Dependability in the Web Service Architecture

Ferda Tartanoglu

INRIA
ARLES Research Project

In Collaboration with:

Valérie Issarny - INRIA
Alexander Romanovsky - University of Newcastle Upon Tyne
Nicole Levy - Université De Versailles Saint-Quentin En Yvelines
Overview

- Introduction: the Web service architecture
- Composing Web services
- Transactions for the dependable composition of Web services
- Using CA actions for the dependable composition of Web services
- Conclusions & Future Work
Introduction

- The Web service architecture targets the development of applications based on the XML standards
 - eases the construction of distributed systems by enabling the dynamic integration of applications

- Main constituents of the Web service architecture

```
Service Provider
Component Services

Service User
Composite Service

Service Registry
```

Locate | **Publish** | **Interact**
XML Standards
- WSDL (Web Service Description Language, W3C)
 - a language based on XML for **describing the interfaces**
- UDDI (Universal Description, Discovery and Integration)
 - specification of a **registry** for dynamically locating & advertising Web services
- SOAP (Simple Object Access Protocol, W3C)
 - sets the rules of how to **encode data** in XML
 - describes **what** is in a message and **how** to process it
 - mapping to **transport protocol** (HTTP)

Existing platforms and tools
- .NET, J2EE, CORBA Web Services …
The Web Service architecture is quite recent, but will play a prominent role in the development of next generation distributed systems and has strong support from industry.

Research challenges

- Developing business processes with Web services
 - requires support for composing Web services in a way that guarantees dependability
 - new architectural principles needed
Composing Web Services

- Assembly of autonomous components
 - new service out of the components' primitive services given the corresponding published interfaces

- Currently,
 - interfaces are described in WSDL
 - and published through UDDI

- Supporting composition requires
 - specification of the composition,
 ensuring that composition guarantees consistency of
 - both the individual services
 - and the overall composition
Composing Web Services (2)

- Example: The Travel Agency
- Joint booking of accommodation and flights
 - use of existing Web services
 - hotel booking
 - flight reservation
 - geographical database

Diagram:
- UDDI
- Hotel Web Service
- Airline Web Service
- Geographical Database
- Travel Agent
Proposals rely on a new language and supporting environment
- WSFL (IBM)
- XLANG (Microsoft)

- not yet a consensus about how the composition should be supported

Two major trends
- composition based on workflow management
- using transactions to enforce dependability
Transactions for the Dependable Composition of Web Services

- Enforcing ACID properties requires introducing protocols for
 - locking resources that are accessed for the duration of the embedding transaction
 - committing transactions

× Such a model is not suited for making the composition of Web services transactional
Transactions for the Dependable Composition of Web Services (2)

- The management of transactions requires cooperation among the transactional support of individual Web services
 - may not be compliant with each other
 - may not be willing to do so
 - intrinsic autonomy
 - they span different administrative domains

- Locking accessed resources until the termination of the embedding transaction is not applicable to Web services
 - large number of concurrent clients that will not stand extensive delays
Enhanced Transactional Models

- The split model allows reducing the latency due to locking
 - transactions may split into a number of concurrent sub-transactions that can commit **independently**
 - it requires using compensation over committed sub transactions in the case of abortion

- Using compensation must extend to all the participating Web services
 - XLANG supports compensation operations, but
 - focus is on the behavioral spec of individual Web services

- An active area of research
 - BTP (Business Transaction Protocol, Oasis Committee)
 - proposed solutions do not cope with all the specifics of Web services
Transactions

- A major source of difficulty lies in the use of **backward error recovery** in an open system such as the Internet
 - mainly oriented towards tolerating hardware faults, **but**
 - poorly suited to the deployment of cooperation-based mechanisms over autonomous component systems
 - isolating component systems for the duration of the transaction contradicts the intrinsic autonomy of Web services

- ✓ returning the service state back not applicable in many real-life situations
Using CA Actions for the Dependable Composition of Web Services

- Forward error recovery with Coordinated Atomic Actions (J. Xu, B. Randell, A. Romanovsky et al., 1995)
 - structuring mechanism for developing dependable concurrent systems
 - **atomic actions**: for controlling cooperative concurrency
 - coordinated error recovery using **exception handling**
 - **transactions**: coherency of shared external resources

![Diagram of coordinated error recovery and transactional object]
CA Actions for the Specification of Web Service Composition

- Each participant specifies the interactions with each composed Web service stating the role of the specific Web service in the composition
 - the participant specifies the actions to perform when the Web service signals an exception
 - may be either handled locally or
 - be propagated to the level of the embedding CA Action

- Each Web service is viewed as an external resource
 - unlike the base CA Action model, interactions are not enforced to be transactional
The standard specification gives the expected behavior of the composed Web service
- absence of failures
- failures that are locally handled: no coordinated recovery

The exceptional specification states the behavior of the composed Web service under the occurrence of failures at one or more of the participants
- cooperative exception handling
- the resulting forward error recovery may realize a relaxed form of atomicity
WSCA: Web Service Composition Action

- Relaxes the transactional requirements over external interactions
- Composition of WSCAs

Diagram:

- User requests a travel service
- TravelAgent processes the request
- Hotel and Airline WebServices interact
- Cooperative Exception Handling (confirm, cancel, unavailable)
- Exception propagation (messages between participants, call to an external Web Service)
Conclusions & Future Work

- Fault tolerance in the Web service architecture
 - use of forward error recovery
 - cooperative actions

- Dependable service composition without
 - undermining the Web service autonomy
 - increasing individual access latency

- Next step
 - formal specification of WSCAs (B formal method)
 - precisely characterize the dependable behavior
 - relaxed form of atomicity
 - architectural style