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Abstract

Component-based systems built out of reusable software
components are being used in a wide range of applica-
tions that have high dependability requirements. In order
to achieve the required levels of reliability and availabil-
ity, it is necessary to incorporate into these complex sys-
tems means for coping with software faults. In this paper
we present FaTC2, an object-oriented framework which fa-
cilitates the construction of fault-tolerant component-based
systems by giving support to fault tolerance techniques.
FaTC2 is an extension of C2.FW, an OO framework which
provides an infrastructure for building applications using
the C2 architectural style. More specifically, FaTC2 ex-
tends C2.FW in order to introduce a forward error recovery
mechanism by means of an exception handling system. Our
main contribution is to provide a framework which gives
support to a software architectural level exception handling
system. We also present a case study showing how our
framework can be employed for building a fault-tolerant
component-based application.

1. Introduction

Modern computing systems require evolving software
that is built from existing software components, developed
by independent sources[2]. Hence, the construction of sys-
tems with high dependability requirements out of software
components represents a major challenge, since few as-
sumptions can generally be made about the level of con-
fidence of third party components. In this context, an archi-
tectural approach for fault tolerance is necessary in order to
build dependable software systems assembled from untrust-
worthy components[8].

Fault tolerance at the architectural level is a young
research area that has recently gained considerable

attention[7]. Most of existing works in this area empha-
size the creation of fault tolerance mechanisms[9, 11] and
description of software architectures with respect to their
dependability properties [12, 14].

The work of Guerra et al[6] presents a structuring con-
cept for the incorporation of an exception handling mecha-
nism in component-based systems, at the architectural level.
This notion is based on the concept of the Idealised Fault-
Tolerant Component(IFTC)[1]. The IFTC separates the
abnormal (fault tolerance measures) activities of a system
from its normal activity. Upon the receipt of a service re-
quest, an IFTC produces three types of responses:normal
responses in case the request is successfully processed,in-
terface exceptions in case the request is not valid, and fail-
ure exceptions, which are produced when a valid request is
received but cannot be correctly processed.

In this paper we present an object-oriented framework,
called FaTC2, for building fault-tolerant component-based
systems based on the IFTC. Our framework is an extension
of C2.FW[10], an OO framework which provides an infras-
tructure for building applications using the C2 architectural
style[15]. FaTC2 introduces forward error recovery in the
original framework by means of an exception handling sys-
tem (EHS). An EHS offers control structures which allow
developers to define actions that should be executed when
an error is detected. This materializes by the capability to
signal exceptions and, in the code of the handler, to put the
system back in a coherent state. A forward error recov-
ery mechanism manipulates the state of a system in order
to remove errors and enable it to resume execution without
failing. Forward error recovery is usually implemented by
means of exception handling.

The C2 architectural style[10, 15] is a component-based
architectural style which supports large grain reuse and
flexible system composition, emphasizing weak bindings
between components. The C2 style has been chosen
due to its ability to compose heterogeneous off-the-shelf



components[10]. The work of Rakic and Medvidovic[11]
is the only one we know of which describes means for sup-
porting the construction of fault-tolerant C2 applications. It
presents the concept ofMulti-Version Connector, a mecha-
nism created to permit the reliable upgrade of software com-
ponents in a configuration, by means of design diversity[1].

Our main contribution is the construction of a framework
which supports an architectural level EHS. In component-
based development, source code for the components which
make up a system might not be available, specially if third
party components are employed. Hence, it is not possible to
introduce exception handling directly in the component. An
architectural level EHS deals with this kind of problem by
providing an infrastructure for defining exceptions and at-
taching the corresponding handlers to components without
the need to modify them.

The rest of this paper is organized as follows. Section 2
provides some background information. Section 3 presents
the proposed framework, FaTC2, describing its most im-
portant elements. An example application is presented in
Section 4. Final conclusions are given in Section 5.

2. Background

2.1. The C2 Architectural Style

In the C2 architectural style components communicate
by exchanging asynchronous messages sent through con-
nectors, which are responsible for the routing, filtering, and
broadcast of messages. Figure 1 shows a Software Archi-
tecture using the C2 style where the elements A, B, and D
are components, and C is a connector.

Components and connectors have atop interface and a
bottom interface(Figure 1). Systems are composed in a lay-
ered style, where the top interface of a component may be
connected to the bottom interface of a connector and its
bottom interface may be connected to the top interface of
another connector. Each side of a connector may be con-
nected to any number of components or connectors. Two
types of messages are defined by the C2 style: requests,
which are sent upwards through an architecture, and notifi-
cations, which are sent downwards. Requests ask compo-
nents in upper layers of the architecture for some service
to be provided, while notifications signal a change in the
internal state of a component.

2.2. C2.FW Framework

The C2.FW framework[10] provides an infrastructure
for building C2 applications. It is part of the ArchStudio[16]
environment, which is an architecture-oriented integrated
development environment which comprises a collection of
tools to help in the development of applications based on

Figure 1. An example architecture using the
C2 style.

the C2 style. C2.FW has been implemented in C++, Java,
Python and Ada.

The C2.FW Java[5] framework comprises a set of classes
and interfaces which implement the abstractions of the C2
style, such as components, connectors, messages, and in-
terconnections. The framework provides various features,
such as support to different threading models and queuing
policies, and sophisticated message processing and event
propagation mechanisms. It does not, however, implement
any mechanisms for the provision of error recovery.

2.3. Idealised C2 Component

The work of Guerra et al[6] uses the concept of Idealised
Fault-Tolerant Component (IFTC) to structure the architec-
ture of component-based software systems compliant with
the C2 architectural style. It introduces the Idealized C2
Component(iC2C), which is equivalent, in structure and be-
havior, to the IFTC. Service requests and normal responses
of an IFTC are mapped as requests and notifications in the
C2 architectural style. Interface and failure exceptions of an
IFTC are considered subtypes of notifications.

The iC2C is composed of five elements: NormalAc-
tivity and AbnormalActivity components, and iC2Ctop,
iC2C internal, and iC2Cbottom connectors. Its internal
structure is presented in Figure 2.

The NormalActivity component processes service re-
quests and answers them through notifications. It also im-
plements the error detection mechanisms of the iC2C. The
AbnormalActivity component encapsulates the exception
handlers of the iC2C. While a system is in a normal state,
the AbnormalActivity component remains inactive. When
an exceptional condition is detected, it is activated to han-
dle the exception. In case the exception is successfully han-
dled, the system enters a normal state and the NormalAc-
tivity component resumes processing. Otherwise, a failure
exception is sent and components in lower layers of the ar-
chitecture become responsible for handling it.

The iC2Cbottom connector is responsible for filtering
and serializing requests received by the iC2C. This con-
servative policy aims at guaranteeing that requests are al-
ways received by the NormalActivity component in its ini-



Figure 2. Internal structure of an iC2C.

tial state, to avoid possible side-effects of an exceptional
condition caused by a concurrent service request. The
iC2C internal connector is responsible for the routing of
messages inside the iC2C. The destination of the messages
sent by the internal elements of the iC2C depends on the
message type and whether the iC2C is in a normal or abnor-
mal state.

The iC2Ctop connector encapsulates the interaction be-
tween the iC2C and components located in upper levels of
the architecture. It is responsible for guaranteeing that ser-
vice requests sent by the NormalActivity and AbnormalAc-
tivity components to other components located in upper lev-
els of the architecture are processed synchronously. And
that response notifications reach the intended destinations.
The iC2Ctop connector also performs domain translation,
converting incoming notifications to a format which the
iC2C understands and outgoing requests to a format which
the application understands.

The structure of the iC2C makes it compatible with the
constraints imposed by the C2 architectural style. Hence,
an iC2C may be incorporated into an existing C2 config-
uration. Previous experiments[6, 8] with the IC2C model
have shown its adequacy for the construction of component-
based systems, including systems built from off-the-shelf
components[7].

3. Description of the Framework

In order to facilitate the development of fault-tolerant ap-
plications using the C2 style, we have extended the Java[5]
version of C2.FW with the concept of iC2C. The original
C2.FW framework does not provide adequate support for
the construction of fault-tolerant systems. Our aim is to

Figure 3. A summarized class hierarchy for
C2.FW and FaTC2.

provide the support for error recovery, more specifically,
forward error recovery, by means of an EHS.

The extended C2.FW framework has been baptized
FaTC2, which is an abbreviation for Fault-Tolerant C2.
FaTC2 allows fault-tolerant systems to be built in a well-
organized manner, using iC2Cs as structural units. The
main advantage of this approach is the fact that frame-
work users do not need to implement an EHS in or-
der to create fault-tolerant applications. Only the nor-
mal activity(functional requirements) and abnormal activ-
ity(exception handling) of the component should be de-
fined. Connections between normal and abnormal parts are
managed by FaTC2.

Figure 3 presents a summarized class hierarchy for
FaTC2, and its intersection with C2.FW. In the following
sections we describe FaTC2, based on the elements which
compose an iC2C(Figure 2).

3.1. IC2C

The creation of an iC2C is encapsulated by theIC2C
class. Instances ofIC2C are created by a factory method[3]
which takes as arguments the name of the iC2C to be
created and objects representing the NormalActivity and
AbnormalActivity components(Figure 2). Optionally, it
may also receive objects representing the iC2Ctop and
iC2C bottom connectors as arguments, in case filtering or
domain-translation are required. If these arguments are
omitted, default implementations are employed.

Although theIC2C class may be used directly in an
application, it is recommended that developers create sub-
classes of it, specifying the NormalActivity and Abnor-
malActivity components, and iC2Ctop and iC2Cbottom
connectors which are to be used.



3.2. NormalActivity Component

The NormalActivity component is one of the ele-
ments of the iC2C which must be implemented by
developers employing FaTC2. In order to define a
NormalActivity component, a developer must provide
a class that implements theINormalActivity inter-
face. This interface declares three operations which de-
fine the application-dependent behavior of the compo-
nent: handleRequest(), returnToNormal(), and
reset(). These operations must be implemented by the
developer. TheAbstractNormalActivityComponent ab-
stract class should also be extended. This class implements
the internal protocol of the iC2C, which is application-
independent.

The handleRequest() method is responsible for
processing service requests. It takes as argument a message
corresponding to the request to be executed, and returns a
response notification to be delivered to the client compo-
nent. It is important to note that the framework provides the
reusable code which actually sends the response notifica-
tion and receives the service request. The code responsible
for these tasks is implemented byAbstractNormalActivi-
tyComponent.

If an error occurs during the processing of a service re-
quest, an exception is thrown, which may be a failure excep-
tion (classIC2CFailureException) or an interface excep-
tion (classIC2CInterfaceException). These are caught by
the framework and packaged as exception messages, which
are sent to the AbnormalActivity component. It is impor-
tant to note that the application code only throws language-
specific exceptions. Architecture-level exceptions are man-
aged by the framework itself.

In case the handling of a request demands the NormalAc-
tivity component to request services from components lo-
cated in upper levels of the architecture, theAbstractNor-
malActivityComponent class provides a utility method,
requestService(), which may be used to send syn-
chronous(request/response) requests transparently, upwards
the architecture.

ThereturnToNormal() andreset()methods are
related to the abnormal activity of the iC2C. The former
is called when the iC2C has successfully handled an ex-
ception, and should return to normal activity. The latter is
called when the iC2C is unable handle an exception, and
should return to its initial state so that the erroneous state
does not affect subsequent requests.

3.3. AbnormalActivity Component

In order to implement an AbormalActivity compo-
nent, a developer must provide a class that implements
the IAbnormalActivityComponent interface and extends

theAbstractAbnormalActivityComponent abstract class.
Similarly to the NormalActivity component, the Abnor-
malActivity component has both application-dependent
and application-independent behaviors.AbstractAb-
normalActivityComponent implements the application-
independent behavior of the AbnormalActivity compo-
nent, whileIAbnormalActivityComponent specifies the
application-dependent behavior.

A single operation is defined by theIAbnormalActiv-
ityComponent interface: handleException(). This
operation must be implemented by the developer and de-
fines the exception handler of the iC2C. This operation takes
the exception to be handled as argument. If an exception
is successfully handled,handleException() returns a
message object which is sent to the NormalActivity compo-
nent. Processing is then resumed. Otherwise, an exception
is thrown from the body ofhandleException(). This
exception is caught by FaTC2 and a failure exception mes-
sage is sent to the components in the lower levels of the
architecture. In case the exception handler for a component
which is in the lowest level of an architecture is unable to
handle a given exception, it should notify an external user
about this fact.

In case the handling of an exception requires the Ab-
normalActivityComponent to request services from other
components, or from the NormalActivityComponent in the
same iC2C, classAbstractAbnormalActivityComponent
provides methods which allow synchronous requests to be
carried transparently, similarly to theAbstractNormalAc-
tivityComponent class.

3.4. iC2C top, iC2C bottom and iC2C internal
Connectors

The IC2CTopConnector, IC2CBottomConnector,
and IC2CInternalConnector classes are default im-
plementations for the iC2Ctop, iC2Cbottom, and
iC2C internal connectors, respectively.

IC2CTopConnector andIC2CBottomConnector may
be extended in order to implement filtering of notifica-
tions in the top domain of an iC2C, or requests in its bot-
tom domain, respectively. A filtering scheme is defined
by implementing theaccept() method in a subclass of
IC2CTopConnector or IC2CBottomConnector. A mes-
sagem is processed only ifaccept(m) == true.

Subclasses ofIC2CTopConnector may also imple-
ment domain translation in the top domain of the iC2C.
The methodstranslateIncomingMessage() and
processOutgoingMessage() are responsible for this
task and are called by FaTC2, respectively, immediately af-
ter a message has beenaccepted by the iC2Ctop connector,
and immediately before a given message is sent by it.

The iC2Cbottom connector is not expected to perform



domain translation. In the C2 architectural style, an element
placed in an upper layer of an architecture should make no
assumptions about elements in the lower layers[15].

In case no filtering or domain translation is necessary, the
default implementations for the iC2Ctop and iC2Cbottom
connectors may be used.

The IC2CInternalConnector class is reused without
needing any specialization, since its only task is to route
messages inside an iC2C.

4. An Application Example

In order to show the usability of FaTC2, we present
a small example extracted from the Mine Pump Control
System[13]. The problem is to control the amount of water
that collects at the mine sump, switching on a pump when
the water level rises above a certain limit and switching it
off when the water has been sufficiently reduced. In this
section, we describe an implementation for the example ap-
plication which uses the infrastructure provided by FaTC2.

4.1. Description of the Architecture

The C2 architecture of our example is shown in Figure
4. The Pump component commands the physical pump
to be turned on/off. ComponentLowWaterSensor sig-
nals a notification when the water level is low.Water-
FlowSensor checks whether water is flowing out of the
sump. TheIdealPumpControlStation component con-
trols the draining of the sump by turning on/off the pump,
according to the level of the water in the sump. It in-
cludes an exception handler which is executed when the
pump is turned on but no water flow is detected. The er-
ror handler is implemented by theAbnormalPumpCon-
trolStation component. ThePump, LowWaterSensor and
WaterFlowSensor components have been implemented as
simple C2 components, whileIdealPumpControlStation
is an iC2C. In order to build theIdealPumpControlSta-
tion, five classes are implemented:NormlPumpControl-
Station, AbnormalPumpControlStation, PumpControl-
StationTop, IdealPumpControlStation andTranslation-
Connector.

Class NormalPumpControlStation implements the
NormalActivity component ofIdealPumpControlStation,
that is, the methods defined by theINormalActivity-
Component interface(Section 3.2). Due to the support pro-
vided by FaTC2, no messages need to be explicitly sent by
any of the methods inNormalPumpControlStation; that
is, the architect does not need to understand the internal pro-
tocol of the iC2C or the way it is implemented.

The AbnormalPumpControlStation class implements
the exception handler of theIdealPumpControlSta-
tion. When an exception message is received by the

Figure 4. C2 configuration for the Fault Toler-
ant Mine Pump Control System.

handleException() method, the latter keeps sending
new requests toPump until either water flow is detected
or the maximum number of retries permitted is reached.
In the former case, normal activity is resumed(the method
simply returns). In the latter, a failure exception message
is sent downwards the architecture(the method throws an
IC2CFailureException). The following code snippet par-
tially illustrates this situation.

public Message handleException(Exception e)

throws Exception {
(...)

if(this.retries >= this.MAX RETRIES) {
throw new IC2CFailureException(e);

}
(...)

In order to send an exception message downwards the
architecture, the architect should throw a Java excep-
tion. In the example above, an exception of type
IC2CFailureException, a subtype of Exception, is
thrown.

The PumpControlStationTop class provides theIde-
alPumpControlStation component with an extension
of the IC2CTopConnector class which performs filter-
ing. When a request is issued by theIdealPump-
ControlStation, PumpControlStationTop records the
type of the request sent, so that only a notifica-
tion which is a response to that request is allowed
to be processed. To build this filtering scheme, two



methods had to be implemented:accept() and
processOutgoingMessage()(Section 3.4).

IdealPumpControlStation is a subclass ofIC2C. The
IdealPumpControlStation class defines a public construc-
tor which takes as argument the name of theIdealPump-
ControlStation instance to be created.TranslationCon-
nector translates requests and notifications at the bottom
interface of theIdealPumpControlStation (Figure 4).

It is important to note thatno classes other than the
one which originally implemented thePumpControlSta-
tion component were modified. Working versions of
FaTC2 and the example application can be downloaded at
http://www.ic.unicamp.br/˜ra014861/FaTC2.

5. Conclusions

Component-based systems built out of reusable software
components are being used in a wide range of applica-
tions that have high dependability requirements. In order
to achieve the required levels of reliability and availability,
it is necessary to incorporate into these complex systems
means for coping with software faults. In component-based
development, source code for the components which make
up a system might not be available. This motivates the cre-
ation of architectural level fault tolerance mechanisms.

In this work, we have presented FaTC2, an object-
oriented framework for the construction of fault-tolerant
component-based systems. FaTC2 is an extension of
C2.FW, a framework which provides an infrastructure for
bulding applications in the C2 architectural style, but
lacks support for the construction of fault-tolerant systems.
FaTC2 extends C2.FW with a software architectural level
exception handling system which is based on the concept
of idealised C2 component. We have also presented an ex-
ample demonstrating how to use FaTC2 to make a fault-
tolerant system.

We plan to apply our framework to build a more complex
case study where some off-the-shelf components are used.
In order to meet this goal, it is necessary to expand the im-
plementations of the NormalActivity and AbnormalActivity
components of the iC2C, according to the models proposed
by Guerra et al[7, 8], so as to deal with the architectural
mismatches[4] which usually arise from the integration of
COTS components.

Until the present moment, the iC2C has been modeled
as a synchronous entity and the implementation of FaTC2
conforms to this model. That means that an iC2C is unable
to handle asynchronous notifications and that requests are
issued under the assumption that a response will be even-
tually received. This restriction might be undesirable for
some applications, since a large amount ofglue code may
be necessary if a synchronous iC2C needs to interact with
asynchronous components. Hence, another future work for

FaTC2 is the implementation of an iC2C for which these
restrictions are relaxed.

Finally, we also plan to construct a tool that facilitates
the incorporation of exception handling into new and ex-
isting applications. We plan to integrate this tool with the
ArchStudio environment.
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