

Dependability and Architecture: An HDCP Perspective

Bill Scherlis Carnegie Mellon University ICSE Workshop on Architecting Dependable Systems May 2002 <u>scherlis@cmu.edu</u>

Dependability and Architecture

- Dependability • Reliance that can justifiably be placed... Fault tolerance — API robustness Code safety Safe concurrency Usability Availability Self-healing – Etc. **Architecture** Structural constraint That which changes most slowly **Generally Accepted Linking Principle** Dynamic monitoring — "Dependability designed in from the start" Robust APIs and exception mgt _ Self-healing Framework compliance eval'n
 - Managed adaptation

Carnegie Mellon

•

Observation

- Similar arguments for *from-the-start* are made for multiple dependability attributes
 - Availability
 - Self-healing
 - Usability
 - Security

Questions

- What are the concrete research steps?
 - Beyond articulating precept on the basis of intuition and experience...
 - What does it mean to "design in" dependability?
- What are the dependability measurables?
 - For the various attributes
 - How do we know if we are succeeding?
- What can be assured?
 - On the basis of architectural commitment?
 - What commitments can we make?
- How to reason about (trust) the add'l structure?
 - Wrappers
 - Self-healing monitor/detect/log/mitigate
 - FT availability architecture

Exploring the Questions

The HDCP programmatic approach

Testbeds

- Experimentation at scale
- Intervention
- Measurement
- Assurance

Scalable techniques

- Frameworks
- Composable attributes and analyses
- Horizontal approaches

Keep in Mind

- Not much impact of 30-40 years of research in software dependability, broadly construed
 - Some notable exceptions
 - Some critical systems
 - Fully embedded practices
 - Programming language types
 - Certain analyses
 - Conventional architectural practices
- Measurement?

The HDCP Approach

- Focus
 - Dependability at scale
 - Dependability and integration
 - Data, measurement, evaluation

Large-scale testbed projects

- Identify actual challenges in NASA mission projects
- Undertake experimental interventions
 - Measurement, improvement, assurance
 - Multiple interventions: risk mgt for stakeholders
- NASA stakeholders directly involved
- Distance collaboration support
- Diverse team
 - CMU with USC, UMd, MIT, U Wash, U Wisc
 - Moffett campus

The HDCP Approach

- Research areas
 - Measurement and dependability (Boehm, Basili, Zelkowitz)
 - Analysis and assurance (Jackson, Koopman, Notkin, Scherlis)
 - Checking specifications
 - Concurrency and Java
 - Testing strategies
 - Robustness
 - Technological intervention (Garlan, Lee, Narasimhan, Reid, Shaw)
 - Self-healing architecture
 - Proof carrying code and mobility
 - Fault tolerance architecture
 - Secure dependable networking
 - Coalitions and anomaly detection
 - Usability and dependability (John, Bass)
 - Architecture and usability

HDCP Status

- Scale of effort
 - 5 years
 - 12 Lead investigators at 6 universities
 - Engineering team and collaboration infrastructure

Status

- Testbed proposals submitted by NASA organizations
- Testbed selection decision to be announced shortly

Related effort

NSF / NASA solicitation

Practices for critical apps

- Costly (orders of magnitude)
- Significant sacrifices in capability and flexibility
- Highly conservative (e.g., deterministic) architectures
- Standards: rigor on surrogates (process, organization, etc.)
- No trickle-down to mainstream

Sustainability

- Engineered-in dependability
- Evidenced through measurement and assurance
- Supported by market and economic factors
- Reachable from the present environment

Dependability in the mainstream?

Sustainability

- Engineered-in dependability
- Evidenced through measurement and assurance
- Supported thru market and economic factors
- Reachable from the present environment

Elements

- Understand risk management challenges of users
- Stakeholders: Users, Insurers, Auditors, Integrators, Vendors
- Expertise: Technology, Economics, Markets, Law, Policy
 - Multi-university collaboration

Approach

- Sustainable Computing Consortium (SCC)
- Build on HDCP, SWIC, and other efforts
- Collaborate with open source and other engineering communities

Goal

- Engineering and market culture of dependability

Promising directions (examples)

Architecture-level intervention

- Self-healing architecture
- Transparent intervention
 - Application-transparent FT (CORBA, etc.)
 - Dynamic monitoring/logging
- Structural transformation
 - Wrapping
- Framework analysis
- Mobile code architectures

Lightweight formal methods

- Model checking of specs
- First-class encapsulation and types
- "Narrow-band" assurance techniques
- Usability-informed architecture design
 - Robustness for person-in-the-loop processes

Program analysis

- API client compliance evaluation (protocol, threading, etc)
- Buffer overflow detection, etc.
- Annotation
- Safe concurrency
- Advanced testing
 - Robustness and APIs (Windows, Linux)
- Correlative measurement techniques
 - CoQualMo, SecurityMM, ITsqc

Promising problems

- Analysis and assurance for self-healing systems
- Policy and assurance for self-organizing systems
- Evaluation of dependability attributes for conventional architectures
 - The "standard" configuration for high availability data centers
- Architecture-level specification
- Formal linking of architecture specifications and low-level design / code