
Using Architectural Properties to 
Model System-Wide

Graceful Degradation
Charles Shelton Philip Koopman

Workshop on Architecting Dependable Systems
International Conference on Software Engineering

May 25, 2002

&Electrical Computer
ENGINEERING

Institute
for Complex
Engineered
Systems

Robust Self-Configuring Embedded Systems
http://www.ece.cmu.edu/roses



2

Scalable Graceful Degradation
u Graceful degradation can increase system dependability

• Individual component and subsystem failures reduce functionality
but do not cause a system failure

• Non-critical features shed while critical features are preserved

u Current practice for specifying graceful degradation: 
[Herlihy91]
• Specify a “relaxation lattice” of system constraints

– Constraints are relaxed as failures occur

• Lattice is exponentially complex with number of constraints
• Must specify a specific system response for each lattice point

u IDEA: Exploit system decomposition into subsystems
and components

• Goal: Create a more scalable model for graceful degradation



3

Focus: Dependable Embedded Systems
u Embedded systems are increasingly software driven

• Complex software systems necessary to implement more 
features and functionality

• “Smart” sensors and actuators encourage more 
distributed/networked systems

u But, they have high dependability requirements…
• System failures have high consequences (loss of life, money)
• Software patch or upgrade is often impractical

u … and are extremely cost sensitive
• System-wide replication for dependability is cost prohibitive

How can we get scalable, graceful degradation for them?



4

Utility and Graceful Degradation
u Utility - measure of system’s usefulness

• Different for each problem domain
• Incorporate functionality, reliability, performance, etc.

u System Utility is a function of component utilities
• Maximum Utility – All system components working
• Some Utility – degraded system operation
• Zero Utility – System failure

u Graceful Degradation goal:
• Component failures proportionately reduce system utility
• Ideally, each functional subsystem retains residual functionality

– Previous work assumed whole-subsystem failures, not component failures



5

Key Is Handling System Configurations
u Focus on software component configurations

• Assume individual software components either working or failed
• 2n possible configurations of n software components

– Each configuration can be represented as a string of n bits

u For sufficient graceful degradation we want:
• Many valid configurations
• System bit string values with low Hamming distance have small 

differences in utility

u Previous work considered the subsystem level
• What if instead we looked at fine grain component level?
• “n” goes from a handful to perhaps hundreds
• Analysis complexity is O(2n) – are we crazy?



6

Example Elevator System Architecture



7

Utility Analysis
u Utility analysis for all system configurations is O(2n)

• But, we are only interested in valid configurations
– Correct sensors and actuators present for desired functionality

u Software architecture constrains valid configurations
• Component and interface definitions
• Organization of components into subsystems
• Dependencies between subsystems

u Develop system model for scalable analysis
• System data flow graph derived from interfaces among 

components
• Feature subsets defined from subgraphs of components



8

Feature Subsets
u A feature subset is a subset of components that outputs a 

set of system variables
• Defined by component output interfaces 
• A feature subset with k << n components has 2k configurations
• Each feature subset defines (potentially overlapping) subsystems

u Allow hierarchical definition of subsystems
• Feature subsets can contain other feature subsets as components

u Identify critical and non-critical feature subsets
• System utility is zero when critical feature subset’s utility is zero

u Finding valid system configurations made easier:
• Only determine valid configurations for each critical feature subset
• Exploit fact that many systems have decoupled subsystems



9

Drive Control Feature Subsets

Drive
Control

Door Closed
Sensor

Car Position
Sensor

Drive Control
Feature Subset

Door Control
Feature Subset

Drive Motor Actuator

Software Component

Data Flow

Sensor

Actuator

Feature Subset

Drive Speed
Sensor

AtFloor
Feature Subset

Desired Floor
Feature Subset

AtFloor
Sensors

(one per floor)

VirtualAtFloor
(one per floor)

Components
that output

Door Control
data

Components
that output

Desired Floor
data 



10

Conclusions
u Our system model for graceful degradation enables 

scalable system analysis 
• Use feature subset definitions to simplify configuration analysis

– Only consider subsets of each configuration bit string relevant to a feature 
subset

– If average feature subset has k << n components, analysis reduces
from O(2n) to O(n/k * 2k)

• Can determine all valid configurations without examining every 
possible component configuration

– Encapsulate graceful degradation analysis within each subsystem

u Model provides structured view of system-wide graceful 
degradation
• Identify system properties that improve graceful degradation
• Identify critical subsystems that require extra redundancy
• Basis to compare graceful degradation of similar configurations


