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Abstract 
 

Industrial Robots are complex systems with hard real 
time, high safety, reliability and availability 
requirements. Robot Controllers are part of these systems 
and they are complex hard real time computers, which 
control a robot’s mechanical parts.  To be useful, Robot 
Controllers must be programmable by end customers. 
This is typically done through a domain and vendor 
specific programming languages. 

In this position paper, we will describe some of the 
architectural challenges we are facing and work we have 
done, in the process of turning the Robot Controller from 
an application platform into a dependable platform 
whose base functionality can be extended by a third party 
which is not necessarily the end customer. 

 

 

1. Introduction 
Industry demands for safety at work and 60.000 hours of 
mean time between failures put high demands on the 
quality of hardware and software of industrial robots. 
Industrial robots are systems, which consist of a 
mechanical unit (robot arms that can carry different 
tools), electrical motors, Robot Controller (computer 
hardware and software) and clients. Clients are used for 
on-line and off-line programming of the Robot 
Controller. 

The focus of this article will be the open software 
architecture of the Robot Controller. According to Issarny 
[6], in open systems, components do not depend on a 
single administrative domain and are not known at design 
time. In this article, we describe a domain specific 
platform, which faces significant new challenges on the 
way to become an open platform. 

The reason for opening up the controller for third parties 
is to increase the possibility for partners to provide 
functionality that ABB Robotics do not either find 

prioritized or do not have resources for. In a closed 
platform, the development organization responsible for 
the platform is the limiting factor. To increase the 
development speed in the future we can either increase 
the size of the development organization or open up the 
system for third party. We believe in the latter, that the 
number of new types of usages of the robot will increase 
if we let niche companies adapt the robot for a specific 
type of applications and customers. The challenges can be 
divided into: 

• developing an appropriate business model,  

• determining what type of extensions that should be 
supported,  

• defining an open and dependable architecture,  

• defining the certification process and technical 
details  

In this paper we will focus on the technical challenges. 

Since we have the system responsibility towards our 
customers we have to ensure our customers that 
extensions made by a third party do not have negative 
side effect on the delivered system. This is a big 
difference compare to the desktop based systems, where a 
company that builds a system on top of for example 
Microsoft Windows© is responsible towards the end 
customer of the system quality. 

The contributions presented in the remainder of this paper 
are the following: 

• We make a short analysis of an industrial robot 
system and analyze the relevance of the individual 
dependability attributes for the industrial robot 
domain. 

• We present some initial thoughts on the architectural 
level reasoning about the open dependable platform 
for the Robot Controller. 

• We present the results of the work to model the 
platform and enable early reasoning of the 
architectural level choices. 



The outline of the paper is as follows. Section 2 presents 
a short background about ABB Robot Controller. Section 
3 explains the relevance of the individual dependability 
attributes for our system. In Section 4 we discuss 
similarities and differences of an open Robot Controller 
and open desktop systems. Section 5 describes the initial 
ideas about an open architecture and also the results of an 
initial case study to model our control system. Finally, in 
Section 6 we make some conclusions and discuss future 
work. 

 

2. Background about ABB Robot Controller 
 The ABB Robot Controller was initially designed in the 
beginning of the 1990. The requirement was that the same 
controller should be used for all different types of robots, 
and thus the architecture is a product line architecture. In 
essence, the controller has an object-oriented architecture 
and the implementation consists of approximately 2500 
KLOC of C language source code divided on 400-500 
classes organized in 15 subsystems. The system consists 
of three computers that are tightly connected: a main 
computer that basically generates the path to follow, the 
axis computer, which controls each axis of the robot, and 
finally the I/O computer, which interacts with external 
sensors and actuators.  

Only one of those three mentioned computer nodes is 
open to the end users, and that is the main computer. End 
users write their programming logic in the form of an 
imperative language called RAPID. This can be done 
through off-line programming on a PC, or on-line 
programming on a client called Teach Pendant Unit 
(custom hardware). 

The system was originally designed to support easy 
porting to new HW-architectures and new operating 
systems. There were no initial requirements to have an 
open architecture. Further, the system was not initially 
designed to support temporal analysis, because of its 
closed nature and limited amounts of changes that could 
only be done by the internal development groups. 

 

3. Discussion of dependability attributes in 
the context of industrial robots 
The analysis of the dependability attributes in this section 
is done using the terminology presented by Avizienis, 
Randell and Laprie in [2]. Dependability is described by 
the following attributes: Reliability, Availability, Safety, 
Integrity, Confidentiality, and Maintainability. 

Security related attributes (confidentiality and integrity), 
tend to be of less importance for industrial robots as 
robots tend to be physically isolated, or only connected to 

a control network together with other industrial devices. 
Integrity of data which is not security related is very 
important, as it is unacceptable that e.g. one task in the 
system causes a hazard situation by damaging the safety 
subsystem. All other dependability attributes are very 
relevant.  

Even though the contact of humans and robots in 
industrial environments is restricted (robots work in their 
cells, which are physically isolated by a fence), safety can 
never be underestimated because a lack of safety can 
cause substantial physical damages to the robot 
equipment and its environment. For example, larger types 
of robots are powerful machines capable of manipulating 
a weight of 500 kg. Industrial robots belong to the 
category of safety-critical systems, which do have a safe 
state. 

Because of the nature of the application, it is crucial to 
have very high availability and reliability. Unreliability 
leads to un-availability, which means production stop and 
huge costs. Because of the complex setup of e.g. car 
production line, a stop of a single robot leads most often 
to unavailability of a whole production line. In a complex 
case, a stop of a single robot can cause up to one day 
production stop.  

Maintainability is important in the sense that it is related 
to availability. The shorter maintenance time the higher is 
availability of the system. Ideally, the system should be 
upgradeable without stopping the production. System 
upgrades are complicated even for a closed platform, but 
get much more complicated in a platform which is 
extendable by a third party, because of the compatibility 
issues. 

When it comes to the dependability threats – fault, error 
and failures, both hardware and software faults need to be 
considered. Robot Controller software has both roles of 
sending control sequences to the hardware as well as 
predicting preventive hardware maintenance. 

There are many different fault-tolerance methods that can 
be applicable for industrial robots. Error recovery with 
temporary graceful degradation of performance is not 
acceptable. A robot either works or it does not work; it 
cannot make its tasks by working slower depending either 
on the task (such as arc welding) or because it is a link in 
the production flow.  

 

4. Towards an open architecture  
In the introduction of this paper, we presented some of 
the motivations for opening up the system. In this section 
we will try to describe similarities and differences 
between industrial robots and open desktop platforms 
where openness is taken for granted. We will conclude 



this section by a short analysis about which dependability 
attributes are most threatened by opening up the system. 

 4.1. A comparison to Windows© platform 

Good examples of open platforms are Microsoft 
Windows© and perhaps even more Linux operating 
systems. We shall take the example of Microsoft 
Windows©, which is closer to our case. It is possible to 
extend the base platform on three basic different levels: 
device driver level, win32 programs and .Net 
applications. This is illustrated in the Figure 1. 

Windows Kernel
Device
DriverDevice

DriverDevice
Driver

Win32 API

Windows
Application

Windows
Application

Windows
Application

.Net Framework

.Net
Application

.Net
Application .Net

Application

 
Figure 1: Different ways to extend Windows© platform 

The architecture of the system guarantees that each of the 
different extensibility mechanism only can make certain 
amount of harm to the system, where device drivers can 
do the most harm and .Net application least harm. Apart 
from the basic or native ways to extend the platform, 
many of the applications define their own extensibility 
mechanisms, e.g. Internet Explorer and SQL Server. 

The current way of adding functionality to the Robot 
Controller corresponds to adding .Net applications to 
Windows©. As previously mentioned, this is by adding 
RAPID programs. This is shown in the Figure 2.  
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Figure 2: Current ways to extend the Robot Controller 
software 

We are considering the following additional ways of 
extending the Robot Controller: 

• Extensions to the robot programming language 
RAPID 

• New subsystems 

• Extension logic to the existing subsystems (e.g. 
fine-tuning of the robot path, new type of IO 
card, new types of sensors for fine tuning of the 
robot path etc.) 

Let us consider the first type of extensions – RAPID 
instructions. Basic commands in programming of a robot 
are “motion” instructions instructing a robot to move its 
arms to different positions. Some of the basic motion 
commands are implemented as RAPID extensions and 
perform their tasks by communicating to the motion 
subsystem. The basic part of the Program Server contains 
the engine for executing RAPID programs, and has 
features like single stepping and executing the program 
backwards (that is, running the robot backwards). There 
is a limited set of commands that make the robot 
programming language. New instructions can be added to 
enable easier programming and facilitate e.g. very special 
kinds of tools that a robot is using. This has traditionally 
been restricted for in-house development because of the 
harm these extensions can do to the system and 
prohibitive costs of verifying the correctness of 
extensions. This harm is equivalent to the harm that 
unmanaged (native) code can do to a .Net application. 
This extension code can bring the .Net application down 
and .Net Framework has no ways to prevent it from doing 
this. In the Robot Controller case, situation gets more 
complicated when timing requirements of the Robot 
Controller are considered. 

Other types of extensions mentioned are potentially even 
more dangerous to the overall system because they most 
likely require more open access to the lower level 
services in the system. 

4.2. Revisiting the dependability attributes 
If we shortly revisit the dependability attributes, which 
we have analyzed in the section 3, we will see that 
opening up the architecture will have some significant 
consequences for several of the attributes. In particular: 
reliability, availability and safety of the system are 
threatened by a third party code. Maintainability of the 
system gets much harder because of the need to handle 
versioning problems between the platform and the 
extensions. 

Thus we have to find a dependable architecture to support 
extending the platform in a predictable way. 

 



5. Initial architecture reasoning about open 
Robot Controller platform 
We see the following as the most important architectural 
goals and also biggest challenges we are facing: 

• Defining the dependable platform architecture 

• Good support for the development of extensions 

• Support for the predictable assembly of extensions 
and the platform 

The platform will provide a Software Development Kit 
(SDK) for developing the platform extensions. SDK 
functionality may be grouped with focus on different 
types of extensions. Support for modeling and simulation 
will be a part of the SDK, as well as a framework for 
certification of extensions. 

Because timing aspects are crucial in the Real-Time 
environment, we have already done some initial studies 
on modeling/simulation of the system, to be able to verify 
the architectural design in early stages. The rest of the 
work mentioned below is in an initial phase. 

5.1. Platform architecture 
The work on architecture for dependable systems is 
relevant in the context of defining the architecture of an 
open dependable platform. According to [3] Non-
Functional Requirements (NFR) can be divided to: 
Separation, Additive (a subset of the Separation) and 
Integral NFR. The classification is based on the way NFR 
can be taken into account in the system architecture. 
Additive non-functional requirements (AFNR) are pure 
add-on components to the architecture, while integral 
non-functional requirements (INFR) can affect the 
components of the entire system. 

In the case of an open dependable platform, we will need 
to use means for dependability to create a framework for 
adding extensions. The choice of the architecture and 
implementation of the dependability requirements, will 
lead to this framework. Means for dependability can be 
transparent, with a different degree of transparency, to 
extension developers. We believe that for a hard-real time 
system, extensions of the platform will have to be aware 
of the platform dependability requirements. An example 
is the timing requirements. 

Some of the existing frameworks for implementing fault-
tolerant software present interesting ideas that we may 
benefit from. An example is a framework for 
implementing complex fault-tolerant software presented 
by Xu, Randel and Romanovsky in [13]. 

It is also important for the software architecture to 
support good testability, which is a contradictory 
requirement to fault-tolerance. Example of the work in 

this field that is relevant for us, is the work done by Voas 
[9,10], and especially some of the work in the area of 
distributed real time systems [8].   

5.2. Research in Component Based Software 
Engineering (CBSE) 
The extensions of our platform could also be called 
components. Component-Based Software Engineering 
(CBSE) and Software Architecture research are much 
related [4] and experiences from this field can help us in 
architecting our platform. It is recognized that current 
Component Technologies handle only syntactic aspects of 
component compositions, while semantic and especially 
extra-functional (non-functional) aspects of component 
specification are open areas of research [4]. One of the 
biggest challenges of the CBSE is predictable assembly of 
components and an example of a technology in this 
research area is called PECT. We believe our ideas are 
quite inline with the PECT framework presented by the 
research group at SEI Carnegie Mellon University in the 
article “Packaging Predictable Assembly” [5]. In this 
article, prediction-enabled component technology (PECT) 
is presented, as both a technology and a method for 
producing the instances of the technology. A PECT 
instance is created by integrating a software component 
technology with one or more analysis models. However, 
focus of their work seems to be more on integration of the 
existing technology and models, while our focus will be 
more towards defining a dependable platform and a 
simple custom component model with good dependability 
characteristics. 

Besides the predictable assembly, research experiences in 
CBSE can be very useful for handling problems of 
maintainability and compatibilities between platform and 
extensions. 

5.3. Certification of extensions 

An example of a certification process for platform 
extensions is Microsoft’s WHQL (Windows Hardware 
Quality Lab [7]) certification program for the device 
drivers. Some ideas from this process are definitely 
applicable to our case. We would also need to act as a 
certification authority. In our case, the situation is more 
complicated because it is not only the certification of a 
single component we are concerned about, but also the 
already mentioned predictable-assembly. One of the 
possible approaches to certification of COTS software is 
presented by Voas in [11]. 

5.4. Model Checking and Simulation 
In an open real-time system, with third party components 
we need a method for extending the base system in a safe 
way. Since the robot system is very sensitive for timing 
errors, we have developed a method for analyzing the 



impact of adding third party components. In a large 
system such as the robot controller, this temporal side-
effect is hard to predict without models, due to the size 
and complexity of the system.   

Testing and debugging of a complex real-time system is 
already difficult and when introducing a low-level 
interface for extending the system with new components 
makes it even harder. Now, not only the base system has 
to be verified, but all combinations of extending 
components that are to be used must be verified as well.  

A component might work perfectly, but when it is 
combined with another component it might introduce an 
overload situation in some scenarios. This is dangerous 
since an error caused by this side-effect can be hard to 
find by testing and affects not only the current task, but 
may cause a global overload situation, possible delaying 
several tasks, causing multiple task deadlines to be 
missed, and finally that the robot fails doing its task 
properly. 

Often the manufacturer of the base system wants to focus 
on the performance and features of the base system, not 
integration of special third party components. Letting the 
component manufacturer be responsible for the extended 
system is not better and in the industrial robot business, 
big customers do not accept this. The third party 
developers will not have access to the source code of the 
base system, except perhaps an SDK, and will not have 
the same expertise in the internal structure of the system. 
Also, they are probably not able to achieve the same 
quality on their system verification as the base system 
manufacturer. 

A better solution is to let the component developer create 
a model of their component and let the base system 
manufacturer certify the component. Their component 
can through the process be certified for use with the 
system as well as together with other certified 
components. This is good for the component developer 
since it provides a quality label for their software and the 
base system manufacturer can sell more base systems. 

We have developed a method and a prototype tool for 
describing and analyzing these models. The approach is 
developed for a robot controller, but the method can be 
used for other systems as well. 

In earlier work, the language-based simulation tool-suite 
called ART-ML [1,12] was developed, a model creation 
process has been developed and using it we created a 
rough model of the controller. A specialized query-
language for powerful analysis simulation results as well 
as data measured on the target system has been developed 
[12]. 

So our approach consists of one base step were we 
develop an initial model of the system and validate that 
the model represents the modeled system correct. When 
we have a model of the base system we can add 
component models to the base model and analyze the 
consequences of adding a particular set of components. 
Currently this analysis will be performed off-line but in 
the future we could do this even on-line. 

When creating an initial model M0, of an existing system 
S0, several distinct activities are required. These activities 
are depicted in Figure 4. First the structure has to be 
identified and modeled, i.e. the tasks in the system and 
synchronization and communication among them. In the 
next step, we measure the system and populate the 
structural model with data about the temporal behavior. 
Moreover, information needed in the validation phase is 
collected, e.g. response times. When tuning the model, 
the initial model M0 is compared with S0 by simulating 
the model and comparing the results with the validation 
data collected in the previous step. In this step it is 
possible to introduce more details about the tasks 
behavior in order to capture the system's behavior 
accurately.  
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Figure 4: The model creation process 

To validate the usefulness of the model it is necessary to 
perform a sensitivity analysis. The sensitivity analysis 
should be based on foreseen potential extensions or 
changes in the particular system. The extensions are 
introduced in the model as well as in the system and the 
new systems are compared. Any divergence between the 
behavior of the simulated model and the system indicates 
that more details must be introduced in the model. This 
increases the confidence in the created model. 

In the robot controller we have studied, the following 
typical changes were identified: 



• Change existing behavior of a task which results 
in changes in the execution time distribution. 

• Add a task to the system. 

• Change the priority of an existing task. 

When a third party adds a component to the system a 
model of the added component has to be provided. This 
model is composed with all other added components’ 
models and the basic system model. Based on this 
composed model, we can verify if the defined properties 
still hold for that particular combination of components, 
and if so draw the conclusion that the added components 
do not affect the system behavior badly. 

 

6. Future Work and Conclusions 
We intend to continue our work in the direction of 
defining architecture of a reliable, safe and maintainable 
platform. We will also continue working on the modeling 
and simulation to support the predictable assembly of the 
platform and extension components.  

From the initial analysis, which we have presented in this 
paper, it can be seen that we will need to use experiences 
from multiple areas of research and to combine them to 
create an optimal domain specific solution. 

Besides the technical challenges, there are also significant 
business challenges around the certification process. 
Without proper architecture, tool support etc, costs of 
certification may turn out to be larger than the benefits of 
having an open platform. 
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