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Abstract 

Explicitly architecting dependable systems inevitably 
involves establishing consensus among different 
stakeholders' concerns and then anchoring the design on 
architectural components that provide robustness. The 
goal is to architect evolvable systems upon which users 
can reasonably rely on receiving anticipated services. 
Unfortunately, there are few established approaches for 
rapidly prototyping architecture to identify dependable 
architectural components during the early stakeholder 
requirements resolution phases of software design. This 
paper presents a perspective-based architectural (PBA) 
approach process using rapid prototyping to build 
dependable architectures using compositional patterns. 
The approach is achieved through explicit architecting 
and system composition to provide a set of rules 
governing the system composition from coarser-grained 
dependable components. The approach provides a 
rationale for treating dependability as a set of semantic 
constraints localized on compositional patterns.   

1. Introduction 
Building dependability into the architectural design 

aims at attaining the benefits of reduced cost and 
increased quality.  The central idea is that dependable 
architectures in large, complex, evolving systems will 
provide their users with a reasonable assurance that the 
system will deliver the services promised. Explicitly 
architecting such systems requires identifying and 
resolving different stakeholders' concerns. For instance, 
the architect may have to resolve the inherit conflicts 
between a user stakeholder that is concerned with 
achieving a particular computational requirement and an 
implementer stakeholder that may be concerned with 
achieving systematic long-term evolution of the system. 
Perspective-based architectural design [1-4] allows some 
resolution between these perspectives.   

The difficulties in engineering software-intensive 
systems are further exacerbated by requirements 
uncertainty, dynamic organizational structures (and 
concerns), and the requirement for rapid application 
development. Engineering dependable systems involves 
three crucial aspects: 1) accurately identifying all 
customer requirements, 2) resolving customer 

requirement conflicts within the context of different 
customer perspectives, and 3) verifying that the resulting 
system satisfies customer intent (and if not, correcting 
the requirements and the system).  

A number of techniques, frameworks, and approaches 
have emerged to address the problems in engineering 
software-intensive systems. Widely embraced efforts 
include rapid system prototypes [5-6], software 
architectures [7-11], and component techniques [12-14]; 
all of which focus on composing software systems from 
coarser-grained components. Rapid system prototyping is 
useful in effectively capturing and resolving uncertainty 
about requirements and providing computational 
visibility [6]. Component techniques assume a 
homogeneous architectural environment in which all 
components adhere to certain implementation constraints 
(e.g., design, packaging, and runtime constraints). They 
are unalterably associated with derivational 
implementation with little concern of the perspectives of 
the customer or architect [8-10]. Software architecture 
approaches typically separate computation (components) 
from interaction (connectors) in a system. However, the 
current level of understanding and support for connectors 
has been insufficient, so that connectors are often 
considered to be explicit at the level of architecture, but 
intangible in the system implementation [9-10]. Several 
sources have recommended the use of architecture views 
[1, 2].  Yet, while they provide guidance on how 
architecture should be represented, they generally do not 
provide a prototyping process for the early development 
of the artifacts that are used in that representation [3-4].  

The rapid prototyping of architectural components 
shows promise in acquiring accurate and timely 
requirements and in establishing appropriate 
compartmentalization of functionality [2-4]. To reduce 
the amount of re-certification effort required after each 
requirement change, the approach presented in this paper 
helps to maintain the assurance of dependability as the 
system evolves by combining rapid prototyping with 
explicit architecting so that the system's architecture is 
based on properties that are invariant with respect to 
system requirements changes. This research integrates 
requirements validation techniques and stakeholder 
perspective resolution into a single model of explicit 
architectural composition.   



 

2. Overview of the Approach 
Fig. 1 depicts the PBA approach embodied in three 

perspectives: computational activity, compositional 
architecture and derivational implementation. Starting by 
rapid prototyping the user’s informal needs, an initial 
prototyping model is created that represents the 
computational activity needed to implement the 
operational concept. Continued analysis and refinement 
of the prototype then derives the explicit architecture 
from which it is possible to extract valuable architectural 
properties. Compositional architecture is then explicitly 
built under the support of compositional patterns, and the 
generation of application framework is driven by both 
prototyping and architecting documentations. Next, PBA 
composers are applied to derive PBA components.  

 
 
 
 
 
 
 
 
 

Fig 1 Synthesizing Approach  

For each perspective design artifact, a computer-aided 
foundation is provided with significant formulated 
attributes enabling automated analysis, reasoning and 
code/framework generation. For instance, the 
computational activity captures the activities and 
information flows that will accomplish the operational 
concept (e.g., real-time support is the foundation for hard 
real-time systems [5]); the compositional architecture 
details what kinds of rules (patterns) are used to govern 
the interactions among components (e.g., compositional 
patterns [8,11] and design inspection [15-17] support 
semi-automated architecture generation); and the 
derivational implementation identifies physical 
components and connectivity that will be instantiated to 
carry out the computational activities (e.g., based on PBA 
composers [18]). Thus, compositional architecture 
bridges gaps between the computational and derivational 
artifacts (user and implementer perspectives).  

3. Perspective-based Architecting 
Central to the PBA approach, compositional patterns 

provide principles for guiding the design and evolution 
of system architecture and can be treated as architectural 
elements governing system composition from 
coarser-grained components. The transitional process is 

embodied in three perspective designs. 

3.1 Computational activity 
Computational activity accounts for the customer 

perspective concerns of computation and interconnection.  
This perspective addresses system requirements by 
capturing three kinds of formal arguments: components 
from which the system is built, interconnections 
enforcing interactions among them, and constraints on 
both components and interconnections: 

P computation = [Cc, I, Ct (Cc, I)] 
Where Cc is the set of conceptual components hierarchically 
decomposed, I is the set of interconnections among components, 
Ct (Cc, I) is the set of constraints localized on components and 
their interconnections, respectively.  
 
 
 
 
 

 

 

Fig. 2 Computational Responsibility and Properties 

The constraints on components have properties of 
decomposability (representing the hierarchical level at 
which the constraint is implemented) and granularity 
(representing the logical packaged complexity of the 
component). Granularity is an important factor for 
constructing complex systems because well-grained 
components are helpful not only to increase productivity 
but also to improve understandability, reliability and 
maintainability. As illustrated in Fig. 2, a schema is 
introduced for PBA components, which identifies the 
granularity and decomposability of each level of 
computational responsibility.  

3.2 Compositional architecture 
Compositional architecture accounts for the architect's 

perspectives of explicit treatment of system composition 
and architecture with constraints localized on 
compositional patterns. Detailing what kinds of rules 
(patterns) are used to govern interactions among 
components and how quantitative constraints are 
associated with the patterns, this perspective addresses 
what kinds of interactions are applied among components 
and how to associate constraints with compositional 
patterns. This perspective is represented as follows: 

P composition = [Cc ⇒ R, Ro─S/P→Ri, Ct (R, S, P)] 

  CSCS 
CSCS: Computer Software Complex System 
is a top - level component  that undertakes 
global  a ctivity in distributed and concurrent 
collaboration .   
  

  CSCI 
CSCI: Computer software Configuration Item 
is  a 1 st level component that undertakes a 
specific mission  and is a part of the top-level
collaboration (CSCS) 

  CSCC 
CSCC: Computer Software Common 
Component  is  a 2 nd level component that 
undertakes a specific function  and comprises 
 the 1 st  level mission (CSCI)  

  CSCU
CSCU:Computer Software Computing Unit is 
a  3 rd level component that undertakes a specific 
task  and comprises the 2 nd  level function 
(CSCC).   
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Where Cc ⇒ R is the set of roles extracted from conceptual 
components. Ro─ S/P→Ri is the set of compositional patterns: Ro 
(output/producer) interacts with Ri (input/consumer) via 
architectural styles S while complying with communicatory 
protocols P. Ct(R, S, P) is the set of constraints localized on roles, 
styles, and protocols, respectively. 
 
 Constraints on interactions further localized on 

architectural styles are embodied in such properties as 
composability and heterogeneity.  Composability 
represents the hierarchical composition of architecture 
(i.e., an entire architecture becomes a single component 
in another larger architecture). Heterogeneity represents 
the diverse ways components interact with each other. 
Heterogeneity is inevitable in complex systems because 
diverse components or systems will have to work and 
interact together. In Fig. 3, a compositional coupling 
schema is introduced for PBA approach. 

 

 

 

 

 
 

Fig. 3 Compositional Coupling and Properties 

3.3 Derivational implementation 
Derivational implementation accounts for the 

implementer's perspectives of component derivation and 
connectivity. This perspective addresses what kinds of 
components are needed to carry out computational 
activity, what connectivity is needed between the 
components and how to glue the components to specific 
roles. This perspective is represented as follows: 

Pderivation = [R ⊃Cp, (Cp Ro)─S/P→(Ri Cp), Ct (Cp S, P)] 

Where R ⊃ Cp is the set of physical components derived from the 

associated role.  Cp R (its peer Ri Cp) is the set of instantiated 
components that are glued to associated roles. Ct(Cp, S, P) is the 
set of constraints localized on physical components, styles, and 
protocols, respectively. 
  
Constraints on components are embodied in such 

properties as connectivity (representing the way 
components are derived from the related role) and 
evolvability (representing the evolution from roles to 
components). Interactive roles are represented as 
generalized role wrappers (GRWs) (an abstract class) to 
support component evolution through sub-typing and 
refinement. As illustrated in Fig. 4, the GRWs defined in 
PBA composers introduce derivational gluing to refer to 
connectivity and evolvability.  

 

 

 

 

 

 

Fig. 4 Derivational Gluing and Properties 

3.4 Automated transitional process 
Starting with a prototyping model in the computational 

activity perspective, a transitional process is formed from 
computational activity, through compositional 
architecture, to derivational implementation. Two kinds 
of architectural elements evolve: PBA composers and 
PBA components. Under the support of automated 
software tools, two key mappings are used to bridge the 
gaps between perspectives: explicit architecting via 
compositional patterns and physical evolution via PBA 
composers. PBA approach is associated with support 
tools such as Prototyping Analyzer, Pattern Selector, 
Framework Generator, and Component Evolver [5,8]. Fig. 
5 illustrates this transitional process. 

P computation P composition P derivation 
Cc Cc ⇒ R R ⊃Cp 
I Ro─S/P→Ri (Cp R)─S/P→(R Cp)
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Fig. 5 Transitional Process between Architectural Perspectives
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  IDI   
I DI: Interoperable - Distributed Interaction is 
used for  composing  CSCS from CSCI 
components to enforce distributed  
interactive collaboration 

  LCI   
LCI: Loose- Coupled Interaction  is  used for 
composing CSCI from CSCC compo nents to 
encourage flexible configuration with minimal 
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to  emphasize  independent partition of 
components with high internal complexity
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Explicit architecting of the computational activity starts 
with assigning components with specific roles. 
According to the architectural styles, related interactive 
roles and communicatory protocols can be determined so 
that suitable compositional patterns can be selected and 
applied to govern the interconnections among the roles. 
According to the assignment of which components play 
which specific roles, the components will be derived 
from the associated role facility. After being derived, the 
components will be instantiated and then glued to the 
associated roles by the PBA configuration. 

A PBA composer is designed as a generic package-like 
architectural entity that includes two kinds of GRWs: one 
is for the "interactive producer" and the other is for the 
"interactive consumer." GRWs provide adherence to 
restricted, plug-compatible interfaces for interaction and 
provide the template of behavior that components are 
expected to refine. The physical connectivity between a 
component and a role is implemented by refining or 
overriding the restricted, plug-compatible interfaces 
defined by the GRW [11, 18]. 

4. Dependable Compositional patterns  
Compositional patterns provide a set of rules that 

govern the interactions among components with 
localized constraints. They are characterized by three 
kinds of formulated arguments: interactive roles, 
architectural styles, and communicatory protocols.  

 
 
 
 
 

Fig. 6 Compositional pattern for interconnections 

Fig. 6 depicts a compositional pattern. For a given 
interaction between two components (COM1, COM2), 
both are assigned to play specific roles ro and ri in the 
specific compositional pattern. An architectural style s 
specifies how ro (output / producer) interacts with ri 
(input / consumer), while communicatory protocol p 
builds a specific channel for message transportation 
during the interaction. More specifically, in order to 
construct the components as autonomous entities, roles in 
the compositional pattern are deputized for the 
components in dealing with interaction while the 
associated components are mainly concerned with their 
functionality (computation separated from interaction). 
The pattern also provides a means for gluing a specific 
component to a role. 

By mathematically defining the compositional patterns, 
it is possible to translate, localize, and analyze them 
using automated CASE tools. Compositional patterns 
involve three sets: R representing interactive roles, S 

representing architectural styles, and P representing 
communicatory protocols.  Examples include: 

R = { S = { P = { 
Caller, Definer, 
Announcer, Listener, 
Outflow, Inflow, 
Source, Repository, 
Read, Writer,  … 
} 

Explicit-invocation, 
Implicit-invocation, 
Pipe-filter (Pipeline), 
Repository-centric, 
Blackboard,  … 
} 

Message-passing, 
Event-broadcast 
Data-stream, 
Sampled-stream 
Shared-data, … 
} 
 

Regardless of any constraint, a composition is defined as 
an interaction between two roles (e.g., Caller and Definer) 
via an architectural style (e.g., explicit-invocation), while 
complying with a communicatory protocol (e.g., 
message-passing). So, the Cartesian product R х S х P х 
R enumerates all possible compositions C, represented as 
follows: 

C (R, S, P)={ ro─s/p→ri | ro, ri ∈ R, s∈ S, p∈ P }    

Where ro─s/p→ ri represents interaction between ro and 
ri via a style s while complying with a protocol p.  

Applying specific constraints on compositions develops 
sophisticated compositional patterns.  While GRWs 
provide adherence to restricted, plug-compatible 
interfaces for interaction and template of behavior for 
computation, the components derived from GRWs will 
specify, refine or override the template. In this way, 
interactions are separated from computations.  

Compositional patterns CP are the relation on the 
Cartesian product of compositions with the constraints 
reasonably localized on roles, styles and protocol: 

CP(R, S, P) = {GRW(ro)─s/p→GRW(ri) | 
 ro, ri∈ R, s∈ S, p∈ P, Ct( ro, s, p, ri) } 

Where GRW(r) abstracts the role r as a GRW that separates 
interaction from computation (the GRW "provides" while the 
component "performs"). ─s/p→ represents interaction between ro 
and ri via a specific style s while complying with a specific 
protocol p. Ct(ro, s, p, ri) represents localized constraints.  

4.1 Example of compositional patterns 
Compositional patterns can be implemented as 

composers, an explicit architectural element. They can be 
organized in a reusable composer library that provides 
the evolutionary foundation for component derivation. 
Fig. 7 gives the typical composer Pipeline that exhibits 
dependable architectural properties (e.g., loose 
component coupling, asynchronous communication, and 
data buffering). The two sides interconnected by the 
composer are the Outflow and Inflow roles, respectively. 
Outflow deputizes the producer to output the data, while 
Inflow deputizes the consumer to input the data via 
Pipeline. The formal Pipeline composer provides two 
generic parameters for enhancing reusability: transported 
Data (a basic item for dataflow) and buffer Size (a data 
transportation buffer).  

COM1 COM2  
P

S ro ri 

glue glue 



 

This example provides a template for GRWs. With 
respect to behavioral computation of components, the 
CSP-based semantic description provides not only 
synchronous constraints but also asynchronous control 
transits. Both Output and Input are designed as exclusive 
procedures (execution guards are used to coordinate 
concurrent synchronization). Reference timing 
constraints [5-6], the role of Outflow is subjected to a 
maximum execution time (met) while Inflow is subject to 
a maximum response time (mrt). Both met(100) and 
mrt(100) are translated as asynchronous control transits 
for runtime monitoring of the real time constraints. " " 
represents an asynchronous operation. When outputting 
produced data onto the given pipeline, Outflow must be 
synchronized within a met(100) otherwise, an exception 
is triggered.  

composer Pipeline is generalized 
    type Data is private; 
    Size : Integer : = 100; 
style as  <#pipe-filter#>; 
protocol as  <#dataflow-stream#>; 
wrapper  
  role Outflow is 

port  
  procedure Output(d: Data);  
  procedure Produce(d: Data) is abstract;   
computation 
   Produce (d);   
  *[ Output (d)  Produce (d)  met(100) exception; ] 
end Outflow; 
role Inflow is 
port 
  procedure Input(d: Data); 
  procedure Consume(d: Data) is abstract;  
computation  
  *[ Input (d)  Consume (d)  mrt(100) exception; ] 
end Inflow; 

collaboration (P : Outflow; C : Inflow) 
    P•Produce(d); 

*[ P•Output(d)  P•Produce(d)  C•Input(d)  C•Consume (d)]  
end Pipeline; 

Fig. 7 A Formal composer for Pipeline  
The collaboration portion of the composer description 

will generate topological configurations that are 
connected graphs of components and composers. In 
concert with models of components and composers, 
configurations enable assessment of the autonomous and 
concurrent aspects of an architecture (such as the 
potential for deadlocks, starvation, reduced performance, 
reliability, security, etc.). Configurations also enable 
concurrent execution immediately after the roles are 
glued with the instances of corresponding components.  

4.2 Substantiated interconnection  
It used to be that interconnections in the architecture of 

a software system were annotated as a series of 
“box-line-box” diagrams [8-10].  Over time, this 
annotation has become much richer (for instance, the use 
of Architecture Description Languages (ADLs)) in order 
to more precisely capture and communicate more 
complex ideas related to interconnection. PBA continues 
in this vein by substantiating the interconnections among 
components so that large, complex architectures of 

systems can be built, dealing with following four aspects:  
• Dependable composers by which interaction among 

components are promoted,  
• Heterogeneous forms by which communication during 

interaction can be established.  
• Topological connectivity that guides the connected 

configuration of components, and  
• Constraint localization that governs interconnections 

by associating constraints on patterns 
Dependable composers are used to implement 

compositional patterns by analyzing interactive roles of 
interconnected components in the prototyping model.  
Heterogeneous forms are associated with architectural 
styles and the way information is transported and refers 
to as communicatory protocols in compositional patterns. 
Constraint localization is presented next. 

Topological connectivity simplifies the interconnection 
among components and comes in the following forms:  
• Fork (1~N): single producer to multiple consumers  
• Merge (N~1): multiple producers to single consumer  
• Unique (1~1): single producer to single consumer  
• Hierarchy: external1 producer to interact with the internal1 

consumer, and vice versa.  

Fig. 8 illustrates how to use a composer to implement 
Fork between one producer and more than one consumer. 
 

 
 
 
 
Fig. 8 Fork Connectivity with one PBA composer 

4.3 Dependability as a set of Constraints  
In this case “localization” represents the abstraction of 

dependability, its translation to quantitative constraints, 
and the handling of these constraints applied (localized) 
in the design, construction, and evolution of a 
software-intensive system.  In order to achieve high 
confidence in the dependability of a system there must be 
a systematic method for expressing the dependability 
objectives via measurable constraints associated with the 
subsystems of the architecture. In a macro view, 
dependability can be abstracted as availability, reliability, 
safety, confidentiality, integrity and flexibility [15-17]. 
How these qualitative global requirements translate into 
quantitative constraints becomes crucial. Which 
dependable properties need translating and how they are 
localized on compositional patterns are the questions that 
have to be answered.  

                                                        
1 External and internal refer to hierarchical decomposition. For a given 
hierarchical level of decomposition, a component in the current level is external 
to a component in a lower level, while the latter is the internal to the former.   
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Fig. 9 Localization of Dependability 

Fig. 9 shows a framework of localization applied to 
dependability. With respect to translating dependability 
and localizing the semantic constraints on the 
compositional patterns, the handling of real-time 
constraints provides a good example. Reliability of the 
time-critical system may be embodied as an immediate 
reply of a particular component, under a given request, 
within an met, or as a data stream between components 
performed within a specific latency [5]. First, this 
time-critical reliability should be translated into timing 
constraints met and latency (two quantitative constraints). 
Both are associated with the patterns referring to the role 
and protocol, respectively. met requires computation of 
the role (the component acts) and must be executed 
within a specific amount of time (a hard real-time 
constraint). The latency constrains the maximum delay 
during data transportation within the protocol. These 
timing constraints can be also verified by runtime 
monitoring and correctness assurance [15-17]. 
Dependability of the system would be translated into in 
the form of maximum execution time or latency of the 
data stream communication between components as 
shown in Fig. 10.       

composer Pipeline is generalized 
   …  
  role Outflow is 
  port  
     procedure Output(d: Data);  
     procedure Produce(d: Data) is abstract;   
  computation 
        Produce (d);  
      *[ Output (d)  latency(60)  Produce (d)  met(100)  

 latency-signaled    LAT-EXCEPTION      
 met-signaled      MET-EXCEPTION 

       ] 
  end Outflow; 
    … …  
end Pipeline; 

Fig. 10 A Formal composer for Pipeline 

Procedure Output can be treated as execution guard that 
is tied to the communication protocol, so latency is 
associated with to the protocol by Output (d)  
latency(60). When executing Output is beyond the 
latency, the asynchronous control will set 
latency-signaled and abort current execution, and then 
raise LAT_EXECPTION. Similarly, met is directed to the 
procedure Produce by Produce (d)  met(100). When 
executing Produce is beyond the met limitation, the 
asynchronous control will set met-signaled and abort 
current execution, and then raise MET_EXCEPTION. 

5. Conclusion 
Explicitly architecting software-intensive systems 

provides the promise of faster, better, cheaper systems.  
In order to consistently engineer dependable 
software-intensive systems, the PBA approach provides a 
process that uncovers perspective concerns of different 
stakeholders, and increases the effectiveness of 
requirements validation techniques. Because PBA 
approach can be used to localize and quantify invariant 
architectural constraints (such as "dependability" in the 
example above) it will also reduce the amount of 
re-certification effort required after each requirement 
change. The PBA approach illustrates that with 
automated tool support, the prototyping of software 
architecture can be used to identify and resolve 
conflicting stakeholder perspectives and develop reliable, 
dependable, consistent software-intensive systems.  
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