

Workshop on
Architecting Dependable Systems

Orlando, FL, USA
May 25, 2002

Editors

Rogério de Lemos (University of Kent at Canterbury, UK)
Cristina Gacek (University of Newcastle upon Tyne, UK)
Alexander Romanovsky (University of Newcastle upon Tyne, UK)

Preface

Architectural representations of systems have shown to be effective in assisting the understanding of broader
system concerns by abstracting away from details of the system. The dependability of systems is defined as the
reliance that can justifiably be placed on the service the system delivers. Dependability has become an important
aspect of computer systems since everyday life increasingly depends on software. Although there is a large body
of research in dependability, architectural level reasoning about dependability is only just emerging as an
important theme in software engineering. This is due to the fact that dependability concerns are usually left until
too late in the process of development. In addition, the complexity of emerging applications and the trend of
building trustworthy systems from existing, untrustworthy components are urging dependability concerns be
considered at the architectural level. Hence the questions that the software architecture and dependability
communities are currently facing: what are the architectural principles involved in building dependable systems?
How should these architectures be evaluated?

By bringing together researchers from both the software architectures and the dependability communities, this
workshop makes contributions from dependability more visible within the software engineering community and
vice-versa, thus helping to build strong collaboration possibilities among the participants. The workshop provides
software engineers with systematic and disciplined approaches for building dependable systems, as well as
allows further dissemination of the state of the art methods and techniques.

The aim of this First Workshop on Architecting Dependable Systems is to bring together the communities of
software architectures and dependability to discuss the state of research and practice when dealing with
dependability issues at the architecture level, and to jointly formulate an agenda for future research in this
emerging area.

We have received 18 submissions mainly from academic contributors. Each paper was reviewed by 3 members of
the Program Committee, and a total of 12 papers have been accepted for presentation. We are thankful for the
support and dedication of the Program Committee towards making this workshop a success. The Program
Committee consisted of:

Andrea Bondavalli (Italy)
Jan Bosch (The Netherlands)
José Fiadeiro (Portugal)
David Garlan (USA)
Valérie Issarny (France)
Marc-Olivier Killijian (France)
John Knight (USA)
Nenad Medvidovic (USA)
Dewayne E. Perry (USA)
Cecília Rubira (Brazil)
Lui Sha (USA)
Francis Tam (Finland)
Richard Taylor (USA)
Frank van der Linden (The Netherlands).

We highly appreciate that Valérie Issarny (France) and William L Scherlis (USA) have accepted our invitation to
give talks during the Workshop on their personal views on architecting dependable systems.

We look forward to an interesting and stimulating workshop.

Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky

Table of Contents
Software Architectures of Dependable Systems: From Closed to Open Systems
 V. Issarny

Dependability and Architecture: An HDCP Perspective
 W. L. Scherlis

Dependability in the Web Service Architecture
 F. Tartanoglu, V. Issarny, A. Romanovsky, N. Levy

RAIC: Architecting Dependable Systems through Redundancy and Just-In-Time Testing
 C. Liu, D. J. Richardson

An Idealized Fault-Tolerant Architectural Component
 P. A. de Castro Guerra, C. Rubira, R. de Lemos

Tolerating Architectural Mismatches
 R. de Lemos, C. Gacek, A. Romanovsky

Architectural Prescriptions for Dependable Systems
 M. Brandozzi, D. E. Perry

Integration of Architecture Specification, Testing and Dependability Analysis
 S. S. Gokhale, J. R. Horgan, K. S. Trivedi

The Role of Event Description in Architecting Dependable Systems
 M. S. Dias, D. J. Richardson

Using Architectural Properties to Model and Measure System-Wide Graceful Degradation
 C. P. Shelton, P. Koopman

Specification-Driven Prototyping to for Architecting Dependability
 D. B. Mulcare

Evaluation of Dependable Layered Systems with Fault Management Architecture
 O. Das, C. M. Woodside

A Conflict Resolution Control Architecture for Self-Adaptive
 N. Badr, D. Reilly, A. Taleb-Bendiab

Improving the Availability of Web Services
 D. Cotroneo, M. Gargiulo, S. Russo, G. Ventre

Software Architectures of Dependable Systems:
From Closed to Open Systems

Valérie Issarny
INRIA, UR Rocquencourt

 Domaine de Voluceau - B.P. 105 - 78153 Le Chesnay France
Valerie.Issarny@inria.fr

INTRODUCTION
Work in the software architecture domain primarily focuses on
the standard (as opposed to exceptional) behavior of the
software system. However, it is crucial from the perspective of
software system robustness to also account for failure
occurrences. The next section gives an overview of our past
work towards assisting architecting of dependable distributed
systems. It is then followed by a discussion on our current and
future research work towards addressing dependability
requirements of open distributed systems, which are expected to
become a major class of future distributed systems.

AIDING THE ARCHITECTING OF
DEPENDABLE SYSTEMS
Failures may be handled through the integration within the
system architecture of components and connectors that provide
fault tolerance capabilities. Practically, this means that failures
are handled by an underlying fault-tolerance mechanism (e.g.,
transparent replication management) at the middleware level.
Such fault tolerance support must further be coupled with
software fault tolerance that relies at least on an exception
handling mechanism, which enables the software developer to
specify the actions to be undertaken under the occurrence of
application-specific and underlying runtime exceptions. We
have then carried out research in the two following
complementary directions towards assisting architecting of
dependable systems.

Systematic aid in the development of middleware
architectures for dependable systems: The use of middleware
is the current practice for developing distributed systems.
Developers compose reusable services provided by proprietary
or standard middleware infrastructures to deal with non-
functional requirements. However, developers still have to
design and implement middleware architectures combining
available services in a way that best fits the application’s
requirements. In order to ease this task, we have developed an
environment that provides [1]: (i) an ADL for modeling
middleware architectures, (ii) a repository populated with
architectural descriptions of middleware services, and (iii)

automated support for composing middleware architectures out
of available services according to target non-functional
properties, and for quantitatively assessing the composed
architectures in terms of performance and reliability.
Architecture-based exception handling: As previously raised,
it is necessary to complement fault-tolerance support provided
by the underlying middleware architecture, with support for
software fault tolerance so as to enable application-specific
fault-tolerance. We have thus proposed a solution to
architecture-based exception handling [2], which complements
exception handling implemented within components and
connectors. Our solution lies in: (i) extending the ADL so as to
enable the specification of required changes to the architecture
in the presence of failures, and (ii) associated runtime support
for enabling resulting dynamic reconfigurations.

FUTURE RESEARCH DIRECTIONS
The above results have been proven successful for assisting the
architecting of robust distributed systems that are closed, i.e.,
systems whose components depend on a single administrative
domain and are known at design time. However, future
distributed systems will increasingly be open, which raises new
issues for making them dependable. In this context, we are in
particular undertaking research in the following directions: (i)
Architecting open distributed systems in a way that accounts for
mobility, which requires support for the dynamic composition
and quality assessment of architecture instances; and (ii) Design
of fault-tolerance mechanisms for open distributed systems
considering that the systems span multiple administrative
domains and hence cannot accommodate locking-based
solutions as, e.g., enforced by transactional processing [3].

REFERENCES
[1] Issarny, V., Kloukinas, C. and Zarras, A. Systematic Aid in

the Development of Middleware Architectures.
Communications of the ACM. 2002. To appear.

[2] Issarny, V. and Banâtre J-P. Architecture-based Exception
Handling. Proc. of HICSS’34. 2001.

[3] Tartanoglu, F., Issarny, V., Levy, N. and
Romanovsky, A., Dependability in the Web Service
Architecture. Proc. of WADS. 2002.

Dependability and Architecture: An HDCP Perspective

William L Scherlis
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

scherlis@cmu.edu

Dependability and architecture
It is generally accepted in engineering practice that depend-
abilit y, like securit y, is best designed into a system from the

outset|that certain architectural design characteristics pos-
itively correlate with overall system dependability. Depend-
abilit y (\reliance that can justi�ably be placed") necessarily
comprises, in this respect, a broad range of attributes such
as fault tolerance, robustness, code safety, safe concurrency,
usabilit y,and self-healing behavior. And, in the interests

of scalabilit y, our de�nition of dependability must be mean-
ingful relativ e both to overall system beha viorand to the
behavior of in ternal (sub)systems with respect to clients.

For the most part, we lack a systematic scienti�c linking of
architectural c haracteristics with overall dependability out-

comes, and this applies to most of the attributes mentioned
abo ve.There is only preliminary literature identifying con-
crete h ypotheses concerning \favorable" arc hitectural char-
acteristics. But, perhaps more frustrating, even in the pres-
ence of such hypotheses we lack the ability to measure di-
rectly the critical variables to evaluate their validit y,and

m ust instead rely on weak surrogates. In this respect even
small successes in measurement can help engineers develop
more prescriptive approaches to arc hitecting and implement-
ing high dependability systems. (The substantial premiums
paid by customers, for example, for higher availabilit yin

data cen ters supports this claim.)

Another, perhaps greater, challenge may be described as
\dependability remediation"|a rubric meant to include both
the evaluation and the improvement of existing systems with
respect to particular dependability attributes. Ho wcan

overall dependability be evaluated, and the relative contri-
butions be determined for various identi�ed design decisions,
and with respect to particular attributes? It is tempting to
dismiss this as an almost hopelessly broad question. But
some focus can be achiev ed b y addressing speci�cally the de-

velopment of \incremental techniques" for remediation (i.e.,
measurement, improvement, assurance)|in which individ-
ual actions of engineers to make local improvements yield
increments of overall improvement. This incrementality is a

feature of successful open source engineering practice.

The High Dependability Computing Project (HDCP) was
recently initiated by NASA Ames to address some of these
issues in the context of future NASA systems. The research
is directed at understanding dependability issues in larger

systems and developing practicable techniques for evolu-
tion and improvement. The program combines research on
measurement (correlativ e process/product measures for var-
ious dependability attributes), assurance (analytically based
dependability claims), and technological intervention (tec h-
niques for designing dependability systems, or improving the

dependability of existing systems).

The HDCP is meant to be a genuinely collaborative e�ort|
NASA systems and projects are objects of study , in or-
der to understand the challenges of moving techniques for
measurement, assurance, and improvement from laboratory

into practice. A diverse portfolio of research teams and ap-
proac hes in HDCP reduces the risk of engagement for NASA
mission organizations engaging in testbed projects. In or-
der to achieve the diversity of approaches and the extent of
logistical support required to support the testbed projects,

Carnegie Mellon is collaborating with �ve other universities,
including University of Southern California, University of
Maryland, MIT, University of Washington, and University
of Wisconsin Milwauk ee. In addition, the team will be aug-
mented b y researc hers funded through a recently-announced
solicitation from the National Science Foundation|Highly

Dependable Computing and Communication Systems Re-
search (HDCCSR)|that builds on HDCP testbed projects.

Within HDCP, for example, a number of aspects of architec-
ture are addressed, including both architectural design and
architecture implementation. Examples include self-healing

architecture designs,robustness testing of in ternal services
and the interfaces through which they are delivered, devel-
opment of architectural metrics, and model-based evaluation
of API compliance.

Acknowledgement. The author wishes to acknowledge sup-

port through the High Dependability Computing Program
from NASA Ames cooperative agreement NCC-2-1298.

Dependability in the Web Service Architecture

Ferda Tartanoglu1, Valérie
Issarny2

INRIA, UR Rocquencourt
 Domaine de Voluceau - B.P. 105

78153 Le Chesnay France
1Galip-Ferda.Tartanoglu@inria.fr,

2Valerie.Issarny@inria.fr

Alexander Romanovsky
University of Newcastle upon

Tyne
Department of Computing

Science, NE1 7RU, UK

Alexander.Romanovsky@
newcastle.ac.uk

Nicole Levy
Université de Versailles Saint-

Quentin en Yvelines
45 avenue des Etats-Unis

78035 Versailles Cedex, France

Nicole.Levy@prism.uvsq.fr

ABSTRACT
In comparison with the state of the art in the field of Web Services
architectures and their composition, we propose to exploit the
concept of CA Actions to enable to dependable composition of
Web Services. CA Actions introduce a mechanism for structuring
fault tolerant concurrent systems through the generalization of the
concepts of atomic actions and transactions, and are adapted to
the composition of autonomous services.

1. INTRODUCTION
The Web service architecture targets the development of
applications based on the XML standard [15], which eases the
construction of distributed systems by enabling the dynamic
integration of applications distributed over the Internet,
independent of their underlying platforms. Currently, the main
constituents of the Web service architecture are the following: (i)
WSDL (Web Service Description Language) is a language based
on XML that is proposed by the W3C for describing the interfaces
of Web services [14]; (2) UDDI (Universal Description,
Discovery and Lookup) is a specification of a registry for
dynamically locating and advertising Web services [12]; (3)
SOAP (Simple Object Access Protocol) defines a lightweight
protocol for information exchange [13]. SOAP sets the rules of
how to encode data in XML; it also includes conventions for
partly pre-scribing the invocation semantics (either synchronous
or asynchronous) as well as the SOAP mapping to HTTP.

There already exist platforms that are compliant with the Web
service architecture, including .NET [6] and J2EE [10]. In
addition, integration within CORBA is being addressed [9]. Even
though the Web service architecture is quite recent and not fully
mature, it is anticipated that it will play a prominent role in the

development of next generation distributed systems mainly due to
the strong support from industry and the huge effort in this area.
However, there is clearly a number of research challenges in
supporting the thorough development of distributed systems based
on Web services. One such challenge relates to using Web
services in developing business processes, which requires a
support for composing Web services in a way that guarantees
dependability of the resulting composed services. This calls for
developing new architectural principles of building such
composed systems, in general, and for studying specialized
connectors “glueing” Web services, in particular, so that the
resulting composition can deal with failures occurring at the level
of the individual service components by allowing co-operative
failure handling.

Solutions that are being investigated towards the above goal
subdivide into (i) the definition of XML-based languages for the
specification of Web services composition and (ii) revisiting
classical transactional support so as to cope with the specifics of
Web services (e.g., crossing administrative domains, Web
latency), i.e., defining connectors offering transactional properties
over the Internet. The two next sections respectively overview
existing solutions to the two aforementioned points, and assess
them with respect to Web service composition and its
dependability. In particular, it is emphasized that while the
transaction concept offers a powerful abstraction to deal with the
occurrence of failures in closed systems, it imposes too strong
constraints over component systems in open environment such as
Web services. The main constraint relates to supporting backward
error recovery that, firstly, requires isolating component systems
for the duration of the embedded (nested) transaction in which
they get involved and hence contradicts the intrinsic autonomy of
Web services, and, secondly, relies on returning the service state
back, which is not applicable in many real-life situations which
involve documents, goods, money as well as humans (clients,
operators, managers, etc.).

In the light of the above, the paper puts forward a solution based
on forward error recovery, which enables dealing with
dependability of composed Web services, and has no impact on
the autonomy of the Web services, while exploiting their possible
support for dependability (e.g., transaction support at the level of

each service). Our solution, introduced in Section 4, lies in system
structuring in terms of co-operative actions that have a well-
defined behavior, both in the absence and in the presence of
service failures. Finally, Section 5 discusses our current and future
work aiming at enhancing the Web service architecture for the
sake of dependability.

2. COMPOSING WEB SERVICES
Composing Web services relates to dealing with the assembly of
autonomous components so as to deliver a new service out of the
components’ primitive services, given the corresponding
published interfaces. In the current Web service architecture,
interfaces are described in WSDL and published through UDDI.
However, supporting composition requires further addressing: (i)
the specification of the composition, (ii) ensuring that the services
are composed in a way that guarantees the consistency of both the
individual services and the overall composition. There are three
main proposals in the area:

• WFSL (Web Services Flow Language) addresses the former
issue. It enables describing the composition of Web services
through two complementary models [4]: (i) a flow model that
serves specifying a sequence of actions over services in a
way similar to workflow schema, and (ii) a global model that
further describes the interactions between service providers
and requesters and hence details the realization of each
action of the flow model.

• XLANG deals with the latter issue by enriching the
description of Web services’ interfaces with behavioral
specification. It aims at allowing the formal specification of
business process as stateful long-running interactions [11].
Business processes always involve more than one participant.
Hence, the full description of a process must not only show
the behavior of each participant but also the way these
behaviors match to produce the overall process. The focus is
on the publicly visible behavior in the form of exchanged
messages. More precisely, the interface of a Web service is
enriched with the specification of how to consistently use the
Web service, stating the necessary sequence of interactions.
This is quite similar to the work done in the area of
Architecture Description Language [5], when concerned with
the formal specification of port and role behavior for
checking the consistency of the architecture.

• XL is a language targeting the specification of Web service
composition. It is fully based on XML for the specification
and composition of Web services [3] and is built upon
concepts of imperative programming languages, the CSP
process algebra and workflow management.

There are other efforts towards supporting the composition of
Web services: similar to the aforementioned solutions, these
proposals rely on a new language and supporting environment,
which are still under definition. While there is not yet a consensus
about how Web services composition should be supported,
existing work allows us to identify two major trends: (i)
composition based on workflow management, (ii) using
transactions to enforce dependability. The former trend justifies
from the concern of supporting business processes but also by the
fact that the composition process applies to autonomous services
belonging to distinct administrative domains. However, the

needed extension to WSDL still requires investigation. For
instance, the behavioral specification for individual services
introduced by XLANG complements the composition
specification introduced by WFSL for checking composition
consistency and also to possibly automate the generation of
interactions. The next section shows why, from our standpoint,
transactions do not offer solutions to the dependable composition
of Web services.

3. TRANSACTIONS FOR THE
DEPENDABLE COMPOSITION OF WEB
SERVICES
Transactions have been proven successful in enforcing
dependability in closed distributed systems. The base transactional
model that is the most used guarantees ACID (atomicity,
consistency, isolation, durability) properties over computations.
Enforcing ACID properties typically requires introducing
protocols for: (i) locking resources (i.e., two-phase locking) that
are accessed for the duration of the embedding transaction, and
(ii) committing transactions (i.e., two or three phases validation
protocols). However, such a model is not suited for making the
composition of Web services transactional for at least two
reasons:

• The management of transactions that are distributed over
Web services requires cooperation among the transactional
support of individual Web services –if any-, which may not
be compliant with each other and may not be willing to do so
given their intrinsic autonomy and the fact that they span
different administrative domains.

• Locking accessed resources (i.e., the Web service itself in the
most general case) until the termination of the embedding
transaction is not applicable to Web services, still due to
their autonomy, and also the fact that they potentially have a
large number of concurrent clients that will not stand
extensive delays.

Enhanced transactional models may be considered to alleviate the
latter shortcoming. In particular, the split model where
transactions may split into a number of concurrent sub-
transactions that can commit independently allows reducing the
latency due to locking. Typically, sub-transactions are matched to
the transactions already supported by Web services (e.g.,
transactional booking offered by a service) and hence transactions
over composed services do not alter the access latency as offered
by the individual services. Enforcing the atomicity property over a
transaction that has been split into a number of sub-transactions
then requires using compensation over committed sub-
transactions in the case of sub-transaction abortion. Using
compensation comes along with the specification of compensating
operations supported by Web services for all the operations they
offer. Such an issue is in particular addressed by XLANG [11].
However, it should be further accounted that using compensation
for aborting distributed transactions must extend to all the
participating Web services (i.e., cascading compensation by
analogy with cascading abort), which is not addressed by XLANG
due to its focus on the behavioral specification of individual Web
services for assisting their composition.

Developing transactional supports for dependable Web service
composition is an active area of research that is still in its infancy.
Ongoing work includes BTP (Business Transaction Protocol) [8],
TIP (Transaction Internet Protocol) [2] and extension to the
OMG/J2EE Activity Service [7]. However, proposed solutions do
not cope with all the specifics of Web services. From our
standpoint, a major source of difficulty lies in the use of backward
error recovery in an open system such as the Internet, which is
mainly oriented towards tolerating hardware faults but poorly
suited to the deployment of cooperation-based mechanisms over
autonomous component systems that often require cooperative
application-level exception handling among component systems.
An alternative then lies in relying on the existing support of Web
services for managing internal concurrency control so as to
guarantee keeping the consistency of services, while relying on
forward error recovery for ensuring the dependability of service
composition. The next section introduces such a solution, which
builds upon the concept of Coordinated Atomic (CA) Actions
[16].

4. USING CA ACTIONS FOR THE
DEPENDABLE COMPOSITION OF WEB
SERVICES
The CA Actions [16] are a structuring mechanism for developing
dependable concurrent systems through the generalization of the
concepts of atomic actions and transactions. Basically, atomic
actions are used for controlling cooperative concurrency among a
set of participating processes and for realizing coordinated
forward error recovery using exception handling, and transactions
are used for maintaining the coherency of shared external
resources that are competitively accessed by concurrent actions
(either CA Actions or not). Then, a CA Action realizes an atomic
state transition where: (i) the initial state is defined by the initial
state SPi of the participants Pi and the states SRj of the external
resources Rj at the time they were accessed by the CA Action, (ii)
the final state is defined by the state of the participants (SPi‘) at
the action’s termination (either standard or exceptional) and the
state of the accessed external resources (SRj‘ in the case of either
standard termination or exceptional termination without abortion,
SRj in the case of exceptional termination with abortion).

CA Action naturally fits the specification of Web service
composition:

• Each participant specifies the interactions with each
composed Web service, stating the role of the specific Web
service in the composition. In particular, the participant
specifies actions to be undertaken when the Web service
signals an exception, which may be either handled locally to
the participant or be propagated to the level of the
embedding CA Action. The latter then leads to co-operative
exception handling according to the exceptional specification
of the CA Action.

• Each Web service is viewed an external resource. However,
unlike the base CA Action model, interactions are not
enforced to be transactional. The interactions adhere to the
semantics of the Web service operations that are invoked. An
interaction may then be transactional if the given operation

that is called is. However, transactions do not span multiple
interactions.

• The standard specification of the CA Action gives the
expected behavior of the composed Web service in either the
absence of failures or in the presence of failures that are
locally handled (i.e., either system-level exceptions or
programmed exceptions signaled by Web services operations
that do not need to be cooperatively handled at the CA
Action level).

• The exceptional specification of the CA Action states the
behavior of the composed Web service under the occurrence
of failure at one or more of the participants, that need
cooperative exception handling. The resulting forward
recovery may then realize a relaxed form of atomicity (i.e.,
even when individual operations of the Web service are
transactional, its intermediate states may be accessed by
external actions between such operations executed within a
given action) when Web services offer both transactional and
compensating operations (to be used in cooperative handling
of exceptions).

To apply the general concept of CA actions in the context of
composing Web services, we introduce the concept of WSCA
(Web Service Composition Action). WSCAs differ from CA
Actions in (i) relaxing the transactional requirements over external
interactions (which are not suitable for wide-area open systems)
and (ii) introducing composition of WSCAs where each
participant may actually be a WSCA, which is abstracted as a
single unit of computation from the standpoint of peer
participants.

In order to illustrate the use of WSCAs for specifying the
composition of Web services, we take the classical example of a
travel service. We consider joint booking of accommodation and
flights using respective hotel and airline Web services. Then, the
composed Web service is specified using nested WSCA as
follows. The outermost WSCA TravelAgent comprises the User
and the Travel participants. The Travel participant is a nested
WSCA that composes the Airline and the Hotel participants. A
diagrammatic specification of the WSCAs is shown in Figure 1.

In TravelAgent, the User participant requests the Travel
participant to book a return ticket and a hotel room for the
duration of the given stay. Then, the two Travel WSCA
participants respectively request the Hotel Web service for a hotel
room and the Airline Web service for a return ticket, given the
departure and return dates provided by the user. Each participant
request is subdivided into reservation for the given period and
subsequent booking if the reservation succeeds. In the case where
either the reservation or the booking fails, the participant raises
the unavailable exception that is cooperatively handled at the level
of the Travel WSCA. If both participants signal the unavailable
exception, then Travel signals the abort exception so that the
exception gets handled by TravelAgent in a cooperation with the
User (e.g., by choosing a alternative date). If only one participant
raises the unavailable exception, cooperative exception handling
includes an attempt by the other participant to find an alternative
booking. If this retry fails, the booking that has succeeded is

cancelled and the abort exception is signaled to the embedding
TravelAgent WSCA for recovery with user intervention.

5. CO
The Web
developin
architectu
appertaine
requireme
distribute
be reusab
Hence, m
the thoro
number o

This pape
which is
understan
Web ser
distribute
when con
occurrenc
environm
recovery
services a
in terms
address d
undermin
individua

Further w
to depend
is on the
notation
behavior
atomicity
architectu
on WSCA
We will
descriptio

Trave
TravelAgent
Figure 1. WSCA for com

NCLUSIONS
service architecture is expected to play a major role in
g next generation distributed systems. However, the
re needs to evolve to support all the requirements
d to distributed systems. Addressing such
nts relates, in particular, in reusing solutions from the
d system community. However, most solutions will not
le as is, mainly because of the openness of the Internet.
aking evolve the Web service architecture to support
ugh development of distributed systems raises a

f challenges.

r has addressed one of the issues raised in this context,
the dependable composition of Web services, i.e.,

ding how fault tolerance should be addressed in the
vice architecture. While dependability in closed
d systems is conveniently addressed by transactions
cerned with both concurrency control and failure

es, it can hardly rely on such a mechanism in an open
ent. Our solution to this concern lies in forward error
that enables accounting for the specific of Web
nd that leads to structure Web services-based systems
of co-operative actions. In particular, we are able to
ependable service composition in a way that neither
es the Web service’s autonomy nor increases their
l access latency.

ork is still needed towards offering a complete solution
ability in the Web service architecture. Our next step
 formal specification of WSCAs using the B formal
[1] so as to precisely characterize the dependable
of WSCAs, and in particular the relaxed form of
that is introduced. Our aim is to propose an

ral style for specifying architectures of systems based
s by defining associated connectors and components.
then investigate the definition of an architecture

n language and associated methods and tools for

Retry

alternate

e

e

l

Airline

request

l

unavailable

Exception
propagation

Messages
between
participants

Call to an
external
Web Service

Cooperative
exception
handling
involving the
user

cancel
book
res.
res.
Airline WebServic
Hotel WebServic
Hote
User
posing Web

supportin
Web serv

6. AC
This rese
project (I

7. RE
[1] Abr

Mea

[2] Eva
Dist
Wor

[3] Flor
Lan
Com
Tech

[4] Ley
IBM
4.ib
200

[5] Med
Com
Des
Eng

[6] Mic

[7] Mik
Com
Web
Wor

1 http://w

abort

 confirm

cancel

Cooperative Exception
Handling
 Services

g the development of dependable systems based on the
ice architecture.

KNOWLEDGMENTS
arch is partially supported by the European IST DSoS
ST-1999-11585) 1.

FERENCES
ial, J. R. The B Book – Assigning Programs to
nings. Cambridge University Press. 1996.

ns, K. Transaction Internet Protocol: Facilitating
ributed Internet Applications. Proceedings of the W3C
kshop on Web services. 2001.

escu, D., and Kossmann, D. An XML Programming
guage for Web Services Specification and
position. Bulletin of the IEEE Computer Society
nical Committee on Data Engineering. 2001.

mann, F. Web Services Flow Language (WSFL 1.0).
 Software Group. http://www-

m.com/software/solutions/webservices/pdf/WSFL.pdf.
1.

vidovic, N. and Taylor, R. N. A Classification and
parison Framework for Software Architecture

cription Languages. IEEE Transactions on Software
ineering. 2000.

rosoft. .NET. http://msdn.microsoft.com/net/.
alsen, T., Rouvellou, I., and Tai, S. Reliability of
posed Web Services – From Object Transactions to
 Transactions. Proceedings of the OOPSLA’01
kshop on Object-Oriented Web Services. 2001.

ww.newcastle.research.ec.org/dsos/

[8] Oasis Committee. Business Transaction Protocol. Draft
Specification. January 2002. http://www.oasis-
open.org/committees/business-transactions/

[9] OMG. Corba Web Services. OMG TC Document
orbos/2001-06-07. http://www.omg.org. 2001.

[10] Sun Microsystems Inc. Java 2 Platform, Enterprise Edition
(J2EE). http://java.sun.com/j2ee/

[11] Thatte, S. XLANG: Web Services for Business Process
Design. Microsoft Corporation.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm. 2001.

[12] UDDI Specification. Version 2.0.
http://www.uddi.org/specification.html. 2001.

[13] W3C. Simple Object Access Protocol (SOAP) 1.1. W3C
Note. http://www.w3.org/TR/SOAP/. 2000.

[14] W3C. Web Services Description language (WSDL) 1.1.
W3C Note. http://www.w3.org/TR/2001/NOTE-wsdl-
20010315. 2001.

[15] W3C. Second Edition of the Extensible Markup Language
(XML). 1.0 Specification. W3C Recommendation.
http://www.w3.org/TR/2000/REC-xml-2001006. 2000.

[16] Xu, S., Randell, B., Romanovsky, A., Rubira, C. M. F.,
Stroud, R. J., and Wu, Z. Fault Tolerance in Concurrent
Object-Oriented Software through Coordinated Error
Recovery. Proceedings of the IEEE Symposium on Fault
Tolerant Computing. 1995.

RAIC: Architecting Dependable Systems through
Redundancy and Just-In-Time Testing

Chang Liu

Information of Computer Science
University of California, Irvine

Irvine, CA 92697, USA
+1(949)824-2703

liu@ics.uci.edu

Debra J. Richardson
Information of Computer Science

University of California, Irvine
Irvine, CA 92697, USA

+1(949)824-7353

djr@ics.uci.edu

ABSTRACT
Redundant Arrays of Independent Components (RAIC) is a
technology that uses groups of similar or identical distributed
components to provide dependable services. RAIC allows
components in a redundant array to be added or removed
dynamically during run-time, effectively making software
components “hot-swappable” and thus achieves greater overall
dependability. RAIC controllers use the just-in-time component
testing technique to detect component failures and the
component state recovery technique to bring replacement
components up-to-date. This position paper gives a brief
overview of RAIC and a proof-of-concept example to illustrate
how problems occur during run-time can be masked by RAIC
and would not affect smooth operations of the application.

1. INTRODUCTION
Software dependability has become a sufficiently important
aspect of computer systems to warrant attention to the
architectural level. Architectural representations capture overall
designs of software systems while abstracting away low-level
details [2,15]. Architectural representations can assist in
improving software dependability in a number of ways. For
example, architectural representations can be used in testing and
verification of both the designs and the systems to help achieve
higher dependability [3,13,14]. Furthermore, system
dependability can be enhanced by adopting appropriate
architectures and architecture styles. Redundant arrays of
independent components (RAIC) is an attempt to achieve higher
dependability and other desirable properties through a specific
architecture style [8,9]. RAIC uses groups of similar or identical
distributed components to provide higher dependability, better
performance, or greater flexibility than what can possibly be
achieved by any of those individual components.

With the introduction of Microsoft .NET platform and the
release of tools such as Visual Studio .NET that bring the
creation of XML web services to the masses, it is reasonable to

expect more software applications to be built on top of remote
third-party software components or XML web services. Unlike
in-house components or off-the-shelf ones, these remote third-
party components are not under the control of application
developers. They can be upgraded without notice even when
applications are running. This makes it even more important to
ensure that application dependability is not affected by
component failures. RAIC is designed to solve this problem
through an architectural approach.

In this position paper, RAIC is briefly explained. A proof-of-
concept Light example is given to illustrate the functions of
RAIC controllers and how failures in Light components are
detected and masked while the Light applications run smoothly.

2. RAIC OVERVIEW
A redundant component array (also referred to as RAIC) is a
group of similar or identical components. The group uses the
services from one or more components inside the group to
provide services to applications. Applications connect a RAIC
and use it as a single component. Applications typically do not
have any knowledge of the underlying individual components.

Depending on the types and relations of components in a RAIC,
it can be used for many different purposes under different types
of RAIC controllers. A RAIC controller contains software code
that coordinates individual software components in a RAIC. Not
all types of RAIC controllers apply to all combinations of
component types and relations. It is essential to determine
component types and relations prior to configuring a RAIC.

Component types. There are mainly two types of components
in terms of whether or not they maintain internal states: stateless
components and stateful ones.

In a stateful component, each public method can be either state-
preserving, state-changing, or state-defining. The return value
of a method can be either state-dependent or state-independent.

 A RAIC can be either static or dynamic. Components in a static
RAIC are explicitly assigned by mechanisms outside the RAIC,
whereas components in a dynamic RAIC may be discovered and
incorporated by the RAIC controller during run-time. Dynamic
RAIC controllers may use directories such as UDDI to locate
new components [16]. Either way, RAIC controllers allow
addition or removal of components during run-time and take
care of component state recovery when necessary as new
stateful components are added. Note that components may be

added to or removed from a static RAIC at runtime. The
difference between a static RAIC and a dynamic RAIC is that in
a dynamic RAIC, the RAIC controller takes responsibility of
component discovery, whereas in a static RAIC, components are
explicitly assigned to the RAIC controller.

Component state recovery. Component types and method
properties help RAIC controllers to decide what to do in the
event of component state recovery [10]. For stateless
components, no state recovery is necessary. A newly created
component can be used in place of another component right
away. For stateful components, their states must be restored
before they are used in lieu of other components. There are
primarily two ways to perform state recovery: snapshot-based
recovery and invocation-history-based recovery. The snapshot-
based approach assumes that the state of a component is
represented by its snapshot, which is a copy of all of its internal
variables. The invocation-history-based approach assumes that
placing an exact same call sequence to equivalent components
results in the same component state. This implies that
components are deterministic.

An invocation can have a method property of state-defining,
state-changing, or state-preserving. Method properties help
reduce the amount of call histories that are needed for state
recovery purposes.

State-defining methods change the state of a component to
specific states regardless of the previous state of the component.
Different method parameters may bring the same components to
different states. But same method parameters always bring
components to the same states even though their previous state
may be different.

State-changing methods may change the state of a component.
Invocations of state-changing methods must be stored for future
state recovery, unless invocations to state-defining methods are
placed later.

State-preserving methods do not change the state of a
component at all. Thus, it is not necessary to re-invoke calls to
methods of this type. All state-preserving invocations can be
safely trimmed off.

Component relations. There are many aspects of relations
between components. Nearly universally applicable are aspects
such as interfaces, functionalities, domains, and snapshots. Not
applicable to all components, but important nonetheless, are
aspects such as security, invocation price, performance, and
others. Relations of multiple components can be derived from
binary relations among components.

As an example, interfaces of two components can have the
following relations: identical (≡), equivalent (=), similar (≈),
inclusionary (≤), or incomparable (≠).

While it is possible to programmatically determine interface
relations by analyzing interface specifications, other relations,
such as functionality relations, sometimes can only be manually
determined.

The component relations are used to determine the integration
strategy, i.e. to choose how the components interact. For
example, RAIC controllers can partition components inside a

RAIC into equivalent classes and use only components inside
the same class to replace each other until they run out.

RAIC levels. Most of these RAIC strategies and policies are
configurable. RAIC levels describe the level and the purpose of
the integration of components in RAIC. The following is a list
of RAIC levels:

• RAIC-1: Exact mirror redundancy

• RAIC-2: Approximate mirror redundancy

• RAIC-3: Shifting lopsided redundancy

• RAIC-4: Fixed lopsided redundancy

• RAIC-5: Reciprocal redundancy

• RAIC-6: Reciprocal domain redundancy

• RAIC-0: No redundancy

RAIC controllers can also use different invocation models,
including:

• RAIC-a: Sequential invocation

• RAIC-b: Synchronous parallel invocation

• RAIC-c: Asynchronous parallel invocation

RAIC controllers need to make judgment about the return values
from individual components in the redundant array to determine
whether or not to invoke another component, which result to
select, or how to merge return values. To do that, RAIC
controllers need to evaluate return values at run-time. Just-in-
time component testing is designed for this purpose [6].

Just-in-time component testing is different from traditional
software testing. Traditional software testing techniques use
various methods to determine, through test execution, if a
software application, a software component, or an even smaller
unit of software code behaves as expected. Usually this is done
by feeding the software-code-under-test with some pre-
determined data, or test input, and comparing the result with
pre-determined expected output, or test oracle. Traditional
software testing happens in the development phase, when
software is still under development and has not been deployed
to the end user. Code that is used for testing purposes, or test
harnesses, are usually removed or filtered out through
conditional compilation or by other means before the final
software product is deployed. Just-in-time component testing
differs from traditional testing in the following aspects:

1. JIT testing happens even after application deployment. Code
responsible for JIT testing is an integral part of the final
software product and is shipped as such.

2. JIT testing uses mostly live input data that are unknown
ahead of time. Thus it is difficult, sometimes impossible, to
know if the result value is correct. Therefore, heuristics and
other means must be used in place of traditional test oracles.

3. When in rare cases that predetermined test inputs are used in
JIT testing, it is extremely important to ensure that test runs on
these test inputs are very efficient, because any test execution on
predetermined data is pure overhead during run-time and will
directly place a negative impact on application performance. In

comparison, test case efficiency weighs much less in traditional
software testing. In addition, any fabricated test data must not
change the state of the component-under-test unless the pending
invocation is a state-defining one with state-independent return
results.

public interface ILight
{
 [MethodProperty(MthdProperty.StateDefining)]
 int TurnOn();

 [MethodProperty(MthdProperty.StateDefining)]
 int SetIntensity(int intensity);

 [MethodProperty(MthdProperty.StateDefining)]
 int TurnOff();
}

public class Light: MarshalByRefObject, ILight
{
 // ...
}

JIT component testing happens in run-time. This is very similar
to another type of testing - perpetual testing. Perpetual testing is
a class of software testing techniques that seeks seamless,
perpetual analysis and testing of software products through
development, deployment, and evolution [12]. The difference
between JIT testing and perpetual testing is that perpetual
testing is optional and removable, whereas JIT testing is an
integral part of the final product. The purpose of perpetual
testing is to obtain more insight of the software-product-under-
test, which is usually under full control of testers, through
monitoring in the real environment and thus gain data that are
not available from laboratories. JIT testing, on the other hand,
tries to determine on-the-fly if the result from a foreign software
component is trustworthy. The foreign software component is
usually not under control of the application programmer. Even
their availabilities are not guaranteed.

There are two versions of the Light component. The first version
allows arbitrary method invocations. An upgrade to the Light
component, however, requires TurnOn() to be called before
SetIntensity() or TurnOff() can be called2. Similarly, TurnOff()
cannot be called if the light is already off. An exception would
be thrown if these requirements are not met.

There are also two applications that use the Light component.
The first application, LightApp1, simply calls TurnOn(),
SetIntensity(), and TurnOff() repeatedly. JIT component testing is also different from certain self-

checking built-in mechanisms [7,19]. The difference is that JIT
testing code resides in the RAIC controller instead of the actual
components.

public class LightApp1
{
 public static void Main(string[] args)
 {
 int pause_in_seconds = 3;

 Light light = new Light();

 for (int i=1; i<=100; i++)
 {
 light.TurnOn();
 Thread.Sleep(pause_in_seconds * 1000);
 light.SetIntensity(50);
 Thread.Sleep(pause_in_seconds * 1000);
 light.TurnOff();
 Thread.Sleep(pause_in_seconds * 1000);
 }
 }
}

RAIC can be used for purposes such as fault-tolerance, result
refinement, and performance enhancement, to name just a few,
where it is desirable to put components with incomparable
interfaces or exclusionary domains in the same RAIC. When
used for dependability-enhancing purposes only, however, it is
likely that all components in a RAIC have similar interface
relations, identical domain relations, and non-incomparable
functionalities so that they can be used interchangeably. It is
also unlikely that there is a need to invoke different versions of
components-under-upgrade simultaneously except when just-in-
time testing needs component voting to verify return results.
Therefore, for dependability purposes, “RAIC-2a[≈i,≡d]”, a
special case of RAIC, is most commonly used [8].

The second application, LightApp2, is similar to LightApp1. The
difference is that LightApp2 does not call TurnOn() at all.

3. THE LIGHT EXAMPLE1
There is a Light component that provides a simple software light
service, which simulates an adjustable light. The light can be
turned on and turned off. The intensity of the light can be
adjusted through another method invocation. The following is a
skeleton code in C# that defines the Light component [4]. The
MethodProperty attributes specify that all three methods are
state-defining, meaning that they change the state of the
component to a specific state regardless of which state the
component was in prior to the method invocation.

public class LightApp2
{
 public static void Main(string[] args)
 {
 int pause_in_seconds = 3;

 Light light = new Light();

 for (int i=1; i<=100; i++)
 {
 light.SetIntensity(50);
 Thread.Sleep(pause_in_seconds * 1000);
 light.TurnOff();
 Thread.Sleep(pause_in_seconds * 1000);
 }
 }
}

2 In this example, we only consider normal states when deciding
method properties. Therefore, in the new version, all three
methods are still state-defining.

1 The Light component example was used in [18].

Apparently, both Light applications work well with the first
version of the Light component. The upgrade of the Light
component would break LightApp2 but would not affect
LightApp1.

In a distributed system where LightApp1 and LightApp2 run
side-by-side, if an on-line upgrading of the Light component is
attempted, LightApp2 will undoubtedly be interrupted. An
attempt to revert the Light component to its original version
would fix LightApp2, but would deny LightApp1’s access to
upgraded features of the Light component. By using RAIC,
these problems can be avoided. Here is what happens with
RAIC:

Figure 1. With RAIC, the Light applications uses

component LightRAIC instead of component Light.

First, instead of using the concrete Light component directly, the
light applications use a new component LightRAIC, which has
the same interface ILight as Light, as shown in Figure 1.

public class LightRAIC
 : MarshalByRefObject, IRAIC, ILight
{
 //...
}

LightRAIC light = new LightRAIC();

for (int i=1; i<=100; i++)
{
 //...
 light.SetIntensity(50);
 //...
}

Second, in a system-wide configuration, LightRAIC is defined
as “RAIC-2a[]”, which means it uses the sequential invocation
model and treats all components inside as stateful. Its policy is
set to “latest version first”. Then, the first version of the Light
component is added to the RAIC as its only member component.
After that, both LightApp1 and LightApp2 can run smoothly
using their own instances of LightRAIC.

Third, during the on-line upgrading, the upgraded version of the
Light component is added to LightRAIC. In LightApp1, the
RAIC controller switches to the new component because its
policy asks it to always try to use the component with the latest
version. It first brings the status of the new component up-to-
date by placing all calls in its trimmed invocation history to the

new component. Then it places the current call to the new
component and thus switches the application to the new
component. LightApp1 only experiences a brief delay during the
switch. The operation of LightApp1 continues without any
disruption. The length of the delay depends on the number of
items in the trimmed invocation history. In this case, since all
three method invocations are state-defining, there is only one
item in the trimmed invocation history no matter how long the
invocation history is.

In LightApp2, the RAIC controller also tries to switch to the
new component because of the same “latest version first”
invocation policy. Its just-in-time component testing mechanism
detects an exception when the first SetIntensity() method call is
placed without a preceding TurnOn() call. JIT testing treats the
exception as a failure. The RAIC controller then tries the next
available component in the RAIC, which is the original Light
component. Since the state of that component is already up-to-
date, the RAIC controller goes ahead and places the current
method call and returns the result to LightApp2. During the on-
line upgrading, LightApp2 does not experiment any failure at
all. The exception in the upgraded component was masked by
the RAIC controller. LightApp2 notices only a brief delay, the
length of which is approximately one method call to the
upgraded component. After that, all subsequent calls go to the
original component without delay. To LightApp2, the on-line
upgrading never happened.

Note that in this scenario, there is no application-or component-
specific configuration definition that specifies which application
works with which component.

In the pre-.NET era, two versions of the same component (DLL)
cannot appear on one system on Windows platforms, which
means it would be impossible to have LightApp1 using the
upgraded version of the Light component and LightApp2 using
the original one on the same system, let alone upgrading the
component at run-time.

On .NET platforms, with the support for side-by-side execution
of different versions of the same component, it is now possible
to do so. To achieve this, however, extra efforts are required
from component developers, application developers, or system
administrators to explicitly specify which application should use
which version of the component. In addition, to avoid problems
that may be created by over-paranoid component developers,
application developers, or system administrators, .NET platform
allows them to override decisions made by each other, which
undoubtedly could further require more efforts from all of them.
In short, even on the currently state-of-art .NET platforms, this
is achievable but not pain-free.

With RAIC, this scenario is not just achievable, it is trivial with
the help of just-in-time testing and component state recovery.

In this example, the two Light components used are two
versions of the same component. It demonstrates that problems
in on-line upgrading can be avoided by using RAIC [11]. RAIC,
however, is not limited to arrays of different versions of the
same components. In fact, the two Light components here can
be regarded as two different components that provide similar
services and all the results still hold. Examples that use different
Light components can be found at [5].

4. LIMITATIONS AND PENDING TASKS
Currently, both the just-in-time component testing technique
and the component state recovery technique have significant
limitations. For example, if a component is connected to a
persistent external storage such as a database, neither snapshot-
based nor invocation-history-based state recovery technique can
fully recover component states3. While some limitations are
fundamental to the approach and cannot be removed by
improving these two techniques alone, we feel that both
techniques work or could work under broad enough
circumstances that this work could produce practical results. In
addition, many limitations may be lifted by improved
techniques. We are working to add better heuristics to just-in-
time testing and more approaches to component state recovery.
For example, we are considering using component dependency
information to broaden applicability of the component state
recovery technique [17].

5. SUMMARY
In summary, dependability-through-redundancy can be achieved
by adopting a special RAIC architecture style. Just-in-time
component testing and component state recovery techniques can
be used to coordinate redundant components so that applications
are not exposed to the complexity of the integration of
redundant components.

6. REFERENCES

[1] R. Barga and D.B. Lomet, “Phoenix: Making
Applications Robust,” Proceedings of 1999 ACM SIGMOD
Conference, Philadelphia, PA (June 1999) (562-564).

[2] L. Bass, P. Clements, and R. Kazman, “Software
Architecture in Practice”, SEI Series, Addison-Wesley January
1998. ISBN: 0201199300.

[3] A. Bertolino, F. Corradini, P. Inverardi, H. Muccini,
“Deriving Test Plans From Architectural Descriptions”,
Proceedings of the 22nd international conference on Software
engineering, p.220-229, June 04-11, 2000, Limerick, Ireland.

[4] ECMA, “Standard ECMA-334: C# Language
Specification”, December 2001.
http://www.ecma.ch/ecma1/STAND/ecma-334.htm.

[5] C. Liu, "The RAIC Web Site," 2002,
http://www.ics.uci.edu/~cliu1/RAIC.

[6] C. Liu, “Just-In-Time Component Testing and Redundant
Arrays of Independent Components”, Doctoral Dissertation,
Information and Computer Science, University of California,
Irvine (in progress).

[7] C. Liu and D. J. Richardson, "Software Components with
Retrospectors," International Workshop on the Role of Software
Architecture in Testing and Analysis, Marsala, Sicily, Italy,
July, 1998.

[8] C. Liu and D. J. Richardson, “Redundant Arrays of
Independent Components”, Technical Report 2002-09,

3 This problem was addressed by Phoenix [1].

Information and Computer Science, University of California,
Irvine, March 2002.

[9] C. Liu and D. J. Richardson, “The RAIC Architectural
Style”, Submitted to the 10th International Symposium on the
Foundations of Software Engineering (FSE-10), March 2002.

[10] C. Liu and D. J. Richardson, “Specifying Component
Method Properties for Component State Recovery in RAIC”,
Accepted by the Fifth ICSE Workshop on Component-Based
Software Engineering: Benchmarks for Predictable Assembly
(ICSE2002), Orlando, Florida, USA, May 19-20, 2002.

[11] C. Liu and D. J. Richardson, “Using RAIC for
Dependable On-line Upgrading of Distributed Systems”,
Submitted to the Dependable On-line Upgrading of Distributed
Systems Workshop held in conjunction with COMPSAC 2002
(August 26-29 2002, Oxford, England), March 2002.

[12] L. J. Osterweil, L. A. Clarke, D. J. Richardson, and M.
Young, "Perpetual Testing," Proceedings of the Ninth
International Software Quality Week, 1996.

[13] M. D. Rice, S. B. Seidman, “An Approach To
Architectural Analysis And Testing”, Proceedings of the third
international workshop on Software architecture, p.121-123,
November 01-05, 1998, Orlando, Florida, United States.

[14] D. J. Richardson and A. L. Wolf, “Software Testing At
The Architectural Level”, Joint proceedings of the second
international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software
development (Viewpoints '96) on SIGSOFT '96 workshops, p.68-
71, October 16-18, 1996, San Francisco, California, United
States.

[15] M. Shaw and D. Garlan, “Software Architecture:
Perspectives on an Emerging Discipline”, Prentice-Hall,
Englewood Cliffs, NJ, 1996. ISBN: 0131829572.

[16] UDDI, “UDDI 2.0 Specification”, 2001.
http://www.uddi.org/specification.html.

[17] M. Vieira, M. Dias, D. J. Richardson, “Describing
Dependencies in Component Access Points”, Proceedings of the
4th Workshop on Component Based Software Engineering, 23rd
International Conference on Software Engineering (ICSE'01,
Toronto, Canada), May, 2001 pp.115-118.

[18] C. H. Wittenberg, “Testing Component-Based Software”,
International Symposium on Software Testing and Analysis
(ISSTA'2000), Portland, Oregon, 22-25 August 2000.

[19] S. S. Yau and R. C. Cheung, "Design of Self Checking
Software," In Proceedings of the International Conference on
Reliable Software, April, 1975, pp. 450-457.

http://www.ecma.ch/ecma1/STAND/ecma-334.htm
http://www.ics.uci.edu/~cliu1/RAIC
http://www.uddi.org/specification.html

An Idealized Fault-Tolerant Architectural Component

Paulo Asterio de C. Guerra
Cecília Mary F. Rubira

Instituto de Computação
Universidade Estadual de Campinas, Brazil

{asterio,cmrubira}@ic.unicamp.br

Rogério de Lemos

Computing Laboratory
University of Kent at Canterbury, UK

r.delemos@ukc.ac.uk

ABSTRACT
Component-based systems built from existing software

components are being used in a wide range of applications that
have high dependability requirements. In order to achieve the
required levels of reliability and availability, it is necessary to
incorporate into these complex systems means for coping with
software faults. However, the problem is exacerbated if we
consider the current trend of integrating third-party software
components, which allow neither code inspection nor changes.
To leverage the reliability properties of these systems, we need
solutions at the architectural level that are able to guide the
structuring of unreliable components into a fault tolerant
architecture. In this paper, we present an approach for structuring
fault tolerant component-based systems based on the C2
architectural style.

1. INTRODUCTION
Modern computer systems require evolving software that is

built from existing software components, developed by
independent sources [6]. Instead of relying on traditional software
assurance technology that has shown not to be effective for this
kind of systems [24], alternative approaches have to be sought in
order for obtaining trustworthy systems. One of these approaches
is fault-tolerance, which is associated with the ability of a system
to deliver services according with its specification in spite the
presence of faults [12]. In this paper, we employ the concept of
idealized fault tolerant component [1] for describing fault-tolerant
component-based systems, at the architectural level.

For representing software systems at the architectural level,
we have chosen the C2 architectural style for its ability to
incorporate heterogeneous off-the-shelf components [15].
However, this ability of combining existing components is
achieved through rules on topology and communication between
the components (communication through broadcasting of
asynchronous messages) that complicate the incorporation of
fault-tolerance mechanisms into C2 software architectures,
especially those mechanisms for error detection and fault
containment [6, 9].

Research into describing software architectures with respect to
their dependability properties has gained attention recently
[17,20,21]. Nonetheless, rigorous specification of exception
handling models and of exception propagation at the architecture
level remains an open issue [11].

Particularly related to the architectural approach presented in
this paper, there has been work on exception handling and
software fault tolerance. The work on exception handling has
focused on configuration exceptions, which are exceptional events
that have to be handled at the configuration level of architectures
[11]. In terms of software fault tolerance, the principles used for
obtaining software diversity have also been employed in the
reliable evolution of software systems, specifically, the upgrading
of software components. While the core idea of the Hercules
framework [8] is derived from concepts associated with recovery
blocks [17], the notion of multi-versioning connectors (MVC)
[16], in the context of C2 architectures, is derived from concepts
associated with N-version programming [3]. The architectural
approach presented in this paper is distinct from the work referred
above since its focus is on structuring concepts to be applied in a
broader class of exceptional conditions and fault-tolerance
mechanisms. The aim is to structure, at the architecture level,
fault-tolerant component-based systems that use off-the-shelf
components. For that, we define an idealized C2 component with
structure and behaviour equivalent to the idealized fault-tolerant
component [1]. This idealized C2 component can then be used as
a building block for a system of design patterns that implement
the idealized fault-tolerant component for concurrent distributed
systems [5].

The rest of this paper is structured as follows. Section 2 gives
a brief overview of fault-tolerance and the C2 architectural style.
Section 3 describes the proposed architectural solution of the
idealized component, along with an small illustrative example.
Final conclusions are given in section 4.

2. BACKGROUND
The capability of a system to tolerate faults is highly

dependent on the software architecture [4]. Though, the structure
of the system should allow fault tolerant mechanisms to operate in
an orchestrated way with the system functions, without
unnecessarily increasing the complexity of the system [17].

2.1. Fault Tolerance
The basic strategy to achieve fault tolerance in a system can be

divided into two steps [13]. The first step, called error processing,
is concerned with the system internal state, aiming to: detect
errors that are caused by activation of faults, the diagnosis of the

erroneous states, and recovery to error free states. The second
step, called fault treatment, is concerned with the sources of faults
that may affect the system and includes: fault localization, and
fault removal.

Our work mainly concentrates on providing error processing
at the architectural level of software systems. The idealized fault-
tolerant component [1] is a structuring concept for the coherent
provision of fault tolerance in a system (Figure 1). Through this
concept, we can allocate fault-tolerance responsibilities to the
various parts of a system in an orderly fashion, and model the
system recursively, such that each: component can itself be
considered as a system on its own, which has an internal design
containing further sub-components [1].

The communication between idealized fault-tolerant
components is only through request/response messages. Upon
receiving a request for a service, an idealized component will
react with a normal response if the request is successfully
processed or an external exception, otherwise. This external
exception may be due to an invalid service request, in which case
it is called an interface exception, or due to a failure in processing
a valid request, in which case it is called a failure exception.
Internal exceptions are associated with errors detected within a
component that may be corrected, allowing the operation to be
completed successfully; otherwise, they are propagated as
external exceptions.

An idealized component must provide appropriate handlers
for all exceptions it may be exposed to. Thus, the internal
structure of an idealized component has two distinct parts: one
that implements its normal behaviour, when no exceptions occur,
and another that implements its abnormal behaviour, which deals
with the exceptional conditions. This separation of concerns,
applied recursively to components, subsystems and the overall
system, greatly simplifies the structuring of fault tolerance
systems, allowing their complexity to be manageable.

2.2. The C2 Architectural Style
The C2 architectural style is a component-based style directed

at supporting large grain reuse and flexible system composition,
emphasizing weak bindings between components [23]. In this
style components of a system may be completely unaware of each
other, as when one integrates various commercial off-the-shelf
components (COTS), which may have heterogeneous style and
implementation language. These components communicate only
through asynchronous messages mediated by connectors that are
responsible for message routing, broadcasting and filtering.
Interface and architectural mismatches are dealt with by using
wrappers for encapsulating each component [9].

Both components and connectors in the C2 architectural style
(Figure 2) have a top interface and a bottom interface. Systems
are composed in a layered style, where the top interface of a
component may be connected to the bottom interface of a
connector and its bottom interface may be connected to the top
interface of another connector. Each side of a connector may be
connected to any number of components or connectors.

There are two types of messages in C2: requests and
notifications. Requests flow up through the system's layers and
notifications flow down. In response to a request, a component
may emit a notification back to the components below, through its
bottom interface. Upon receiving a notification, a component may
react, as if a service was requested, with the implicit invocation of
one of its operations.

3. PROPOSED ARCHITECTURE

3.1. Overall Structure of the Idealized C2
Component

The objective of this section is to define an idealized C2
component (iC2C), which should be equivalent, in terms of
behaviour and structure, to the idealized fault-tolerant component
(iFTC) [1]. The implementation of an iC2C should be able to use
any C2 component without any restrictions. Furthermore, it
should also be possible for integrating idealized C2 components
into any C2 configurations, thus allowing the interaction of iC2Cs
with other idealized and/or regular C2 components.

The first task was to extend the C2 message type hierarchy to
allow for the various message types defined for the iFTC. This
was a relatively simple task, since service requests and normal

Behavior
Normal

Service
Requests

Normal
Responses

Abnormal
Behavior

Interface
Exceptions

Failure
Exceptions

Internal
Exceptions

Error Recovery

Service
Requests

Normal
Responses

Interface
Exceptions

Failure
Exceptions

External Exceptions

External Exceptions

Figure 1. Idealized Fault-Tolerant Component

Component

Conector

Component

Component Notification events

Request events

Figure 2. C2 style basic elements.

responses of an iFTC were directly mapped as requests and
notifications in the C2 architecture. As interface and failure
exceptions of an iFTC flow in the same direction as a normal
response, they were considered subtypes of notifications in the C2
architecture.

In order to minimize the impact of fault tolerance provisions
on the system complexity we have decoupled the normal activity
and abnormal activity parts of the idealized component. This
outcome has lead to an overall structure for the iC2C that has two
distinct components and three connectors, as shown in Figure 3.

The iC2C NormalActivity component implements the normal
behaviour, and is responsible for error detection during normal
operation, and the signalling of interface and internal exceptions.
The iC2C AbnormalActivity component is responsible for error
recovery, and the signalling of failure exceptions. For consistency,
the signalling of an internal exception by an iFTC was mapped as
a subtype of notification, and, the “return to normal” , flowing in
the opposite direction, was mapped as a request. In the course of
error recovery, the AbnormalActivity component may also emit
requests and receive notifications, which are not represented in
Figure 3. More specifically, this design allows the
AbnormalActivity component to be notified about state changes
of the NormalActivity component and request operations which
may change that state.

The connectors of our iC2C shown in Figure 3 are
specialized, reusable, C2 connectors with the following roles:

(i) The iC2C_bottom connector connects the iC2C with
the lower components of a C2 configuration, and serializes the
requests received. Once a request is accepted, this connector
queues new requests that are received until completion of the first
request. When a request is completed, a notification is sent back,

which may be a normal response, an interface exception or a
failure exception.

(ii) The iC2C_internal connector controls message flow
inside the iC2C, selecting the destination of each message
received based on its originator, the message type and the
operational state of the iC2C (either under normal or abnormal
operation).

(iii) The iC2C_top connector connects the iC2C with the
upper components of a C2 configuration, which may provide
services to the NormalActivity and/or AbnormalActivity
components.

The overall structure defined for the idealized C2 component
makes it fully compliant with the component's rules of the C2
architectural style. This allows an iC2C to be integrated into any
C2 configuration and interact with components of a larger system.
When this interaction establishes a chain of iC2C components the
external exceptions raised by a component can be handled by a
lower level component (in the C2 sense of “upper” and “lower”)
allowing hierarchical structuring of error recovery activities. An
iC2C may also interact with a regular C2 component, either
requesting or providing services.

3.2. Structuring the Normal Activity
Component

In this section, we describe in more detail how the
NormalActivity component can be implemented from existing C2
components.

As previously mentioned, the NormalActivity component is
responsible for the implementation of the normal behaviour of the
idealized C2 component, and the detection of errors that may
affect the normal behaviour. Since a NormalActivity component
should be built from existing C2 components, and these
components might not have error detection capabilities, there is
the need to add error detection capabilities to the existing C2
component. The architectural solution for implementing a
NormalActivity component is shown in Figure 4, for a particular
configuration of two components. The existing C2 component,
identified as the BasicNormal component, and any other
component required for the provision of additional error detection
capabilities, are wrapped by a pair of special-purpose connectors

Service
Requests

Normal
Responses

Interface
Exceptions

Failure
Exceptions

iC2C_top

NormalActivity

iC2C_internal

Internal
Exceptions

Return to
Normal

AbnormalActivity

iC2C_bottom

Service
Requests

Normal
Responses

Interface
Exceptions

Failure
Exceptions

Figure 3. Idealized C2 Component (i2C2)

Normal Activity
Component

normal_top

normal_bottom

BasicNormal
Collaborating
Component

Figure 4. Normal Activity Component

(normal_top and normal_bottom), following the pattern of the
multi-versioning connector (MVC) [16]. These connectors
coordinate the collaboration between the components, and provide
the NormalActivity component with the capabilities for error
detection. These capabilities can be associated to the operations
provided either by the BasicNormal component or the other
collaborating components. Errors are detected by checking the
pre- and post-conditions, and invariants associated to the
operations [21]. The proposed approach was inspired by the
concepts of coordination contracts [2] and co-operative
connectors [14].

On top of the above architecture for an ideal C2 component
(iC2C), the Normal Activity component could also interact with
other components outside the scope of the iC2C. In this case, the
component should be placed higher in the C2 configuration, and
the normal_top connector should act as a proxy of the component
in the context of the NormalActivity component.

Another special case is when components placed at lower
levels of a C2 architecture require to access services provided by
other collaborating components wrapped into the NormalActivity
component. In this case, the interface of the iC2C can extend that
of the BasicNormal for including the required services.

3.3. A Small Example
In order to illustrate the structuring concepts presented in this

paper, we refer to a small example extracted from the Mine Pump
Control System [20]. The subsystem that we consider is
responsible for draining the sump of the mine, and contains the
following existing C2 components:

(i) PumpControlStation - controls the draining of the
sump by turning on/off a physical pump according to the level of
the water in the sump.

(ii) LowWaterSensor - signals when the level of water is
low.

(iii) Pump - commands the pump to be turned on/off.

(iv) WaterFlowSensor - signals whether water flows from
the sump.

The fault model for the above subsystem assumes that
transient faults can affect the operation of the physical pump when
reacting to commands from Pump.

The C2 architecture of the subsystem is shown in Figure 5,
where the IdealPump is implemented as an idealized C2
component (iC2C). The NormalActivity component of
IdealPump, which is PumpNormal, consists of components
Pump and WaterFlowSensor that are joined into a collaboration
that is coordinated by the PumpNormal_bottom connector. This
same connector is responsible for detecting errors in IdealPump,
checking the WaterFlowSensor status after a pump on/off
requested, and raising an internal exception when the expected
condition is not met.

The AbnormalActivity component (PumpAbnormal) is
responsible for processing the error, by issuing retry requests to
the Pump until either the normal operation is resumed or the
exception is propagated to PumpControlStation.

4. CONCLUSIONS
In this paper, we have investigated the structuring of fault-

tolerant component-based systems, at the architectural level. For
the purpose of our work we have employed the C2 architectural
style [23], which is a style that promotes the development of
component-based systems using off-the-shelf components. The
intent was to provide an idealized C2 component with structure
and behaviour equivalent to the idealized fault-tolerant
component [1].

The communication rules between components in the C2
style, namely the synchronicity and broadcasting of messages,
although desirable from the point of view of component-based
design, they complicate the incorporation of fault-tolerance
mechanisms into architectures that are instantiations of this style
[6, 9]. Another difficulty that we encountered was the restrictions
imposed by the C2 topology rules. For solving these problems we
employed constructs similar to multi-versioning connector [16],
consisting of pairs of collaborating connectors to define fault
containment boundaries within the system, and synchronized
communications within the idealized C2 component using
notifications as acknowledgments of requests. In addition to the
work describe above, we have also defined an idealized C2
connector. This fault tolerant architectural element is especially
useful considering that connectors in the C2 architectural style are
more than simple communication primitives, and that the
architectural approach advocated in this paper requires connectors
to be also a place of computation.

Our results demonstrate the feasibility of the proposed
approach for the C2 architectural style, and suggest their
application to other architectural styles also belonging to the
interacting processes style category, which are styles dominated
by communication patterns among independent, usually
concurrent, processes [19].

LowWater

Pump WaterFlow

conn2

conn1

iP_bottom

iP_top

Pump
Abnormal

iP_internal

IdealPump

PumpNormal_bottom

PumpNormal_top

PumpNormal

Pump
ControlStation

conn3

Sensor

Sensor

Figure 5. C2 Configuration for Fault Tolerant
PumpControlStation

ACKNOWLEDGMENTS
Paulo Guerra is partially supported by CAPES/Brazil. Cecília

Rubira and Paulo Guerra are supported by the FINEP/Brazil
“Advanced Information Systems” Project (PRONEX-SAI-
7697102200). Cecília Rubira is also supported by CNPq/Brazil
under grant no. 351592/97-0.

REFERENCES
[1] T. Anderson, and P. A. Lee. Fault Tolerance: Principles and

Practice. Prentice-Hall, 1981.

[2] L. F. Andrade, and J. L. Fiadeiro. Feature modeling and
composition with coordination contracts. In Proceedings
Feature Interaction in Composed System (ECOOP 2001),
pages 49--54. Universitat Karlsruhe, 2001.

[3] A. Avizienis. The N-Version Approach to Fault Tolerant
Software. IEEE Transactions on Software Engineering,
11(2):1491--1501, December 1995.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 1998.

[5] D. M. Beder, B. Randell, A. Romanovsky, and C. M. F.
Rubira. On Applying Coordinated Atomic Actions and
Dependable Software Architectures for Developing Complex
Systems. In Proceedings of the 4th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2001), Magdeburg, Germany, May 2-4,
2001, pp. 103-112, IEEE Computer Society Press.

[6] A. W. Brown, and K. C. Wallnau. The current state of CBSE.
IEEE Software, 15(5):37--46, September / October 1998.

[7] T. D. Chandra. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225--267,
March 1996.

[8] J. E. Cook, and J. A. Dage. Highly reliable upgrading of
components. In Proceedings of the 21st International
Conference on Software Engineering (ICSE'99), pages 203--
212, New York, NY, May 1999. ACM Press.

[9] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch: Why reuse is so hard. IEEE Software, 12(6):17--
26, November 1995.

[10] F. C. Gärtner. Fundamentals of fault-tolerant distributed
computing in asynchronous environments. ACM Computing
Surveys, 31(1):1--26, March 1999.

[11] V. Issarny, and J.-P. Banatre. Architecture-based exception
handling. In Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS'34).
IEEE, 2001.

[12] J. C. Laprie. Dependability: A Unifying Concept for Reliable
Computing and Fault Tolerance, chapter 1, pages 1--28.
Blackwell Scientific Publications Ltd., 1989.

[13] J. C. Laprie. Dependability: Basic concepts and terminology.
In Special Issue of the Twenty-Fifth International Symposium
on Fault-Tolerant Computing (FTCS- 25). IEEE Computer
Society Press, 1995.

[14] R. de Lemos. Describing evolving dependable systems using
co-operative software architectures. In Proceedings of the
IEEE International Conference on Software Maintenance
(ICSM'01), pages 320--329. 2001.

[15] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-
the-shelf components in C2-style architectures. In
Proceedings of the 1997 Symposium on Software Reusability
(SSR'97), 1997.

[16] M. Rakic, and N. Medvidovic. Increasing the confidence in
o-the-shelf components: A software connector-based
approach. In Proceedings of the 2001 Symposium on
Software Reusability (SSR'01), pages 11--18.
ACM/SIGSOFT, May 2001.

[17] B. Randell, and J. Xu. The evolution of the recovery block
concept, In Software Fault Tolerance, chapter 1. John Wiley
Sons Ltd., 1995.

[18] T. Saridakis, and V. Issarny. Developing Dependable
Systems using Software Architecture. Technical report,
INRIA/IRISA, 1999.

[19] M. Shaw, and P. Clements. A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for
Software Systems. In Proceedings of the COMPSAC97, First
International Computer Software and Applications
Conference, 1997.

[20] M. Sloman, and J. Kramer. Distributed Systems and
Computer Networks. Prentice Hall, 1987.

[21] D. Sotirovski. Towards fault-tolerant software architectures.
In R. Kazman, P. Kruchten, C. Verhoef, and H. Van Vliet,
editors, Working IEEE/IFIP Conference on Software
Architecture, pages 7--13, Los Alamitos, CA, 2001.

[22] V. Stavridou, and R. A. Riemenschneider. Provably
dependable software architectures. In Proceedings of the
Third ACM SIGPLAN International Software Architecture
Workshop, pages 133--136. ACM, 1998.

[23] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and D.
L. Dubrow. A component- and message-based architectural
style for GUI software. IEEE Transactions on Software
Engineering, 22(6):390--406, June 1996.

[24] G. Vecellio, and W. M. Thomas. Issues in the assurance of
component-based software. In Proceedings of the 2000
International Workshop on Component-Based Software
Engineering. Carnegie Mellon Software Engineering
Institute, 2000.

Tolerating Architectural Mismatches

Rogério de Lemos
University of Kent at

Canterbury
UK

+44-1227-823628
r.delemos@ukc.ac.uk

Cristina Gacek
University of Newcastle upon

Tyne
UK

+44-191-222-5153
cristina.gacek@ncl.ac.uk

Alexander Romanovsky
University of Newcastle upon

Tyne
UK

+44-191-222-8135
alexander.romanovsky@ncl.ac.uk

ABSTRACT
The integrity of complex software systems built from existing
components is becoming more dependent on the integrity of the
mechanisms used to interconnect these components, in particular,
on the ability of these mechanisms to cope with architectural
mismatches that might exist between components. This paper is
based on the assumption that architectural mismatches always
exist in such systems, so the need to handle them in run-time.
When developing complex software systems, the problem is not
only to identify the appropriate components, but also to make sure
that these components are interconnected in a way that allows
mismatches to be tolerated. The resulting architectural solution
should be a system based on existing components, which are
independent in their nature, but are able to interact in well-
understood ways. To find a solution to this problem we apply
general principles of fault tolerance in the context of dealing with
architectural mismatches

1. INTRODUCTION
There are several concepts that are relevant to addressing the
tolerance of architectural mismatches in software systems. In this
section we introduce the concepts of software architectures,
architectural mismatches, and dependability which are pivotal for
understanding the need for tolerating architectural mismatches in
software systems, as well as the approach we are taking to tackle
this problem.

Software architecture can be defined as the structure(s) of a
system, which comprise software components, the externally
visible properties of those components and the relationships
among them [1]. A software architecture is usually described in
terms of its components, connectors and their configuration. The
way a software architecture is configured defines how various
connectors are used to mediate the interactions among
components.

As a result of combining several architectural elements using a
specific configuration, architectural mismatches may occur [6].
Architectural mismatches are logical inconsistencies between
constraints of various architectural elements being composed. An
architectural mismatch occurs when the assumptions that a
component makes about another component, or the rest of the
system, do not match. That is, the assumptions associated with the
service provided by a component are different from the
assumptions associated with the services required by a component
for behaving as specified [8]. These assumptions can be related to
the nature of components and connectors (control and data
models, and synchronisation protocols), the global system
structure, or the process of building the system [6, 9].
Traditionally, mismatches have been dealt with statically [5, 3],
by means of analysis and removal.

Dependability is a vital property of any system justifying the
reliance that can be placed on the service it delivers [7]. A system
failure occurs when a system service deviates from the behaviour
expected by the user. An error is the part of the system state that
is liable to lead to the subsequent failure. The adjudged or
hypothesized cause of an error is a fault. Fault tolerance is a
method of achieving dependability working under assumptions
that a system contains faults (e.g. ones made by humans while
developing or using systems, or caused by aging hardware) and
aiming at providing the required services in spite of them. Fault
tolerance is carried by error processing, aiming at removing errors
from the system state before failures happen, and fault treatment,
aiming at preventing faults from being once again activated. Error
processing typically consists of three steps: error detection, error
diagnosis and error recovery. Providing system fault tolerance
plays an ever-growing role in achieving system dependability as
there are many evidences proving that it is not possible to rid the
system and system execution from faults. These include the
growing complexity of software, operators’ mistakes, and failures
in the environment in which the system operates.

There are many reasons to support our claim that it is impossible
to detect and correct all possible architectural mismatches
statically, and because of this, we believe that it is vital to be able
to build systems that can tolerate such mismatches. This is mainly
due to the complexity of modern systems and restricted
applicability of the static methods of correcting mismatches (c.f.
software design faults). First of all, complex applications have
complex software architectures in which components are
interconnected in complex ways and have many parameters and
characteristics to be taken into account while building, they have

to meet many functional and non-functional requirements which
often have to be expressed at the level of software architecture.
Secondly, architects make mistakes while defining software
architectures, in general, and while dealing with mismatches, in
particular. Thirdly, there is a strong trend in using off-the-shelf
elements while building complex applications and because of the
very nature of such elements some information about their
architectural characteristics may be unavailable. Lastly, current
software systems may undergo dynamic reconfiguration, adding
uncertainty about the various architectural elements present at any
point in time. In this paper we show that architectural mismatches
can be tolerated.

2. ARCHITECTURAL MISMATCHES
All Architectural mismatches occur because of inconsistencies
among the given architectural elements. These inconsistencies can
be stated in terms of the features (or characteristics) exhibited by
the parts at hand. Features of architectural elements and their
groupings may be inherent to the architectural style(s) used, or
specific to the application at hand. This occurs because
architectural styles impose constraints on the kinds of
architectural elements that may be present and on their
configurations [9], yet they do not prescribe all the features that
may be present in an application [5]. During software
development, the software architecture is incrementally refined
following the refinement of the system’s definition. Initially, the
software architecture is defined in terms of architectural styles,
thus binding the style specific features. Subsequently, as the
architecture is further refined towards the life-cycle architecture,
application specific features are bound. This is exemplified on
Table 1 (adapted from [4]). Every time an architectural feature is
bound there exists the potential for an architectural mismatch to
be introduced. Hence, we refer to architectural mismatches as
being: style-specific if their presence is brought about by some
architectural feature(s) the style(s) imposes; or as application-
specific if their presence is due to architectural decisions imposed
by the application at hand (not the particular style(s) used).

We believe that in the context of dependability, an architectural
mismatch is an undesired, though expected, circumstance, which
must be identified as a design fault (in the terminology from [7]).
When a mismatch is activated, it produces an error caused by
mismatch (ECM) that can either be latent or detected. Similarly to
errors, only a subset of ECMs can be detected as such (see Figure
1). Additional information is needed to allow an error to be
associated with a mismatch. Eventually, there is a system failure
when the ECM affects the service delivered by the system.

For describing the means for dealing with architectural
mismatches, we draw an analogy with faults, which can be
avoided, removed or tolerated. Faults are tolerated when they
cannot be avoided, and their removal is not worthwhile or their
existence is not known beforehand. The same kind of issues
happens with architectural mismatches. Mismatches can be
avoided by imposing strict rules on how components should be
built and integrated, which leads to bespoke products. Mismatches
can be removed when integrating arbitrary components by using
static analysis methods and techniques [5, 3]. However, this does
not guarantee the absence of mismatches since risk and cost
tradeoffs may hinder their removal, or system integrators may not
be aware of their existence (similarly, research has shown that
residual faults in software systems are inevitable). Consequently,
mismatches should be tolerated by processing ECMs and treating
mismatches, otherwise the system might fail.

3. MISMATCH TOLERANCE
The tolerance of architectural mismatches during runtime relies on
ECM processing, which comprises three steps [7]. These are:

• The detection of ECMs, which identifies erroneous states
that were caused by mismatches.

• The diagnosis of ECMs, which assesses the system
damages caused by the detected ECMs.

• The recovery from ECMs, which brings the system to an
error-free state.

However, error processing is not sufficient if we want to avoid the
recurrence of the same architectural mismatch, also there is the
need to treat mismatches, in the same way that faults are treated
[7]. Mismatch treatment involves diagnosis, which determines the
cause (localization and nature) of the ECM, isolation that prevents
a new activation of the mismatch, and reconfiguration, which
modifies the structure of the system for the mismatch free
components to provide an adequate, perhaps degraded, service.

The intent of fault tolerant techniques is to structure systems to
inhibit the propagation of errors, and to facilitate their detection
and the recovery from them. Similarly, when dealing with
architectural mismatches, there is the need to structure systems at
the architectural level to avoid the propagation of ECMs, to
facilitate ECMs detection and recovery, and to make difficult the
reactivation of architectural mismatches.

The particular problem associated with mismatch tolerance is that
we are dealing with two levels of abstraction: the architectural
level where the mismatches are introduced, and the execution
level where the ECMs detection and recovery takes place. Hence,
the needs for identifying what are the potential consequences
upon the state of the system when an architectural mismatch is
activated. This additional information is fundamental for
distinguishing ECMs from other system errors, thus providing the
basis for defining an architectural solution for tolerating
mismatches.

A motivation for specifying mechanisms for handling
architectural mismatches at the architectural level, instead, for
example, during implementation, is that the nature of mismatches
and the context in which they should be fixed would be lost at the

ECMs
Detected
 ECMs

Errors

Detected
 Errors

Figure 1. Detected errors caused by mismatches

later stages of software development. Making once again an
analogy with fault tolerance, it has been shown that the same type
of problem exists when exception handling is not considered in
the context of the software lifecycle [2]. Moreover, we cannot
expect that a general runtime mechanism would be able to handle
a wide range of architectural mismatches, in the same way that
there is no sufficiently general fault tolerant mechanism that can
handle all classes of faults. It is envisaged that different classes of
mismatches will require different types of detection mechanisms
and fixes that have to be specified at the architectural level.

3.1 ECMs’ Processing
As previously discussed, the detection of an ECM implies the
presence of a mismatch. For a mismatch to be activated some
preconditions must be satisfied, which can be defined in terms of
systems states and features’ inconsistencies [5].

Upon error detection, one must first determine whether that
particular instance is an ECM or not. For an error to be detected
as an ECM we need additional information at run time, about
system’s states and features of the relevant architectural elements,
that would enable to associate that error with a mismatch. This
ought to be done based on the particular error observed and on the
presence of the preconditions required to activate it. The level of
difficulty encountered on recovering from ECMs will very much
depend on the individual error’s characteristics and the
architecture at hand. The treatment of faults that do cause ECMs
will depend on whether the relevant features are style or
application specific. It is our current belief that ECMs caused by
style-specific features would require more fundamental changes to
the system at hand, but this conjecture requires further study to be
properly supported or contradicted.

3.2 Examples
In the rest of this section we briefly outline several simple
examples demonstrating how our approach can be used.

First of all, let us consider a simple application-specific mismatch.
Mismatch “sharing or transferring data with differing underlying
representations” (mismatch 42 in [5] occurs when, for example, a
component provides a value in feet and another component
requires it in meters. In this case, “data transfer” is the conceptual
feature used for ECM detection and recovery at the level of the
application. The meta information that is required for detection
and recovery concerns types of data to be transferred. Fault
treatment may consist of replacing a connector with a new one
that transforms the data.

The second example is that of application and style-specific
mismatches. It happens, for example, when several components
are connected in a system but only some of them can be
backtracked (mismatch 28 from [5]). If any of such interconnected
components backtracks, it has to inform all the components with
which it interacts. To detect such a mismatch during run-time it is
necessary to have additional information on the ability of each
component to backtrack (conceptual feature “backtracking”), on
the fact that backtracking is initiated by a component and on a set
of interconnected components to be involved in backtracking. The
detection of the ECM can be at the style level, but the recovery
should be at the application level because, generally speaking, the
application decides how to proceed with inconsistent data.

A style-specific mismatch happens, for example, when a non-
reentrant component is called without waiting for the previous call
to be completed (mismatch 24 from [5]). In this case we have a
style-specific mismatch that can be detected and recovered if
additional mechanisms are incorporated into the basic style
(which can be based on the conceptual feature “re-entrance”). For
example, an instantiation of a style should be able to detect any
attempts to re-enter a process being executed. In the context of the
pipe and filter architecture, it can happen that two filters try to
access a single process in a third filter (see Figure 2). An extended
style should provide means for detecting the ECM and for local
recovery by either ignoring the second request or introducing
additional concurrency control into the style (the simplest of
which would be just delaying the second request).

filterA

filterB

filterC

4. CONCLUSIONS
The problem of tolerating architectural mismatches during
runtime can be summarised as follows. When an error caused by
mismatch (ECM) is detected in the system, mechanisms and
techniques have to recover the state of the system to an error free
state, otherwise the erroneous state of the system can propagate,
eventually leading to a system failure. However, the detection and
recovery of an error is not enough for maintaining the integrity of
the system services because if the mismatch, which has caused the
detected error, is not treated, it can yet again be activated and be
the cause of other errors. Similarly to fault tolerance in which one
cannot develop techniques that can tolerate any possible faults, it
is difficult to develop techniques that are able to deal with all
types of architectural mismatches, hence assumptions have to be
made about the types of mismatches that caused the errors to be
detected and handled during runtime.

In this paper, we have mainly stated the problems and outlined a
general approach to handling architectural mismatches during run
time. Our preliminary analysis shows that a number of particular
mismatch tolerance techniques can be developed depending on
the application, architectural styles used, types of mismatches,
redundancies available, etc. It is clear for us that there will always
be situations when mismatches should be avoided or removed
rather than tolerated. In our future work we will be addressing
these issues, trying to define in a more rigorous way the
applicability of the approach and to develop a set of general
mismatch tolerance techniques. Some of the possible approaches
are to modify how existing architectural styles are applied, to
design a set of connectors capable of tolerating typical
mismatches, to extend existing components and connectors with
an ability to execute exception handling, and to develop a number
of handlers that are specific for mismatches of different types.

Figure 2. A non-reentrant component in a pipe-and-filter
architecture

ACKNOWLEDGMENTS
Alexander Romanovsky is supported by European IST DSoS
project, and Cristina Gacek by the EPSRC (UK) DIRC project.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman. Software Architecture

in Practice: Addison-Wesley. 1998.
[2] R. de Lemos, A. Romanovsky. “Exception Handling in the

Software Lifecycle”. International Journal of Computer
Systems Science & Engineering 16(2). March 2001. pp. 167-
181.

[3] A. Egyed, N. Medvidovic, C. Gacek. “Component-Based
Perspective on Software Mismatch Detection and
Resolution”. IEE Proceedings on Software 147(6).
December 2000. pp. 225-236.

[4] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the
Definition of Software Architecture”. Proceedings of the
First International Workshop on Architectures for Software
Systems – In Cooperation with the 17th International
Conference on Software Engineering, D. Garlan (ed.),
Seattle, WA, USA, 24-25 April 1995. pp. 85-95.

[5] C. Gacek. Detecting Architectural Mismatches during
System Composition. PhD Dissertation. Center for Software
Engineering. University of Southern California. Los Angeles,
CA, USA. 1998.

[6] D. Garlan, R. Allen, J. Ockerbloom, “Architectural
Mismatch: Why Reuse is so Hard”. IEEE Software 12(6).
November 1995. pp. 17-26.

[7] J.-C. Laprie. “Dependable Computing: Concepts, Limits,
Challenges”. Special Issue of the 25th International
Symposium On Fault-Tolerant Computing. IEEE Computer
Society Press. Pasadena, CA. June 1995. pp. 42-54

[8] P. Oberndorf, K. Wallnau, A. M. Zaremski. “Product Lines:
Reusing Architectural Assets within an Organisation.
Software Architecture in Practice. Eds. L. Bass, P. Clements,
R. Kazman. Addison-Wesley. 1998. pp. 331-344.

[9] M. Shaw, D. Garlan. Software Architecture: Perspectives on
an Emerging Discipline. Prentice-Hall. 1996.

 Early Cycle 1 End of Cycle 1 Cycle 2 Cycle 3

Definition of
operational
concept and
system
requirements

Determination of top-
level concept of

operations

Determination of top-
level concept of

operations

Determination of
detailed concept of

operations

Determination of IOC
requirements, growth

vector

Definition of
system and
software
architecture

System scope/
boundaries/ interfaces

System scope/
boundaries/ interfaces

Top-level HW, SW,
human requirements

Choice of life-cycle
architecture

Elaboration of
software
architecture

No explicit architectural
decision

Small number of
candidate architectures

described by
architectural styles

Provisional choice of
top-level information

architecture

Some components of
above TBD (low-risk
and/or deferrable)

Binding of
architectural
features

No architectural features
explicitly defined

Fixed architectural
features that are defined
by architectural styles,

others are unknown

Architectural features
defined by architectural
styles are fixed as are

some application specific
ones, others are

unknown

Most architectural
features are fixed, the

few unknown ones relate
to parts of the

architecture still to be
defined

 Table 1. Refinement of software architecture under a Spiral Model Development

Architectural Prescriptions for Dependable Systems

Manuel Brandozzi
UT - ARISE

Advanced Research In Software
Engineering

The University of Texas at Austin
 mbrandozzi@ece.utexas.edu

 Dewayne E. Perry
UT - ARISE

Advanced Research In Software
Engineering

The University of Texas at Austin
perry@ece.utexas.edu

ABSTRACT
In this paper, we advocate the enforcement of dependability
requirements at the architectural design level of a software
system. We illustrate how to achieve this by using our
methodology, which provides a guideline of how to design an
architectural prescription from a goal oriented requirements
specification of a system. We distinguish between separation,
additive and integral non-functional requirements, and discuss
their different effects on a prescription. In particular, additive
non-functional requirements provide separation of concerns by
only adding to the system some new components to achieve
them. Dependability requirements are a particular kind of non-
functional requirements and often they are additive.

1. INTRODUCTION
Experience has shown that, for complex software systems, it’s
very important to take into account the non-functional
requirements as early as possible during the systems’ design
process. This means that they should be taken into account
already at the architectural design level. By doing so, it’s
possible to understand what the implications of this kind of
requirements are on the high level components and on the high
level structure of the systems.

Dependability requirements are a particular type of non-
functional requirements. In this paper we adopt a broad
definition of dependability and we intend it to “embrace all those
aspects of behavior upon which the user of a system might need
to place dependence: it thus includes reliability, safety,
availability and security” [3].

Another way that an architectural prescription favors the design
of dependable systems is by enabling the reuse of the high level
design of systems that, having been already deployed, have been
demonstrated to be dependable. A prescription allows the
architect to reuse all the components and the topology that derive
from particular goals (i.e. requirements), including dependability
requirements. Generally, a brand new system design has a higher
likelihood of failure than a well tested one.

Before illustrating our approach for dependability enforcement at
the architectural level in section 4, we provide an introduction to
goal oriented requirements and to architectural prescriptions in
sections 2 and 3 respectively. In section 5 we illustrate our
approach with an example and we summarize our contributions
and discuss future work in section 6.

2. GOAL ORIENTED REQUIREMENTS
SPECIFICATIONS AND KAOS

Goal oriented requirements specifications are, among
all the kinds of requirements specifications, those that are closer
to the way humans think and hence easier to understand by all the
stakeholders in the development process. KAOS is the goal
oriented specification language, introduced by A. van
Lamsweerde [2], that we used in our methodology.

The KAOS’ ontology is composed of objects, operations and
goals. Objects can be agents (active objects), entities (passive
objects), events (instantaneous objects), and relationships (objects
depending on other objects). Operations are performed by an
agent and change the state of one or more objects. Operations are
characterized by pre-, post- and trigger- conditions.
Goals are the objectives that the system has to achieve. In
general, a goal can be AND/OR refined till we obtain a set of
achievable sub-goals. The goal refinement process generates a
goal refinement tree. All the nodes of the tree represent goals.
The leaves of the tree may also be called requisites. The
requisites that are assigned to the software system are called
requirements; those assigned to the interacting environment are
called assumptions. Here is an example of goal declaration in
KAOS:

Goal Maintain[AuthorizedAccessesOnly]
InstanceOf SecurityGoal
Concerns StockValues, BankerActor
ReducedTo

ConfidentialityOfAccessPassword,
ConfidentialityOfTransmittedStockValues

InformalDef
Access passwords must remain confidential. Stock
values information has to be released only to those
providing the correct passwords.

Example 1: a goal specification in KAOS.

The keyword Goal denotes the name of the goal; InstanceOf
declares the type of the goal; Concerns indicates the objects
involved in the achievement of the goal; ReducedTo contains the
names of the sub-goals into which the goal is refined. Finally,

there is InformalDef: the informal definition of the goal. There
can also be an optional attribute FormalDef, which contains a
formal definition of the goal (that can be expressed in any formal
notation such as linear temporal logic).

3. ARCHITECTURAL PRESCRIPTIONS
AND PRESCRIPTOR
An architectural prescription [1] lays out the space for the system
structure by selecting the architectural components (processes,
data, and connectors), their relationships (interactions) and their
constraints. In a prescription, the fundamental characterization of
components is given by the goals they are responsible for (that
are their constraints). Components are further characterized by
their type: processing, data or connector. The processing
components are those that provide the transformation on the data
components. The data components contain the information to be
used and transformed. The connector components, which may be
either implemented by data components, processing components
or a combination of both, are the glue that holds all the pieces of
the system together. The interactions of the components among
each other, together with the restriction of their possible number
of instances characterize the topology of the system.

Example 2 contains the architecture prescription of a data
component specified in Preskriptor, our architectural prescription
language that takes KAOS requirements specifications as starting
point.

Component StockValues [1, 1]
Type Data
Constraints Maintain[LatestStockValuesInfo], …
Composed of DB [1,1], Server [1,1]
Uses MarketConnect to interact with

StockMarket

Example 2: a component’s specification in Preskriptor.

The field Component specifies the name of the component. Type
denotes the type of the component. Constraints is the most
important attribute of a component. It denotes which are the
requirements that the component is responsible for. Note that the
semantics of any component in Preskriptor is provided by its
constraints and only by them. We use here the term constraint to
denote both functional and non-functional constraints (both
corresponding to requirements on the system). Composed of
identifies the subcomponents that implement the component.
The last attribute, Uses, indicates what are the components used
by the component. Since interactions can only happen through a
connector, the Uses attribute has the additional keyword to
interact with that indicates which components the component
interacts with using a particular connector. The symbol “/”
means no attribute and, since now, we will omit the fields whose
value is none.

Without going into the details of how to get a prescription from
the requirements [1], it’s important to know that at the beginning
some candidate components for the architecture are proposed,
then the functional goals first, and non-functional goals
afterwards, are assigned, one at a time, to a subset of the potential
components. Those components who do not contribute to the
achievement of any goal are discarded from the system. The next

section explains in some detail how to account for non-functional
requirements in an architectural prescription.

4. NON-FUNCTIONAL REQUIREMENTS
IN PRESCRIPTION DESIGN
Taking into account Non-Functional Requirements (NFRs) while
designing an architectural prescription has, in the most general
case, three kinds of effects on the already designed prescription
of a system:

1) The introduction of new components.
2) The transformation of the system’s topology, i.e. a

change on the relationships among the system’s
components.

3) The further constraining of already existing
components.

Some non-functional requirements allow for separations of
concerns among the architecture components; other requirements,
instead, are spread throughout the code: they reach every
component of the system like blood vessels reach every cell of
our body.

We denote those NFR that enable separation of concerns with
respect to an architecture as Separation Non-Functional
Requirements (SNFR). SNFR are those requirements that can be
achieved by further constraining, adding new components and/or
by transforming the topology of only a precisely identifiable
subset in strict sense of the architecture’s components. By
“precisely identifiable” subsystem we mean that the subsystem
can be characterized by a property. By subsystem “in strict
sense” we exclude the complete system, case in which we don’t
achieve separation of concerns. A precisely identifiable
subsystem in strict sense can be, for example, a single component
of the system. This happens in the case of a performance goal
when a single component is the bottleneck for computation.
Another example of a precisely identifiable subsystem is the set
including all the connectors from a particular component, and the
component itself, like in the fault tolerance example that we will
illustrate in next section.

The simplest SNFRs are those that in some architectures can be
achieved by only adding to the system new components and the
relationships of these new components with other components,
i.e. by composing some existing components with new ones
without changing the constraints of any of the old components.
We denote this kind of NFRs as Additive Non-Functional
Requirements (ANFRs).

Those NFRs that are not SNFRs are denoted as Integral Non-
Functional Requirements (INFRs). These requirements affect the
entire system or a subset of the system for which no
characterizing property can be found, i.e. the system is not
precisely identifiable. A way to achieve this other kind of
requirements is by making all components conform to a
particular style. An example of INFR is the goal for a system is
to be composed by only components that conform to CORBA.
No matter what, this requirement has to be added as a constraint
to all the system’s components.

In general, whether an NFR is integral, separation, or additive
depends on the architecture on which we want to achieve it. It
also may depend on the level of refinement of the architecture.
In fact, what at a finer resolution of an architecture is a clearly
identifiable subset in strict sense may become the whole set of
the system’s components at a coarser refinement.

5. ENFORCING DEPENDABILITY AT
THE ARCHITECTURAL LEVEL
Let’s see, with the aid of an example, how a dependability
requirement (in this case fault tolerance) can be handled by an
architectural prescription.

Any computer network may have, even in absence of catastrophic
events, a certain number of machines that crash or become
inaccessible. Let’s consider the case of a distributed system, that
runs on such a network, and that contains a data component
whose accessibility at any time is vital. The data component can,
for example, contain the value of the stocks managed by an
investment bank. It’s vital that the bankers can access at any
time the current value of a stock. Not being possible to do so
could cost to the bank thousands of dollars, if not millions!

This kind of fault tolerance problem has been widely studied in
the distributed systems community and a standard solution to it is
the following. Suppose that in a network with x nodes there can
be at most t (with t < x) nodes that can fail at the same time. We
can achieve a fault-tolerant real-time access to the vital data
object StockValues, by having, at least, t+1 copies of the object
stored in t+1 different nodes. To guarantee this we also need
some protocol that manages the access to the object from outside
the network, and that updates of the copies of the object to
achieve consistency among them.

Example 3. contains the prescription of a simple distributed
system. This is the prescription of the system before we take into
account the fault tolerance goal.

Component StockValues [1, 1]
Type Data
Constraints Maintain[LatestStockValuesInfo], …
Composed of DB[1,1], Server[1,1]
Uses MarketConnect to interact with StockMarket

Component BankerClient [0, n]
Type Processing
Constraints …
Uses

StockValuesAccess to interact with V
BankerUserInterface to interact with

BankerActor

Component StockValuesAccess [0, n]
Type Connecting
Constraints Maintain[AuthorizedAccessesOnly]

Example 3: prescription for a stock values information
system

In the prescription of example 3 we have only one copy of the
data component StockValues, the component storing the latest

values of the stocks belonging to different markets that is updated
by using MarketConnect connecting it to the stock markets. The
prescription allows any number n of components BankerClient to
be instantiated. BankerClient is the piece of software running on
the bankers’ machines.

The prescription requires the system to have communication
between BankerClient and StockValues through connector
StockValuesAccess, that has to achieve the security goal
Maintain[AuhorizesAccessesOnly] (defined in Example 1.)
together with other goals (such as mutual exclusion) not included
here for simplicity. Given a particular choice of implementation
of connector StockValuesAccess, the low level design may
instantiate the connector only once for all the n Clients,
instantiate it n times, or any other number of times between 0 and
n.

Figure 1. Topology graph of the prescription in example 3.

Figure 1. contains the graphical representation of the topology of
an instantiation of the same prescription. It’s the topology of an
instantiation of the prescription because for each component a
given number of instances has been chosen. For example, there
are only three clients, rather than an indefinite number; and there
is only one instance of connector StockValuesAccess for the
interaction of all the clients with StockValues, rather than an
indefinite number of connectors that is at most equal to the
number of BankerClient components. Graphical representations

BankerClient 1 BankerClient 2 BankerClient 3

StockValuesAccess

Stock Values

MarketConnect

StockMarket 1 StockMarket 2

Legend

Uses Connector

Processor Data

are useful to better understand the topology that is specified by
the prescription.

In any prescription graph, the arrow representing the Uses
attribute goes from the component C, that needs some
information from the interaction, to a connector CN that makes
the interaction possible; and then from the connector CN to those
components that provide the information needed by C.

Example 4. shows the same prescription after it has been
transformed to account for the non-functional goal of fault
tolerance of the component StockValues.

Component StockValues [t+1, n]
Type Data
Constraints Maintain[LatestStockValuesInfo], …
Composed of DB[1,1], Server[1,1]
Uses

MarketConnect to interact with StockMarket
InterCopyCoordinator to interact with

StockValues

Component InterCopyCoordinator [1, n]
Type Connecting
Constraints Maintain[FaultTolerance]

Component StockValuesAccess [0, n]
Type Connecting
Constraints Maintain[AuthorizedAccessesOnly]

Component StockValueFTAccess [1,n]
Type Connecting
Constraints

Maintain[FaultTolerance],
Maintain[AuthorizedAccessesOnly]

Composed of
IntercopyCoordinator [1,n], StockValuesAccess [0,n]

Component BankerClient [0, n]
Type Processing
Constraints …
Uses

 StockValuesFTAccess to interact with
StockValues

BankerUserInterface to interact with
BankerActor

Example 4: prescription for a stock values information
system with fault tolerance

Like many dependability requirements, the non-functional fault
tolerance requirement is an ANFR. It’s an ANFR because it can
be assigned as a constraint only to the new connector
InterCopyCoordinator, which coordinates the now multiple
copies of component StockValues. This is an example of
achieving an ANFR via connectors; another such example can be
found in a system developed by the DSSA group [5], case in
which the NFR is performance.

The system specified by the new version of the prescription has
to have at least t+1 (t being the maximum number of faults)
copies of component StockValues, rather than only one like in its

pre-fault tolerance prescription. StockValues is now using the
newly added connector InterCopyCoordinator. To achieve the
fault tolerance goal, among the other things, this connector will
have to make it sure that, at any time, there are at least t+1 copies
of StockValues. Also, it has to assure that the different copies
are, somehow, kept consistent at least from the perspective of the
rest of the software system. The BankerClients interacting with
component StockValues must always get the latest value for the
stocks. The access to StockValues by two or more clients at the
same time has to abide to the same mutual exclusion policies that
held when only an instance of StockValues was in the system.
We designed the prescription so that InterCopyCoordinator
keeps the topological transformations transparent to
BankerClient. The only change in BankerClient’s specification is
that now this component uses connector StockFTValuesAccess
(resulting from the composition of InterCopyCoordinator and
StockValuesAccess) to interact with StockValues, rather than
using StockValuesAccess. It’s the InterCopyCoordinator’s
subcomponent of StockFTValuesAccess that hooks into
StockValues to guarantee that BankerClient always gets the
updated values of the stocks.

Figure 2. Topology graph of the prescription in example 4.

In a particular implementation of the prescription in a latter phase
of the development process, InterCopyCoordinator may take care
of the creation of t+1 copies at start-up, as well as creating new
copies, moving the existing ones, or remove copies whenever
some node fails or to save on communication costs like in
illustrated in [4].

Connector

StockValues 1 StockValuesAccess

InterCopyCoordinator StockValues 2

StockValues 3

MarketConnect

StockMarket 1 StockMarket 2

Legend

Uses

Processor Data

BankerClient 3 BankerClient 2 BankerClient 1

The effects of the topological transformation are evident if we
have a look the topology graph of the new prescription in figure
2. Here, the graph is the same than the one of figure 1. apart
from having substituted the single component StockValues with a
more complex component that is composed by the different
StockValues instances (three in the example) and the
IntercopyCoordinator used by them. The double edged arrows
are a syntactic shortcut to make the graph more elegant: they
represent all the arrows that depart from and go to a particular
component.

6. CONCLUSION
Dependability requirements are a large subset of non-functional
requirements. To better achieve them and manage their changes
they should be taken into account already at the architectural
design level. We provided an overview of our methodology to
design an architectural prescription given a set of goal oriented
requirements specifications.

The requirements can either be functional or non-functional.
Separation Non-Functional Requirements (SNFRs) enable
separation of concerns in achieving them. Their effects are
limited to a subset of the system identifiable by a property (like
the set of connectors outgoing from a particular component). In
particular, we illustrated with an example how a fault tolerance
requirement for an object in a network (that is an ANFR, an
easier case of SNFR) can be achieved by a given architecture.
This was done by introducing in the architecture a new connector
and modifying the topology of the system locally to one of its
components. Many other dependability requirements, including

security, performance and other kinds of fault tolerance can be
ANFRs with respect to many architectures.
Our future work will be aimed at finding out domain independent
ways to compositionally transform the prescription of a system to
account for ANFRs and at developing a tool to do so
automatically.

5. REFERENCES
[1] Brandozzi, M., and Perry, D. Transforming Goal Oriented
requirements specifications into Architectural Prescriptions.
Proceedings STRAW ’01, ICSE 2001, Toronto, May 2001, 54-61

[2] Van Lamweerde, A., Darimont, R., and Massonet, P. Goal-
Directed Elaboration of Requirements for a Meeting Scheduler:
Problems and Lessons Learnt. Proceedings RE’95 – 2nd IEEE
Symposium on Requirements Engineering, York, March 1995,
194-203

[3] Littlewood, B. Evaluation of software dependability.
Computing Tomorrow: Future Research Directions in Computer
Science, Book, I. Wand and R. Milner, 1996

[4] Johnson, G., Singh, A. Stable and fault-tolerant object
allocation. Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing, July 16-19,
2000, Portland, Oregon 259-268

[5] Tracz, W. Domain-Specific Software Architecture
Pedagogical Example. ACM Software Engineering Notes, July
1995, 49-62.

Integration of Architecture Specification, Testing and
Dependability Anal ysis

Swapna S. Gokhale, Joseph R. Horgan
Telcordia Technologies

445 South Street
Morristown, NJ, 07960, USA

swapna,jrh@research.telcordia.com

Kishor S. Trivedi
Dept. of ECE, CACC

Duke University
Durham, NC 27708, USA

kst@ee.duke.edu

ABSTRACT���������
	����	��������������������	����������������� 	"!#$	&%������'�(��)�*+��)-,����)-��.�()
���-�/���	�������0+	��1�1����2�������3�1�-%�%4���1��"*+2506	7�80��8���96:<;��������������������
	�) 	���0��1���3��	�)624=���1�*>���?�!�	���� 	���$����$��)-,����)-��.���@���-=*-��1��A�)
*�������1���()-�B��)6��97%4���1��	�)5��/5� 	������C0>	��1�1����2�������
�1�����6	��B9D	��E)5��	��E)�F
	�2���������05GH%4��1�'����9D	�)-��(GI	�) *J*-�%4�) *�	�2���������05:B;B�B�1���'�C�
	���7	���������F
��������-��$A(���)��3	�%�%�������E	�������)J	��B	?���������E��	��@*���1��A()6���!#��K�L���3�1���'�1F
�<	���?�80��8���97��GH�������)-�E/��-��$	�) *M���5�(���.���+�1�-%�%4���1�3����8����)�A-GK��)�F
�����8��	�)�-��)�A�G�*-�2-��A(A���)�A-G�	�) *$9D	���)5��	���)���)-A<������1N	����������������������
	���<�O�%4������*=����24�����97N��"	�*-����0�	�!�	����E	�2-��(:QP�)�	(*-*-�������()����B%�����F
!��E*-��)-A>����&*-��1����"*R�1��%-%4���1�"GK*�	���	>�����E����S��"*R�����(9T������1U���5�(���
	����1�V%�����!��E*����	U�����S�6�1���-����=���Q�E)��L����9D	������()+�����(9W����$%4����)������
!�����X���B%4��1�L����9D	�)���+	�) *Y*-�%4�) *-	�2���������0Z	�) 	���0-�1���?���B���-V	��1F
����������S���-��(:D[<�-?%-����1�)5�=% 	�%4S�=%-����1�)5���=	+%4S�1�L����9D	�)���?	�) *
��%4�)��	�2-���E���C0$	�)�	���0��1���\97�������*��(���(A�0.�]�������=�E�������8�1��	���������-N�-�1
���<�1�-�S�^*�	���	�:&[<��&97S������*-�����(A�0M�����-�.�1��_��$	D���-�����
	�0J��)-F
���A���	�������)`���$*����8���E)-���>	�)�*a��97%4���1��	�)5�V	���"	���G]) 	�97���05Gb�L����9D	��
�1%4�����c �"	����E��)KG]�1%4�����c��"	�������)`�1�E9U���E	�������)4d�����8���E)-AY	�)�*e*��%4�) *�F
	�2���������0�d�%4��1�'����9D	�)���M	�) 	���0��1����:YfZ>���E���-�8�1��	���>���-+��97%4���1��	�)5�
�8���%��]��)+����.97S������*-�����(A�0V�]�����+����3�����%+���b	�)>�O-	�97%���(:

1. INTRODUCTION;��D�1���'�C�
	���R�80��8���97�6gD���()5����)��-+���ZA������h��)e�1��i�J	�) *e����9?F
%-���O����C05G4�1�������<	���7	����S�-����������-��U�E�3�E)-����"	��1�E)-A(��0R	�%-%-�������	���"*R	��
	V97�������*M���<��)�*-����8��	�) *��E)-A+	�) *R	�)�	���0��1�E��:&[<��?	��������������������
���4]�1�������
	���<�80��8���9j*��c)-��������\�-��A(���E�!#��5�8�1�����S���-��(G��O�%4�(�1��)-A
�����=A������1�=����A#	�)���i"	����E��)k	��=	+���(������������()Z���
��)5�����	�������)-A6���(97%4��F
)-�)5���&l m�no:&�����'�C�
	���?	��������������������U���%�����1�)5���3����U*-��1�EA�)p*������F
�1����)��B����	��3	���=9D	(*�$��)6����$"	�����06%�� 	��1������N	?�80��8���96:
[<�-��1
�������1���()-�3	���$���1� 	�����0+-��q7�������]���&��� 	�)-A($�������!#����1=	�)�*>��	�!(
	>%-�����'�(�-) *^��)�, ���)���?��)^���-?)���)^�L�-)���������) 	��r	��1�1����2�������.��� 	��
��	�)724
�1��%-%4���1��"*U2�0=���-
�80-�8���96:\PC�b���b24����(97��)-A.��)�����"	��1��)�A(��0
���E�	��@��� 	����1���'�C�
	���<	��������������������<	�)�	���0��1���\��������b24��8�\!(���������N���
	��1�1��1�.��97%4���1��	�)5��/���	�������0+	��1�1����2���������1�����M	���9D	���)5��	���) 	�2���������05G
����E�E	�2��������C05G<����-��	�2���������0s	�)�*a%4S�1�L����9D	�)����:`;�������������S���-��	��]*��F
g ��0��8���9t	�) *e	�%�%-�E���"	������()u	���J�-�1"*s��)5�������� 	�)-A("	�2���0s�E)s�������
%�	�%4��":

�1������%-������)a�E	�)�A(��	�A���6vo;Bw.xK�Sy.	���7�L����9D	��<�E	�)�A(��	�A���&��� 	����"	�)
24&�-�1"*6���V���%-����1�)5�B����?	����S�-����������-������<	V�1���'�C�
	���&�80-�8���96:
[<��S07�L�5���-����)V���-3�-�EA��-Fz���!#��H�8�1���-�����-��B�������-3��!#���	����I�80��8���9
��	����-��\����	�)=����r��97%-�E�97�)5��	������()�*-S��	������@���H	�)�0.�1%4�����c �<�1���-����
97��*-�-��(:k;Bw.xK�U	���6��)5���) *�"*p���R%��E	�0k	�)a��97%4���1��	�)5�����(��6��)
����?*-�!#��E��%�97�)5�3���
�1���'���<	���7250J����97%4�(�1��)�A>�1�(�-����797��*-������
��	����-��3����	�)J2506����97%4�(�1��)�AV��) *��E!��E*-��	��\�8��	����97�)5���]�
�����1���)^��)
����)�!(�)5���E��) 	��<%-����A���	�9797��)-A6�E	�)�A�� 	�A(���:Z;{)��-9&24��=���.	����S�-��F
�����������	��K*-��1�S���E%������()6�E	�)-A(��	�A(��B��	�!(324��)>%-����%4�(�1"*>������)5����05G
�1�����6	��]|3	�%��E*-?l }�nzG�~3)-�'�r��)Zl��"��n\	�) *Vf�|BP8�3�.[jl���no:r;B�
�1�����1F
�
	����	��������������������
-��1��A�)?A#	��E)-�N%����(97��)��)���(G�����<-�!#��E��%�97�)5�
���
����S�-)��E/5�����	�)�*^���5�(�������M�1��%�%4���1����) *�����8��	�)�*-��)�A�G\����8����)�A�G
*-�2���A�A(��)�A�Gr����)�A(��)-������)�A�G]	�)�*a9D	��E)5��	��E)-��)�AR�1���'�C�
	���^	����S�-��F
�������������]�����Q24�����97&	�)R��97%4���1��	�)5�.���1�1���:=xK�\S�":=	���:$%����(%4�(�1
	M���5�(�]�L���?��) *�����8��	�)�*-��)�A�GN����8���E)-A-G<*-�2-��A(A���)�A^	�) *k%-����c ����)�A
�1�������<	���.	����S�-����������-��	��4�1%4�����c ��	������()-�<��)V��w$xZl ��no:N�4� 	���S�":b	���:
%-����%4�(�1R	p�������)-��/5�-+�L���6	����S�-����������-��J��)�*-����8��	�) *��E)-Ap2�	��1"*
�()^%-����A���	�9T*-�%4�)�*-�)-��&A���	�%-���.�L���U;B�
�6��l��"}�nz:7[<���0R	��E�1�
%-����%4�(�1&	V�1��������)�A697S������*-�����(A�0+���>�O��1��	����.����-��	�2���U�1���'�C�
	���
	�������������S���-����=l ����nz:

�����'�C�
	���V	����S�-����������-����=�1%4�����c�"*^��)p;Bw$xI�$�1�����Z	��U��w$xe	�) *
x\�.[]�$�4Gb	�)�*k��������?97��*-�����)�AR�E	�)�A�� 	�A(��7�1�-�S�a	��7~.�6x`�"	�)
	����1�U24B�-�1"*?�L���<%4��1�L����9D	�)���3	�) *D*-�%4�) *�	�2���������07	�) 	���0��1����G-2�0
����)��8�1�����S���E)-A6/5� 	�)5������	�����!#&97��*�����.�'���(9T���-��1?�1%4�����c��"	�������)���:
fZ��������)k��":k	���:k*��!#�����%s	M%4��1�'����9D	�)���+	�) 	���0-�1���?97S������*-����F
�(A�0p�'���?�1%4�����c �"	����E��)����
�����1���)Y�E)a��w$x�l��"��no:^�6	�����	�)k��":M	���:
%-����1�)5��	�)pSO����)��1���()^���]x��.[]�$�HGH�]�������p�)�	�2������	+9D	�%�%-�E)-A
�'����9�����b�O����)�*-"*.�1%4�����c��"	�������)��\����%4��1�L����9D	�)���r97��*-��E�rl�����no:
�����%�%������*��!#�����%M	U���5�(�I�L���B���-.�1��9&���E	����E��)M	�)�*>�9U���E	�������)6���
�L����9D	������()p�1%4�����c �"	������()��U��)Y��w.xbGI�]�����Z	�)Z�0#&���"�
	���*��&	�) 	�F
��0�i���)�A3���-��1<�1%4�����c��"	������()-�b�'���Q����r)��()��L�-)��������()�	���	��1�1����2�����<���
%4��1�'����9D	�)-��+l���m�no:&�B���_6��":�	���:U*-��1������24?	>�-�����	����������"	��b%4S�1F
�L����9D	�)-��<�!�	���� 	������()?	�%�%����#	����U�'���Q�L����9D	�����0��1%4�����c "*����(979U�-F
)����"	������()p%��������5�������$�E)p��w.xul ��nz:U�r��) *-	�!�	������@��":�	��o:�%�����1�)5�$	
*-�%4�) *-	�2���������0?	�) 	���0-�1���N%-���5��"*��-���2 	��1"*?�()D~$�6xM*���1��A()-�3l ��no:
fY	�)�A=��":b	��o:b*����1�����1�
	=%4��1�'����9D	�)-��B	�) *D*��%4�) *-	�2-�E������0?	�)�	���F
0��1���
97��S��	�)-�E�19��L���]�1%4�����c �"	����E��)��]��)6�Q�8�������7l��"��no:r[<��.9D	��1���
���	��]2�	���_&���H���-]	�) 	���0-�1���r	�%�%����#	��S�-��r97�)5�����()-"?	�24��!(
�E�b����
�E	���_����U	�*-"/5� 	���J�E)��L����9D	������()`���k% 	���	�97��������i�J����R/5� 	�)5����F
��	�����!#&97��*-����.����)��8�1���-����"*M�'���(9T���-&�1���'���<	���7�1%4�����c��"	�������)���:
;B�B����U����S�-)��E/5����3�'���=�1���'���<	���D	����S�-����������-�������8����)�A+24����(97
9D	�������6	�) *a���5�����>24����(97>���	(*-����0e	�!�	����E	�2-��(G
����+*�	���	^A(�)�F
���	���"*�*��-����)�Aa����8����)�Ae��	�)�%�����!��E*�Y	a���������1�(������Z���7��)-�L���1F
9D	�������)k�'���7�1�-2��1"/5�-�)5�&97��*���r%�	���	�97S�������i"	������()I:k;W�1��97�E�E	��
	�%-%-���(����Y� 	��U24��)k*��97�()-�8�1��	���"*Z	��U���-D�1�(�-����V����*-V�E�!#���G
�]��S���SO-����-�����()>�1��	����*�	���	?���(����������*+�'���(9��O����)-�1��!#.����8����)�A

Perf. & Depend.
Analysis

Perf. & Depend.
Analysis

Reach. Graph
Generation

Reach. Graph
Generation

Model
Parameterization

Model
Parameterization

Simulation/
Testing

Simulation/
Testing

Transformation
to SRN Model

Transformation
to SRN Model

SDL
Specification

SDL
Specification

1

2 3

4

5

6

Info. from
other sources

�]�L�4�����Z� ���I�����@ 7��¡s��¢��J£Z���"¢�¤I¥�¤4¦L¤ ��§

�������-3	�%�%������"	����E��)>�<	��
���1�*D�����O��1��	����
	�) *7%�	���	�97S�������i�B���-
	����S�-����������-��	��B97��*���
���B����>�80-�8���9¨l ©�no:u�3���7%-����1�)5�7% 	�%4��
���-������)���&	�)k	�%�%-���(����Z�]�������a�1��_��&	+�������7�
	�0Y��)5���A���	����E��)KG
)�	�97���05G��L����9D	��K�1%4�����c �"	������()4d�97��*-�����)�A�G4	����S�-����������-��$�1��9&�-�E	�F
������)4d�����8���E)-AR	�) *Z%4S�1�L����9D	�)���"d�*-�%4�) *-	�2���������0p	�)�	���0��1�E��:^[<�-
A�����+24S���<��)k�1%4�����c �"	������()KGr%4��1�L����9D	�)-��+	�) 	���0��1���7	�) *Z����8�1F
��)-A?����%�����!��E*�"*>250V���1��)�AU����.97"	��1�-���97�)����r�(2-��	���)�"*6*��-����)�A
�1��9U���E	������() d�����8����)-AR���R% 	���	�97��������i�D����>/5� 	�)�������	����E!(V97��*���
���N���-=�80-�8���96:.�3���397S������*-�����(A�0+���B��	�����������	���"*^250+[����������*-�E	
���������
	���Mª3���1� 	����Ei�	������()`	�) *a;B)�	���0��1�E�?[��5�(�3���-����^vo[]��ª@;b[�y�G
*��!#�����%4"*6	��B[���E������*-�E	7[���S�-)��(����A(����]�L���3	�������������S���-��	��K�1%4�����F
c��"	�������)����E)6��w$xal ��no:

fp$*-��1������24.����3�8���%��]��)�!(�(��!#"*D��)>����.	�) 	���0-�1���]97����-��*-�(����A�0
��)+���-$�O����) *�"*+	�2��8�1��	����":
[<�-$�E�������8�1��	������()J���@���-$97�������*��(��F
��A�0J���6	��1�1��1�$����U%4��1�L����9D	�)���7	�)�*^*��%4�) *-	�2-�E������06���]	�)p	�%-F
%-���E��	������()?�1%4�����c "*��E)&��w.xD�]�����-24N%-����1�)����*U	��@����N�r����_��1����%K:

2. METHODOLOGY[<�-+97����-��*-���E��A�0Y���)5������7	�������)�*a	J�80��8���9«�1%4�����c "*Y���1��)-A
���-?��%4�����c ��	������()R	�)�*6w.��1������%����E��)Rx�	�)-A(��	�A(>vz��w$x\y]	�) *+���-
/5��	�)5������	�����!#$97��*-��E��)-A?% 	���	(*-��A�9W���N�����5��� 	��8������|���<	���*+¬B����
vz��|B¬B�Sy�:
[<�-��8���%����E)�!#����!#"*+��)6����$97S������*-�����(A�0+�"	�)M24=*��F
%-������"*+%-�E�S�������E	�����0M	��B�1�-���])+�E)6\�EA��-��7�(:Qfp$2-�����,�0>*���1������24
���-$�8���%��
�1�-�"�])6��)M\��A(�-��?�.�E)>�������]�1��������()I:

2.1 SystemSpecificationin SDL;�)®	��������������������^�"	�)u24^�1%4�����c�"*`���1��)�Aa	�)®��)��L����9D	��$)�����	�F
������)jv�24�"Oa	�) *s	��1���"�h*-�E	�A���	�97�Sy�:u�B���r�!#��"Gr�1�����e)-����	�������)��
	���6��1�����1FC%����()-6	�)�*k	�9&2-��A(��������:a;�)s	����S�-����������-��+�1%4�����c "*

��)J	&�L����9D	��\�1%4�����c��"	�������)R�E	�)�A(��	�A�&�����97��) 	���������-U	�9&2-�EA�������0
	�)�*?%-����!��E*-��r	.����"	��
2�	��1���N�'���]	�) 	���0��1����:@fZ]�����5���1$��%4�����c �"	�F
�����()J	�) *+w.��1������%-�����()JxK	�)�A�� 	�A(Dvz��w$x\y<	��B	7�r�(979U��)����"	�����)�A
�@O����) *-�*>\��)�����.����	���$�6	�������)�?vz�<�bQ���JyN�1%4�����c �"	����E��)6�E	�)�F
A(��	�A�6���p�1%4�������0a���-+�1���'���<	���R	�������������S���-��(:�[<��+����������M���
��w.x¯	��>	�)�	����S�-����������-��J*���1������%-�����()s�E	�)�A�� 	�A(J���V97������!(���"*
*-�-R���Y���-R�'�(�������]��)-Ae��"	��1��)���°s�'y+��w$xj���M	�)uP�)5�����) 	������() 	��
[��������(979&�-)����"	����E��)6~3)-���()Zv�P�[<~=y<�8��	�) *-	���*pl��"©�no:B�6	�)50+����ESF
����9±�80��8���9W�1���'�C�
	�����1%4�����c��"	������()-�3	���$���) *����"*>��)J��w$xbG-���'y
��w.x?�E�\	
�'����9D	��#�E	�)�A�� 	�A(N�]������	<�<�����FC*-�c�)�"*$�1�9D	�)5���E����:Q���!�F
���	�������9797������E	�����²4Fo����SFC�1�-��������5���E�N�"	�)&24<���1"*����.��)�!(��8����A#	���
	�������������S���-��	��K97��*-����
�L����9D	�����i�"*M��)J��w.xbG-�E���'y]��w$xR97�����
����
��"/5�������97�)����>�L���R	�)��O�����-��	�2-��Y	��������������������	��=�1%4�����c��"	������()
�E	�)-A(� 	�A(?l }�nz:r��w$xJ	��������]�]*�0�) 	�97���]����"	������()6	�) *?�����97��) 	������()
���H%����5����1�b��)��8��	�)-����b	�)�*U��������b�����1����1%4�()�*-��)�A$���(979&�-)����"	����E��)
% 	������r*-�-����)-AU�O�����-�����()I:@�3�)-������<�E�r�"	�%�	�2���B���K97��*-�����)�A=����
	�������������S���-����7���=*�0�) 	�97���>�80��8���97�?��)a�]�����S�a����>)��-9&24��&���
����97%4�()��)����D	�) *a���()-)�����������>9D	�0k!�	��10s*-������)�Ap�80��8���9tSO-SF
�������E��)KGN��! y���w$x���	�)a%-����1�)5�?	����<�L���-�7!�����]�?���3�1���'���<	���J	��1F
�����������������>l ��no:�����.�O-	�97%���(GK��w.xZ���1��$*���E	�0J	�)�*J)-�()�F�*���E	�0
��� 	�)-)�����3���V��) *��E��	���&���-�����E	����E!(?%��50��1���"	��@���5�"	����E��)��=���r���(9?F
%4�()-�)5����:N[<��$c����8�]�8���%+�E)>����$97����-��*-�(����A�0>�E�
���-$�1%4�����c �"	�F
�����()>�������-$	�%-%������"	�������)>���&24.	��1�1��1�1"*>�E)6��w$x^³�:-[<�����
�8���%>���
9D	���_("*>	��7´���µ?��)M\��A��-��?�(:

2.2 SpecificationSimulation/Testing[<��B)��O��N�8���%D��)V���-B97����-��*-���E��A�0Mv�9D	���_#"*R´���µ��E)V\��A(����U��y
���.���>�1��9U���E	����d"����8�.���-&�80��8���9¶�1%4�����c "*J��)Z��w$xk	�) *M�������E����
�1��	���?*�	���	>*��-����)�A7���-U�1��9&�-�E	������()R%-���5����1��:$fZ&�-�1����-?��w$x
!#����1����)e���3����6[K���������*���	k���������
	���Mª3���1� 	����Ei�	������()`	�) *s;B) 	���F
0��1���>[K�5�(�$��������Zvo[]��ª@;N[�y>l ��nzG�*��!#�����%4"*s���p�1�-%�%4���1�+	����S�-��F
�����������	��N�1%4�����c �"	������()KG@*-�2-��A(A���)�AJ	�)�*^����8����)�A>���M���(�������������
�1��	���?*�	���	�:3[]��ª@;b[¯���()5��	���)��.	D�1�-����U���N���5���E��GH·@��������(G4·\ªb���G
·@¸@�����CG�·�|B�A�����1��G4	�) *D·@;b[\;��B:�fp$%-����9D	�������0V���1.·\;N[\;��e��)
�(���$97����-��*-�(����A�05:=[<�-��������)-�E/��-U�-) *������0-��)-AD���-���3���5�(�@�1�-����
���<����B����"	�������)6���\	�, �"�uA���	�%��V��������3�1%4�����c �"	����E��)KG��������<�E	�0�F
��)�AD�(���.�����.�O�����-�����()M�8�1���-�����-��(:�fZ����1=������1��9&�-��	������B�'���(9
[���������A(���?l ���Sn4�����1��9U���E	���]����B��w.x6�1%4�����c �"	������()V���H����B	�%-%�����F
�"	����E��)K:b[<�-��1��9U���E	������r���Q�����)?��)-�8�1����97�)5��"*=���.���(��������r�O������F
�����()M�1��	������:=[<����1��	���=c ������������*��3�-���j9D	�)50>����97��3	VA���!#�)
% 	��1�����<���-?�1%4�����c ��	������()IG@�1�����Z	��U	>%-���5����1��G@	>�1��	�)-�1��������)KGQ	
-������1�E��)KGN	6�8��	���V��)�%-�-�"G@���?	J�	���	+, �"�$GQ� 	��U24��)Y�O���������1"*
��)M"	����J�1��9&���E	����E��)M���Q����=�1%4�����c��"	�������)KGH���.	�������=�)�*6���Q����
����8����)�A^%-���5����1��:e·@;b[\;������%4���1���7����!#���	�A(6�]�����s����1%4����?���
����?�'�(�����"�]�E)-A^�r�����Fz_�)��"�])Y������������E	�°?�L�-)��������()p����!#���	�A�(Gb2 	��1�E�
�1��	�)-�1�����E��)Z����!#���	�A(7	�) *^*-������1���()p����!#���	�A�(:D��-)���������)^����!#S�1F
	�A�]�1�E97%-��0U������S_��@��� 	��N�	����?%-���5����1�N���4�������w.x>�1%4�����c��"	������()
� 	��Q24��)?�O�����-��"*U	��b��"	��8�N�()-��(:Q;a2 	��1���
�1��	�)-�1�����E��)?���Q�1�E97%-��0
	$�8��	����97�)��N�1"/5���)���]���H���-��1%4�����c �"	����E��)V����	��N���
	����
	�0��rSO-SF
������"*6�1"/5���)5���E	�����05GH��)�������*-��)�AD�8��	�����$	�)�*M*-������1���()R����)��8�1�����S���
v�)��>��)���S��) 	��Q2���	�)�������)-A+����)��8�1�����S���Sy�:D�<	��1���?�1��	�)��1�������()Z����!#S�1F
	�A�?�������_��3��� 	��$"	����R2 	��1���&�1��	�)��1�������()^� 	��$24��)^SO-����-��"*J	��
��"	��8�]��)����G��]�-���S�>�E97%-���E��r��� 	��
"	����V�8��	����97�)5�
��	��<24��)>SO-SF
������"*?	��N��"	��8�N�()-��(:@w3������1���()��r	���]����) *-�������()�	��-2-��	�)-�S�-��Q�'���(9
�()-+2�	��1���+�1��	�)-�1�����E��)s���^	�)-������S�":sw3������1���()e����!(���	�A�6�S�-���_��
��� 	��<"	��S�V�1�����7�1����� 	����E��)KG-*-������1�E��)>9D	����S�-��)�A=���
��)-%��-�N9D	������-F
³SPz�<�1�-�(���E*724�)������*7����	��r�(�-�r97�������*��(���(A�0?�]�������D%-���(%4���1��
	
���-���?�
	�0Z��)5���A���	������()k����	����S�-����������-��D�1%4�����c��"	������()IGQ�1��9&���E	�F
�����() d�����8����)�AU	�)�*7*-�%4�) *�	�2���������0D	�) 	���0��1���<���r)-���<����97����"*&���$����
���17������w.xb:�;B)50R	��������������������7�1%4�����c ��	������()Z�E	�)�A(��	�A�V�]�-�E���
%-����!��E*-��M��	�% 	�2����������E��^�1��97���E	��J���u��w.x��"	�)�24Z�-�1"*¯��)¯���-���
97����-��*-�(����A�05:

��)-A6����SO-����-��"*HG��1�>��� 	���	����N�1����?	�) *J��	��E�1D%�	������$��	"!#?24��)
��	�_#�)J	��B�<��E�\	��B	����@��)�%����B	��������) 	�����!#��.	�) *6*�������1���()R	��������)�	�F
����!#���:

[<�-r�O�����-�����()=�1��	�����\���(����������*&*-������)�A
����Q����8����)�A����-����b�1%4���F
��c��"	������()V�"	�)?�����)724����1"*&���=�O��1��	����r2���	�)-�S�-�E)-A$%-����2 	�2-���E��������
���<����&!(����E�����=*�������1���()�����)^���-&�1%4�����c��"	������()I:DPC�<���-&�1��9&�-�E	�F
������)+%-���5����1�]���\���-.�1%4�����c ��	������()6���
A����E*-"*V250V	�)+��%4���	�������) 	��
%�����c��E^l��(��n����B���->�80��8���96GQ�����)k���-��1V2-��	�)-�S�-��)�AJ%-����2 	�2-���E��F
��������<�����E*Y24>��� 	���	�����������8�����+���]�]� 	��U�<�����E*Y24>��2��1���!#�*Z�E)
���-�c���E*I:3|B�A�����1�1���()R����8�.�1�-������3�'����9¶"	����E����$����E�	��1��$���N���-
%�����*-�-���$	�) * d����$SO-%4S�1�.�(%-��)����()R���(�-�E*R	����1�+24����1"*6���VA(���E*�
���-=*-��1��A�)6���\����8�B��	��1��]�L���B�1��9U���E	������()I:

2.3 Translation fr om SDL Specification to a
SRN Model[<�-M��w$x����%-����1�)���	������()a���3���-+	����S�-����������-��>��������>�80-�8���9

���.���-�)R�1��	�)��1�E	����*R���>	>�8���5��� 	��8�����?����<	���*J)���?vz��|�¬=y]97��*���
�'���+%4��1�L����9D	�)���J	�) *`*��%4�)�*�	�2-���E���C0e	�) 	���0��1����:¹[<�����V�8���%����
9D	���_#"*p´���µ?��)6\��A(����&�(:r�����5��� 	��8�����3����
	���*+)�S���$vz��|�¬3�Syb	���
	BA(�)-���	�����i"	�������)V���HA(�)-���	�����i�"*?�8���5��� 	��8�����B¸\S�1���-¬B����]vz�-¸Q¬3�Sy�G
�]�-���S�Z��)R���-��)Z	���D	+A(�)����	��E��i"	������()k���
�8���5��� 	��8�����>¸\S�1���N¬B����
vz��¸b¬B�SyDl��"��no:��5���5�S��	��8�����+|���<	���*k¬3����6vz��|B¬B�Sy$%�����!��E*�V���-
��	�97$�"	�%�	�2-�E����������B	��B�6	���_#��!V|BS�
	���*+�+��*-�����l�����nK�]�������6�"	�)
24M�-�1"*s���Y����97%�����6!(������(���D������E	�2-�E������05G���	��L��C0�	�) *e%4��1�'���1F
9D	�)���397"	��1������
���@��)5�������8�":Qfp$*-�c�)����������
���&�1��	�)-�1�E	���=	�)
��w$x6�1%4�����c��"	������()V	��r����]%����5����1�r���!(������=	$�8���5�S��	��8�����]����
	���*
)-���vz��|�¬=yb97��*����:

2.4 SRN Model Parameterization[<�-6)�SO��D�8���%s��)s���-6%-���5����1�D�E�?���^% 	���	�97��������i�6���-M��|B¬
97��*����:M[<�-�E���8���%Y����9D	���_#"*�´�m�µR��)Y\��A��-��M�(:J[<�-D% 	���	�9?F
S������&���
����>��|�¬X97��*���N��	�)Y24D2-���((*-��0p���E	��1�1��c "*Y��)5���6c !#
��	����A����������G�*-�%4�)�*-��)�A3�()?����]�1���-������N���I��)-�'����9D	�������)7���1"*&�'���
���-$% 	���	�97��������i"	������()K°

º �@O-����-�����()>���E97B% 	���	�97��������°N[<�-��1$% 	���	�97�������]	����	��8F
�1�5���E	����*+�]�����>����.�O�����-�����()>���\���-.��	��1_��]	�)�*6*-����E�1����)��
��)s���-M��w.xu�1%4�����c �"	����E��)KG�	�) *a	���6�-"	"!�����0a*-�%4�) *��)5�
�()7���-B��97%����97�)���	������()D*-S��	�������:<��w$x6�1%4�����c��"	������()-�
�"	�)
	����1�.24N���1"*$����A(�)-���	���<����*-r��)U	B�1�97��FC	������(9D	����E�Q��	��1�-F
���()IGQ	�)�*R����&97"	��1�����97�)5���.�(2���	���)��*^�'����9T����7�O������F
�����()M���@�������]% 	��1���E	�������*����	�)624$�-�1"*>���D*-S�����97��)�3���-
*-���8�1����2��������()���	�) *V���-$!(�������
���@������1$%�	���	�97S�������:

º ~3�1S�?��)�%-�-����°D[<�-��1+%�	���	�97S������&97��*���N���->��)�%-�-���=���F
�1��������)�A?�����(9W����=	��������()-�B���@����$���1S�":
[<����1���)-%��-���]	���
�O�%4������*D250U������80-�8���9{	��r!(������(���r�8��	�A(��<�����O�����-������)K:
[<��+*-���8�1����2������E��)��D	�) *Y����>	�������	��]!(�������?���3���-��1+%�	�F
��	�97S������U��	�)k24V*-�����!#"*R�'���(9»�����8���������"	��]*�	���	�GQ���&�"	�)
24$2 	��1"*6�()6���-$_�)��"�]��"*-A�����@����$�O�%4��1���
�]�-�D	���=��)-F
����9D	������0M�L	�97������	��$�]�����R���-&�80��8���9T	�) *M�����.c ��E*J����	�A((:
P�)?���-]�!#�)5�b��� 	��b����]�80��8���9¹���N����
c-���8�r���������b_���)�*7	�) *
)����?9U�����Y�E)��L����9D	������()k���7	"!(�����	�2���6	�24�(���?����D�80��8���96G
������1$% 	���	�97�������
�"	�)624$A(�-��8����9D	���"*H:

º �N��	�)�������)�AZ%����(2�	�2��������������°^[<����16���,�����7���-6%-����2 	�2-���E��F
������?���B�5�����-�1���)-��+���B���-D!(����E�����U�(�-�����(97��U���3	R*������F
�1���()I:k[<����1>!(�������?��	�)a	����1�p24>*-S���E!("*Z�'���(9»�����8��������F
�"	��<*�	���	�G����U�"	�)^2472 	��1�*p�()ZSO-%4S�1�=_�)-�"�]�E�*-A(�:6[<�-

�1��	���+*�	���	J�����E����S��"*s*��-����)�AM���->�1��9&�-�E	������() d�����8����)�A^���
����U��w$xZ�1%4�����c �"	����E��)^��	�)J24=���1"*6���V*-���S��97�E)-.������1
2-��	�)-�S�-��)�A=%-����2 	�2-���E���������:N[<��.��w$xM!#S���1�E��)>���\[K���������*���	
���������<	���+ªB���1� 	�����i"	����E��)�	�) *a;B) 	���0-�1���&[��5�(�B���-����^vo[]�5F
ª@;N[�yb�L	�����������	����������$�������E��������()M���\�1�����+�1��	���=*-	���	�:

º P�)�%-�-���?�����(9¼������S�+����97%4�()-�)5����d�%-���5����1�1���°k�+���8�+��"	��
�E���'R�1���'�C�
	���R�80��8���97�D	���M��)-������)5����0e*-���8�1����2��-���*IG]	�) *
���)-��6��"/5������M��)5�����	���������)��V24����r��)e���-M!(����E�����V���(9?F
%4�()��)����$���<����7�80��8���96:D����)���U����D��|B¬�97��*-��Q���=���()�F
�8�1��������"*M�'����9T%-���5����1�$���!#��Q�1%4�����c��"	������()IG����$���$)�	����-��	��
�L���]�1��97.���K����.%�	���	�97�������
���K����B97��*-��4���?*���	��`�'���(9
����.�O�����-�����()6���\����3������S�B%����5����1�1�����)+����3�80-�8���96:

º 	������-���d"���% 	����J% 	���	�97��������°s[<����1p% 	���	�97���S���+97��*-��
����@��	��E�������d����%�	����@24���	"!��������������-Q%-���5����1�1��@	�)�* d������	����
��	��1_Y�]��������)�	R%-���5����1�V	�) *a	���6)-�����1��	��10s���^���(97%-�-��
!(����E�����M97"	��1�-����+�1������	��6����^����E�E	�2��������C05G�	"!(��E�E	�2��������C0
	�) *>��	��LS��0>���b	�)6	�%�%-���E��	������()I:
[<��������)-�L����9D	������()+�"	�)M24
�(2-��	���)�"*J250M���()-�1��������)�AV�]�����R�O�%4��1�����]���6	���U�L	�97������	��
�]�����>����$	�%�%������"	����E��)M�����"	�)624.A(�-��8����9D	���"*H:

2.5 Reachability Graph Generation[<���)�SO��N�8���%7��)7�����	�)�	���0��1���<97�������*��(���(A�0?���N���-BA��)�S��	������()
���r	?��"	���� 	�2���������0MA���	�%��IGI	�)�*M���-=�8���%J�E�39D	���_#"*Y´S©�µV��)R\�EA�F
�-��J�(:Y[<��>���	���� 	�2-���E���C0kA���	�%-�k���$	J¸\��1���
)-��?���&���->�1S�7���
�8��	�����B��� 	��.	�������	���� 	�2-��������(9�����$�����-��.�8��	������:�[<��=��"	��S��F
	�2-���E���C0MA���	�%��J���.A(�)-���	����*J�-�1��)�A7����=���5�(�Q��¸b¬3¸jvz�����5��� 	��8���E�
¸\��1���b¬3���¸@	��S_�	�A��y&l ��noG\�]�������Z����	����1�M���1"*J�L���U%4S�1�L����9D	�)���
	�)�*+*��%4�) *-	�2-�E������0V	�) 	���0��1����:N[<��=�5���5�S��	��8�����$¸\��1���I¬3S�]¸@	���_5F
	�A�B���r	=!(�����	�������B97��*������)�A$���5�(���'���<���-]�1�(���-�����()D���K�8���5��� 	��8�����
¸\��1���
)-��+vz��¸b¬y97��*�����>:p[<��6�-¸Q¬W97��*-����?	���+*���1������24"*
��)7������E)-%����<�E	�)-A(� 	�A(3�'������¸b¬3¸Z�"	�����"*>�
�-¸bxavz�NFz2�	��1"*V�-¸Q¬
�E	�)-A(� 	�A(�y�:`[<��J�
��¸Nx®�E�D	�)e�O����)-�1���()a���.���-M�X%-����A���	�9?F
97��)�AZ�E	�)�A(��	�A�J�]�����u	�*�*-�������()�	��B���()-�8�1���������7�]�������e��	�����������	���
"	��806*���1������%-�����()+���b��¸b¬®97��*-�����:N[<��$�-¸Q¬�97��*-��E�
�1%4�����c "*
���Y��¸b¬3¸�	���M	������ 	��E��0j´S��¸b¬h|BS�
	���*s�+��*-��E�1µY���>�����5��� 	��8F
�����?|���
	���*^¬3S���?vz��|�¬3�Sy�GH�]�������p	���72 	��1"*R��)^���-J´S�6	���_#��!
|���
	���*J�+��*-����1µD% 	���	(*-��A�96:][<������%-����!���*���B	?%4���r��1�L�-�\97��*�F
�����)�A?�)�!������()-97�)5�r�'���B*-�%4�) *�	�2���������0RvL������E	�2���������05G�	"!(��E�E	�2��������C05G
��	��'���0 y�G-%4��1�L����9D	�)-��=	�)�*+%4��1�L����9D	�2-�E������0>	�) 	���0��1����:

2.6 Dependability Analysis[<��+% 	���	�97��������i�"*k�8���5��� 	��8�����6����<	���*a)���Mvz��|B¬$y=97��*���
���
����V	�%�%������"	����E��)k�"	�)Y�����)Z24D���1"*p�'���?%4S�1�L����9D	�)���V	�) *Y*-SF
%4�)�*�	�2-���E���C0$	�)�	���0��1����:Q[<��N�����5��� 	��8�����r¸\��1����¬3���¸@	���_�	�A(�vz�-¸Q¬.¸ry
�"	�)V24]�-�1"*&���=���(97%-�-��]!(������(���b97"	��1�-����N���I��)���S����8�<�1�-�S�D	��
�����������E	�2���������05GK	"!(�����	�2���������0^	�)�*J��	��L��C0kl ��no:U[<��&%4S�1�L����9D	�)���
	�)�*+*��%4�) *-	�2-�E������0>	�) 	���0��1���B�8���%6����9D	���_#"*p´���µ7�E)6\�EA��-��?��:

3. CASE STUDYfZb�����E�-�8�1��	���r���-r�8���%-�*���1������24"*=�E)=����b%-���!��������\�1��S���E��)��]�����
����3�����%6���b	?¸N�N½��80��8���9W�1%4�����c�"*+��)J��w.xb:-\��A(�-��U�U�1�-�"�]�
����32����5�S_V���!#��I�1%4�����c��"	������()M���\����=¸b�r½¯�80-�8���9W�E)M��w$xQ:

[<��6¸N�r½±�80��8���9«���()��1���8���D���B���r�Z*-���8�1����2�����"*k2����5�S_���:s[<��
2����5��_^¾Q¿#À'À Á=¿(Â�Ã�À�Ä�Å����()5�1���(���Q����
�"	���� %-���5����1�1�E)-A$�L��)-�������()-�r	�) *
����^2����5��_®Æ�Ä�Ç8ÈR¿(Â�¿"É5Ä�Å6��)�!#���E!(��6��)�!#�)5�����10`���()5�1���(��	�)�*u��SF
97����]*-	���	�2 	��1B	�������1��:N[<��7¾Q¿#ÀLÀ Á$¿(Â�Ã�À�Ä�Å@2-�E�5��_U��������!#��b���-���
�1��A()�	����7��!#��7��� 	�)�)���
Ê��(GN) 	�97���05G�Ë1Ì<Í�Ë"Ë�Î�G.Ã(Ï�É6	�)�*eÍ�¿(Â5ÉIÐ-Ñ4:
[<���c����8�
�1��A�) 	��K	�)-)�����)�����r����B�"	�������"Ò �]��)����)��N���&%-��	���$	=�"	�����G

���-&�1����() *R�1��A() 	��N���=	V*-��A(���=���]	D����E�%�����)�?)��-9&24��3	�)�*J���-
��	�)-A(~3%e�1�EA�) 	��.���V�1�)��V������-��6	��'����V����M��	����3���V���(97%-�ES��(G]���
���-���.���]	U��� 	�)�A�3��)>���-3�"	��E����"Ò �]��)5���)5���E��)>����%������1��B���-3�"	����oG
*�������V���-U�-) 	"!(�����	�2���������0J���N����=����1�(��������.��"/5�-�����*M���V%��E	���
	J�"	��E��Gr���D*���D���J���->�-) 	"!�	����E	�2���������0k���B���->�"	����E�+���R	������%-�
���-B��	����Qv��"	������3���<2-���80 y�:Q[<�-V¾Q¿#À'À Á=¿(Â�Ã�À�Ä�ÅQ2-�E�5��_7�(����%������b���-
�1��A�) 	����.Ã�Ï�¿#ÀoÓ�G4Ô�Õ�Ç�Ö�Ó�GH×�Ë�Â�Â ØLG4Å�ÏLÂ#É4Ó+	�)�*+ÅSÏ'Â5É]��!(��N���-]�S��	�)�)-��
Ê���:r�r�(979U��)-�E��	������()D24��C�<��)D����D¾Q¿#ÀLÀ Á$¿(Â�Ã�À�Ä�Åb2����5��_D	�) *?���-
Æ]Ä�Ç8ÈR¿(Â�¿"É5Ä�Å<2-�E�5��_D�5���������
��!(��
��� 	�)-)�����<Ê��&	�) *DÊ�m-:r�r��	�)�)-��
Ê��U���<�-�1"*D��������979&��)-���"	���]����]��"/5����8�
	�) *?�����"	��1$97��1��	�A���
�'��������1�(��������B	�)�*+�S��	�)-)���IÊ�m?�������1"*D���7�1�) *D���%���0>97��1��	�A���
���A#	���*���)�AM����V	"!(�����	�2���������0Z���]����?����1���-����������M%-���5���"*Z�]�����
���-]�"	�����:N�r� 	�)�)���E�bÊ��$	�) *?ÊSm=	����*-��E	�0���)�A$��� 	�)-)�����Q�]�������?��)-F
*����"	�����N��� 	��N����
���r�U2-���5�S_��r��	�)D24B��97%-�E�97�)5��"*U��)>*���²H����)5�
�<¸Q~3�.�]�����p	V)-�()-Fz)-�A(����A(��2���7*���E	�05:&[<�-���.���, ��S���3�������"	�������0
����	��]����=*-	���	�2 	��1���)-�'����9D	�������)6�"	�)M24$�8������"*+���97�������05:<[<�-
%����5����1�.���!(��\�1%4�����c��"	������()J���N���-J¾Q¿(ÀLÀ Á=¿�Â Ã�À�Ä�Å
	�) *RÆ]Ä�Ç8ÈR¿(Â Ù
¿�É5Ä�ÅU2-���5�S_��?	��U�r����]	��U���-D������S�?�8���%-�U��)Y����D97����-��*-�(����A�0
�]������24$%�����1�)5��"*>	��]����3�r����_��1����%K:

4. CONCLUSIONS AND FUTUREPC)e�������D% 	�%4��D�<J%-����1�)5�V	Z97�������*��(���(A�0s�]�-�E������)5���A���	�����
�������k*-���8����)��S�Z	���"	��R��)Ú	��������������������k*-��1��A�)K°¯�1%4�����c �"	������()KG
�1��9U���E	������() d�����8����)-A-G�	�)�*®%4S�1�L����9D	�)���"d�*-�%4�) *-	�2���������0®	�) 	���0�F
�1����:N�3���\�L�����-��N����1"	������&��)����E��*-��@SO����) *-��)-A����-r97����-��*-�(����A�0
���=	�) 	���0�i�������-��b)���)?�L��)-�������()�	�� 	��1�1����2��-����N�1�-�S�7	��r9D	��E)5��	��E)�F
	�2���������0+	�) *V, �O���2���������05:

5. REFERENCESl��Sn$|=: ;��E���)I:.Û�ÜsÝ�Ë(Å�Þ?¿#ÀK¿SÑ#Ñ4Å�Ë"¿#×SÍJØ�ËDÇ�Ë1Ý�ØLßb¿(Å8Ä
¿(Å�×SÍ�Ï�ØoÄ1×"ØLÕ�Å1Ä5àS:K¸Q��w����-��1����G�w.�%-�":-���b�r��97%��-��S�B�������)-��(G
�<	���)-���A(U�+������()M~B)���!#����1����05G-¸Q���1���12��-��A��KG-¬$�BGI�"}�}#��:

l �"n=;�:��r��) *�	"!�	�������G PS:��+����	�G4	�) *VPS: �6	"�8i���_H:Q´�;��-���(9D	���"*
*-�%4�) *-	�2���������0>	�)�	���0��1���B���@~$�6xZ*���1��A()-�1µ-: PC)Má<Å8Ë"×�âQË1Ý
ã4Ä1×�Ë(Â�Ã7ä1åbåNå�äSÂ�ØoÄ�ÅSÂ�¿#ØLÏ�Ë(Â�¿#À�ã-Ö�Þ�Ñ�Ë(Ç�ÏLÕ�ÞhË�Â
æ]ÔLç"Ä1×"Ø�Ù�æ<Å�ÏoÄ�Â ØoÄ1ÃDÆ]Ä1¿#À�Ù�Ó�Ï'Þ7ÄBè=ÏLÇ�ØLÅ�ÏoÔ�Õ�ØoÄ�Ã^¾QË(ÞBÑ4Õ�ØLÏLÂ#É(G
�"}�}(��:

l ��n��U: �r��	���*-��G4é�: �+��%�%�	��E	�G�	�)�*+ê?:��H:�[K����!#"*��o:@´S��¸b¬3¸]°
�����5��� 	��8�����=¸\��1����¬B���¸@	���_(�A(�µ�: PC)Má<Å8Ë"×�Ä�Ä�Ã�ÏLÂ5É(Ç�Ë1Ý$Ø�Í-Ä
äSÂ ØoÄ�Å�Â ¿(ØLÏ�Ë(Â ¿(À3ë+Ë�Å�Î�Ç8Í�ËSÑZË(Â+á�Ä�ØLÅ�Ï\ì�Ä�ØLÇ$¿�Â Ã
á]Ä�ÅLÝ�Ë�ÅSÞ&¿(Â ×�Ä=ÈRË"Ã#Ä�À Ç�G-% 	�A(��=��m#�"í���©���GIxK���B;��E	�97�����(��G
�<;�G-w.����9&24��$��}(��}�: P��N�b���r��97%�������B���5������C06¸@����1��:

l m�n$w&: �.	����E	�)6	�) *6�^:4��� 	��$:HÜ
Ã(î�¿(Â�×SÄ�Ç$Ï'ÂMã Ë1Ý�ØLßb¿(Å8Ä
å<Â5É(ÏLÂ Ä�Ä�Å�ÏLÂ#É+¿(Â Ã&ï�Â�Ë(ß]À�Ä1Ã"É5Ä.å<Â5É(ÏLÂ Ä�Ä�ÅSÏLÂ#É�ð?ñ�Ë#À Õ�Þ?ÄUò�ð
Ä1Ã(Ï�ØoÄ1Ã6Ô�ÖYñ�âKÜ�Þ7Ô�Å�Ï�Ë#À�¿D¿(Â�ÃRó]â]Ó�Ë�Å8Ë#Ø�Ë(Å�¿(G4��� 	�%-����B;B)
P�)5�1����*����������()V���D�����'�C�
	����;]���S�-����������-��(:�fp�����E*
�����E�)�����c��=¸b�-2������1����)�AD�r��97% 	�)�05G�¬B��®é#����1�05GI�"}�}(��:

l ©"n��H: �3�(_���	���(G�fj: �
:�fZ�()-A-G-ê?:4�4: [I���E!("*-��G-	�)�*+é�:-|�:
�3����A#	�)K:b´�;B)+	�) 	���0������=	�%�%-���(����+���7	����S�-����������-���Fz2�	��1"*
�1�������<	���=�������	�2���������0>%-��"*��E�S���E��)�µ�: P�)6á
Å�Ë"×�âbË8ÝBäSÂ�Ø�À�â
á]Ä�ÅLÝ�Ë�ÅSÞ&¿(Â ×�Ä&¿(Â�Ã?è�ÄCÑ-Ä�Â Ã#¿#Ô�Ï�À Ï�ØLÖ7ã�Ö�ÞBÑ�Ë�Ç�Ï'Õ�Þõô'ä1ábè=ã
ö ÷(ø�ù G-% 	�A(��=�"�"í�����G4w.����� 	�96G�¬$�BG ���%����9&24��3�"}(}���:

l ��n=�
:��B��S_V	�) *+w&:��B�(A���S�L(:�µ(�3�����	����S�-���"	��\%4S�1�L����9D	�)���
�!�	���� 	������()62�	��1"*+��)+�L����9D	�����0+�1%4�����c "*+���(979&�-)����"	����E��)
%-�������5���(���1µ�:Iä1åNåbåXÓ-Å�¿(Â�ÇSâQË(Âk¾QË(ÞBÑ Õ-ØoÄ�Å�Ç�G
m#��v�m�y�° ©�����í�©��"��GK;B%-�����Q�"}�}��(:

l �"n�¸@:��B:-ê.���-�������)I:�µ#[<��$m#úU�$!�����®97��*-��H���
	���������������������µ-:4ä1åNåbå®ã Ë8Ý�ØLßb¿(Å1Ä�G�% 	�A���]m5��í�©���G4¬3��!#�9&24��
�"}(}(©�:

l ��n=é�:�é-:4xK�K	�)�*>é�:-|=:��B����A#	�)K:@´�;¯���5�����1������$�L���B*���	�A()-�(�1���
	�) *D����8����)�A?�1���'�C�
	���U*-��1�EA�)6�1%4�����c��"	������()-�1µ-:4PC)Má<Å8Ë"×�âQË1Ý
èUÄCÑ-Ä�Â Ã(¿5Ô�À�ÄUã�Ö�Ç�ØoÄ�Þ&Ç=¿(Â�Ã?ì=Ä�ØLßbË(Å1Î�Ç7ôLè$ã�ì.û�ü#ü#ü"ð
ý Ór¾@ã þ5ò ù G�¬3��`ÿN����_4G�¬BÿUG�é#�-)�=���(����:

l }�n=w&: xI����_�� 	�96G�xQ: ;=:-;B��A����8����)KG-é�:-ê$�)�)-�05G�é�:�ªN�S��	�G
w&: �b�10�	�)IG�	�) *>f�: �6	�)�)I: µ5��%4�����c ��	������()M	�) *>	�) 	���0-�1���
���@�80��8���9�	����S�-����������-��$�-�1�E)-A&��	�%-�E*-�µ�:Hä1åbåNåXÓ�Å8¿(Â âQË�Â
ã Ë1Ý�ØLßb¿(Å8Ä$å<Â5É(ÏLÂ Ä�Ä�Å�ÏLÂ#É(GH���(v�m�y�° �(����í5�#©(©5GI;B%����E�Q�"}�}#©5:

l��"��nU�^: ;=:4�6	�����	�)KG ;�:-�r�E	�)-���-G4xb: �r�E97��)-���	�G-|�:����E�8����G4	�) *
;�:�ªr	����)�i"	�)���: µ#;¯x\�.[]�$�D�O����1)��1���()+�'��������
%4��1�L����9D	�)���=	�) 	���0-�1�������Q*����8�1���E2-�-��"*V�80��8���97�1µ-:
ä1åNåbå���Ü�¾�È Ó�Å8¿(Â-ÇS¿(×"ØLÏ�Ë(Â�Ç�Ë(Â>ì=Ä�ØLßbË(Å1Î�ÏLÂ5É(G
��vz�#y�°��"©��Sí��"�(©�GI;B%������b��}(}�m�:

l��(�Sn=é�:�wU:4�+�-��	�:b´��3%4���	�������) 	��K%-����c ����]��)
�1���'�C�
	����Fo�������	�2���������0M�)-A(��)�������)�A(µ�:Hä1åbåNåuã Ë1Ý�ØLßb¿(Å8Ä�G
�"�-vz�(y�°���m�í5�#�5GK�6	������p�"}�}(��:

l����"n�;�:�|B��E2-9D	�)IG-|=: ��97�����KG�	�) *>ê?: �H:�[K����!#"*���:@´��6	���_#��!
	�) *+�6	���_#��!V|BS�
	���*6�+��*-��K[K��	�)-�1���)5�3;�) 	���0��1����°N;B)
�3!#���!�����u���Q¬B��97������"	��K;�%�%����#	�������1µ-: å
Õ�Å8Ë�Ñ-Ä�¿�Â
� Ë(Õ�ÅSÂ�¿#À�Ë1Ý?æ�Ñ-Ä�Å�¿#ØLÏ�Ë(Â�¿#ÀHÆ]Ä�ÇSÄ�¿�Å8×SÍ�G4m(��° �(©��"í����#�5GQ�"}(��}�:

l��"��nU�^:4��� 	��$G�|=:-w."xK��)-(G�wU:-ª�:�ê$�����)IG [3:�xb:-|B���1��G w&:��^:
ÿr����)�A�G-	�) *+�U:H�4�����1)���_4:@´�;B2-�8�1��	���������)��]�L�����1���'���<	���
	��������������������=	�) *D���5�(���]���?�1��%-%4���1�
�����97µ-:�ä1åNåbåXÓ-Å�¿(Â�ÇSâ
Ë(ÂJã Ë1Ý�ØLßb¿(Å8Ä.å<Â5É(ÏLÂ Ä�Ä�ÅSÏLÂ#É(GH�5�#v�m�y�° ����m�í5�(�(©�GK;B%����E�Q�"}�}#©5:

l���m�nU�^:4�5���%�%-�ES��	�) *+�B:-fZ	���_#(:@´�¸\S�1�L����9D	�)���=	�) 	���0��1�������
���(979U��)����"	������()��
�80��8���97�<�'����9D	��E��0>�1%4�����c �*+��)M��w.xKµ-:
P�)Má<Å8Ë"×�âQË1Ý$Ø�Í-ÄJë+Ë(Å1Î�Ç8Í�ËSÑZË(ÂJã Ë1Ý�ØLßb¿(Å8Ä&¿(Â�Ã
á�Ä�Å'Ý�Ë(Å�Þ?¿(Â�×�Ä�GH�-	�)5��	?�(G-¬$�^GH�"}�}(��:

l���©"n=P�)5�����) 	������() 	���[K����A���	�%��M	�) *6[���E�%�����)���r��)��1���E	����E!(
�r�(9797���1���(:NàSã5è���Ð\ÇSÄ�ÅDó<Õ�Ï�Ã5Ä�À Ï'Â4Ä�Ç�Ç�àS: PC)���S��) 	�������) 	��
[���������979&��)-���"	������()>~3)-�E��)KG-¬3��!#�9U24��3��}(��}�:

l��"��n�xb:�;�:-[��(97�_>	�) *Vê?:4�4: [K����!#�*-��:Kã�Ë1Ý�ØLßb¿(Å8Ä ý ¿(Õ�À�Ø
Ó�Ë#À�Ä�Å8¿�Â ×�Ä�ðbå
Ã(Ï�ØoÄ1Ã+Ô�Ö&È^âHÆ$â��\Ö�Õ�G��S��	�%-��S��;B) 	���0-�1��
~3�1��)�AD�5���5�S��	��8�����$|���
	���*+¬3�����G-% 	�A(��$���(}�í��"�(©�:Hé#����)
f`���ES06	�) *6���()-�BxH��*I:�G-¬3��`ÿN����_4GH�"}�}#©�:

l����"nU�B:-ÿU:-fZ	�)�A&	�)�*+ê?:��H:�[K����!#"*-��:@´�PC)����A���	�������)6���
�1%4�����c �"	������()6�L����97��*-�����)�A7	�) *V�1%4�����c �"	������()6�L�����80-�8���9
*-��1��A()-µ-:�P�)Má<Å8Ë"×�âQË1Ý ý Ë(Õ�ÅSØoÄ�Ä�Â Ø�Í+äSÂ�Ø�À�â
¾QË�Â"Ý�Ä�Å8Ä�Â ×�Ä&Ë(Â
ÜrÑ#Ñ4À Ï�×�¿#ØLÏ�Ë(Â-Ç$¿(Â Ã^ÓIÍ-Ä1Ë(Å�ÖVË1Ý�á�Ä�ØLÅ�Ï@ì=Ä�ØLÇ�G %�	�A(��.��m�í����(G
�"}(}���:

l��"��nU�B:-fp�(������)M	�) *>wU:�|B	�%-%K:\´�¸\��1�'����9D	�)���=	�) 	���0��1���B��)+���-
"	�����0+*-��1��A()+���Q�1�������<	����µ�:4P�)6á
Å�Ë"×�âbË1Ý�äSÂ�Ø�À�â
¾QË�Â"Ý�Ä�Å8Ä�Â ×�Ä
Ë(ÂJã Ë1Ý�ØLßb¿(Å8Ä.å<Â5É(ÏLÂ Ä�Ä�ÅSÏLÂ#É.Ý�Ë(Å7Ó Ä�À�ÄCÑ�Í�Ë(Â ÄUã�ßQÏ�Ø�×SÍ5ÏLÂ5É
ã�Ö�ÇSØoÄ�ÞUÇ�àSG4% 	�A(��$����m�í����5�(G@�"}�}#�5:

l��"}�n=é�:4�4� 	��-:4ì�Ä�ßjÓ Ä1×SÍ�Â Ë#À�Ë�É(Ï�Ä�Ç=Ë(Âk¾QË(ÞBÑ4Õ�ØoÄ�Å=ã Ë8Ý�ØLßb¿(Å1Ä�ðbÈ^â
�@Ï�ð@å
Ã(Ï�Ø�Ë(Å�G���� 	�%-����?´1~3�1��)�A?w3�%4�) *��)���$;B)�	���0��1�E�
���
����%-%4���1�B�����'�C�
	���=;��������������������.~3)�*-����8��	�) *-��)-A(µ-G-% 	�A(��
�"�#©�í ��m5��:HPC)5�����) 	����E��) 	���;��"	(*��97���$¸b�-2������1�������G
���%����9&24��3�"}(}(��:

CallHandler

ResManager

SIGNAL
dialT, busyT, connt, ringT, ring
reqT, relT, reqG, relG, gt, ngt
offhook, dig, hangup;

reqT,
relT,
 reqG,
 relG

dialT, busyT, connt,
ringT, ring

gt, ngt

offhook, dig, hangup

system PBX

c1
c2

c3

c4

�]�L�4�������I�	�U¦L¤�
�s¦L���4�-¦N������ ��Q��
#����
��-�"�L¤4¡e¤�������� �õ �§K �����£

l ����n=é�:4�H��	��-:-µ#;®�1���E���E)-A�Fz2 	��1"*M	�%-%-���(����+���?�O��1��	��S���E)-A
����-��	�2���$�1���'���<	���U	����������������������1µ-:�P�)6á
Å�Ë"×�âbË1Ý"!-Ø�Í
å<Õ�Å�ËSÑ-Ä1¿(Âa¾QË(Â"Ý�Ä�Å8Ä�Â ×�Ä&Ë(ÂJã�Ë1Ý�ØLßb¿(Å1Ä$ÈR¿(ÏLÂ�ØoÄ�Â ¿(Â�×SÄU¿(Â Ã
Æ]Ä�Ä�Â#É(ÏLÂ4Ä�Ä�Å�ÏLÂ5É(G % 	�A���B���"©"í����(��GK�H�����E���KG ���]����i�S����	�) *HG
��2���� 	��106���(����:

l �5��n&Í�Ø�Ø Ñ�# �$��ßQßQßrâ�ØoÄ�À�Ä�À�Ë�É(Ï�×�â'×�Ë(Þ&:

The Role of Event Description in
Architecting Dependable Systems

ABSTRACT
Software monitoring is a well-suited technique to support the
development of dependable systems, and has been widely applied
not only for this purpose, but also for others such as debugging,
security, performance, etc. Software monitoring consists of
observing the dynamic behavior of programs when executed, by
detecting particular events and states of interest, and analyzing
this information for specific purposes.

There is an inherent gap between the levels of abstraction the
information is collected (the implementation level) and the
software architecture level. Unless there is an immediate one-to-
one architecture to implementation mapping, we need a
specification language to describe how low-level events are
related to higher-level ones. Although some event specification
languages for monitoring have been proposed in the literature,
they do not provide support up to the software architecture level.

In this paper, we discuss the importance of event description as
an integration element for architecting dependable systems. We
also present how our current work in defining an interchangeable
description language for events can support the development of
such complex systems.

1. INTRODUCTION
As stated in the workshop call, "architectural representations of
systems have shown to be effective in assisting the understanding
of broader system concerns by abstracting away from details of
the system". The software architecture level of abstraction helps
the developer in dealing with system complexity, and is the
adequate level for analysis, since components, connectors, and
their configuration are better understood and intellectually
tractable [16].

When building dependable systems, additional management
services are required and they impose even more complexity to
the system [14]. Some of these services are fault-tolerance [5] and
safety, as well as security (intrusion detection) and resource
management, among others. An underlying service to all these

services is the software monitoring.

Software monitoring is a well-known technique for observing and
understanding the dynamic behavior of programs when executed,
and can provide for many different purposes [13][15]. Besides
dependability, other purposes for applying monitoring are: testing,
debugging, correctness checking, performance evaluation and
enhancement, security, control, program understanding and
visualization, ubiquitous user interaction and dynamic
documentation.

Software monitoring consists in collecting information from the
system execution, detecting particular events or states using the
collected data, analyzing and presenting relevant information to
the user, and possibly taking some (preventive or corrective)
actions. As the information is collected from the execution of the
program implementation, there is an inherent gap between the
level of abstraction of the collected events (and states) and of the
software architecture. Unless the implementation was generated
from the software architectural description, or there is an easily
identifiable one-to-one architecture to implementation mapping
[1][10][16], we need to describe how those (primitive) events are
related to higher-level (composed) events.

Many monitoring systems were developed so the user could
specify composed events from primitive ones, using provided
specification languages. However, in general, these specification
languages are either restricted to a single monitoring system, not
generic for many different purposes, or cannot associate specified
events to the software architecture.

There is no monitoring system able to provide for all different
purposes. One problem occurs when a user is interested in
applying monitoring for more than one purpose (for instance,
dependability, performance evaluation, and program
visualization). In this case, he or she would probably run different
monitoring systems and, consequently, need to describe the same
events multiple times using different specification languages.

To put it simple, software monitoring is a well-suited technique to
support the development of dependable systems, and has been
widely applied for this purpose. However, monitoring systems
suffer in the ability to associate collected information to software
architecture level.

In this position paper, we discuss how software monitoring can be
applied at the software architectural level to support
dependability. In this context, we present some requirements for
event description languages, and our ongoing work on xMonEve,
an XML-based language for describing monitoring events.

 Marcio S Dias Debra J Richardson
 Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

{mdias,djr}@ics.uci.edu

2. EVENT MONITORING
There are basically two types of monitoring systems based on the
information collection: sampling (time-driven) and tracing (event-
driven). By sampling, information about the execution state is
collected synchronously (in a specific time rate), or
asynchronously (through direct request of the monitoring system).
By tracing, on the other hand, information is collected when an
event of interest occurs in the system [11].

Tracing allows a better understanding and reasoning of the system
behavior than sampling. However, tracing monitoring generates a
much larger volume of data than sampling. In order to reduce this
data volume problem, some researchers have been working on
encoding techniques [12]. A more common and straightforward
way to reduce data volume is to collect interesting events only,
and not all events that happen during a program execution [7][9].
This second approach may limit the analysis of events and
conditions unforeseen previously to the program execution,
though.

Both state and event information is important to understand and
reason about the program execution [14]. Since tracing
monitoring collects information when events occur, state
information can be maintained by collecting the events associated
to state changes. With a hybrid approach, the sampling
monitoring can represent the action of collecting state information
into an event for the tracing monitoring. Like any other event, not
all events with state information should be collected, but only
those events of interest. Integrating sampling and tracing
monitoring and collecting the state information through events
reduce the complexity of the monitoring task.

The monitoring system needs to know what are the events of
interest, i.e. what events should be collected. Therefore, it
provides an event specification language to the user. Additionally,
it needs to know what kind of analysis it should perform over the
collected information. The user may provide a specification of the
correct behavior of the system and the monitoring checks for its
correctness, showing when the system did not perform
accordingly to the specification. Another approach is to have the
user specifying the conditions of interest, and the monitoring
system identifying and notifying him/her when these conditions
are detected. A third approach, not frequently used by monitoring
systems, is to characterize (build a model of) the system behavior
from the program execution, mainly for program understanding
and dynamic documentation.

Since analysis is so intrinsic to the monitoring activity, it became
normal to have monitoring specification languages where the user
describes not only the events, but also the analysis to be
performed. As a consequence, monitoring specification languages
are biased to the kind of analysis performed by the monitoring
system. To the best of our knowledge, there is no monitoring
specification language that separates the concerns of “what are
the events of the system?” (describing the events of interest only),
“what is(are) the purpose(s) for monitoring the system?”
(performance, reliability, etc), and “what kinds of analysis should
be performed?” (i.e. condition detection; correctness checking or
comparison; or model characterization).

In the current step of our research, we are focusing on the first
question for monitoring specification languages, i.e. “what are the

interesting events of the system?”. We are defining an extendable
and flexible language (xMonEve) for describing monitoring
events independently of the system implementation, the purpose
of analysis, and the monitoring system.

2.1 Requirements for xMonEve
Initially, we identified new requirements for event description
languages. Some of the requirements that guide us through the
development of xMonEve are:
• general purpose: need to be flexible enough to accommodate

event description for multiple monitoring purposes (i.e.
independent of the analysis to be performed);

• independence of monitoring system: must allow generic
description of events, both primitive and composed, not
restricted to a specific monitoring system (or environment);

• implementation independence: need to provide mechanisms
that separate the conceptual event to the implementation
mapping;

• reusable: event description should be reusable independently
of the implementation and monitoring system;

• extensible: extension of event description should be
supported, so more specific information can be associated to
the events. For instance, one extension can be the association
of monitoring events to software architectural elements.

Like most monitoring specification languages, xMonEve can
represent both primitive and composed events. Primitive events
are events that occur in a specific moment in time, i.e. an
instantaneous occurrence. Composed events are events composed
of other events (primitive or composed ones), and have a specific
moment of start and end. While its starting time is defined by the
first event to happen, the last event determines its ending time.

Composed events provide a higher-level abstraction for the
system execution. Primitive events may be filtered out and
abstracted into composed events, having unneeded details thrown
away.

One important advantage of event description is that it is well
suited to bridge the gap between software architecture and
implementation (mapping). For multiple reasons (such as reuse,
maintainability, performance, fault-tolerance, security, etc), the
implementation structure may not exactly correspond to the
conceptual architectural structure. Events imply in a functional
mapping for associating architecture and implementation, instead
of a structural mapping. A functional mapping between
implementation and any previous software specification document
(software architecture, requirements, etc) should be always
possible. If a system functionality cannot be associated to
implementation actions (independently of how hard it may be for
a human being to do this association), than this functionality was
not implemented at first place.

Therefore, although events play an important role in the mapping
between architecture and implementation, event specification
languages have often ignored this importance, and not provided
any mechanism to associate these different abstraction levels.

2.2 Describing Events with xMonEve
The purpose of this paper is not to provide a complete discussion
about the xMonEve language, but to give an overview of its
concepts and emphasize some specific details relevant for the
context of architecting dependable systems.

In xMonEve, every event type has ID, name, description,
attributes, and abstraction. The abstraction field is used to
associate the event to a context. For instance, while a primitive
event “open” may be associated to the “File” abstraction, a
composed event “open” may be associated to the
”CheckingAccount” abstraction. It is important to note here that
CheckingAccount may or may not represent a structure (e.g., class
or subsystem) of the system implementation. This mechanism
allows multiple levels of abstraction, from the implementation
level to the requirement level, passing through design and also
software architecture. In the previous example, CheckingAccount
may be a component abstraction at the software architectural
level.
<event name=open type=primitive ID=#>
 <abstraction>File</abstraction>
 <description>opening file</description>
 <attributes>
 <field name=filename type=string>
 <thread_id>
 <timestamp>
 </attributes>
 <...>
</event>

Figure 1. Example showing common features to every event.

Additionally to the features that are common to every event,
primitive and composed events have other distinct characteristics.

2.2.1 Primitive Events
A primitive event may be in more than one system, and with
different implementations. In order to have a reusable definition
for this event, multiple implementation mappings should be
allowed. So, primitive events may have zero, one, or multiple
mappings. These events will typically have no mapping until the
programmer specify them, since he is the one with the right
knowledge.
<event name=open type=primitive ID=#>
 <...>
 <mapping>
 <system ref=java_library/>
 <language name=java/>
 <class name=java.io.File/>
 <type name=operation>File(String pathname)
 </type>
 <when type=method_exit/>
 <assignments>
 <set field=filename parameter=pathname>
 </assignments>
 </mapping>
 <...>
</event>

Figure 2. Example mapping a primitive event to the
implementation. In this example, the event open occurs when the
“method” (actually the constructor) of java.io.File class returns,
and the event field filename has its value assigned from the
pathname parameter.

2.2.2 Composed Events
When defining composed events, no mapping is needed, since it
is composed of other events. Besides the common event fields,
composed events have three extra sections: composition,
correlation and conditions. In composition, it is described what
are the event types that compose this event. In correlation, the
sequence or order of these events to generate the abstract event.
The condition section describes the conditions that have to be
satisfactory between these events so the composed event can be
identified.
<event name=AccountTranfer type=composite ID=#>
<abstraction>Client</abstraction>
<composition>
 <alias name=before event=Bank.TransferRequest/>
 <alias name=withdraw event=Account.Withdraw/>
 <alias name=deposit event=Account.Deposit/>
 <alias name=after event=Bank.Tranfer/>
</composition>
<attributes>
 <field name=client value=before.client/>
 <field name=from value=withdraw.account/>
 <field name=to value=deposit.account/>
 <field name=amount value=withdraw.amount/>
 <timestamp start=before.timestamp.start
 end=after.timestamp.end/>
</attributes>
<correlation method=regexp>
 <sequence min=1 max=1>
 <event alias=before min=1 max=1/>
 <parallel min=1 max=1>
 <event alias=withdraw/>
 <event alias=deposit/>
 </parallel>
 <event alias=after min=1 max=1/>
 </sequence>
</correlation>
<condition>
 <and>
 <exp> before.client = withdraw.client =
 deposit.client = after.client </exp>
 <exp> withdraw.amount = deposit.amount </exp>
 </and>
</condition>
<...>
</event>

Figure 3. Example of the composed event “AccountTransfer”. In
this example we can see what events compose this one
(composition), what is the correlation between these events, and
what conditions should be satisfied between those events.

3. ARCHITECTING DEPENDABLE
SYSTEMS
With xMonEve, events can be described in both top-down and
bottom-up approaches, since the language is independent of the
development process. However, in the context of architectural
development of dependable software, a top-down approach would
be more natural (but not the only possible approach). The
architect would describe (incomplete composed) events at the
architectural level, while the designer and/or programmer would
decompose these events into lower-level events, until they could
be completely defined in terms of primitive events only.

First, in this section, we discuss the role of events as the
integration element for the development of dependable systems
from software architecture to program execution. Afterwards, we
briefly present a top-down approach for architecting such systems.

3.1 Event as the Integration Element
According to Hofmann et al. [4], both monitoring and modeling
rely on a common abstraction of a system’s dynamic behavior, the
event, and therefore can be integrated to one comprehensive
methodology for measurement, validation and evaluation.

When considering modeling and analysis techniques that have
been applied for designing dependable (reliable) system, Markov
models and simulations stand out [8]. It is important to note that
the event abstraction is also common to these techniques. A
Markov model has a state changed with the occurrence of an
event, which time to occurrence is often modeled with a random
exponential distribution. During simulation execution, event
traces are generated, over which analyses are performed.

Therefore, the event abstraction can act as the basic element for
integrating: reliability models, architecture designs, system
implementation, and analyses. In order to have this integration, an
interchangeable (shared and canonical) representation of events
should be available during the whole software development
process. In this context, xMonEve represents an important step
towards this integration.

3.2 Top-Down Approach
Here, we informally and briefly describe a top-down approach for
architecting dependable systems by using events as basic
elements of integration.

When building Markov models for reliability analysis, architects
and designers may associate information about the model to the
events. In this case, the event would include the information about
the state change, and also the random distribution of its
occurrence. This event definition could be used for running
reliability analysis prior to the system development.

<event name=enter_overload_state type=composite …>
 <abstraction>ComponentA</abstraction>
 <markov_model>
 <transition from=“overload_state”
 to=“failure_state”/>
 <distribution (...) />
 <...>
 </markov_model>
 <...>
</event>

Figure 4. Extension of an event description with information for
the Markov model.

Independently of having or not Markov (or others) extensions to
an event definition, software architects, designers and
programmers may compose (or decompose) an event from (into)
other events, by defining and associating these new events. Thus,
multiple levels of event abstraction can be created, from
requirements and software architecture abstractions to
implementation primitive events.

<event name=overload_timeout type=composite …>
 <abstraction>ComponentA</abstraction>
 <markov_model>...</markov_model>
 <composition>
 <alias name=eos event=enter_overload_state />
 <alias name=avg event=loadAverageSampling.../>
 </composition>
 <attributes>
 <field name=status .../>
 <field name=loadaverage value=avg.la .../>

 <...>
 </attributes>
 <...>
 <condition>
 <and>
 <exp>status = ”running”</exp>
 <exp>loadaverage > 10</exp>
 <exp>ellapsedtime(eos.timestamp.end)>5</exp>
 </and>
 </condition>
</event>

Figure 5. Event definition of Figure 4 with the information added
by software architects, designers and/or programmers.

After the implementation of the application, with the event
description represented in xMonEve, a monitoring system can
observe the application execution and analyze its behavior at
multiple abstraction levels, depending on the purpose and interest
of the user. For instance, analysis can happen at the
implementation level for debugging, performance, testing etc, as
well as at the architectural level for dependability, performance,
validation etc.

4. RELATED WORK
Many specification languages have been proposed in the literature
for describing events (and states) for monitoring technique. The
definition of xMonEve is influenced by characteristics present in
most of them.

Some specification languages were developed based upon
extended regular expressions, such as EBBA [1]. These languages
put more emphasis in temporal ordering, and, in general, have
limited capability to specify states, and events are assumed to
occur instantaneously. These languages influenced xMonEve in
the specification of the correlation of composed events, although
in xMonEve we also consider non-instantaneous events.

Snodgrass [15] developed a query language for a history database,
using it to specify events and states. Although this work has a
large influence in monitoring techniques, the language has a
limited set of operators from relational algebra with a limited
representation power. One important influence of this work in
ours is that, in this work, with relational algebra, the language
expresses what derived information is desired, and not how it is
derived.

PMMS [9] uses a specification language based on relational
calculus to for description of events and user questions. A big
contribution of this work is in providing an automatic technique
for instrumenting the program code to collect only the events
needed to answer explicit user questions. This technique removes
the burden of code instrumentation from the programmer. This
specification language has limitations to specify events, and this
is linked to the fact that PMMS supports tracing monitoring only,
and no sampling.

Shim et al. [14] proposed a language based on classical temporal
logic for specifying event and states. This work influenced us in
considering non-instantaneous events. However, they do not
provide any mechanism to create different levels of abstraction (to
associate, for instance, events to software architecture elements),
neither an extensible way to associate more semantics to the event
specification.

With FLEA [3], user expresses his/her requirements and
assumptions for monitoring. The main idea behind it is to be able
to monitor programs that were not developed with monitoring in
mind, and to check software requirements though events. In a
similar way, xMonEve is meant to be independent of
implementation, and this also includes its structure. Additionally,
we also think it is important to bridge different abstractions, such
as requirements and implementation, and any other possible
abstraction.

Another kind of related work is the application of software
monitoring at the architecture level[1][16]. It is worth to mention
that both works consider the instrumentation of connectors for
collecting the information, instead of the components, and the
basic element for analysis is the event at the architectural level. In
these works, the mapping problem between software architecture
and implementation is simplified since the implementation and
software architecture design presents a one-to-one structural
correspondence.

5. CONCLUSIONS AND CURRENT WORK
The event and its definition play a major role in the integration of
development techniques for architecting dependable systems,
since it is a common abstraction to multiples techniques.
However, to have an effective integration, events also have to be
described in a common way. xMonEve is an event description
language for this integration purpose. We are currently working
on xMonEve definition and refinement. xMonEve does not
describe how the event is going to be collected, but what that
event is or represents. xMonEve is not intended to be a substitute
for other event specification languages, but to promote integration
of techniques by providing an interchangeable description for
events.

In this position paper, we present the problem of mapping
implementation to software architecture; discuss the importance
of the event description in the context of developing complex and
reliable systems; present requirements for event description
languages; presented our current work in xMonEve; show how
xMonEve can support integration of reliability techniques and
software architectures; propose a top-down approach for
reliability; and compare our work with other specification
languages from the literature.

Inside this paper, in many occasions we say “the developer would
describe the event”, or similar. However, this is a hard task by
itself and should be supported by tools. Event definitions could
and should be generated from other system documents, such as
requirement specifications, architectural and design models,
testing documents, etc. This type of tool support is also an
important step towards the usefulness and success of monitoring
techniques, as well as such event specification languages.

At this step, we have not gotten yet to analysis description, i.e.,
how to describe what types of analyses a monitoring system
should perform, and for what purpose. Now, it is important for us
to understand better how each different purpose may affect
monitoring systems. Since a major part of the functionality of
monitoring systems is the same in multiple occasions, we
probably need a family of monitoring systems with customizable
components, so the configuration of a monitoring systems could
go one step forward. Instead of configuring sensors and probes,

configuration would represent the tailoring of the whole
monitoring system to attend specific developer needs.

6. REFERENCES
[1] R. Balzer, “Instrumenting, Monitoring, & Debugging

Software Architectures”, 1997.
[http://citeseer.nj.nec.com/411425.html]

[2] P. C. Bates, "Debugging heterogeneous distributed systems
using event-based models of behavior", ACM Trans
Computer System, vol. 13, n. 1, Feb. 1995, pp. 1 – 31

[3] D. Cohen, M. Feather, K. Narayanaswamy, and S. Fickas,
“Automatic Monitoring of Software Requirements”, Proc Int'l
Conf Software Engineering (ICSE) 1997, pp. 602-603.

[4] R. Hofmann, R. Klar, B.Mohr, A. Quick, and M. Siegle,
“Distributed Performance Monitoring: Methods, Tools, and
Applications”, IEEE Trans. Parallel and Distributed
Systems, vol. 5, n. 6, June 1994, pp.585-598.

[5] Y. Huang and C. Kintala, “Software Implemented Fault
Tolerance: Technologies and Experience”, Proc. 23rd Int’l
Symp on Fault Tolerance Computing, 1993, pp. 2-9.

[6] C. Jeffery, “Program Monitoring and Visualization: An
Exploratory Approach”, Springer-Verlag, 1999.

[7] J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring
Distributed Systems. ACM Transactions on Computer
Systems, vol. 5, no. 2, May 1987.

[8] J. F. Kitchin, “Practical Markov Modeling for Reliability
Analysis”, Proc Annual Reliability and Maintainability
Symposium, 1988, Jan. 1988, pp. 290-296.

[9] Y. Liao and D. Cohen, “A Specification Approach to High
Level Program Monitoring and Measuring”, IEEE Trans.
Software Engineering, vol. 18, n. 11, Nov. 1992.

[10] N. Medvidovic, D. Rosenblum, and R. Taylor, “A Language
and Environment for Architecture-Based Software
Development and Evolution”, Proc Int’l Conf on Software
Engineering, May 1999, pp. 44 -53

[11] D. M. Ogle, K. Schwan, and R. Snodgrass, “Application-
Dependent Dynamic Monitoring of Distributed and Parallel
Systems”, IEEE Trans. Parallel and Distributed Systems, vol.
4, n. 7, July 1993, pp. 762-778.

[12] S. Reiss, and M. Renieris, “Encoding Program Executions”,
Proc Int’l Conf Software Engineering, May 2001.

[13] B. Schroeder, “On-Line Monitoring: A Tutorial”, IEEE
Computer, vol. 28, n. 6, June 1995, pp.72-77.

[14] Y. C. Shim and C.V. Ramamoorthy, “Monitoring and
Control of Distributed Systems”, Proc. 1st Int’l Conf on
System Integration, Apr. 1990, pp. 672-681.

[15] R. Snodgrass, “A Relational Approach to Monitoring
Complex Systems”, ACM Trans. Computer Systems, vol. 6,
n. 2, May 1988, pp.156-196.

[16] M. Vieira, M. Dias, D. Richardson, “Analyzing Software
Architecture with Argus-I”, Proc Int’l Conf on Software
Engineering, June 2000, pp. 758 –761.

Using Architectural Properties to Model and Measure
System-Wide Graceful Degradation

ABSTRACT
System-wide graceful degradation may be a viable approach to
improving dependability in computer systems. In order to evaluate
and improve system-wide graceful degradation we present initial
work on a component-based model that will explicitly define
graceful degradation as a system property, and measure how well a
system gracefully degrades in the presence of multiple
combinations of component failures. The system’s software
architecture plays a major role in this model, because the interface
and component specifications embody the architecture’s
abstraction principle. We use the architecture to group components
into subsystems that enable reasoning about overall system utility.
We apply this model to an example distributed embedded control
system and report on initial results.

1. INTRODUCTION
De pend abil ity is a term that cov ers many sys tem prop er ties such as
re li abil ity, avail abil ity, safety, main tain abil ity, and se cu rity [4].
Sys tem de pend abil ity is es pe cially im por tant for em bed ded com -
puter con trol sys tems, which per vade ev ery day life and can have se -
vere con se quences for failure. These sys tems in creas ingly
im ple ment a sig nif i cant portion of their func tion al ity in soft ware,
mak ing soft ware de pend abil ity a ma jor is sue.

Grace ful deg ra da tion may be a vi a ble ap proach to achiev ing better
soft ware de pend abil ity. If a soft ware sys tem can grace fully de grade
au to mat i cally when faults are de tected, then in di vid ual soft ware
com po nent fail ures will not cause com plete sys tem fail ure. Rather,
com po nent fail ures will re move the func tion al ity de rived from that
com po nent, while still pre serv ing the op er a tion of the rest of the
sys tem. Spec ifying and achiev ing sys tem-wide grace ful deg ra da -
tion is a dif fi cult re search prob lem. Cur rent ap proaches re quire
spec i fy ing ev ery sys tem fail ure mode ahead of time, and de sign ing
a spe cific re sponse for each such mode (e.g., [2]). This is im prac ti -
cal for a com plex soft ware sys tem, es pe cially a fine grained dis trib -
uted em bed ded sys tem with hun dreds or thou sands of soft ware and
hard ware com po nents.

In or der to eval u ate and im prove sys tem-wide grace ful deg ra da tion,

we pres ent a com po nent-based sys tem model that pro vides a means
for eval u at ing and pre dict ing how well a sys tem should grace fully
de grade, as well as how grace ful deg ra da tion in flu ences de pend -
abil ity prop er ties. We base the model on us ing the sys tem’s in ter -
face definitions and com po nent con nec tions to group the sys tem’s
com po nents into sub sys tems. We hy poth e size that the soft ware ar -
chi tec ture, re spon si ble for the over all or ga ni za tion of and con nec -
tions among com po nents, can fa cil i tate the sys tem’s abil ity to
im plic itly provide the prop erty of grace ful deg ra da tion, with out
spec i fy ing a re sponse to each pos si ble fail ure mode at de sign time.
We de fine a fail ure mode to be a set of sys tem com po nents fail ing
con cur rently. By us ing the model to mea sure how gracefully a sys -
tem de grades, we pre dict that we can iden tify what ar chi tec tural
prop er ties fa cil i tate and im pede sys tem-wide grace ful deg ra da tion.

Re lated to our con cept of grace ful deg ra da tion is the term sur viv -
abil ity. Sur viv abil ity is an other prop erty of de pend abil ity that has
been pro posed to ex plic itly de fine how sys tems will de grade func -
tion al ity in the pres ence of fail ures [3]. Our work dif fers from sur -
viv abil ity specifications in that we are in ter ested in build ing
im plicit grace ful deg ra da tion into sys tems with out spec i fy ing fail -
ure sce nar ios a pri ori, and hav ing the sys tem “do the right thing” in
the pres ence of com po nent fail ures. Also, we are fo cus ing on dis -
trib uted em bed ded sys tems rather than on large-scale crit i cal in fra -
struc ture in for ma tion sys tems.

The re main der of this pa per is or ga nized as follows. Sec tion 2 de -
scribes our ini tial sys tem model and key as sump tions. Sec tion 3 de -
scribes our rep re sen ta tive dis trib uted em bed ded sys tem and its
ar chi tec ture, and ap plies our model to this ar chi tec ture. Sec tion 4
in cludes dis cus sion about the model’s pre dic tions, and how they
com pare to ini tial fault in jec tion tests we ran with a sim u lated ver -
sion of the con trol sys tem. Sec tion 5 wraps up with con clu sions and
fu ture work.

2. SYSTEM MODEL
As a first step, we are con cen trat ing on soft ware ar chi tec ture at a
high level of ab strac tion. Our sys tem model ini tially fo cuses on the
“func tion al ity” com po nents of the sys tem: soft ware, sen sors, and
ac tu a tors. We make the ini tial as sump tions that in di vid ual soft ware
com po nents each have their own pro cess ing el e ments, that there is
enough net work band width to trans mit all needed sen sor val ues,
and that there are enough sys tem re sources to sat isfy real-time re -
quire ments. These sys tem as pects will all in flu ence sys tem-wide
grace ful deg ra da tion, but we are plan ning to in clude them in the
model at later stages.

We con sider a sys tem as a set of soft ware, sen sor, and ac tu a tor com -
po nents. We use the in ter faces among com po nents to de fine a set of
sys tem vari ables through which all com po nents com mu ni cate.
These vari ables can rep re sent any com mu ni ca tion struc ture in the

Charles P. Shelton
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA

cshelton@cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA

koopman@cmu.edu

soft ware im ple men ta tion. Ac tu a tors re ceive in put vari ables and
out put to the en vi ron ment, while sen sors re ceive in put from the en -
vi ron ment and out put sys tem vari ables. We as sume that com po -
nents can ei ther be in one of two states: work ing or failed. Working
means that the com po nent has enough re sources to out put its spec i -
fied sys tem vari ables. Failed means the com po nent can not pro duce
its spec i fied out puts.

The fault model for our sys tem uses the tra di tional fail-fast, fail si -
lent as sump tion. All faults are man i fested as the loss of sys tem vari -
able com mu ni ca tion among com po nents. Com po nents ei ther
pro vide their out put vari ables or do not. Thus, fail ures can be de -
tected when com po nents do not pro vide their out puts when spec i -
fied. This does not ac count for more com plex types of fail ures such
as pro vid ing in valid but syn tac ti cally cor rect in for ma tion, and as -
sumes com po nent fail ures can be quickly de tected. Fault de tec tion
and prop a ga tion is sues are chal leng ing re search ar eas in and of
them selves, and are out side the scope of this work. Ad di tionally,
since soft ware com po nent fail ure rates are dif fi cult to iden tify, we
make an ini tial as sump tion that all com po nents have ap prox i mately
equal fail ure rates.

A key con cept in our model is the no tion of util ity. Util ity is a mea -
sure of how much ben e fit can be gained from the en tire sys tem, a
cer tain sub sys tem, or an in di vid ual com po nent. For the en tire sys -
tem, the over all util ity is de ter mined by a non lin ear func tion of its
in di vid ual sub sys tem util i ties. Each sub sys tem’s util ity is de ter -
mined by a non lin ear func tion of its in di vid ual com po nent util i ties.
For in di vid ual com po nents, we de fine a com po nent’s util ity to be 1
when work ing and 0 when failed. We as sume that if all com po nents
are work ing the sys tem will be at its max i mum util ity, and if all
com po nents are failed, the sys tem will have an over all util ity of
zero. Thus, a sys tem grace fully de grades if in di vid ual com po nent
and sub sys tem fail ures re duce sys tem util ity grad u ally.

In our model, we ini tially con cen trate on mea sur ing whether the
sys tem has zero or pos i tive over all util ity by iden ti fy ing how re sis -
tant crit i cal sub sys tems are to com po nent fail ures. De ter mining the
func tions that quan ti ta tively mea sure how work ing com po nents im -
prove sub sys tem and sys tem util ity val ues is a chal leng ing prob lem.
How ever, with out know ing these func tions we can ini tially make a
dis tinc tion be tween a sys tem that is work ing and has pos i tive but
not nec es sar ily max i mum util ity, and a failed sys tem that has zero
util ity. In or der to make this dis tinc tion we must have a clear def i ni -
tion of what “work ing” means for the en tire sys tem. In other words,
we must spec ify what fea tures of the sys tem are nec es sary for the
sys tem to com plete its pri mary func tions. In most cases, this is not
all the fea tures avail able in the sys tem. For ex am ple, the pri mary
func tion of a car is to pro vide trans por ta tion. Crit i cal fea tures nec -
es sary for the car to con tinue work ing in clude en gine and trans mis -
sion con trol, brakes, and steer ing. The power win dows, emis sions
con trol, air con di tion ing, and ra dio pro vide aux il iary func tion al ity
not nec es sary for the car to com plete its pri mary task, and can be
lost with out caus ing a cat a strophic fail ure.

The sys tem can have many dif fer ent com po nent con fig u ra tions
based on which com po nents are work ing or failed. If n is the num -
ber of com po nents in the sys tem, then there are 2n dif fer ent con fig u -
ra tions that can be con sid ered. The sys tem’s com po nent
con fig u ra tion de ter mines the util ity of all its sub sys tems, and thus
the util ity of the en tire sys tem. An ide al grace fully de grad ing sys -
tem is one where a large frac tion of these 2n con fig u ra tions re sult in
a sys tem with over all pos i tive util ity; i.e., the sys tem can tol er ate
mul ti ple com bi na tions of com po nent fail ures and still pro vide use -
ful func tion al ity.

Our first met ric for grace ful deg ra da tion is the sys tem’s re sis tance
to com plete fail ure (zero sys tem util ity). We de ter mine this value
by look ing at how many con fig u ra tions re sult in a sys tem with pos i -
tive util ity. The ra tio of log2 [num ber of valid com po nent con fig u ra -
tions] / n gives a mea sure of how many con fig u ra tions will pro vide
util ity rel a tive to the to tal num ber of sys tem con fig u ra tions. This
value is 0 (only one valid con fig u ra tion) for a brit tle sys tem, and 1
for a per fect sys tem where any com po nent con fig u ra tion can pro -
vide some util ity (ig nor ing the triv ial con fig u ra tion of zero com po -
nents that re sults in no sys tem at all).

Clearly, if we had to con sider the util ity of ev ery pos si ble com po -
nent con fig u ra tion in di vid u ally, then specifying grace ful deg ra da -
tion be comes ex po nen tially dif fi cult as the num ber of com po nents
in creases. How ever, we can use the sys tem’s soft ware ar chi tec ture,
which de fines sys tem soft ware com po nents, in put and out put in ter -
faces, and con nec tions among components, to group com po nents
into sub sys tems ac cord ing to the sys tem variables they pro vide, and
thus re duce complexity.

We de fine these sub sys tems in our com po nent model as fea ture sub -
sets. A fea ture sub set is a set of com po nents (soft ware com po nents,
sen sors, ac tu a tors, and pos si bly other fea ture sub sets) that work to -
gether to pro vide a set of out put vari ables. Fea ture sub sets may or
may not be dis joint and can share com po nents across dif fer ent sub -
sets. Fea ture sub sets have util ity val ues based on which of their
com po nents are work ing, and con trib ute to over all sys tem util ity. A
fea ture sub set is crit i cal if its func tion al ity is re quired by the sys tem;
i.e., the to tal sys tem util ity is zero when ever any crit i cal fea ture sub -
set has zero util ity. Thus, the sys tem will have pos i tive util ity if and
only if all of its crit i cal fea ture sub sets have pos i tive util ity. If we
view the sys tem as a set of fea ture sub sets rather than in di vid ual
com po nents, then we should only need to con sider valid com po nent
con fig u ra tions of crit i cal fea ture sub sets rather than con fig u ra tions
of all sys tem com po nents to de ter mine how well the sys tem grace -
fully de grades.

In ad di tion to group ing com po nents into fea ture sub sets, we de fine a
set of de pend ency re la tion ships be tween fea ture sub sets and their
com po nents. A fea ture sub set may have strong de pend ence on
some of its com po nents, weak de pend ence on oth ers, and some of
its com po nents may be com pletely op tional. A fea ture sub set
strongly de pends on one of its com po nents if the loss of that com po -
nent re sults in the fea ture sub set’s hav ing zero util ity. A fea ture sub -
set weakly de pends on one of its com po nents if the loss of that
com po nent re duces the fea ture sub set’s util ity to zero in some, but
not all, con fig u ra tions in which that com po nent was working. For
ex am ple, if there are two com po nents that out put a re quired sys tem
vari able, loss of both will re sult in the fea ture sub set hav ing zero
util ity, but loss of only one or the other will not. If a com po nent is
op tional to a fea ture sub set, then it may pro vide en hance ments to
the fea ture sub set’s util ity, but is not crit i cal to the op er a tion of the
fea ture sub set. Ev ery valid com po nent con fig u ra tion of the fea ture
sub set where that com po nent is work ing still pro vides pos i tive (but
pos si bly lower) util ity when that com po nent is bro ken. These de -
pend ency re la tion ships can also ex ist among in di vid ual com po -
nents as well, based on their in put and out put in ter faces. A
com po nent that re quires a cer tain sys tem vari able as an in put will
de pend on the com po nents that pro vide it as an out put.

We can use this model to de velop a space of sys tems with vary ing
de grees of grace ful deg ra da tion. At one end of the spec trum, we
have ex tremely “brit tle” sys tems that are not ca pa ble of any grace -
ful deg ra da tion at all. In these sys tems, any one com po nent fail ure
will re sult in a com plete sys tem fail ure. In our model, this would be
a sys tem where ev ery com po nent is within a crit i cal fea ture sub set,

and each fea ture sub set strongly de pends on all of its com po nents.
There fore, ev ery com po nent must be func tion ing to have pos i tive
sys tem util ity.

Sim i larly, any mod u lar re dun dant sys tem can be rep re sented as a
col lec tion of sev eral crit i cal fea ture sub sets, where each fea ture sub -
set con tains mul ti ple cop ies of a com po nent plus a voter. The valid
con fig u ra tions that pro vide pos i tive util ity for each fea ture sub set
are those that contain the voter plus one or more com po nent cop ies.
This re dun dant sys tem can tol er ate mul ti ple fail ures across many
fea ture sub sets, but can not tol er ate the fail ure of any one voter or all
the com po nent cop ies in any one fea ture sub set.

At the other end of the spec trum, an ideal grace fully de grad ing sys -
tem is one where any com bi na tion of com po nent fail ures will still
leave a sys tem with pos i tive util ity. In our model, this sys tem would
be one where none of its fea ture sub sets would be la beled as crit i cal,
and ev ery com po nent would be com pletely op tional to each fea ture
sub set in which it was a mem ber. The sys tem would con tinue to
have pos i tive util ity un til ev ery com po nent failed.

3. EXAMPLE SYSTEM: A DISTRIBUTED
ELEVATOR CONTROL SYSTEM
To il lus trate how we can ap ply our sys tem model to a con trol sys -
tem, we will use a model of a rel a tively com plex dis trib uted el e va -
tor con trol sys tem. The com plete de tails of the model have been
pub lished in [6], but we will de scribe a por tion of the sys tem and the
soft ware ar chi tec ture here for clar ity.

The gen eral re quire ment for an el e va tor is that it must safely trans -
port peo ple among floors in a build ing. The con trol sys tem has a set
of sen sors (door opened/closed, el e va tor speed, but ton sen sors, etc.)
for de ter min ing the cur rent en vi ron ment and pas sen ger re quests, a
set of ac tu a tors (door mo tor, drive mo tor, emer gency brake, lights,
etc.) for per form ing tasks and in form ing pas sen gers about sys tem
state, and a set of soft ware ob jects (door con trol ler, drive con trol ler,
dis patcher, etc.) that im ple ment the con trol logic to per form the el e -
va tor’s func tions.

Ta ble 1 sum ma rizes the list of sen sors, ac tu a tors, and soft ware com -
po nents in the el e va tor con trol sys tem. In the ta ble, f rep re sents the
num ber of floors in the el e va tor’s build ing, and d rep re sents a
choice of two di rec tions, up or down. For ex am ple, there are f floor
sen sors and f car but ton sen sors (one for each floor), two hoistway
limit sen sors (the “up” sen sor is at the top of the hoistway, and the
“down” sen sor is at the bot tom), and 2f - 2 hall but ton sen sors (two

per floor in each di rec tion, ex cept for the top and bot tom floors,
which only have one but ton). In the ta ble each sen sor has a spec i -
fied out put vari able, and each ac tu a tor has a spec i fied in put vari -
able. The soft ware com po nents have sev eral in puts and a few
out puts. There are a to tal of 14 + 11f com po nents in the sys tem.

The sys tem’s soft ware ar chi tec ture de fines each com po nent’s in put
and out put in ter face, as well as con nec tions among com po nents,
which can be used to con struct the sys tem’s fea ture sub sets. Fig ure
1 shows the crit i cal fea ture sub sets of the sys tem, and the de pend en -
cies be tween the fea ture sub sets and com po nents. Each ar row in the
fig ure rep re sents a sys tem vari able be ing com mu ni cated be tween
com po nents. In an el e va tor con trol sys tem, the only crit i cal func -
tions of the el e va tor are that it must be able to ser vice all floors, open
and close the doors, and en sure the safety of the pas sen gers. All
other func tion al ity, such as re spond ing to pas sen ger re quests, pro -
vid ing pas sen ger feed back, and min i miz ing wait time and travel
time, are en hance ments over the ba sic el e va tor re quire ments.
There fore, the crit i cal fea ture sub sets for this sys tem are only the
fea ture sub sets that are re quired to op er ate the drive mo tor, door
mo tor, and emer gency brake ac tu a tors.

The soft ware components are de signed to have a de fault be hav ior
based on their re quired in puts, and to treat op tional in puts as “ad -
vice” to im prove func tion al ity when those in puts are avail able. For
ex am ple, the Door Con trol and Drive Con trol com po nents can lis -
ten to each other’s com mand out put vari ables in ad di tion to the
Drive Speed and Door Closed sen sors to syn chro nize their be hav ior
(open the doors more quickly af ter the car stops), but only the sensor
val ues are nec es sary for cor rect be hav ior. Likewise, the Drive Con -
trol com po nent has a de fault be hav ior that stops the el e va tor at ev -
ery floor, but if the DesiredFloor vari able is avail able from the
Dis patcher com po nent, then it can use that value to skip floors that
do not have any pend ing re quests. Also, the Door Con trol com po -
nent nor mally opens the door for a spec i fied dwell time, but can re -
spond to but ton presses to re open the doors if a pas sen ger ar rives.
We also enu mer ated the other non-crit i cal fea ture subsets in the el e -
va tor sys tem such as the var i ous pas sen ger feed back lights in the el -
e va tor, but we omit them here for the sake of brev ity.

4. ANALYSIS
In or der to de rive the grace ful deg ra da tion met ric for our el e va tor
con trol system, we need only con sider the crit i cal fea ture sub sets
and the com po nents upon which they de pend. There fore, all con fig -
u ra tions con tain ing enough com po nents to pro vide work ing Drive

Sen sor Type # Out put Vari able Ac tu a tor Type # In put Vari able Soft ware Com po nent # Out put Vari able

DriveSpeed 1 DriveSpeed Drive Motor 1 DriveMotor Drive Control 1 DriveMotor

CarPosition 1 CarPosition Door Motor 1 DoorMotor Door Control 1 DoorMotor

AtFloor f AtFloor[f] Emer gency Brake 1 EmergencyBrake Safety 1 EmergencyBrake

HoistwayLimit 2 HoistwayLimit[d] Car Lanterns 2 CarLantern[d] Dispatcher 1 DesiredFloor

DoorClosed 1 DoorClosed Car Po si tion Indicator 1 CarPositionIndicator Vir tualAtFloor f AtFloor

DoorOpened 1 DoorOpened Car But ton Lights f CarLight[f] Lan tern Control 2 CarLantern[d]

DoorReversal 1 DoorReversal Hall But ton Lights 2f-2 HallLight[f,d] Car Po si tion In di ca tor Control 1 CarPositionIndicator

Car Buttons f CarCall[f] Car But ton Control f CarLight[f]

Hall Buttons 2f-2 HallCall[f,d] Hall But ton Control 2f-2 HallLight[f,d]

Table 1. Sensors, Actuators, and Software Components in the Elevator Architecture

Con trol, Door Con trol, Safety, and AtFloor fea ture sub sets are
valid, and can con tain any ar bi trary com bi na tion of other optional
sys tem com po nents. There are 1 + 9f optional sys tem com po nents
(which can be ar ranged in 21 + 9f dif fer ent ar bi trary com bi na tions),
leav ing 13 + 2f crit i cal com po nents (com po nents within crit i cal fea -
ture sub sets) that have con fig u ra tions that re quire ex am in ing (and
213 + 2f com po nent com bi na tions left to con sider in di vid u ally).

By ex am in ing the crit i cal fea ture sub sets, we can see that they are
strongly de pend ent on the Drive Speed, Door Closed, Door Opened,
Door Re ver sal, and Hoistway Limits sen sors, the Drive Con trol,
Door Con trol, and Safety soft ware com po nents, and the Drive Mo -
tor, Door Mo tor, and Emer gency Brake ac tu a tors. Any valid con -
fig u ra tion must have all of these twelve com po nents pres ent.
There fore, we can re strict the num ber of con fig u ra tions we cal cu -
late by not con sid er ing any con fig u ra tions in which these com po -
nents are bro ken.

This leaves 1 + 2f com po nents (the Car Po si tion sen sor, the AtFloor
sen sors, and the VirtualAtFloor soft ware com po nents) in the
AtFloor fea ture sub set to be con sid ered. By ex am in ing the crit i cal
fea ture subsets, we have sys tem at i cally re duced the grace ful deg ra -
da tion cal cu la tion from con sid er ing 214 + 11f com bi na tions to 21 + 2f

com bi na tions. Now we can de ter mine the num ber of valid con fig u -
ra tions for the AtFloor fea ture by not ing that all floors must be ser -
viced by the el e va tor. There fore, on each floor there must be a
work ing AtFloor sen sor or a work ing VirtualAtFloor com po nent
with a work ing Car Po si tion sen sor. If the Car Po si tion sen sor
breaks, then all AtFloor sen sors must work. Since all the AtFloor
sensors must work in this sit u a tion, they are fixed and have one con -
fig u ra tion. How ever, the VirtualAtFloor com po nents can ei ther
work or not work since their fail ure will not af fect the avail abil ity of
the AtFloor sys tem variables, making 2f valid com bi na tions for the
various VirtualAtFloor com po nents. If the Car Po si tion sen sor
work s, then one or both AtFloor sen sor and VirtualAtFloor com po -
nent must work for each floor, so the only in valid com bi na tions are
when both have failed for at least one floor. This means there are 3
valid com bi na tions per floor, mak ing 3f valid com bi na tions out of
the pos si ble 22f. Thus there are 2f + 3f valid com bi na tions of com po -
nents in the AtFloor fea ture sub set.

Mul ti plying this with the num ber of com bi na tions of optional com -
po nents re sults in a to tal of (2f + 3f)(21 + 9f) valid com po nent con fig -
u ra tions. Taking the base 2 log of this and di vid ing it by the to tal
num ber of sys tem com po nents (14 + 11f) gives us our grace ful deg -
ra da tion met ric. If we cal cu late this value for an el e va tor that serves
seven floors, we get 0.83.

For com par i son, we also con sider an el e va tor sys tem that does not
con tain any VirtualAtFloor soft ware com po nents. The
VirtualAtFloor com po nents im proved the sys tem’s abil ity to grace -
fully de grade be cause they pro vided a way to com pen sate for
AtFloor sen sor fail ures by us ing in for ma tion pro vided by other sys -
tem sen sors to syn thesize AtFloor sen sor values. There fore, if we
re move the VirtualAtFloor com po nents, the re sul tant sys tem should
also re ceive a lower grace ful deg ra da tion value.

In our model, the re moval of the VirtualAtFloor com po nents re -
duces the AtFloor fea ture sub set to be ing strongly de pend ent on all
of the AtFloor sen sors. There fore there is only one valid con fig u ra -
tion for the AtFloor fea ture sub set in which ev ery AtFloor sen sor
must work. Since this is a crit i cal fea ture sub set, all valid sys tem
con fig u ra tions must con tain a work ing AtFloor fea ture sub set. Ad -
di tionally, the Car Po si tion sen sor be comes an op tional sys tem com -
po nent be cause the AtFloor fea ture sub set no lon ger de pends on it.
This re sults in there be ing only 22 + 9f valid sys tem con fig u ra tions
since most of the com po nents in the crit i cal fea ture sub sets must
work and only the op tional com po nents can have mul ti ple valid
con fig u ra tions. The to tal num ber of sys tem com po nents is also re -
duced by the re moval of the f VirtualAtFloor com po nents, leav ing
14 + 10f to tal sys tem com po nents. For a seven-floor el e va tor, this
re sults in a grace ful deg ra da tion score of 0.77.

The grace ful deg ra da tion met ric pro vides a con crete com par i son
among sim i lar sys tems. We can quan ti ta tively as sess how add ing or
sub tract ing com po nents to the sys tem af fects its abil ity to grace fully
de grade. How ever, this met ric may be mis leading when com par ing
two sys tems that are substantially dif fer ent in terms of func tion al ity
and num ber and type of sys tem com po nents.

We have de vel oped a dis crete event sim u la tor that im ple ments our
el e va tor ar chi tec ture, and have run some ini tial fault in jec tion ex -

Drive Motor

Drive Control
Feature

Drive Control
Component

Door Control
FeatureAt Floor

Feature

Desired Floor
Feature

Drive
Speed

Door
Closed

Car
Position

Door Motor

Drive Control
Feature

Door Control
Component

Door Control
Feature

At Floor
Feature

Desired Floor
Feature

Drive
Speed

Door
Closed Door

Reversal

Door
Opened

Hall Buttons
Feature

Car Buttons
Feature

At Floor
Feature

Drive
Speed

At Floor
Sensors

Car
Position

Virtual At Floor
Components

At Floor
Feature

Drive
Speed

Door
Closed

Hoistway
Limits

Safety
Feature

Safety
Component

Emergency Brake

Sensor

Feature Subset
Software Component

Actuator
Strong Dependence (Necessary for all configurations)
Weak Dependence (Necessary for some configurations)
Optional (Provides non-critical utility enhancement)

Diagram uses multiple identical components in different
places for clarity. Components/Feature subsets with the same
name actually represent only one component or feature subset
in the system.

Optional feature subsets not shown:
Car Button Lights, Hall Button Lights, Car Position Indicator,
Car Lanterns

Car Button
Sensors

Hall Button
Sensors

Figure 1. Critical Feature Subsets in the Elevator Control System

per i ments to eval u ate whether the im ple mented sys tem ac tu ally
grace fully degrades. So far, ev ery test we have run with one of the
pos si ble valid con fig u ra tions was able to suc cess fully de liver all
pas sen gers to their des ti na tion floors, in clud ing a test that fail ed all
com po nents but the crit i cal ones and the AtFloor sen sors.

5. CONCLUSIONS AND FUTURE WORK
We have dem on strated a com po nent-based sys tem model that can
pro vide in sight into how well a sys tem will per form grace ful deg ra -
da tion in the pres ence of mul ti ple com po nent fail ures. We de vel -
oped an ini tial met ric for grace ful deg ra da tion that in di cates how
many com bi na tions of com po nent fail ures can be tol er ated by ex -
am in ing crit i cal sub sys tem con fig u ra tions rather than con sid er ing
ev ery pos si ble sys tem com po nent con fig u ra tion. In some ini tial ex -
per i ments on a sim u lated im ple men ta tion of the ex am ple con trol
sys tem stud ied, we found that the ar chi tec ture de scribed was re sis -
tant to cer tain com bi na tions of com po nent fail ures, as pre dicted by
the model.

We did not incorporate fail ure re cov ery sce nar ios for ev ery pos si ble
com bi na tion of com po nent fail ures, but rather built the soft ware
com po nents to the ar chi tec tural spec i fi ca tion. The in di vid ual com -
po nents were designed to ig nore op tional in put vari ables when they
were not avail able and fol low a de fault be hav ior. This is a fun da -
men tally dif fer ent ap proach to sys tem-wide grace ful deg ra da tion
than spec i fy ing all pos si ble fail ure combinations to be han dled
ahead of time.

Prop erties of the soft ware ar chi tec ture such as the com po nent in ter -
faces and the iden ti fi ca tion and par ti tion ing of crit i cal sys tem func -
tion al ity from the rest of the sys tem seem to be key to achiev ing
sys tem-wide grace ful deg ra da tion. The model we de vel oped il lus -
trates how well a sys tem can grace fully de grade by us ing the soft -
ware ar chi tec ture’s com po nent connections to de com pose the
sys tem. We are also ex plor ing how to use an ar chi tec tural de scrip -
tion lan guage such as Acme [1] to pro vide rig or ous com po nent in -
ter face spec i fi ca tions and fa cil i tate de vel op ment of our sys tem
model.

For this par tic u lar sys tem, it is rel a tively easy to cal cu late the pos si -
ble valid con fig u ra tions by ex am in ing the soft ware ar chi tec ture
with out the model. How ever, the model pro vides a sys tem atic
frame work for par ti tion ing the sys tem based on its soft ware ar chi -
tec ture, and we hy poth e size that it will be use ful in eval u at ing any
ar chi tec tural spec i fi ca tion that has a well-de fined component in ter -
face. This frame work al lows us to mea sure the grace ful deg ra da tion
prop er ties of in di vid ual fea ture sub sets with re spect to their com po -
nents as well. The ar chi tec ture and model also iden tify a set of crit i -
cal sys tem com po nents within the crit i cal fea ture sub sets that must
con tinue to op er ate to pro vide any sys tem func tion al ity. This can be
used to de ter mine on which sys tem com po nents to spend ef fort en -
sur ing com po nent re li abil ity through re dun dancy and other fault
tol er ance mea sures.

Our next step is to ex tend this model to in cor po rate the al lo ca tion of
the soft ware com po nents to hard ware units. In a dis trib uted sys tem,
com po nents that com mu ni cate via the net work are strongly de pend -
ent on the net work for their re quired in put vari ables, mak ing the
net work a sin gle point of fail ure. Also, soft ware com po nents are
strongly de pend ent on the hard ware node on which they are hosted.
These con straints will surely in flu ence a sys tem’s abil ity to grace -
fully de grade (hard ware fail ures might re move mul ti ple com po -
nents si mul ta neously), but may be ame lio rated by sys tem-wide
re con fig u ra tion as pro posed in [5]. Ad di tionally, we want to fur ther
de velop the con cept of sys tem util ity to not only dis tin guish be -
tween when the sys tem is “bro ken” or “not bro ken,” but also dif fer -
ent lev els of func tion al ity avail able in dif fer ent sys tem
con fig u ra tions. We have iden ti fied which con fig u ra tions re sult in
sys tems with pos i tive util ity, but we also need to quan ti ta tively de -
ter mine which of those con fig u ra tions have higher util ity than oth -
ers. This will be based on de ter min ing which fea tures are more
use ful than oth ers based on mea sures such as per for mance and func -
tion al ity.

6. ACKNOWLEDGMENTS
This work was sup ported by the Gen eral Mo tors Sat el lite Re search
Lab at Car ne gie Mellon Uni ver sity, and Lu cent Tech nol ogies.
Thanks to Beth Latronico, Bill Nace, Orna Raz, and Yang Wang for
their help in de vel op ing the ideas pre sented.

7. REFERENCES
[1] Garlan, D., Monroe, R.T., Wile, D., “Acme: Architectural

Description of Component-Based Systems,” Foundations of
Component-Based Systems, Leavens, G.T., Sitaraman, M.
(eds), Cambridge University Press, 2000, pp. 47-68.

[2] Herlihy, M. P., Wing, J. M., “Specifying Graceful
Degradation,” IEEE Transactions on Parallel and
Distributed Systems, vol.2, no.1, pp. 93-104, 1991.

[3] Knight, J.C., Sullivan, K.J., "On the Definition of
Survivability," University of Virginia, Department of
Computer Science, Technical Report CS-TR-33-00, 2000.

[4] Laprie, J.-C., "Dependability of Computer Systems:
Concepts, Limits, Im prove ments", Pro ceed ings of the Sixth
In ter na tional Sym po sium on Software Reliability
Engineering, Toulouse, France, Oct. 1995, pp. 2-11.

[5] Nace, W., Koopman, P., “A Product Family Approach to
Graceful Degradation,” Distributed and Parallel Embedded
Systems (DIPES), October 2000.

[6] Shelton, C., Koopman, P., “Developing a Software
Architecture for Graceful Degradation in an Elevator Control
System,” Workshop on Reliability in Embedded Systems (in
conjunction with Symposium on Reliable Distributed
Systems/SRDS-2001), October 2001, New Orleans, LA.

Specification-Driven Prototyping for
Architecting Dependability

 Dennis B. Mulcare, ACM member
Consultant

cefsm@ellijay.com

Abstract - This paper describes a major part of an architecting
methodology developed for safety-critical fault-tolerant software
systems. The methodology coverage centers on specification-
driven prototyping. This approach to prototyping is seen to be
superior to the customary approaches of throwaway and
evolutionary prototyping. A still developmental form of
representation, higher-level statecharts, provides a suitably
expressive prototype specification language.

Dependability is held to rely crucially on the rigor and
specificity of the architecting process, as well as on the
propagatability of its products. The subject four-step prototyping
approach can subserve such needs, especially with regard to
conceptualization insights, complexity management, dynamic
analysis, and dependability assurances. Such efforts primarily
address the underlying architecture or infrastructure of a nascent
software system. In particular, the advocated prototyping approach
focuses on absolute time-based concurrency, with accommodation
of arbitrary scalability, non-ideal timing, and stochastic effects.

1 INTRODUCTION

Dependability refers to an encompassing qualitative
judgment regarding the degree to which a software system merits
or elicits the confidence of customers and users. Mainly,
dependability resides in the extra-functional properties exhibited
by a deployed system, and ultimately, in the system's underlying
architecture or infrastructure. The underlying architecture includes
most of the redundancy elements for fault tolerance, along with
system-wide management logic. The definition and organization
of such features during architecting present major leverage for
ensuring high dependability from the outset of development.

Driven primarily by the demands of safety-critical systems,
the development of associated methods has proceeded, with
moderate success, for some three decades now. The routine use of
these methods, however, has largely been restricted to embedded
applications that prompt their use because of the severity of
inherent hazards. Nonetheless, the adequacy of dependability
methods and practices remains a continuing challenge because of
the ever-increasing degree of sophistication and integration sought
in embedded software systems.

1.1 Critical System Background

A dependable development process with reliable methods is
essential to the assured development of dependable software
systems. Safety-critical embedded systems, such as fly-by-wire
flight control systems, motivated extensive research in associated
development methods from the 1970s well into the 1980s. More or
less independently, software-based prototyping methods evolved
during the same period.

As evident by deployed aerospace systems, critical system
development practice has been rather successful from about 1980
forward. Such success has in general been achieved because the
associated software systems were:

• Dedicated to the critical function(s);
• Kept as simple as possible;
• Constrained in by limited computing resources;
• Supported by specialized hardware;
• Developed by staff with a priori understanding of the

intended system needs and capabilities;
• Driven by considerations of safety and reliability.
In short, dependability was explicitly a major driver in

architecting, implementing, and deploying such systems. While
safety criticality was the paramount concern, other properties
engendering dependability were necessarily and consciously
incorporated into such systems. For example, various self-test and
fault diagnosis features essential to safety also enhanced reliability
and maintainability. Also, the criticality of real-time constraints
levied stringent demands on infrastructure performance.

1.2 Current Dependability Challenges

Then, as processing power and functional integration became
compelling realities, new issues regarding dependability arose
because typically the physical segregation of critical functions was
no longer programmatically viable. In turn, the requirements
placed on the infrastructure became increasingly more diverse,
demanding, and complex.
 Regarding both research and practice, probably the greatest
opportunity for dependability technology improvement exists at
the architecting stage. Apart from the more customary concerns
over functionality or applications, assured dependability mainly
necessitates a rigorous approach to the formulation, analytical
assessment, and verification of a nascent software system's
underlying architecture. Typically, safety-critical systems involve
redundancy management and hard real-time constraints that
compel a focus on the dynamic analysis of concurrency logic and
absolute timing in order to ensure requisite levels of dependability.

Such architecting activities can be facilitated through
specification-driven prototyping, as depicted in Figure 1. Here, all
prototype definition and development is first performed at the
specification level. Then, the prototype is implemented or
modified accordingly. Its execution is used in problem
exploration, architecture development, dynamic analysis, and
concept validation. Ultimately, the verified and optimized results,
especially quantitative parameters as for timing, are propagated
from the prototype specification to that of development product.

For the identified class of problems, however, two major
problems persist regarding readily usable prototyping methods.
First, there is the problem of a specification language that can
express absolute time-based concurrency in an arbitrarily scalable
manner. Such scalability should apply to both process types and
data types needed in prototype specification. Second,
specifications rendered in such a language should be directly and
precisely translatable into an executable form. Such capacity is
vital to methods automation. These issues, together with the
inclusion of stochastic effects, appear to be neglected areas of
research. These issues, moreover, would seem to be relevant to
many classes of systems with significant dependability demands.

Product
Requirements

Product
Specification

Prototype
Specification

Prototype
Deficiencies/
Opportunities

Operational
Scenarios

Prototype
Execution

Prototype
Implementation

Perfective
Iteration

All Proto type Definition &
Modifications are Prescribed
at the Sp ecification Level

Note

+

Figure 1. Specification-Driven Prototyping Concept

2 ARCHITECTING METHODOLOGY

A dependable architecting process, supported by reliable and
effective methods, is necessary to ensure a dependable
development product. To stabilize subsequent development and
manage complexity throughout system development, the
architecting process should capture all the essential problem
complexity at the outset. Where demands on the architecture are
stringent, the methodology should also be suitably rigorous and
tailored to the particular system characteristics. For safety-critical
embedded software systems then, the architecting methodology
should preferably concentrate on system-wide control logic and
address the underlying architecture largely separate from that of
the applications architecture. This separation is generally quite
tractable, and is beneficial for both static and dynamic analysis.

Table 1 summarizes salient attributes of the applications
versus the infrastructure architectures, which together compose the
software system architecture. Dependability associates mainly
with the extra-functional requirements, which for safety-critical
systems tend to have Go/No-Go acceptability criteria. Thus, the
proper operation of the infrastructure must be sustained under both
faulted and fault-free conditions, generally under very stringent
absolute timing constraints. Moreover, the operation of the
applications architecture is totally dependent on that of the
infrastructure. Further, the acceptability criteria for the operation
of the applications architecture are usually relatively tolerant, with
some latitude for limited functional performance degradation.

From an architecting standpoint, the distinction in Table 1
between System STATE and Operational MODE is pivotal.
System state denotes the state of the overall system, and hence the
support available for functionality. On the other hand, operational
mode effects the activation of particular functionality, conditional
upon its availability per system state. System state is based on
absolute time based concurrency logic that manages the system
and its hardware elements. As such, the real-time determination of
system is state is both critical and intricate, especially where
diverse hardware operability and fault tolerance are involved.

As a consequence, the overall methodology that is context for
this paper is called control state decomposition1. Practitioners in
safety-critical systems have employed this kind of methodology, at
least implicitly, to some degree. Otherwise, the linkage from
dependability-related analyses to the development product is
tenuous or obscure, and hence potentially misleading. Control
state decomposition is relevant here for several reasons:

• Infrastructure-applications partitioning;
• Dependability-related product specification content;
• Focus of dynamic modeling and analysis.

APPLICATIONS
ARCHITECTURE

INFRASTRUCTURE
ARCHITECTURE

Functional Requirements

System Services

What Kind(s) of Service

Operational MODE

Functional Performance

Shades of Grey Criteria

Extra-functional Requirements

System Properties ("Ilities")

How Well Service is Supported

System STATE

Infrastructure Performance

GO/NO-GO Criteria

Table 1. Applications versus Infrastructure Architecture

2.1 Applications-Infrastructure Dichotomy

As seen in Figure 2, the architecting accomplished under the
control state decomposition methodology begins with a
delineation of software system requirements into functional and
extra-functional ones. On separate but interdependent trajectories,
the functional requirements drive the architecting of the
applications architecture, while the extra-functional requirements
drive the development of the underlying architecture. It serves as
the system-wide platform used by the applications architecture.

The extra-functional requirements are typically rather high-
level statements, usually quantitative ones. Hence, these
requirements are subject to considerable interpretation and
elaboration. Their interpretation largely dictates the degree of rigor
and kinds assurance methods that need to be used in development.
Their elaboration derives from the analysis and architecting
associated with the functional requirements. As seen in Figure 2,
the applications architecture furnishes its quantitative processing
needs for infrastructure development. These needs are identified
for all operational modes, with emphasis on worst-case demands.

The structure per se of the underlying architecture, such as
redundancy management schemes and self-test mechanisms,
derive largely from the extra-functional requirements. The
suitability of that structure, however, is subject to the requirements
derived through applications architecting. Further, the
parameterization of that structure, such as capacity or timing
quantities, is determined by the needs of the applications
architecture. As suggested earlier, the interplay between the
underlying and the applications architectures is mediated by the
system state and operational mode logic. Associated information
flow involves sensor, controller, display, and effector signals as
essential to the intended system functionalities.

 The system architecture integration shown in Figure 2 is a
logical one that centers on dynamic analysis of various
applications mode demands. The focus is on overall quantitative
adequacy under worst-case demands. Cases of particular concern
are the transient workload for handling faults and potential
computational delays due to dependencies in the interleaving of
distributed processes. At this stage, the associated software exists
only in logical or specification forms, so the associated dynamic
analysis is truly at an architectural level.

Such analysis involves prototype execution, or absolute
time-based simulation, using representative and worst-case
scenarios. Simulation provides tangible insights and quantitative
calibrations of architectural acceptability, including information
on behaviors pertaining to dependability. Such information can be
vital to associated static analysis in terms of data or assumptions.

INFRASTRUCTURE
DEVELOPMENT

FUNCTIONALITY
DEVELOPMENT

SYSTEM
ARCHITECTURE
INTEGRATION

SYSTEM
RQTS.

EXTRA-FUNCTIONAL
REQ UIREMENTS

FUNCTIONAL
REQUIREMENTS

UNDERLYING
ARCHITECTURE

APPLICATIO NS
ARCHITECTURE

VALIDATED
SYSTEM

ARCHITECTURE

How to Configure &
Reconfigure Resources

How to Segment &
Interrelate Activities

How to Map & Schedule
Activities per Available

Resources

Quantified
Processing

Needs

Mutual
Reconciliation

Figure 2. Architecting Methodology Dichotomy

2.2 The Architecting of Dependability

During software system architecting, dependability is
pursued indirectly through ensuring the aforementioned extra-
functional requirements. For example, the fulfillment of safety,
and reliability may be explicitly sought in composing a software
system architecture. Pending architecture commitments then have
to be analyzed to predict or confirm compliance with the
respective requirements. All such assessments are not quantitative,
as safety assurance also depends crucially on qualitative analysis.

In confirming extra-functional properties, it is vital to
employ complementary simulation and analysis techniques. Here,
simulation entails dynamic analysis, as contrasted with the static
nature of analysis per se. Their mutually reinforcing attributes are
outlined in Table 2. Necessarily, all assessments must use precise
and consistent architectural representations. Then, the
corroboration results obtained from static analysis and simulation
must be established. Finally, the analytical models must be
consistent with the finalized architecture definition.

SCOPE

ORIENTATION

DOMAIN

KEY

MECHANISM

MODE

CLOSURE

General Conclusions

Equivalence Classes
(Breadth)

Encompassing Properties

Tractable yet Admissable
Model Simplifications

Reasoning/Consequences

Static/Detached

Deductive

Particular Conclusions

Problematic Scenarios
(Depth)

Selective Subset of
Behaviors

Representative
Scenario Selections

Stimulation/Observations

Dynamic/Tangible

Inductive

ANALYSIS SIMULATION

Table 2 - Attributes of Analysis and Simulation

2.3 Specification-Driven Prototyping

The importance of the dynamic analysis of a developmental
infrastructure architecture has been noted. This refers especially to
the capacity to examine complex behaviors and models with
selective high fidelity. Aside from detailed models, higher fidelity
may involve an absolute timebase, the modeling of concurrency,
or realistic scenarios. As noted in Table 2, problematic scenarios
like the transient behavior exhibited during fault handling can be
investigated through simulation, or prototype execution.
Comparable static analysis is in general intractable. Since
capabilities like timely and assured fault handling are essential to
safety-critical systems, prototype execution is a vital architecting
tool for ensuring reliability and safety from the outset.

The customary forms of software-implemented prototypes
are the throwaway and the evolutionary approaches. Both
approaches suffer from a lack of inherent discipline and focus.
This renders their use for architecting critical systems problematic.
The throwaway prototype has to be reversed engineered to recover
the implicit semantics from code to propagate into actual product;
this is a nebulous and error-prone task. Evolutionary prototypes
tend to diverge from strictly relevant features and to embody
dubious structure on which to base a development product.

Specification-driven prototyping was developed expressly to
aid in the architecting of safety-critical systems. It overcomes
problems associated with both throwaway and evolutionary
prototyping, and provides a stable and rigorous basis for overall
software system development. In specification-driven prototyping,
neither the prototype nor its specification is thrown away. They
are useful throughout system development, provided they are kept
consistent with related aspects of the developmental software
system. Further, the prototype is not itself evolved; only its
specification is. As depicted in Figure 1, all prototype definition
and development occurs at the specification level. The prototype is
merely kept consistent with its specification. Hence, the prototype
is not apt to diverge from the system requirements, and its
complete semantics are always available in a version that has been
partially verified through prototype execution.

Property Realization Role

Communicating External events Message passing

Notification

Request

Timeout

Tokens Local state data

Message parameters

Timing Process duration

Scheduling times

Transmission delays

Extended

Stochastics Timing variation

Demand variability

Stochastic decisions

Finite-State
Machine

Statechart
subgraph

Active objects

Table 3. Higher-Level Statechart Expressiveness

2.3.1 Payoff from Specification-Driven Prototyping -
Ultimately, appropriate information from the prototype
specification is propagated to product specifications. Such
information includes global concurrency logic, exact timing
parameters with tolerances, and quantitative parameters such as
sizing values. Unfortunately, this kind of information is often
conservatively estimated in early-on product specifications, or
acknowledged only by "TBDs." If such information is not
cogently stipulated, the basis for subsequent development is
questionable. Ill-informed or defaulted specification entries tend to
yield component/sizing mismatches, performance deficiencies,
trial-and-error development, and undue system complexity.

In summary, the motivation for specification-driven
prototyping is to establish global concurrency logic and
quantitative parameter values for the infrastructure architecture.
The intent is not only to eliminate uncertainty, but also to ensure a
more balanced, robust, and economical design. These attributes
translate into a system implementation that has: assured real-time
performance under worst-case conditions; minimal spurious fault
alarms and service outages; freedom from disparate bottlenecks
and surplus capacity; and in general stable parameter values.

2.3.2 Higher-Level Statecharts (HLSs) - HLSs were developed
expressly to support specification-driven prototyping2. They were
needed because of the lack of any other language with suitable
expressiveness at that time. Previously, a kind of higher-level Petri
net, a predicate-transition network, had been used, but it did not
provide desired modeling construct modularity. Since a subgraph
in a basic statechart constitutes a finite-state machine (FSM),
statecharts possess the relevant modularity property. They model
communication among FSMs through events issued across
subgraph boundaries. These circumstances prompted innovations
to extend the expressiveness of basic statecharts to that equivalent
to predicate-transition networks, or the development of HLSs. So
features like circulating tokens and complex transition rule syntax
were added to basic statecharts to define HLSs.

 HLSs may be thought of as scalable communicating
extended finite-state machines (CEFSMs), with correspondences
as seen in Table 2. The inherent scalability applies to tokens as
well as to subgraphs. Tokens are based on (passive) data types,
and subgraphs are defined as (active) process types. Prefix-dot
notation is used to denote scalability in both cases. The result is
arbitrary scalability with no changes at all to transition rules.

While of the same form as used for basic statecharts, the
syntax for HLS transition rules is appreciably more complex.
Augmented first-order logic is used to express HLS transition
rules, with additional constructs to represent absolute timing and
stochastic effects. Some other aspects of HLS transition rule
notation are:

• Distinction between Logical- and Operational-ANDs;
• Distinction between Logical Exclusive-OR and

Operational Exclusive-OR;
• Notation for Token Migration between subgraph Nodes;
• Compound Action-Parts;
• In-line Comments in Action-Parts.
Overall, HLSs enable a coherent form of nested abstractions,

where the HLS itself represents an encompassing concurrency
model. HLS subgraphs denote interacting process abstractions,
which in turn operate on instances of various token types, or data
abstractions. Consequently, state data is captured at three different
levels: global, process, and data token levels. This multi-level state
characterization coincides well with the aforementioned control
state decomposition methodology, with its emphasis on system
state and operational modes. And the top-level states and modes
correspond explicitly with the models used for static analysis and
product specification provisions.

While HLSs have been applied extensively on a manual
basis, their precise definition has not been completed.
Accordingly, their precise mapping to an executable prototype has
not been pursued. Consequently, such mappings have also been
performed on a manual basis. Nevertheless, in numerous
instances, successful prototypes have been developed, and the
HLSs have been very incisive in informing prototype refinements.

3 PROTOTYPING METHODOLOGY

The prototyping methodology is summarized in Figure 3,
where the same infrastructure architecture model, and hence
prototype specification, are evolved over four stages of elaboration
and assessment. Overall, the intent is to rigorously define and
verify an infrastructure architecture with confirmed dependability
properties like safety. The initial prototyping stage investigates the
correctness of concurrency logic for the global management of the
software system. Here, HLS process types correspond to logical
elements in the nascent architecture. This activity serves to reveal
many HLS specification deficiencies, and ultimately, to establish
precise definition and management of overall system state(s).

The second stage of prototyping dynamically examines the
absolute timing of interleaved processes in a distributed system,
based on applied stimuli and the affected HLS transition rules.
Here, the transition rules are expanded to include timing terms and
possibly stochastic variations in prototype operation. The
emphasis is on confirming real-time response and performance.

 The third stage focuses on physical component partitioning
and interfaces, which tend to associate with process type
boundaries. Distribution of timing requirements and tolerances are
allocated among components as well. Refined estimates for the
applications architecture needs are introduced at this stage, which
corresponds to the System Architecture Integration block in Figure
2. The application demands are merely simulated as dummy loads.

 Architecture = Concurrency Logic + Timing + Components + Configuration

(Dependability) (Correctness) (Performance) (Partitioning) (Optimization)

 Coherency, System Timing Logical Resource

 Certitude & State Requirements System Utilization &
 Realizability Definition Distribution Integration Specification

o Same Architecture Model(s) Evolved over the 4 Stages
o Outputs of Logic & Quantitative Parameters for Specifications

Figure 3 - Infrastructure Architecting Progression

The final stage is an optimization effort where the specific
numbers of various component types and their respective
quantitative parameters can be set to best overall advantage. This
involves the use of stochastic simulation and objective functions.
For example, a genetic algorithm has been used with stochastic
simulation to optimize component counts and parameters3.

This evolution of the specification-based prototype imparts
precision and certitude, and hence dependability, to crucial aspects
of the architecting process. Prototype execution also stimulates
conceptual and usage insights. When appropriate, the first stage of
prototyping, concurrency logic correctness, can be skipped. This
does not affect the prototype specification, but it greatly simplifies
its implementation. Even though the process remains a manual
one, the benefits for crucial aspects of critical systems are seen as
well worthwhile for orderly development and economical design.

3.1 Prototyping Experience

Two categories of experience with specification-driven
prototyping have accrued: that derived during architecting
activities, and that obtained in supporting physical system
development. Architecting experience has in part accrued in the
modeling of rate monotonic scheduling, Ada virtual nodes and
remote rendezvous, the Pilot's Associate processing concept, and
the optimization of an on-line transaction processing system3.

Figure 4 depicts some results of prototype execution for the
Ada virtual nodes concept. Here, the failure of one of the physical
nodes has been simulated. Detection of the hardware fault has then
prompted processor reconfiguration and application restart. The
restart is based on given applications priorities and the availability
of standby virtual nodes at operable physical nodes. The diagram
also shows the interplay between the underlying and the
applications architectures in the prioritized restoration of services.
HLS events are shown in bold font on the interconnection arcs.

Two cases of prototyping support for system development are
notable. First, a subtle quad channel synchronization problem in a
physical system was corrected with about three hours of prototype
experimentation. Previously, a week of physical system testing
had failed to even diagnose the problem. Second, an intermittent
synchronization dropout by one particular computational channel
was quickly diagnosed with the use of the prototype. Previously,
two weeks of system testing had failed to disclose the source of
the problem. Derivatives of a prototype have also been used
successfully for real-time system execution monitors.

FAULT

Underlying
Architecture

(Physical Nodes)

Applications
Architecture
(Virtual Nodes)

RECOVER

RESTART

Detect & Identify
of Fault Condition

by Operable Unit(s)

Establish New
Scheduling using

Available Processors

Repair Exception
States in Affected
Active Processes

Establish Applications
Reinitialization States
per New Scheduling

Gracefully Conclude
Pending Applications

Execution

(Spontaneous
External Event)

FLAG

ALLOCATE

Isolate Damaged Unit
& Reconfigure

Operable Resources

(Error-Free Resumption)

RESET

RAISE

REINI-
TIALIZE

Figure 4. Prototype Execution of Fault Handling

REFERENCES

1. MULCARE, D.B. et al. 1984. Analytical design and assurance
of digital flight control system structure. AIAA Journal of
Guidance, Control, and Dynamics, May-June 1984.

2. MULCARE, D.B. 1993. Ada multitasking prototyping using
higher-level statecharts, Tutorial at TRI-Ada '93.

3.MULCARE, D.B. 1996. System-level optimization of
architectural performance under varying service demands. 9th
International IEEE Symposium and Workshop on Engineering
of Computer-Based Systems.

Evaluation of Dependable Layered Systems with Fault
Management Architecture

Olivia Das, C. Murray Woodside
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

email: odas@sce.carleton.ca, cmw@sce.carleton.ca
ABSTRACT
The need for a separate fault-management system, that is
able to carry out both failure detection and reconfiguration,
is becoming imperative due to the increasing complexity of
fault-tolerant distributed applications. Such practice would
eliminate the intricacies of the failure detection mecha-
nisms from the application and would avoid repeating them
in every program. The dependability of such an application
depends on the interconnection of components in the fault-
management system, management subsystem failures,
delays incurred due to system reconfiguration and failure
information propagation in the management architecture,
as well as on the structure of the application itself. This
position paper describes avenues for evaluating the
dependability of a multi-layered service system that uses a
separate fault-management architecture.

1. INTRODUCTION
Distributed software systems are usually structured in
layers with some kind of user-interface tasks as the
topmost layer, making requests to various layers of
servers. Client server systems and Open distributed
processing systems such as DCE, ANSA and CORBA are
structured this way. [2, 1, 12] introduced an approach to
express the layered failure and repair dependencies in
these systems. However, the work done there is limited by
the assumption of instantaneous perfect detection and
reconfiguration, and independent failures and repairs.

This position paper describes avenues to incorporate the
effect of fault management architecture in the
dependability evaluation of layered systems. The fault
management architecture influences the dependability in
the following ways:

• management component failures and the interconnections
among the management components affects the success-
ful system recovery.

• delays for system reconfiguration and detection propaga-
tion in the management architecture increases the system
downtime.

Our earlier work in [3] considered the delays for detection
and reconfiguration by a separate detection architecture for
layered systems. However, it was restricted to a particular
detection architecture that would support full coverage of
the failures by the system. If arbitrary connections among
fault management components are considered, then it is
possible that due to the loss of connectivity in the
management architecture, the system may not be able to
detect a failure and therefore would fail even if adequate
redundancy exists. This issue has been addressed in this
work that extends the work in [3] by taking into account
arbitrary fault management architectures.

Other work analyzes the effect of software architecture
(and not the management architecture) on reliability and is
given by Trivedi et. al. [4, 5].

As in [3], this work considers only crash-stop failures, in
which an entity becomes inactive after failure, and not to
the other more complex failure modes such as Byzantine
failure [9].

2. LAYERED MODELS CAPTURING
FAILURE OCCURRENCE AND REPAIR
BEHAVIOR
Figure 1 shows an example of a layered model using a
notation proposed in [1, 2] with two groups of users (50
UserA users and 100 UserB users, which may be people at
terminals or at PC workstations) accessing applications

which in turn access back-end servers. The rectangles in
this figure represent tasks (i.e. operating system processes)
such as AppA or Server1 with entries, which are service
handlers embedded in the task. For instance, eA-1, eB-1 are
entries of task Server1. An arrow represents a request-reply
interaction, such as an RPC. Processors are represented by
ovals. The numbering #1, #2 on the request arcs indicate
primary/backup choice for a service. Server1 is the primary
server while Server2 is the backup, implying that if Server1
fails, both “serviceA” and “serviceB” would use Server2
until Server1 is working again. Failure and repair rates are
provided for each component (either a task or a processor).

The special property of multi-layered client-server systems
is that a failure of a task or a processor in one layer can
cause many tasks, requiring its services, to fail, unless they
have a backup. The model in Figure 1 captures such
cascaded service operational dependencies.

In order to capture the effect of fault management
architectures, the first step would be to describe the
architecture in some relevant way. The next section
introduces an architectural model to describe various fault
management architectures.

3. FAULT MANAGEMENT
ARCHITECTURE
The generic management components and their
relationships can be depicted as in Figure 2, following [7].
Applications have embedded modules (Subagents) which
may be configured to send heartbeat messages in response
to timer interrupts (indicating they are alive) to a local
Agent, or to a manager directly. A node may have an Agent
task which monitors the operating system health status and
all the processes in the node, and there may be one or more

Manager tasks which collect status information from
agents, make decisions, and issue notifications to
reconfigure. Reconfiguration can be handled by a subagent
(to cause a task or an ORB to retarget its requests) or an
agent (to restart a task, or reboot a node altogether).

The agents and managers are described in this paper as if
they are free-standing processes, even though in practice
some of these components may be combined with other
components in a dependability ORB [8], or an application
management system [11].

Failures of system entities are detected by mechanisms
such as heartbeats, timeouts on periodic polls, and timeouts
on requests between application tasks. Heartbeat messages
from an application task can be generated by a special
heartbeat interrupt service routine which sends a message
to a local agent or to a manager, every time an interrupt
occurs, as long as the task has not crashed. Heartbeat
messages for an entire node can be generated by an agent
configured similarly, to show that the node is functioning;
the agent could query the operating system health status
before sending its message. Heartbeat information once
collected can be propagated among the agents and
managers to act as a basis for decisions, made by
reconfiguration modules.

An entity that cannot initiate heartbeat messages may be
able to respond to messages from an agent or manager; we
can think of these as status polls. The responses give the
same information as heartbeat messages. Polls to a node
could be implemented as pings, for instance.

3.1. Reconfiguration
In this paper, we considered primary-backup replication for
achieving fault-tolerance, i.e. the requests are routed to the
backup server when the primary server fails, for masking
the failure. This alternative targeting of requests is
indicated in Figure 1 by showing an abstraction called
“serviceA” and “serviceB” for the data access service
required by the applications. This service has alternative

userA UserA userBUserB

AppA AppB

Server1 Server2

eA

eA-1 eA-2eB-1 eB-2

procA procB

proc1 proc2

proc3 proc4

serviceA

#1
#1#2

#2

NUserA = 50 NUserB = 100

eB

Figure 1. A layered model of a client-server system
with two groups of users. Server2 is the backup of
Server1.

serviceB

Figure 2. Management components and relationships

Manager Application

Agent

Agent Subagent Server1 Server2

Agent

request arrows attached to it, with labels “#n” showing the
priority of the target. A request goes to the highest-priority
available server, which is determined by a reconfiguration
decision. In this work, the reconfiguration decision will be
made by the management system, and will be conditioned
by its knowledge of status of system components. It can
respond not only to processor failures but also to software
failures (task crashes and operating system crashes).
Network components can be included in the model as well.
A reconfiguration strategy different from the alternative
targeting of requests to the highest-priority available server
can also be analyzed. For instance, a strategy which
involves distributing the workload equally among the
available servers can also be considered.

3.2. Management Architecture
The architecture model described here will be called
MAMA, Model for Availability Management Architectures.
The model has four types of components: application tasks
(which may include subagent modules), agent tasks,
manager tasks, and the processors they all run on (network
failures are for the time being ignored). There are three
types of connectors: alive-watch, status-watch and notify.
These connectors are typed according to the information
they convey, in a way which supports the analysis of
knowledge of the system status at different points in the
management system.

Components have ports which are attached to connectors in
certain roles. The roles are defined as part of the connector
type. The connector types and the roles they support are:

• Alive-watch connectors, with roles monitor and moni-
tored. They only convey data to detect crash failure of the
component in the monitored role, to the component in the
monitor role. A typical example is a connector to a single
heartbeat source.

• Status-watch connectors, also with roles monitor and
monitored. They may convey the same data about the
monitored component, but also propagate data about the
status of other components to the component in the moni-
tor role. A typical example is a connector to a node agent,
conveying full information on the node status, including
its own status.

• Notify connectors, with roles subscriber and notifier. The
component in the notifier role propagates status data that
it has received to a component in a subscriber role, how-
ever it does not include data on its own status.

Manager and Agent tasks can be connected in any role; an
Application task can be connected in the roles monitored,
or subscriber. A Processor is a composite component that
contains a cluster of tasks that execute there. If the

processor fails, all its enclosed tasks fail. The Processor can
only be connected in the monitored role to an alive-watch
connector (which might convey a ping, for example).

Upon occurrence of a failure or repair of a task or a
processor, the occurrence is first captured via alive-watch
or status-watch connections and the information propagates
through status-watch and notify connections, to managers
which initiate system reconfiguration. Reconfiguration
commands are sent by notify connections. Cycles may
occur in the architecture; we assume that the information
flow is managed so as to not cycle. In this work, we note
that if a task watches a remote task, then it also has to
watch the processor executing the remote task, in order to
distinguish between the processor failure and the task
failure.

Figure 3 shows a graphical notation for various types of
components, ports, connectors and roles based on the
customized UML notation for conceptual architecture as
defined in [6]. The component types and connector types
will be shown as classes in this work. In order to avoid
cluttering in the MAMA diagrams, the role names such as
monitor, monitored, notifier and subscriber have been
omitted from them.

Figure 4 shows a centralized management architecture, in
MAMA notation, for the system of Figure 1. Manager1 is
introduced here as the central manager task that collects
status information from the agents ag1-ag4 running on the

Processor
Component

Agent Task
Component

Alive-watch Connector

Status-watch Connector

Notify Connector

Application Task
Component

Manager Task
Component

port connectionrole

AT MT

AGT Proc

monitored monitor
AW

Figure 3. MAMA notations. The graphical notation of
components, ports, connectors and roles are taken
from [6].

monitored monitor
SW

notifier subscriber
Ntfy

processors proc1-proc4. The application tasks AppA and
AppB are also subscribers for the notifications from
Manager1, which control retargeting of requests to the
Servers.

Other management architectures (such as “distributed”,
“hierarchical”, “general network” architectures as
described in [10]) containing several managers and agents
with multiple detection paths can be modeled and analyzed.

4. DETECTION AND RECONFIGURATION
The detection and reconfiguration parameters to be
provided in the model are as follows:

• delay of detection propagation from one component to
another in the fault management architecture, i.e. a delay
parameter associated to each connector in the manage-
ment architecture. It can be computed from the heartbeat
or polling interval for alive-watch and status-watch con-
nectors or from the notification delay for notify connec-
tors.

• delay required by a management component for analyzing
and forwarding data.

• restart delay of each application task.

• reconfiguration delay for each service request that has
alternative targets.

• probability of successful local recovery of an application

task, within a given time interval.

5. MODEL SOLUTION
Let us define a system state to be a vector of the states of
the fault management components and the components in
the software architecture.

The dependability measures for the layered model are then
obtained as follows:

1. Construct a continuous-time Markov chain that describes
the system changes due to failure and repair and includes
the reachable set of system states. It incorporates the
detection and recovery behavior of the system in
between every two system states.

2. Associate the reward rate equal to 1 to each state of the
resulting Markov chain that represents a “working”
configuration of the system. Otherwise associate a
reward rate of zero with the state. The importance of the
fault management architecture is that its failures can
modify the system’s ability to reach “working” states.

3. Solve the resulting Markov reward model to obtain the
desired measures. For example, we can obtain the
steady-state availability of the system by summing up
the probabilities of all the states that has reward rate
equal to 1.

Other interesting measures might be the mean throughput
of the system, mean response time for a client, mean outage
time for a client of the system etc.

Solvers for these (and more general) measures are presently
being developed.

6. CONCLUSION
An approach to incorporate the effect of fault management
architectures, that does both failure detection and
reconfiguration, in the dependability evaluation of layered
systems has been considered. The value of including the
management architecture in the analysis is first to account
for failures and repairs of managers and agents, and second
to evaluate limitations in the fault management
architecture.

Current work is to develop a model for capturing the effect
of failures and repairs of the management subnet on system
dependability measures. The key question to be answered
is the complexity of the solution to determine the state
probabilities.

7. REFERENCES
[1] Das, O., and Woodside, C.M. The Fault-tolerant layered

queueing network model for performability of

AppA:AT ag1:AGT

proc1:Proc c1:AW

c5:Ntfy

AppB:AT ag2:AGT

proc2:Proc c2:AW

c6:Ntfy

Server1:AT ag3:AGT

proc3:Proc
c3:AW

Server2:AT ag4:AGT

proc4:Proc
c4:AW

c11:AW

c12:SW c13:Ntfy c16:Ntfy

c14:AW

c15:SW

c7:AW c8:SW

c9:AW

c10:SW

m1:MT

Figure 4. MAMA Model of a centralized management
architecture for the system in Figure 1.

proc5:Proc

distributed systems. IEEE International Computer
Performance and Dependability Symposium
(IPDS’98), Sept. 1998, pp. 132-141.

[2] Das, O., and Woodside, C.M. Evaluating layered
distributed software systems with fault-tolerant
features. Performance Evaluation, 45 (1), May 2001,
pp. 57-76.

[3] Das, O., and Woodside, C.M. Failure detection and
recovery modelling for multi-layered service systems.
Fifth International Workshop on Performability
Modeling of Computer and Communication Systems,
Erlangen, Germany, Sept. 2001, pp. 131-135.

[4] Gokhale, S.S., Wong, W. E., Trivedi, K. S. and
Horgan, J. R. An analytical approach to architecture-
based software reliability prediction. IEEE
International Computer Performance and
Dependability Symposium (IPDS’98), Sept. 1998, pp.
13-22.

[5] Goseva-Popstojanova, K. and Trivedi, K. S.
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation, 45 (2-
3), 2001, pp. 179-204.

[6] Hofmeister, C., Nord, R., and Soni, D. Applied
Software Architecture. Chapter 4, Addison-Wesley,
2000.

[7] Kreger, H. Java management extensions for application
management. IBM Systems Journal, 40(1), 2001, pp.
104-129.

[8] Moser, L.E., Melliar-Smith, P.M., and Narasimhan, P.
A fault tolerance framework for CORBA. Proc. of
29th Annual Int. Symposium on Fault-Tolerant
Computing, 1998, pp. 150-157.

[9] Schneider, F.B. What good are models and what
models are good. Sape Mullender, Editor, Distributed
Systems, ACM Press, 1993.

[10] Stamatelopoulos, F., Roussopoulos, N. and Maglaris,
B. Using a DBMS for hierarchical network
management. Engineer Conference,
NETWORLD+INTEROP’95, March 1995.

[11] Tivoli Systems Inc., 9442 Capital of Texas Highway
North, Arboretum Plaza One, Austin, Texas. See
http://www.tivoli.com.

[12] Woodside, C.M. Performability modelling for multi-
layered service systems. Third International
Workshop on Performability Modeling of Computer
and Communication Systems, Bloomingdale, Illinois,
Sept. 1996.

 A Conflict Resolution Control Architecture For Self-
 Adaptive Software

N. Badr
School of Computing and

Mathematical Science,
Liverpool John Moores University,

Byrom Street, Liverpool
L3 3AF, UK

cmsnbadr@livjm.ac.uk

D. Reilly
School of Computing and

Mathematical Science,
Liverpool John Moores University,

Byrom Street, Liverpool
L3 3AF, UK

d.reilly@livjm.ac.uk

A.TalebBendiab
School of Computing and

Mathematical Science,
Liverpool John Moores University,

Byrom Street, Liverpool
L3 3AF, UK

 A.Talebbendiab@livjm.ac.uk

ABSTRACT

An essential feature of dependable software is its adaptive
capability to respond to changes that occur in its operating
environment through the dynamic transformation and
reconfiguration of its components and/or services. Such
adaptive capability is often a design aspect derived from the
software architecture model, which describes the software
components and their interactions, the properties and policies
that regulate the composition of the components and norms
that limit the allowable systems adaptation operations.
Research in reflective middleware architectures and policy-
based distributed systems management has focused on the
use of managerial or meta-level protocols to attain reactive
adaptive behaviour. However, reflective and policy-based
management approaches alone cannot address all of the
needs of self-adaptive software due to their inability to
maintain a faithful runtime model of the system. This paper
considers the development of control architecture for self-
adaptive software, which combines conflict resolution and
control strategies to resolve runtime conflicts. In particular,
the paper describes a prototype service-based architecture,
implemented using Java and Jini technologies, which
provides runtime monitoring and conflict resolution to
support software self-adaptation.
.

1.Introduction
Self-adaptive software can be seen as a new architecture
style, which extends the controller concepts to adapt the
structural configuration and dynamic behaviour of a system.

Structural components can evaluate their behaviour and
environment against their specified goals with capabilities to
revise their structure and behaviour accordingly. Laddaga [7]
defines self-adaptive software as:

“Software that evaluates and changes its own behaviour
when the evaluation indicates that it has not accomplishing
what it is intended to do, or when better functionality or
performance is possible“.

Such a software architecture style presents an attractive
concept to developing self-governing software, which fully
or partially accommodates its own management and
adaptation activities. Research in this area has adopted
control engineering concepts, as typified by Osterweil [9]
who presents an architecture, which uses a controller with a
well-specified control function with feedforward and
feedback loops to enable a target system to be monitored to
regulate its operation in accordance with its given control
model. Osterweil [9] describes the delegation of the
responsibility for testing and evaluation of software
applications from humans onto automated tools and
processes, advocating the automation of the continuous self-
evaluation processes.

However, there are further issues to be addressed in order to
achieve self-adaptation, such as: reasoning, control and
decision-making to assess the gap between a given software
operational model and its requirements, and the use of
appropriate strategies for conflict resolution. This paper
argues, that during any software self-adaptation process, it is
likely that autonomous changes may lead to execution errors
and software integrity conflicts. Thus the self-adaptation of
distributed software requires control and decision-making to
support the monitoring, detection and resolution of conflicts,
which may occur at runtime.

The remainder of the paper provides an overview of our
“work in progress” concerning the development of a service-
based architecture that uses conflict resolution to achieve
self-adaptation. The paper is structured as follows: section 2
provides a brief review of self-adaptive software and conflict

mailto:cmsnbadr@livjm.ac.uk
mailto:A.Talebbendiab@livjm.ac

resolution strategies. Section 3 describes the prototype
conflict resolution control architecture and its constituent
services. Section 4 briefly describes a case study, which
illustrates how the architecture achieves runtime self-
adaptation. Finally, Section 5 draws conclusions and
mentions future work.

2. Background
The control theory based paradigm provides a framework for
designing software that supports self-control during the
operation of the software. The self-controlling software
model supports three levels of control: feedback, adaptation,
and reconfiguration [6]. Meng [8] proposed a control system
for self-adaptive software based on a descriptive model of a
self-adaptive control system, which employs the control
system concepts of feedforward and feedback. For example,
if a self-adaptive software system consists of two
components the feedforward process can provide
specifications of the software and its predictability and the
feedback process can gather and measure the software’s
environmental attributes.

Central to this paradigm are the decision-making and
delegation strategies that are used to resolve conflicts, as
considered by Barber et al [2] who discuss different
decision-making strategies required in conflict resolution.
Barber et al describe negotiation as the most popular
strategy, but also consider arbitration, mediation and/or
voting as viable strategies in agent-based systems. Adler et
al. [1] describe the “Independence” strategy, which regards
self-modification as a simple and effective resolution strategy
for use in agent-based systems, which is used when an agent
detects a conflict but does not wish to interact with other
agents to solve the conflict, as the agent would rather resolve
the conflict itself. Other approaches by Williams and Taleb-
Bendiab [13] illustrate the use of meta-languages to support
software agent composition and the runtime reconfiguration
of middleware services.

Recently there has been an increasing research trend in the
development of self-healing software, facilitated through
innovations in operating systems [5] and reflective
middleware architectures through which structural and/or
behavioural models can be modified at runtime. Robertson et
al [12] indicate that whilst reflective architectures share
similar aims with self-adaptation architectures, they differ in
that self-adaptive architectures generate runtime evaluators to
check the deviation of the state of the program against some
measure. A control regime is then used to compute the
distance between the current state and the goal state in order
to maintain stability and robustness. The control regime
makes use of sensor and actuator concepts to feedforward
and feedback the systems states enabling the software
management layer to reconfigure and switch the control
regime itself to suite the systems requirements.

The general model of self-adaptive software can be viewed
from many different aspects, which take the architectural
model as a parameter in the monitoring and repairing
framework to allow the monitoring mechanism to match both
properties of interest and adaptation operators at runtime [3].
Previous work by Cooper and Taleb-Bendiab [4], based on

the same theme as the current research described herein,
focused on a heuristic-based approach to support software
agent self-adaptation. The current research extends this
previous work by concentrating on automated self-adaptation
that can be applied at runtime.

3. Service-Oriented Conflict Resolution
Control Architecture
The development of dependable distributed system is
hindered by the conflicts and faults that may occur at
runtime. With being the case, our approach is based on a
control mechanism which monitors behaviour, detects and
identifies conflicts and formulates remedial action in the
form of a resolution strategy. A service-oriented approach
was adopted to develop the control mechanism and overall
service-based architecture, as shown in Figure 1 overleaf.

The service-based architecture achieves self-adaptation by
detecting, identifying, and resolving conflicts that occur at
runtime, After detection, a conflict is identified and
categorized according to its type before a resolution strategy
is used to minimize the conflict. A monitor element then
provides feedback to guide the conflict resolution tasks,
which are used to implement the conflict resolution process.
The prototype architecture, used to implement the conflict
resolution and control element (figure 1) is based on Java and
Jini middleware1 technologies to provide the following
services.

 Monitor: makes use of a set of control rules against
which behaviour is monitored to detect conflicts.

 Diagnostic: the execution of a control rule implies a
conflict, which activates the diagnosis services that results in:

- Identification of the part of the control rule that
 raised the conflict.
- Identification of the cause of the conflict through
 the examination of service attributes and method
 invocations using Java’s reflection API
 (java.lang.reflect).
- Classification of the type of conflict, which
 provides the basis for the selection of a resolution
 solution strategy.

 Notification: makes use of Jini’s remote event
mechanism to notify clients when conflict resolution
solutions become available.

 Control Rules: serve as the basis for the previous
monitoring and diagnose services. They consist of a number
of rules and gates that execute when a conflict is detected,
which in practice execute when a service method is invoked.
This in turn may result in the firing of a remote event to
notify of the availability of a resolution solution strategy.

 Exception Handling: makes use of Java’s exception
handling facilities to catch exceptions, which are thrown
when a control rule executes due to some kind of fault/attack
that cannot be solved. Exceptions are dealt with according to
priority, which may be low, intermediate or high to
accommodate varying degrees of fault tolerance.

1 Jini is a Java based middleware technology developed by Sun
Microsystems Inc.<http://www.sun.com/jini/specs>

Figure 1: Self-Adaptive Control Architecture

Figure 2 illustrates a flow chart of the reasoning that takes
place in a typical conflict resolution solution strategy. The
flowchart begins with a client request for an application
service and if the request succeeds, then no conflict has
occurred so the client responds. If a conflict does occur an
attempt is made to provide the client with an alternative
service, which performs the same function. If this also results
in a conflict then the client may choose a renewable notify
option, whereby the client is notified when a suitable service
becomes available or the client may renew the notification
period when its lease expired.

 Figure 2: Example of Control Resolution Strategy

4. Case Study
We illustrate the architectures capabilities to accommodate
self-adaptation through an industrial case-study, which

involves a dependable software system developed out of the
EmergeITS project. EmergeITS is concerned with the
development of an adaptable software architecture to provide
In-Vehicle Telematics Systems (IVTS) capabilities to
emergency service response teams [11]. Figure 3, provides
an overview of the EmergeITS services, which use Jini
services to provide: remote hardware control, remote
database access (through Java Servlets and XML documents)
and mobile communication management capabilities. The
IVTS Manager oversees the overall operation of the system
and provides capabilities to add additional services, as well
as limited control and adaptation facilities. IVTS Clients
(typically remote vehicles) may request the use of any
service that the IVTS Manager has to offer.

One crucial service for the IVTS architecture is the 3-in-1
phone service (palowireless2001) [10], which allows a
portable wireless phone or PDA to be used as a cellular
phone, WAP device or walkie-talkie. An IVTS Client may
request the use of a 3-in-1-phone service whenever a physical
device such as a mobile phone or PDA is to be used from a
moving or stationary vehicle. The client may request to use
the device in one of the 3 different modes for which the 3-in-
1 phone service must adapt accordingly. The 3-in-1 phone
service essentially implements the conflict resolution and
control strategies by examining: 1) user operation mode
requested, 2) client location and 3) bearer service location
and availability (e.g. BTCellNet, , GSM or Tetra3) and each
of these three parameters manifest as remote method
invocations made on the 3-in-1 phone service. The outcome
of the initial resolution strategy may result in IVTS client
notification that the request was successful, or else that a
further conflict occurred, leading to further control rules

2 EmergeITS is a collaborative project involving our own
research group within the School of Computing and
Mathematical Sciences at Liverpool John Moores University
and the Merseyside Fire Service
<http://www.cms.livjm.ac.uk/emereits>
3 Tetra is a digital network under consideration by Police and Fire
emergency services in the UK

Jin i Core Services

Lookup
Service

Java Space
Service

Transaction
Service

JA
V

A

M
on

ito
rin

g

D
ia

gn
os

in
g

N
ot

ifi
ca

tio
n/

E
ve

nt
H

an
dl

e

C
on

tro
l R

ul
es

In
co

ns
is

te
nc

y/
E

xc
ep

tio
n

H
an

dl
e

R
es

ou
rc

e
M

an
ag

em
en

t

P
ub

lis
he

r
M

an
ag

em
en

t

G
ra

ph
ic

al
 U

se
r I

nt
er

fa
ce

A m odel Contains a number of services for im plem enting the control
m echanism services

To
ol

s&
A

pp
lic

at
io

n
D

ev
el

op
m

en
t

S
up

po
rt

C
on

tr
ol

 M
ec

ha
ni

sm
S

er
vi

ce
s

A
pp

lic
at

io
n

S
er

vi
ce

s

executing for which a conflict resolution must be sought,
such as the initiation of a more comprehensive search for a
bearer service to resolve the conflict. Eventually a situation is
reached whereby the system has attained a configuration that
best meets the needs of the initial request.

 Figure 3: IVTS Services

5. Conclusion and Future Work
In this paper we have described a prototype service-based
architecture, based on Java and Jini technologies, that uses
conflict resolution and control strategies to detect, identify
and resolve conflicts that occur at runtime. We intend to
extend our architecture, in future related research, by
considering the negotiation aspects in the control decision
making of self-adaptation. It is anticipated that this will
increase the flexibility of our architecture, which we intend
to evaluate through further case studies from our
complementary group research area of intelligent-networked-
vehicles

References
[1] Adler, M., et al. Conflict- Resolution Strategies for

Nonhierarchical Distributed Agents. in In Distributed
Artificial Intelligent ||,. 1989. London.

[2] Barber, K.S., T.H.liu, and D.C.Han. Strategic Decision-
Making for Conflict resolution in Dynamic Organized
Multi-Agent Systems. in GDN 2000 PROGRAM. 2000.

[3] Cheng, S.W., et al., Using Architectural Style as a Basis
for System Self-repair, . 2002.

[4] Cooper, S. and A.Taleb-bendiab. A High Level
ControlMechanism For Managing Conflict Resolution
In Concurrent Product Design. In Proceedings of the
fourth ISPE International conference on Concurrent
Engineering :Research and Application (CE97). 1997

[5] eLizaProject,
 http://www-1.ibm.com/servers/introducing/eLiza .

[6] Kokar, M., K. Baslawski, and Y. Eracar, Control Theory-
Based Foundation of Self- Controlling Software. IEEE
Intelligent Systems, 1999: p. 37-45.

[7] Laddaga R. Active Software. in First International
Workshop on Self-Adaptive Software, (IWSAS2000).
2000.

[8] Meng, A.C. On Evaluation Self-Adaptive Software. in
First International Workshop on Self-Adaptive
Software, (IWSAS2000), April 2000. 2000.

[9] Osterweil, L.J. and Clarke, L.A. Continuous Self-
Evaluation for the Self-Improvement of Software. in "
First International Workshop on Self-Adaptive
Software, (IWSAS2000). 2000.

[10] palowireless:Bluetooth Resource Center

[11] Reilly, D.and A. Taleb-Bendaib, A Service Based
 architecture for in-Vehicle Telematics Systems

Submitted in "A Special Issue of CERA Journal: A.
Complex Systems Perspective on Concurrent

 Engineering", 2002

[12] Robertson, P., Laddaga, R., and Shrobe H..
Introduction: the First International Workshop On Self-
Adaptive Software. in First International Workshop on
Self-Adaptive Software, (IWSAS2000). 2000.

[13] Williams, M. and A.Taleb-Bendiab. A Toolset for
Architecture Independent, Reconfigurable Multi-Agent
systems. in First International Workshop on Mobile
Agents. 1998.

IVTS MANAGER

LOW LEVEL
SERVICES

IS SERVICE 3 - in - 1 Phone
Services

Power
Management

Service

Vehicle
Recorder

Database/
XML

Servlet

Incident
Responce
Database WAP

Walkie-
talkie

AVL

IVTS CLIENT

Cellular

Improving the availability of web services ∗

D. Cotroneo1,2, M. Gargiulo2, S. Russo1,2, G. Ventre1,2

1Universitá degli Studi di Napoli “Federico II"
Dipartimento di Informatica e Sistemistica

Via Claudio 21, 80125 - Napoli, ITALY
2Consorzio C.I.N.I.
Laboratorio ITEM

Via Diocleziano 328, 80124 - Napoli, ITALY

{cotroneo, sterusso, giorgio}@unina.it
mauro.gargiulo@napoli.consorzio-cini.it

ABSTRACT
In order to maintain the popularity and reputation of a web
site, the quality of service perceived by users, especially the
service availability, is a success factor. A service that is
frequently unavailable may have negative effects on the rep-
utation of the service provider, or result in loss of business
opportunities. From the user’s perspective, a service that
exhibits poor quality is virtually equivalent to an unavail-
able service. In this work, we present the overall architec-
ture and the evaluation of a middleware infrastructure which
provides quality-of-service differentiation among classes of
communication-bound processes. By communication-bound
processes we mean processes whose activity is typically dom-
inated by network communication, e.g. a video server. The
proposed architecture supports different classes of service,
each with different quality attributes concerning the network
data delivery performance. In particular, the architecture is
able to provide a class of service, namely guaranteed service
class, which is suitable for increasing the service availabil-
ity for a group of premium users, especially in overloaded
servers (in absence of external faults).

Keywords
Class-of-Service, Web-service, Availability, Real-time Oper-
ating Systems

1. INTRODUCTION
∗This work has been performed under the financial support
of Italian Ministry of Education, University and Research
(MIUR) under grant “LABNET2”. The work of D. Cotro-
neo and S. Russo has also been supported by MIUR within
the project “MUSIQUE: Infrastructure for QoS in Web Mul-
timedia Services with Heterogeneous Access”.

.

The Internet world is moving toward a scenario where
users and applications have very diverse service expecta-
tions, making the current best-effort model inadequate and
limiting. In fact, new web applications demand for deliv-
ery of multimedia data in real-time (e.g. streaming stored
video and audio), and the information transfer via the Inter-
net is becoming one of the principal paradigm for business:
electronic sales, banking, finance, collaborative work, are
examples of this. In this scenario, in order to maintain the
popularity and reputation of a web site, the quality of ser-
vice perceived by users, especially the service availability, is
a success factor [5]. The principal QoS attributes that users
perceive include those related to the service availability and
timeliness: a service that is frequently unavailable may have
negative effects on the reputation of the service provider,
resulting in loss of business opportunities. From the user’s
perspective, a service that exhibits poor quality is virtually
equivalent to an unavailable service.

The performance perceived by the users of a Web ser-
vice depends on the network infrastructure (possibly QoS-
enabled) but especially on the management of the servers’
resources [13]. It is thus desirable that network servers (e.g.,
Web, Video on Demand, and FTP servers) should be able
to differentiate their services in a variety of classes, replac-
ing the current simple best-effort paradigm. This leads to
a model in which applications and users are treated differ-
ently, in a way that best meets their quality and pricing
constrains. This paper presents the overall architecture and
the experimental evaluation of an operating system exten-
sion for service differentiation of communication-bound pro-
cesses. The architecture provides server application devel-
opers with a communication library (similar to the standard
socket), named cosSocket (class of service-enabled Socket),
which is able to realize different classes of service using fea-
tures of a real-time operating system. A service differenti-
ation scheme can be applied to different applications, or to
different users in the context of the same application. Ser-
vice differentiation is obtained by assigning different CPU
time-slices to applications I/O tasks. The underlying idea is
that it is possible to decrease time-slice assigned to a given
process in order to reduce its communication throughput,
freeing server’s resources in favor of processes with a bet-
ter class of service. Real-time features are achieved through
a Rate Monotonic Algorithm for CPU scheduling, included

in the TimeSys Linux/RT kernel [www.timesys.com], which
also offers a complete support for POSIX threads.

The paper is organized as follows. In section 2 we in-
troduce the web service correctness and related problems.
The failure mode assumptions we adopted is presented in
section 3. In section 4 we describe the overall architecture;
experimental results are provided in section 5. Section 6 dis-
cusses related work in this field. Finally, section 7 provides
some concluding remarks related to the obtained results,
along with information on future work.

2. WEB SERVICE CORRECTNESS
Before illustrating the design and the implementation of

the proposed middleware infrastructure, it is worth clari-
fying the definition of the web service availability, starting
from the position stated in [14] by D. Powell. Availability
deals with the readiness for correct service. In particular, it
is a function A(t), which is the probability that the system
is operational (i.e., delivers the correct service) at instant
of time t. This function quantifies the alternation between
deliveries of correct service and incorrect service. A sys-
tem can fail to deliver a correct service due to the following
reasons:

• the presence of faults, caused by system errors;

• the presence of overloading condition, i.e. the server
is so much busy that it is not able to deliver a correct
service.

Throughout this paper we focus only on system failures,
stemming from overload conditions. This kind of failures is
strictly tied with the delivered quality of service because, if
the QoS falls down under a certain threshold, the service can
be considered unavailable. The architecture we propose pro-
vides an efficient and flexible resources management strat-
egy, which aims at improving the quality of the delivered
service, reducing the QoS degradation perceived by some
premium users. The result is a higher probability of deliv-
ering to these users a correct service, improving the system
availability. The architecture does not prevent system from
hardware/software faults, hence it does not guarantee the
service availability. In order to achieve this further goal, a
redundant scheme has to be also implemented, as described
in section 7.

As stated in [14] and in [4], in order to analyze the avail-
ability of a system it is essential to clarify what does correct
service mean. Starting from definition given by Powell, the
service delivered by a system can be defined in terms of a
sequence of service items si, i = 1, 2...., each characterized
by a tuple < vsi, tsi >, where vsi is the value or content of
service item si and tsi is the time or instant of observation
of service item si. Assuming the presence of an omniscient
observer that has a complete knowledge of the specified se-
quence of service items the system should deliver, a service
si is defined correct if:

(vsi ∈ SVi) and (tsi ∈ STi)

where SVi and STi are respectively the specified sets of
values and times for service item si. For a general system,
SVi and STi are functions of the sequence of system inputs.
As far as modern web-based systems with QoS constraints
are concerned, this definition is certainly suitable, but sets
SVi and STi have to be extended.

Indeed, modern web-based systems are implemented over
a QoS-enabled network. In this context, the term QoS is
related to the quality of communication service, such as
a certain value of packet loss, latency, jitter, and assured
bandwidth, appearing at the communication endpoints like
a point-to-point connection or a virtual “leased line” with
the requested quality attributes. In this scenario, it should
be possible to provide the same service with different qual-
ity attributes to several classes of users. In this way, the
correctness of a service also depends on the specified class
of users which request it. We can thus define the correctness
of a web service, for a certain class j of users, as:

(vsi ∈ SV ∗
i,j) and (tsi ∈ ST ∗i,j)

where:

SV ∗
i,j = f(SVi, CUj)

ST ∗i,j = f(STi, CUj)

and where CUj represents the class j to which the user
belongs. It is thus desirable to have an architecture in which
applications and users are treated differently, in a way that
best meets their quality and pricing constrains. The pro-
posed middleware architecture, using features of a real-time
operating system, is able to realize different classes of service
inside the web server too. A service differentiation scheme
is provided to different applications, or to different users in
the context of the same application.

3. FAILURE MODE ASSUMPTIONS
This section gives a formal definition of the failure modes

of a web server we adopted. By web server it is meant a
server, such as multimedia or HTTP server, that provides its
services via a web infrastructure. According to [14], a failure
mode is defined in terms of an assertion on the sequence of
value-time tuples that a server is supposed to deliver. Let us
assume the following class of users exist: Cn(normal user),
Cm (medium user), Cp (premium users). Assertions may be
defined in the value domain and in the time domain. Effects
of value errors are not considered afterward. As already
mentioned, we investigate failures caused by server overload
conditions, i.e. the server process or host is too busy for
delivering the correct service to a certain class of user.

3.1 Timing errors assertion
These assertions are the most important in the considered

context.

• No timing errors can occur:
τnone := ∀i,∀j tsi ∈ STi,j

• Omission errors can occur:
τO := ∀i, ∀j (tsi ∈ STi,j) or (tsi = ∞)

• Late timing errors can occur:
τL := ∀i (∀j, tsi ∈ STi,j) or [∃j ∈ {m, p} : (tsi >
maxTimej)]

The omission error assertion depicts a fail silent behaviour:
in such a situation if the system does not supply the service
si in STij it will never supply it at all. Similary, a late timing
error can occur if a service item si is delivered at a medium

or premium user after a threshold, named maxTime, de-
pending on user requirements.

It should be emphasized that late timing errors can occur
only when medium (Cm) and premium users (Cp) request
the service. This means that a service delivered to users
belonging to class Cn, is correct even though it is delayed
for a time greater than maxTime.

4. OVERALL SYSTEM ARCHITECTURE
As mentioned, we focus on Internet-based data delivery

servers (Web, FTP, Video on Demand servers). For these
kinds of servers, controlling I/O activities is essential to
achieve a pre-determined behaviour. We propose an ar-
chitecture which provides differentiated communication ser-
vices according to a number of service classes. The real-
time scheduler assigns to each service class a CPU amount
depending on its service level. By doing so, it is possible
to schedule processes in a deterministic way. However, as-
signing a service level to the entire process does not en-
sure real-time communication. In fact, the performance
of a communication-bound process mainly depends on the
scheduling of its I/O tasks, as indicated in [7, 8]. The archi-
tecture we propose is in charge of managing I/O activities
of all processes residing on the end-system. In fact, process
I/O tasks consist of a sequence of system call invocations
which require the execution of an operating system thread
serving the request. Our strategy relies on the capability of
controlling the number of system calls issued for requesting
I/O tasks.

The proposed architecture is able to completely separate
I/O from the CPU activities, by providing application de-
velopers with a new communication library (cosSocket) sim-
ilar to the standard TCP/IP socket library. Once separated
these activities, I/O tasks can be scheduled by the real-
time kernel. As for the design methodology, we adopted an
object-oriented approach, namely Concurrent Object Mod-
eling and Architectural Design Method (COMET), particu-
larly suited for designing concurrent and real-time distributed
systems [9]. The static model for the overall architecture is
depicted in figure 1.

As shown in figure 1, user applications can create one or
more instances of class cosSocket. From user point of view,
such a class is able to perform I/O operations with a speci-
fied quality of service. The cosManager, which inherits from
a POSIX thread class, is in charge of handling an instance
of cosSocket. In other words, by means of cosSocket each
application delegates, or defers, all the I/O activities to an
instance of cosManager. I/O operations of cosManager are
then performed using standard socket libraries. The activ-
ities of cosManager, which are mainly I/O calls, are opti-
mized and then scheduled by the real-time kernel by means
of the cosDaemon. This daemon is the only architecture’s
entity, capable of using real-time features in order to control
all cosManagers present on the end-system. The cosDaemon
is also in charge of implement admission control policies for
guaranteed services.

We defined a class service model which consists of two
kinds of service classes: Adaptive and Guaranteed. They
are presented in the following subsections.

4.1 Adaptive class service
By adaptive we mean a service class that can be requested

without any admission control mechanism [2]. According to

� � � � � � � � � � � 	 	

� � �
 � � � � � � � � � � � � � � 	 	 � � � � � � � � � � � � 	 	

UserApplication
<<users>>

� � � � � � � � � � � � � 	 	

cosSocket
<<library>>

n1 n1

Delegate

unixSocket
<<library>>

cosManager
<<entity>>

1

1

1

1

� � � � � � � � � � �

1 11 1

� � � ! � � � " #

LinuxRT
<<library>>

cosDaemon
<<entity>>

1

1

1

1

$ � % & � � ' � � � ! & � (� �

1 11 1

$ � � � �) � � � � ! & � (� �

<<end-system>>

Figure 1: COMET Static Diagram of the proposed
architecture.

this class definition, we allocate CPU shares in a weighted
way. This means that we set preliminary n weights, W1 <
W2 < ... < Wn, associated to each of n classes (class n has
the highest priority). The adaptive service does not provide
hard guarantee on the effective throughput of each process;
however, it allows to define several classes, providing a guar-
anteed differentiation between them on the basis of assigned
weight.

4.2 Guaranteed service class
By guaranteed service class we mean a class subject to an

admission control policy. In this case, each instance requires
a specific throughput. The request can be accepted or re-
jected according to the specific policies implemented in the
admission control module. If accepted, the service has to be
guaranteed by the system during all its life cycle. This kind
of service is particularly suitable for applications that re-
quire a constant throughput (e.g. multimedia applications)
or for satisfying a group of premium users, leaving the ser-
vice always available to them independently of the system
workload (in absence of external faults).

The mechanism for providing Guaranteed services class
is implemented by a self-regulating utilization control loop.
The throughput control loop determines the CPU amount
necessary for obtaining a Constant Bit Rate (CBR). Let y0

the desired throughput, and y the current throughput ob-
tained by the cosManager. For the sake of simplicity, the
cosManager was modeled like a “black box”. The value e is
the “throughput error”, e = y0 − y. The cosDaemon, which
acts as the controller, samples the current throughput y,
and computes the corresponding error e at fixed time inter-
vals, then produces an output, u, that regulates the CPU

� � � � � � � � � � � � �	�
 � � � �

 � � � � � � � � � � � �

� � � � � � � � � �

y

cosDaemon
uy �

� � � ! " "

� $ % � � & & ! �

Effective
T h r o u g h p u t

F o r cin gT h r o u g h p u t
o f r efer en ce

Figure 2: Self-regulating control loop for providing
Guaranteed service.

to be assigned to the cosManager. We used a proportional-
integral (PI) controller in our loop. The controller produces
an output that is proportional to the last error and to the
sum of the previous m errors. At each sampling time the
controller performs the following computation, diminishing
the medium quadratic error: u = u + k ∗ e where k is a
constant. The adopted scheme is illustrated in figure 2.

4.3 Implementation models
As far as implementation is concerned, two main issues

have been addressed: the synchronization mechanism be-
tween cosSocket and cosManager, and data buffer manage-
ment. The solution of these problems resulted in three dif-
ferent implementation models, as shown in [6]:

• Synchronous model ;

• Asynchronous model ;

• Asynchronous Aggregated model.

We implemented all the three models and evaluated them
in order to investigate which of ones is best suited for the
considered applications. Experimental results, reported in [6],
show how best performance are obtained with the last one.
Therefore we adopted the Asynchronous Aggregated model,
and results discussed in section 5 refer to this model.

5. AVAILABILITY EXPERIMENTS
In this section we present measurements which aim to

demonstrate how the proposed middleware architecture is
able to improve availability of service delivered to the pre-
mium user class.

The testbed used is composed of three different kinds of
COTS PC, as described in the following:

• One HTTP server (named Tigri): is a Pentium III
at 600 Mhz with 256 Mb of RAM and Linux/RT by
Timesys installed.

• One HTTP client (named Eufrate): is a Pentium III
at 600 Mhz with 256 Mb of RAM and Linux/RT by
Timesys installed.

• Five HTTP clients: Celeron 700 Mhz with 128 Mb of
RAM and Windows 2000 Professional installed.

All PCs are on the same LAN at 100 Mbit/s full switched.
On the Server Tigri we installed our architecture. We also

used a simple HTTP-server application which replies to the
client requests on different port numbers, one for each class

� � � � � � ��� � ���
	 � � �

0

1

2

3

4

5

6

7

0 20 40 60 80 100
��� � � � � � ��� � � � � � � � � � � � � � � � � � ��� �

! "
#$ %
&'
()
**)
+#$,
)
-'
()
./)
+#)
01

Premium Medium BestEffort

τ
O

τ
L

Figure 3: Performance measurements in presence of
variable workload.

of service, as previously described: Cn(normal user), Cm

(medium user), Cp (premium users).
The Windows clients are used only to generate the work-

load on the target server. To this aim, each Client run one
or more instances of a http-client application requiring a file
transfer service belonging to the Cn class. The same HTTP-
client was also used on the Linux client machine, where mea-
sures are taken, in order to require a new service belonging
each time to one of the three possible classes. We used a
Linux client with the real-time extension in order to obtain
a high-precision timer. All requests issued concern the same
service: the transfer of a file of 10 Mbyte. The Windows
clients repeat such a request in a cyclic way, to obtain a
constant workload for all tests. Each test was repeated five
times and the final result is the average value.

Tests were performed by evaluating the bandwidth ob-
tained by the Linux client and the correspondent service
time, with different workload due to the variable number
of Cn connections. The Cn and the Cm classes are han-
dled in a adaptive way, so in these cases the architecture
do not provide a guaranteed quality of the service delivered,
but only a service differentiation. Effective performance, for
users belonging to Cn and Cm classes, depend on the total
workload. Instead, at each premium user (Cp) is assigned an
instance of the Guaranteed service class with a throughput
of 5 Mbit/s.

We were interested to effective service time and band-
width, establishing for both an expected value in absence of
workload. Then we made test and compared real value with
those expected. The results, for each service class, are de-
picted in figure 3 as the ratio between effective and expected
service time.

As the figure shows, in presence of operating system trash-
ing conditions (i.e., increasing the number of connection re-
quests) there are differences between expected and effective
values (ratio greater than 1). This difference increases more
rapidly for users belonging to Cn and Cm classes than for
users belonging to Cp one.

In particular, we assumed to have a Late Timing Error,
τL, when the effective service time is three time greater then
the expected one, and to have an Omission Error, τO, when
this ratio is greater than five. Althought, as explained in
section 3, these tresholds are defined only for medium and
premium users, they can be useful to compare the service

degradation between the different classes.
According to these rules, the Cm service experiences a

Late Timing Error with a workload of about 48 Cn requests
instead of only 25 needed for the Cn service. Similarly, an
Omission Error occurs with 87 requests for Cm and only 59
for Cn.

On the contrary, a workload of 100 requests is not enough
to cause a LateTiming Error for the Premium user class Cp.

It is clear from the figure that the proposed architecture
is able to prevent the class Cp from overload conditions by
guaranteeing the availability of the service even in the case
of server overload.

6. RELATED WORK
Quality of Service provisioning for data delivery and real-

time applications have received considerable attentions in
[1] and [2]. There are been appreciable progresses in QoS
support separately for Web Server [1]. Many works like
[13] as well as our previous experience in quality of ser-
vice support [7], highlights needs to service differentiation
even in the end system. Different architectures have been
proposed and implemented in order to support QoS guaran-
tees in the end-system. For example, in [12] are proposed
some architectural mechanisms to manage communication
resources for guaranteed-QoS connections, and in [10, 15]
has been addressed the problem of scheduling real-time ap-
plications on general-purpose Operating System in order to
provide different classes of communication services. Both
architectures did not address the implementation issues of
a mechanism to control the bandwidth assigned to different
class of service. In all revised works, resources control was
used to increase performance or to provide class differenti-
ation, without considering the lack of availability due to a
poor control of communication QoS.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we focused on Internet-based data delivery

services (e.g., services provided by Web, FTP, and video-
on-demand servers). These services are run by processes
whose activity is typically dominated by network communi-
cation; we called them communication-bound processes. We
presented an overall description of an operating system ex-
tension for quality-of-service differentiation among classes of
communication-bound processes. Our strategy relies on the
capability of controlling the I/O activity performed by appli-
cations. We defined three Class of Service corresponding to
different priorities in I/O-resources utilization. An extended
evaluation demonstrated that such an architecture is useful
to improve the satisfaction of premium users, increasing the
effective availabilty in presence of system overload. Finally,
we are currently investigating the behaviour of the cosSocket
architecture with respect to other performance parameters
as response time and jitter. We are also evaluating the in-
fluence of architecture setup on this parameters.

8. REFERENCES
[1] T.F. Abdelzaher, N. Batti, “Web Server QoS

Management by Adaptive Control Delivery”, in
International Workshop on Quality of Service
(IWQOS’99), London, UK, June 1999.

[2] T.F. Abdelzaher, K.G. Shin, “End-host architecture
for qos-adaptive communication”, in Proc. of IEEE

Real Time Technology and Applications Symposium,
Denver, Colorado, June 1998.

[3] C. Aurrecoechea, A. Campbell, L. Hauw, “A survey
of QoS architecture”, in 4th IFIP International
Conference on Quality of service, Paris, France, March
1996.

[4] A. Bondavalli, L. Simoncini, “Failure Classification
with respect to Detection”, in Esprit Project N.3092
(PDCS), 1st Year Report, IEEE-CS, Los Alamitos,
CA (USA), May 1990.

[5] S. Chandra, C. Ellis, A. Vahdat, “Differentiated
Multimedia Web Services Using Quality Aware
Transcoding”, in Proc. 19th Annual Joint Conference
Of the IEEE Computer And Communications
Societies (INFOCOM’00),December 2000.

[6] D. Cotroneo, M. Ficco, M. Gargiulo, S. Russo, G.
Ventre, “Service Differentiation of
Communication-bound Processes in a real-time
Operating System”, in Proc. of 7th IEEE
International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2002), San Diego, CA,
Jenuary 2002.

[7] D. Cotroneo, M. Ficco, S. Romano, G. Ventre,
“Bringing Service Differentiation to the End System”,
in Proc. of the IEEE International Conference on
Networks (ICON’00), Singapore, Oct. 2000.

[8] D. Cotroneo, M. Ficco, G. Ventre, “Bringing Service
Differentiation to the End System”, in Proc. of the 8th
International Workshop on Interactive Distributed
Multimedia Systems, Lancaster, September 2001.

[9] Hassan Gomaa, “Design Concurrent, Distributed,
and Real-Time Applications with UML ”, Addison
Wesley, Object Technology Series, 2000.

[10] D. Ingram, “Soft Real-Time Scheduling for general
Purpose Client-Server Systems”, in Proc. of the IEEE
Workshop in Operating System, Aug. 1999.

[11] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, J.
Hansen, “A scalable solution to Multi-Resource QoS
problem”, in the 20th IEEE Real-Time Systems
Symposium, Aug. 2000.

[12] A. Mehra, Kang G. Shin,“Structuring
Communication Software for Quality-of-Service”, in
IEEE Transactions on Software Engineering, (Vol. 23,
No. 10), pp. 616-634, October 1997.

[13] K. Nahrstedt, J. Smith, “The QoS Broker”, in Proc.
of the IEEE Multimedia Spring 1995,Vol.2, No.1, pp.
53-67.

[14] D. Powell, “Failure Mode Assumptions and
Assumption Coverage”, in Proc. of the 22nd
International Symposium on Fault-Tolerant
Computing (FTCS-22), IEEE-CS, Los Alamitos, CA
(USA), 1992.

[15] I. Stoica, “A Proportional Share Resource Allocation
Algorithm For Real-Time, Time-Shared Systems”, in
Proc. Of IEEE Real-Time Systems Symposium,
December 1996.

	tartanoglu.pdf
	INTRODUCTION
	COMPOSING WEB SERVICES
	TRANSACTIONS FOR THE DEPENDABLE COMPOSITION OF WEB SERVICES
	USING CA ACTIONS FOR THE DEPENDABLE COMPOSITION OF WEB SERVICES
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	das.pdf
	Evaluation of Dependable Layered Systems with Fault
	Management Architecture
	Olivia Das, C. Murray Woodside
	Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
	email: odas@sce.carleton.ca, cmw@sce.carleton.ca
	1. INTRODUCTION
	2. LAYERED MODELS CAPTURING FAILURE OCCURRENCE AND REPAIR BEHAVIOR
	3. FAULT MANAGEMENT ARCHITECTURE
	Figure 2. Management components and relationships
	3.1. Reconfiguration
	3.2. Management Architecture
	4. DETECTION AND RECONFIGURATION
	5. MODEL SOLUTION
	6. CONCLUSION
	7. REFERENCES

	badr.pdf
	1.Introduction
	2. Background
	3. Service-Oriented Conflict Resolution Control Architecture
	4. Case Study
	5. Conclusion and Future Work
	References

