Dependability in the Web Service Architecture

Ferda Tartanoglu

INRIA ARLES Research Project

In Collaboration with : Valérie Issarny - INRIA Alexander Romanovsky - University of Newcastle Upon Tyne Nicole Levy - Université De Versailles Saint-Quentin En Yvelines

1

Overview

- Introduction: the Web service architecture
- Composing Web services
- Transactions for the dependable composition of Web services
- Using CA actions for the dependable composition of Web services
- Conclusions & Future Work

- The Web service architecture targets the development of applications based on the XML standards
 - eases the construction of distributed systems by enabling the dynamic integration of applications
- Main constituents of the Web service architecture

Introduction (2)

- XML Standards
 - WSDL (Web Service Description Language, W3C)
 - a language based on XML for describing the interfaces
 - UDDI (Universal Description, Discovery and Integration)
 - specification of a registry for dynamically locating & advertising Web services
 - SOAP (Simple Object Access Protocol, W3C)
 - sets the rules of how to encode data in XML
 - describes what is in a message and how to process it
 - mapping to transport protocol (HTTP)
- Existing platforms and tools
 - .NET, J2EE, CORBA Web Services ...

Introduction (3)

The Web Service architecture is quite recent, but

- will play a prominent role in the development of next generation distributed systems
- strong support from industry
- Research challenges
 - Developing business processes with Web services
 - requires support for composing Web services in a way that guarantees dependability
 - new architectural principles needed

Composing Web Services

- Assembly of autonomous components
 - new service out of the components' primitive services given the corresponding published interfaces
- Currently,
 - interfaces are described in WSDL
 - and published through UDDI
- Supporting composition requires
 - specification of the composition, ensuring that composition guarantees consistency of
 - both the individual services
 - and the overall composition

Composing Web Services (2)

- Example : The Travel Agency
- Joint booking of accommodation and flights
 - use of existing Web services

Composing Web Services (3)

- Proposals rely on a new language and supporting environment
 - WSFL (IBM)
 - XLANG (Microsoft)

not yet a consensus about how the composition should be supported

- Two major trends
 - composition based on workflow management
 - using transactions to enforce dependability

Transactions for the Dependable Composition of Web Services

- Enforcing ACID properties requires introducing protocols for
 - locking resources that are accessed for the duration of the embedding transaction
 - committing transactions

Such a model is not suited for making the composition of Web services transactional

Transactions for the Dependable Composition of Web Services (2)

- The management of transactions requires cooperation among the transactional support of individual Web services
 - may not be compliant with each other
 - may not be willing to do so
 - intrinsic autonomy
 - they span different administrative domains
- Locking accessed resources until the termination of the embedding transaction is not applicable to Web services
 - large number of concurrent clients that will not stand extensive delays

Enhanced Transactional Models

- The split model allows reducing the latency due to locking
 - transactions may split into a number of concurrent sub-transactions that can commit independently
 - it requires using compensation over committed sub transactions in the case of abortion
- Using compensation must extend to all the participating Web services
 - XLANG supports compensation operations, but
 - focus is on the behavioral spec of individual Web services
- An active area of research
 - BTP (Business Transaction Protocol, Oasis Committee)
 - proposed solutions do not cope with all the specifics of Web services

Transactions

- A major source of difficulty lies in the use of backward error recovery in an open system such as the Internet
 - mainly oriented towards tolerating hardware faults, but
 - poorly suited to the deployment of cooperation-based mechanisms over autonomous component systems
 - isolating component systems for the duration of the transaction contradicts the intrinsic autonomy of Web services
 - returning the service state back not applicable in many real-life situations

Using CA Actions for the Dependable Composition of Web Services

- Forward error recovery with Coordinated Atomic Actions (J. Xu, B. Randell, A. Romanovsky et al., 1995)
 - structuring mechanism for developing dependable concurrent systems
 - atomic actions : for controlling cooperative concurrency
 - coordinated error recovery using exception handling
 - transactions : coherency of shared external resources

Coordinated error recovery

CA Actions for the Specification of Web Service Composition

- Each participant specifies the interactions with each composed Web service stating the role of the specific Web service in the composition
 - the participant specifies the actions to perform when the Web service signals an exception
 - may be either handled locally or
 - be propagated to the level of the embedding CA Action
- Each Web service is viewed as an external resource
 - unlike the base CA Action model, interactions are not enforced to be transactional

CA Actions for the Specification of Web Service Composition (2)

- The <u>standard specification</u> gives the expected behavior of the composed Web service
 - absence of failures
 - failures that are locally handled : no coordinated recovery
- The <u>exceptional specification</u> states the behavior of the composed Web service under the occurrence of failures at one or more of the participants
 - cooperative exception handling
 - the resulting forward error recovery may realize a relaxed form of atomicity

WSCA : Web Service Composition Action

- Relaxes the transactional requirements over external interactions
- Composition of WSCAs

Conclusions & Future Work

- Fault tolerance in the Web service architecture
 - use of forward error recovery
 - cooperative actions
- Dependable service composition without
 - undermining the Web service autonomy
 - increasing individual access latency
- Next step
 - formal specification of WSCAs (B formal method)
 - precisely characterize the dependable behavior
 - relaxed form of atomicity
 - architectural style