Dependability and Architecture

• **Dependability**
 - *Reliance that can justifiably be placed...*
 - Fault tolerance
 - API robustness
 - Code safety
 - Safe concurrency
 - Usability
 - Availability
 - Self-healing
 - *Etc.*

• **Architecture**
 - *Structural constraint*
 - *That which changes most slowly*
 - Dynamic monitoring
 - Robust APIs and exception mgt
 - Self-healing
 - Framework compliance eval’n
 - Managed adaptation

• **Generally Accepted Linking Principle**
 “Dependability designed in from the start”
Observation

- Similar arguments for *from-the-start* are made for multiple dependability attributes
 - Availability
 - Self-healing
 - Usability
 - Security
Questions

• **What are the concrete research steps?**
 – Beyond articulating precept on the basis of intuition and experience...
 – *What does it mean to “design in” dependability?*

• **What are the dependability measurables?**
 – For the various attributes
 – *How do we know if we are succeeding?*

• **What can be assured?**
 – On the basis of architectural commitment?
 – *What commitments can we make?*

• **How to reason about (trust) the add’l structure?**
 – Wrappers
 – Self-healing monitor/detect/log/mitigate
 – FT availability architecture
Exploring the Questions

The HDCP programmatic approach

- **Testbeds**
 - Experimentation at scale
 - Intervention
 - Measurement
 - Assurance

- **Scalable techniques**
 - Frameworks
 - Composable attributes and analyses
 - Horizontal approaches
Keep in Mind

- Not much impact of 30-40 years of research in software dependability, broadly construed
 - Some notable exceptions
 - Some critical systems
 - Fully embedded practices
 - Programming language types
 - Certain analyses
 - Conventional architectural practices

- Measurement?
The HDCP Approach

• **Focus**
 - Dependability at scale
 - Dependability and integration
 - Data, measurement, evaluation

• **Large-scale testbed projects**
 - Identify actual challenges in NASA mission projects
 - Undertake experimental interventions
 • Measurement, improvement, assurance
 • Multiple interventions: risk mgt for stakeholders
 - NASA stakeholders directly involved
 - Distance collaboration support

• **Diverse team**
 - CMU with USC, UMd, MIT, U Wash, U Wisc
 - Moffett campus
The HDCP Approach

- **Research areas**
 - Measurement and dependability (Boehm, Basili, Zelkowitz)
 - Analysis and assurance (Jackson, Koopman, Notkin, Scherlis)
 - Checking specifications
 - Concurrency and Java
 - Testing strategies
 - Robustness
 - Technological intervention (Garlan, Lee, Narasimhan, Reid, Shaw)
 - Self-healing architecture
 - Proof carrying code and mobility
 - Fault tolerance architecture
 - Secure dependable networking
 - Coalitions and anomaly detection
 - Usability and dependability (John, Bass)
 - Architecture and usability
HDCP Status

- **Scale of effort**
 - 5 years
 - 12 Lead investigators at 6 universities
 - Engineering team and collaboration infrastructure

- **Status**
 - Testbed proposals submitted by NASA organizations
 - Testbed selection decision to be announced shortly

- **Related effort**
 - NSF / NASA solicitation
Dependability in the mainstream?

- **Practices for critical apps**
 - Costly (orders of magnitude)
 - Significant sacrifices in capability and flexibility
 - Highly conservative (e.g., deterministic) architectures
 - Standards: rigor on surrogates (process, organization, etc.)

- **No trickle-down to mainstream**

Sustainability
- **Engineered-in** dependability
- **Evidenced** through measurement and assurance
- **Supported** by market and economic factors
- **Reachable** from the present environment
Sustainability
- **Engineered-in** dependability
- **Evidenced** through measurement and assurance
- **Supported** thru market and economic factors
- **Reachable** from the present environment

Elements
- Understand risk management challenges of users
- Stakeholders: Users, Insurers, Auditors, Integrators, Vendors
- Expertise: Technology, Economics, Markets, Law, Policy
 - Multi-university collaboration

Approach
- Sustainable Computing Consortium (SCC)
- Build on HDCP, SWIC, and other efforts
- Collaborate with open source and other engineering communities

Goal
- Engineering and market culture of dependability
Promising directions (examples)

- **Architecture-level intervention**
 - Self-healing architecture
 - Transparent intervention
 - Application-transparent FT (CORBA, etc.)
 - Dynamic monitoring/logging
 - Structural transformation
 - Wrapping
 - Framework analysis
 - Mobile code architectures

- **Lightweight formal methods**
 - Model checking of specs
 - First-class encapsulation and types
 - “Narrow-band” assurance techniques

- **Usability-informed architecture design**
 - Robustness for person-in-the-loop processes

- **Program analysis**
 - API client compliance evaluation (protocol, threading, etc.)
 - Buffer overflow detection, etc.
 - Annotation
 - Safe concurrency

- **Advanced testing**
 - Robustness and APIs (Windows, Linux)

- **Correlative measurement techniques**
 - CoQualMo, SecurityMM, ITsqc
Promising problems

- Analysis and assurance for self-healing systems
- Policy and assurance for self-organizing systems
- Evaluation of dependability attributes for conventional architectures
 - The “standard” configuration for high availability data centers
- Architecture-level specification
- Formal linking of architecture specifications and low-level design / code