L o cceomueduroses
Using drchitectural Properties to

Model System-Wide
Gracetul Degradation

Charles Shelton Philip Koopman

Workshop on Architecting Dependable Systems
| nter national Conference on Software Engineering
May 25, 2002

Carnegie Electrical & Computer for Complex
@ Mellor% {() ENGIN EEF\%| NG Syeteme. g

Scalable Graceful Degradation

¢ Graceful degradation can increase system dependability

 Individual component and subsystem failures reduce functionality
but do not cause a system failure

* Non-critical features shed while critical features are preserved

¢ Current practice for specifying graceful degradation:
[Herlihy91]
o Specify a“relaxation lattice” of system constraints
— Constraints are relaxed as failures occur
o Latticeisexponentially complex with number of constraints
* Must specify a specific system response for each lattice point

¢ |DEA: Exploit system decomposition into subsystems
and components
» Goal: Create amore scalable model for graceful degradation

Focus: Dependable Embedded Systems

¢ Embedded systems areincreasingly softwaredriven

« Complex software systems necessary to implement more
features and functionality

e “Smart” sensors and actuators encourage more
distributed/networked systems

¢ But, they have high dependability requirements...
« System failures have high consequences (loss of life, money)
« Software patch or upgrade is often impractical

¢ ... and are extremely cost sensitive
o System-wide replication for dependability is cost prohibitive

How can we get scalable, graceful degradation for them?

Utility and Graceful Degradation

¢ Utility - measure of system’s usefulness

« Different for each problem domain
 Incorporate functionality, reliability, performance, etc.

¢ System Utility isa function of component utilities
e Maximum Utility — All system components working
o Some Utility — degraded system operation
o Zero Utility — System failure

¢ Graceful Degradation goal:
o Component failures proportionately reduce system utility

 |deally, each functional subsystem retains residual functionality
— Previous work assumed whole-subsystem failures, not component failures

Key IsHandling System Configurations

¢ Focus on software component configurations
« Assumeindividual software components either working or failed

» 2" possible configurations of n software components
— Each configuration can be represented as a string of n bits

¢ For sufficient graceful degradation we want:
e Many valid configurations

o System bit string values with low Hamming distance have small
differencesin utility

¢ Previouswork considered the subsystem level
 What if instead we looked at fine grain component level ?
e “n” goesfrom a handful to perhaps hundreds
o Analysis complexity isO(2") — are we crazy?

Example Elevator System Architecture

Elevator Architecture

September 6, 2000
Philip Koopman
18-540/ CMU ECE

RED TEXT
NUMBER

MNetwork Connection
Electromechanical Connection
Passenger Action

Environmental Model
Replication

Complex
Behavior

System State

DISPATCHER

Dispatcher

DesiredFloor

DesiredDwell

MAXFLOORS

MAXFLOORS

CarButton
Caontrol[f]

2

Lantern
Control[d]

Data Network

CarFosifion
ndicatoe”

* (0 OR MORE)
PASSENGER

Passenger(p]

oistwa
Limit[d]

2

1

DoorControl[j]

7

oorMotorfj
1

Dooriotor

SAFETY

¥

DriveCantral

Drive

HallButton
Control[f.d]

MAXFLOORS

, 1.2
JallLight[f.

Utility Analysis

¢ Utility analysisfor all system configurationsis O(2")

« But, we areonly interested in valid configurations
— Correct sensors and actuators present for desired functionality

¢ Softwar e architecture constrainsvalid configurations
« Component and interface definitions
« Organization of components into subsystems
» Dependencies between subsystems

¢ Develop system model for scalable analysis

« System dataflow graph derived from interfaces among
components

 Feature subsets defined from subgraphs of components

Featur e Subsets

¢ A feature subset isa subset of componentsthat outputsa
set of system variables
* Defined by component output interfaces
A feature subset with k << n components has 2k configurations
» Each feature subset defines (potentially overlapping) subsystems

¢ Allow hierarchical definition of subsystems
» Feature subsets can contain other feature subsets as components

¢ |ldentify critical and non-critical feature subsets
o System utility is zero when critical feature subset’s utility is zero

¢ Finding valid system configurations made easier:
* Only determine valid configurations for each critical feature subset
« Exploit fact that many systems have decoupled subsystems

Drive Control Feature Subsets

Components Drive Speed Car Position AtFloor
that output Sensor Sensor 1 Sensors
Door Control Door Closed v ' (one per floor)
data Sensor :
|

VirtualAtFloor
(one per floor)

Components
that output
Desired Floor
data

\V

Door Control
Feature Subset

Desired Floor
Feature Subset

AtFloor
Feature Subset

Drive

Control
A 4 Sensor

A Actuator

Drive Control
@ Software Component Feature Subset

Feature Subset

—p Data Flow Drive Motor Actuator

Conclusions

¢ Our system model for graceful degradation enables
scalable system analysis

o Usefeature subset definitionsto simplify configuration analysis

— Only consider subsets of each configuration bit string relevant to afeature
subset

— If average feature subset has k << n components, analysis reduces
from O(2") to O(n/k * 2X)

o Candetermine all valid configurations without examining every
possible component configuration
— Encapsulate graceful degradation analysis within each subsystem

¢ Model provides structured view of system-wide graceful
degradation
 |dentify system properties that improve graceful degradation
 |dentify critical subsystems that require extra redundancy
» Basisto compare graceful degradation of similar configurations

10

