures
� Base solution

� ATAM: Architecture Tradeoff Analysis
Method [Kazman et al., 00]

• Attribute-based architectural styles combined
with scenarios

• 25% of ATAM spent for building quality attribute
models

� Need for automated procedures for the
generation of quality models from ADL
specifications

Automating Quality Analysis
� Modeling support

� Scenarios are specified as UML collaboration diagrams
� Scenarios are associated with quality measures
� Components/Connectors/Nodes are associated with

properties characterizing various quality stimuli and
parameters

• The values of those properties are used to customize the
generation of the traditional quality models.

� Tool support
� Performance: QNAP-2 (SIMULOG)
� Reliability: SURE-ASSIST (NASA)
�Procedures mapping scenarios into models for

QNAP and SURE

Reliability Analysis

what is a state
what is a death state

UML Collaboration + Deployment

: ADL
Component

: ADL
Componentx : ADL Connector

1:

2:
Node Node

State Space Model

range =
f (kind of faults, redundancy)

Generic transition rules for
Components/Connectors/Nodes

e.g. if the collaboration is in a state
where a node n is operational, then it
may get into a state where n is failed
and all components deployed on top
of it are failed.

Example - Specification

Example – Composition

Example – Analysis results
Cases #transitions Reliability

(upper
bound)

Reliability
(lower
bound)

Composition A
(Single version
security service)

24 0.74 0.72

Composition A
(n-version
security service)

48 0.80 0.79

Composition B 12 0.70 0.67

Assessment

� Making systems dependable is eased by
middleware infrastructures
� Infrastructures offer base supporting services
� Service composition may be automated

� But…
� Allows only for backward error recovery and

cannot cope with all failures
� Need for complementary application-specific

forward error recovery
�Exception handling as it is the most general

mechanism

Architecture-based
Exception Handling
� Exception handling mechanisms

� Serves implementing the system’s exceptional
specification (definition of exceptions & handlers)

� Relies on some model (e.g., termination,
resumption)

� Existing mechanisms are for handling
exceptions within components

� What about exception handling requiring
changes to the architecture [HICSS’01]

Base Solutions to Architectural
Exception Handling
� Exception handling within ADL

� Limited to the specification of signalled/handled
exceptions within the definition of
component/connector interfaces

� Behavioural specification would further improve
correctness checking

• Pre/post as supported by Inscape [Perry, 89]
� Issue of taking into account the exception handling

model

Base Solutions to Architectural
Exception Handling (Cont’d)
� Dynamic reconfiguration

� Determined at runtime
• Reconfiguration manager
• Possibly constrained based on invariant on the

system structure
� Fixed at design time

• Specified in the architecture description (e.g.,
Durra [Barbacci et al., 93])

• Independent of exception handling

Exception Handling Model

� Exception handling within
components and connectors
� Let exceptions flow among the

architectural elements according to the
embedding architectural style

� Exception handling at the
architecture level
� To enable changing the running

configuration

Impact on Architecture
Description
� Support for internal exception handling

� Specification of exceptions raised/handled by the
elements

� Support for architectural exception
handling
� Definition of configuration exceptions and

associated handlers using the ADL
�Keep abstract the description of architectures for the

sake of analysis and synthesis
� Mapping to implementation using a service for

dynamic reconfiguration

Assessment

� Architecture-based development can aid
in the construction of dependable systems
� Application-transparent fault tolerance: systematic

aid in the design of customized middleware
architectures

� Application-specific fault tolerance: support for
exception handling at the architectural level

� But…
� Existing support is mainly aimed at closed

systems
� Need solutions for open systems

Towards Dependable Open
Systems
� Issues in the development of open

systems
� Composition of autonomous systems
� Highly dynamic systems

• Mobility,
• Evolution,
• …

Towards Dependable Open
Systems
� Ongoing work

� Architecting open systems with mobile
nodes
� Design and analysis of dynamically composed

systems
� Supporting middleware infrastructure

� Fault-tolerance mechanisms for
autonomous systems
� “Dependability in the Web Services

Architecture” – Ferda Tartanoglu et al.

For more information…

� Web page of the ARLES group at
INRIA-Rocquencourt
� http://www-rocq.inria.fr/arles/

� Work as part of the following projects
� DSoS:

http://www.newcastle.research.ec.org/dsos/

� OZONE:
http://www.extra.research.philips.com/euprojects/ozone/

