
A Dependable Real-Time Platform for Industrial Robotics

Goran Mustapic, Johan Andersson, Christer Norstrom

ABB Robotics, Västerås, Sweden

goran.mustapic, johan.x.andersson, christer.e.norstrom @se.abb.com

Abstract

Industrial Robots are complex systems with hard real
time, high safety, reliability and availability
requirements. Robot Controllers are part of these systems
and they are complex hard real time computers, which
control a robot’s mechanical parts. To be useful, Robot
Controllers must be programmable by end customers.
This is typically done through a domain and vendor
specific programming languages.

In this position paper, we will describe some of the
architectural challenges we are facing and work we have
done, in the process of turning the Robot Controller from
an application platform into a dependable platform
whose base functionality can be extended by a third party
which is not necessarily the end customer.

1. Introduction
Industry demands for safety at work and 60.000 hours of
mean time between failures put high demands on the
quality of hardware and software of industrial robots.
Industrial robots are systems, which consist of a
mechanical unit (robot arms that can carry different
tools), electrical motors, Robot Controller (computer
hardware and software) and clients. Clients are used for
on-line and off-line programming of the Robot
Controller.

The focus of this article will be the open software
architecture of the Robot Controller. According to Issarny
[6], in open systems, components do not depend on a
single administrative domain and are not known at design
time. In this article, we describe a domain specific
platform, which faces significant new challenges on the
way to become an open platform.

The reason for opening up the controller for third parties
is to increase the possibility for partners to provide
functionality that ABB Robotics do not either find

prioritized or do not have resources for. In a closed
platform, the development organization responsible for
the platform is the limiting factor. To increase the
development speed in the future we can either increase
the size of the development organization or open up the
system for third party. We believe in the latter, that the
number of new types of usages of the robot will increase
if we let niche companies adapt the robot for a specific
type of applications and customers. The challenges can be
divided into:

• developing an appropriate business model,

• determining what type of extensions that should be
supported,

• defining an open and dependable architecture,

• defining the certification process and technical
details

In this paper we will focus on the technical challenges.

Since we have the system responsibility towards our
customers we have to ensure our customers that
extensions made by a third party do not have negative
side effect on the delivered system. This is a big
difference compare to the desktop based systems, where a
company that builds a system on top of for example
Microsoft Windows© is responsible towards the end
customer of the system quality.

The contributions presented in the remainder of this paper
are the following:

• We make a short analysis of an industrial robot
system and analyze the relevance of the individual
dependability attributes for the industrial robot
domain.

• We present some initial thoughts on the architectural
level reasoning about the open dependable platform
for the Robot Controller.

• We present the results of the work to model the
platform and enable early reasoning of the
architectural level choices.

The outline of the paper is as follows. Section 2 presents
a short background about ABB Robot Controller. Section
3 explains the relevance of the individual dependability
attributes for our system. In Section 4 we discuss
similarities and differences of an open Robot Controller
and open desktop systems. Section 5 describes the initial
ideas about an open architecture and also the results of an
initial case study to model our control system. Finally, in
Section 6 we make some conclusions and discuss future
work.

2. Background about ABB Robot Controller
 The ABB Robot Controller was initially designed in the
beginning of the 1990. The requirement was that the same
controller should be used for all different types of robots,
and thus the architecture is a product line architecture. In
essence, the controller has an object-oriented architecture
and the implementation consists of approximately 2500
KLOC of C language source code divided on 400-500
classes organized in 15 subsystems. The system consists
of three computers that are tightly connected: a main
computer that basically generates the path to follow, the
axis computer, which controls each axis of the robot, and
finally the I/O computer, which interacts with external
sensors and actuators.

Only one of those three mentioned computer nodes is
open to the end users, and that is the main computer. End
users write their programming logic in the form of an
imperative language called RAPID. This can be done
through off-line programming on a PC, or on-line
programming on a client called Teach Pendant Unit
(custom hardware).

The system was originally designed to support easy
porting to new HW-architectures and new operating
systems. There were no initial requirements to have an
open architecture. Further, the system was not initially
designed to support temporal analysis, because of its
closed nature and limited amounts of changes that could
only be done by the internal development groups.

3. Discussion of dependability attributes in
the context of industrial robots
The analysis of the dependability attributes in this section
is done using the terminology presented by Avizienis,
Randell and Laprie in [2]. Dependability is described by
the following attributes: Reliability, Availability, Safety,
Integrity, Confidentiality, and Maintainability.

Security related attributes (confidentiality and integrity),
tend to be of less importance for industrial robots as
robots tend to be physically isolated, or only connected to

a control network together with other industrial devices.
Integrity of data which is not security related is very
important, as it is unacceptable that e.g. one task in the
system causes a hazard situation by damaging the safety
subsystem. All other dependability attributes are very
relevant.

Even though the contact of humans and robots in
industrial environments is restricted (robots work in their
cells, which are physically isolated by a fence), safety can
never be underestimated because a lack of safety can
cause substantial physical damages to the robot
equipment and its environment. For example, larger types
of robots are powerful machines capable of manipulating
a weight of 500 kg. Industrial robots belong to the
category of safety-critical systems, which do have a safe
state.

Because of the nature of the application, it is crucial to
have very high availability and reliability. Unreliability
leads to un-availability, which means production stop and
huge costs. Because of the complex setup of e.g. car
production line, a stop of a single robot leads most often
to unavailability of a whole production line. In a complex
case, a stop of a single robot can cause up to one day
production stop.

Maintainability is important in the sense that it is related
to availability. The shorter maintenance time the higher is
availability of the system. Ideally, the system should be
upgradeable without stopping the production. System
upgrades are complicated even for a closed platform, but
get much more complicated in a platform which is
extendable by a third party, because of the compatibility
issues.

When it comes to the dependability threats – fault, error
and failures, both hardware and software faults need to be
considered. Robot Controller software has both roles of
sending control sequences to the hardware as well as
predicting preventive hardware maintenance.

There are many different fault-tolerance methods that can
be applicable for industrial robots. Error recovery with
temporary graceful degradation of performance is not
acceptable. A robot either works or it does not work; it
cannot make its tasks by working slower depending either
on the task (such as arc welding) or because it is a link in
the production flow.

4. Towards an open architecture
In the introduction of this paper, we presented some of
the motivations for opening up the system. In this section
we will try to describe similarities and differences
between industrial robots and open desktop platforms
where openness is taken for granted. We will conclude

this section by a short analysis about which dependability
attributes are most threatened by opening up the system.

 4.1. A comparison to Windows© platform

Good examples of open platforms are Microsoft
Windows© and perhaps even more Linux operating
systems. We shall take the example of Microsoft
Windows©, which is closer to our case. It is possible to
extend the base platform on three basic different levels:
device driver level, win32 programs and .Net
applications. This is illustrated in the Figure 1.

Windows Kernel
Device
DriverDevice

DriverDevice
Driver

Win32 API

Windows
Application

Windows
Application

Windows
Application

.Net Framework

.Net
Application

.Net
Application .Net

Application

Figure 1: Different ways to extend Windows© platform

The architecture of the system guarantees that each of the
different extensibility mechanism only can make certain
amount of harm to the system, where device drivers can
do the most harm and .Net application least harm. Apart
from the basic or native ways to extend the platform,
many of the applications define their own extensibility
mechanisms, e.g. Internet Explorer and SQL Server.

The current way of adding functionality to the Robot
Controller corresponds to adding .Net applications to
Windows©. As previously mentioned, this is by adding
RAPID programs. This is shown in the Figure 2.

IO
Subsystem

OS Isolation Layer

RAPID
Robot

Application

RAPID
Robot

Application
RAPID
Robot

Application

OS Kernel

Safety
Subsystem

Motion
Subsystem

Program Server
Subsystem

RAPID
extensions

Figure 2: Current ways to extend the Robot Controller
software

We are considering the following additional ways of
extending the Robot Controller:

• Extensions to the robot programming language
RAPID

• New subsystems

• Extension logic to the existing subsystems (e.g.
fine-tuning of the robot path, new type of IO
card, new types of sensors for fine tuning of the
robot path etc.)

Let us consider the first type of extensions – RAPID
instructions. Basic commands in programming of a robot
are “motion” instructions instructing a robot to move its
arms to different positions. Some of the basic motion
commands are implemented as RAPID extensions and
perform their tasks by communicating to the motion
subsystem. The basic part of the Program Server contains
the engine for executing RAPID programs, and has
features like single stepping and executing the program
backwards (that is, running the robot backwards). There
is a limited set of commands that make the robot
programming language. New instructions can be added to
enable easier programming and facilitate e.g. very special
kinds of tools that a robot is using. This has traditionally
been restricted for in-house development because of the
harm these extensions can do to the system and
prohibitive costs of verifying the correctness of
extensions. This harm is equivalent to the harm that
unmanaged (native) code can do to a .Net application.
This extension code can bring the .Net application down
and .Net Framework has no ways to prevent it from doing
this. In the Robot Controller case, situation gets more
complicated when timing requirements of the Robot
Controller are considered.

Other types of extensions mentioned are potentially even
more dangerous to the overall system because they most
likely require more open access to the lower level
services in the system.

4.2. Revisiting the dependability attributes
If we shortly revisit the dependability attributes, which
we have analyzed in the section 3, we will see that
opening up the architecture will have some significant
consequences for several of the attributes. In particular:
reliability, availability and safety of the system are
threatened by a third party code. Maintainability of the
system gets much harder because of the need to handle
versioning problems between the platform and the
extensions.

Thus we have to find a dependable architecture to support
extending the platform in a predictable way.

5. Initial architecture reasoning about open
Robot Controller platform
We see the following as the most important architectural
goals and also biggest challenges we are facing:

• Defining the dependable platform architecture

• Good support for the development of extensions

• Support for the predictable assembly of extensions
and the platform

The platform will provide a Software Development Kit
(SDK) for developing the platform extensions. SDK
functionality may be grouped with focus on different
types of extensions. Support for modeling and simulation
will be a part of the SDK, as well as a framework for
certification of extensions.

Because timing aspects are crucial in the Real-Time
environment, we have already done some initial studies
on modeling/simulation of the system, to be able to verify
the architectural design in early stages. The rest of the
work mentioned below is in an initial phase.

5.1. Platform architecture
The work on architecture for dependable systems is
relevant in the context of defining the architecture of an
open dependable platform. According to [3] Non-
Functional Requirements (NFR) can be divided to:
Separation, Additive (a subset of the Separation) and
Integral NFR. The classification is based on the way NFR
can be taken into account in the system architecture.
Additive non-functional requirements (AFNR) are pure
add-on components to the architecture, while integral
non-functional requirements (INFR) can affect the
components of the entire system.

In the case of an open dependable platform, we will need
to use means for dependability to create a framework for
adding extensions. The choice of the architecture and
implementation of the dependability requirements, will
lead to this framework. Means for dependability can be
transparent, with a different degree of transparency, to
extension developers. We believe that for a hard-real time
system, extensions of the platform will have to be aware
of the platform dependability requirements. An example
is the timing requirements.

Some of the existing frameworks for implementing fault-
tolerant software present interesting ideas that we may
benefit from. An example is a framework for
implementing complex fault-tolerant software presented
by Xu, Randel and Romanovsky in [13].

It is also important for the software architecture to
support good testability, which is a contradictory
requirement to fault-tolerance. Example of the work in

this field that is relevant for us, is the work done by Voas
[9,10], and especially some of the work in the area of
distributed real time systems [8].

5.2. Research in Component Based Software
Engineering (CBSE)
The extensions of our platform could also be called
components. Component-Based Software Engineering
(CBSE) and Software Architecture research are much
related [4] and experiences from this field can help us in
architecting our platform. It is recognized that current
Component Technologies handle only syntactic aspects of
component compositions, while semantic and especially
extra-functional (non-functional) aspects of component
specification are open areas of research [4]. One of the
biggest challenges of the CBSE is predictable assembly of
components and an example of a technology in this
research area is called PECT. We believe our ideas are
quite inline with the PECT framework presented by the
research group at SEI Carnegie Mellon University in the
article “Packaging Predictable Assembly” [5]. In this
article, prediction-enabled component technology (PECT)
is presented, as both a technology and a method for
producing the instances of the technology. A PECT
instance is created by integrating a software component
technology with one or more analysis models. However,
focus of their work seems to be more on integration of the
existing technology and models, while our focus will be
more towards defining a dependable platform and a
simple custom component model with good dependability
characteristics.

Besides the predictable assembly, research experiences in
CBSE can be very useful for handling problems of
maintainability and compatibilities between platform and
extensions.

5.3. Certification of extensions

An example of a certification process for platform
extensions is Microsoft’s WHQL (Windows Hardware
Quality Lab [7]) certification program for the device
drivers. Some ideas from this process are definitely
applicable to our case. We would also need to act as a
certification authority. In our case, the situation is more
complicated because it is not only the certification of a
single component we are concerned about, but also the
already mentioned predictable-assembly. One of the
possible approaches to certification of COTS software is
presented by Voas in [11].

5.4. Model Checking and Simulation
In an open real-time system, with third party components
we need a method for extending the base system in a safe
way. Since the robot system is very sensitive for timing
errors, we have developed a method for analyzing the

impact of adding third party components. In a large
system such as the robot controller, this temporal side-
effect is hard to predict without models, due to the size
and complexity of the system.

Testing and debugging of a complex real-time system is
already difficult and when introducing a low-level
interface for extending the system with new components
makes it even harder. Now, not only the base system has
to be verified, but all combinations of extending
components that are to be used must be verified as well.

A component might work perfectly, but when it is
combined with another component it might introduce an
overload situation in some scenarios. This is dangerous
since an error caused by this side-effect can be hard to
find by testing and affects not only the current task, but
may cause a global overload situation, possible delaying
several tasks, causing multiple task deadlines to be
missed, and finally that the robot fails doing its task
properly.

Often the manufacturer of the base system wants to focus
on the performance and features of the base system, not
integration of special third party components. Letting the
component manufacturer be responsible for the extended
system is not better and in the industrial robot business,
big customers do not accept this. The third party
developers will not have access to the source code of the
base system, except perhaps an SDK, and will not have
the same expertise in the internal structure of the system.
Also, they are probably not able to achieve the same
quality on their system verification as the base system
manufacturer.

A better solution is to let the component developer create
a model of their component and let the base system
manufacturer certify the component. Their component
can through the process be certified for use with the
system as well as together with other certified
components. This is good for the component developer
since it provides a quality label for their software and the
base system manufacturer can sell more base systems.

We have developed a method and a prototype tool for
describing and analyzing these models. The approach is
developed for a robot controller, but the method can be
used for other systems as well.

In earlier work, the language-based simulation tool-suite
called ART-ML [1,12] was developed, a model creation
process has been developed and using it we created a
rough model of the controller. A specialized query-
language for powerful analysis simulation results as well
as data measured on the target system has been developed
[12].

So our approach consists of one base step were we
develop an initial model of the system and validate that
the model represents the modeled system correct. When
we have a model of the base system we can add
component models to the base model and analyze the
consequences of adding a particular set of components.
Currently this analysis will be performed off-line but in
the future we could do this even on-line.

When creating an initial model M0, of an existing system
S0, several distinct activities are required. These activities
are depicted in Figure 4. First the structure has to be
identified and modeled, i.e. the tasks in the system and
synchronization and communication among them. In the
next step, we measure the system and populate the
structural model with data about the temporal behavior.
Moreover, information needed in the validation phase is
collected, e.g. response times. When tuning the model,
the initial model M0 is compared with S0 by simulating
the model and comparing the results with the validation
data collected in the previous step. In this step it is
possible to introduce more details about the tasks
behavior in order to capture the system's behavior
accurately.

S0

T0

Structural modeling

U0

V0

M0

Populate the model

Tune the model

Sensitivity analysis

Figure 4: The model creation process

To validate the usefulness of the model it is necessary to
perform a sensitivity analysis. The sensitivity analysis
should be based on foreseen potential extensions or
changes in the particular system. The extensions are
introduced in the model as well as in the system and the
new systems are compared. Any divergence between the
behavior of the simulated model and the system indicates
that more details must be introduced in the model. This
increases the confidence in the created model.

In the robot controller we have studied, the following
typical changes were identified:

• Change existing behavior of a task which results
in changes in the execution time distribution.

• Add a task to the system.

• Change the priority of an existing task.

When a third party adds a component to the system a
model of the added component has to be provided. This
model is composed with all other added components’
models and the basic system model. Based on this
composed model, we can verify if the defined properties
still hold for that particular combination of components,
and if so draw the conclusion that the added components
do not affect the system behavior badly.

6. Future Work and Conclusions
We intend to continue our work in the direction of
defining architecture of a reliable, safe and maintainable
platform. We will also continue working on the modeling
and simulation to support the predictable assembly of the
platform and extension components.

From the initial analysis, which we have presented in this
paper, it can be seen that we will need to use experiences
from multiple areas of research and to combine them to
create an optimal domain specific solution.

Besides the technical challenges, there are also significant
business challenges around the certification process.
Without proper architecture, tool support etc, costs of
certification may turn out to be larger than the benefits of
having an open platform.

7. References

 [1] Andersson J., Neander J., Timing Analysis of a
Robot Controller, Master Thesis, Mälardalen
University, Sweden, http://www.mdh.se/, 2002.

 [2] Avizienis A., Randell B., and Laprie J.C.,
"Fundamental Concepts of Computer System
Dependability", IARP/IEEE RAS Workshop On
Robot Dependability, 2001.

 [3] Brandozzi M. and Perry E.D., "Architectural
Prescriptions for Dependable Systems", ICSE 2002
Workshop on Architecting Dependable Systems,
2002.

 [4] Crnkovic I., Hnich B., Jonsson T., and Kiziltan Z.,
Specification, Implementation and Deployment of
Components, Communications of the ACM,
volume 45, issue 10, 2002.

 [5] Hissam S., Stafford J., Wallnau K., and Moreno
G., "Packaging Predictable Assembly",
Proceedings of the First IFIP/ACM Working
Conference on Component Deployment, Berlin,
Germany, 2002.

 [6] Issarny V., "Software Architectures of Dependable
Systems: From Closed To Open Systems", ICSE
2002 Workshop on Architecting Dependable
Systems, 2002.

 [7] Microsoft Corporation, Windows Hardware
Quality Lab homepage,
http://www.microsoft.com/hwdq/hwtest/, 2003.

 [8] Thane H., "Monitoring, Testing and Debugging of
Distributed Real-Time Systems", Doctoral Thesis,
Royal Institute of Technology, KTH, Mechatronics
Laboratory, TRITA-MMK 2000:16, Sweden, 2000

 [9] Voas J., "Factors That Affect Software
Testability", Pacific Northwest Software Quality
Conference, Inc., 1991.

 [10] Voas J., Software Assessment - Reliability, Safety,
Testability, John Wiley & Sons, Inc, 1995.

 [11] Voas J., A Defensive Approach to Certifying
COTS Software, report RSTR-002-97-002.01,
Reliable Software Technologies Corporation,
1997.

 [12] Wall A., Andersson J, and Norstrom C.,
"Probabilistic Simulation-based Analysis of
Complex Real-Time Systems", will appear in the
6th IEEE International Symposium on Object-
Oriented Real-time Distributed Computing,
Hakodate Hoikado, Japan, 2003.

 [13] Xu J., Randell B., and Romanovsky A., "A
Generic Approach to Structuring and
Implementing Complex Fault-Tolerant Software",
nr 5th ISORC'02, IEEE Computer Society, 2002.

