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Abstract

This paper deals with dynamic resource management for
real-time dependability—critical distributed systems. Re-
quirements for such kind of systems span many domains
such as time, survivability, and scalability and point out
formidable challenges in terms of their fulfillment. An ar-
chitecture is proposed, based on the agent distributed in-
frastructure Lira, and enriched with statistical models for
decision-making capabilities. The aim of the proposed ar-
chitecture is to provide adaptive system reconfiguration, re-
sorting to a hierarchy of resource managers to cope with
fault tolerance and scalability issues.

1 Introduction

Dependability has become a crucial requirement of cur-
rent computer and information systems, and it is foresee-
able that its importance will increase in the future at a fast
pace. We are witnessing the construction of complex dis-
tributed systems, which are the result of the integration of a
large number of low—cost, relatively unstable COTS (Com-
mercial Off-The—Shelf) components, as well as previously
isolated legacy systems. The resulting systems are being
used to provide services, which have become critical in our
everyday life. Since COTS and legacy components are not
designed to achieve high dependability by themselves, their
behavior with respect to faults can be the most disparate.
Thus, it is paramount for these kinds of system to be able to
survive failures of individual components, as well as attacks
and intrusions, although with degraded functionalities. This
paper contributes to fault tolerance in such framework, by
focusing on fault handling strategies [1], particularly on sys-
tem’s reconfiguration.

The aim of system reconfiguration is to provide control
capabilities over unanticipated events in order to maintain
the system in a certain desirable state. An effective recon-
figuration policy highly depends on an accurate diagnosis
of the nature of the unanticipated event, namely if a hard,
physical fault is affecting the system, or environmental ad-
verse conditions are causing a soft fault which will naturally
disappear in some time. It is out of the scope of this paper to
address diagnosis issues; we concentrate on reconfiguration
only, which is triggered on the basis of information on the
healthy status of system components, assumed accessible to
our management architecture.

The rest of the paper is organized as follows. Section 2
describes our architectural approach towards a fault tolerant
resource management policy. Section 3 details the overall
system management architecture and Section 4 introduces
a simple case study to illustrate our approach. Section 5
briefly concludes the paper and points out some future re-
search directions.

2 Our Approach for Adaptive Resource
Management

A basic characteristic of our resource management archi-
tecture is its ability to adapt to dynamic system conditions.
Different degrees of adaptivity may be (theoretically) pos-
sible, ranging from picking up the reconfiguration policy
from a look-up table where policies have been pre-stored
on the basis of off-line analysis, to completely dynamic
definition of the best reconfiguration to perform. An in-
termediate solution is that where a number of strategies are
pre-planned, but the choice of which one is the most appro-
priate given certain run-time system conditions is decided
dynamically. The degree of dynamic decision making has
to be carefully harmonised with other possible system con-



straints. In fact, the design of a resource management in-
frastructure for distributed systems is influenced by several
factors, among which the nature of the event that triggers a
reconfiguration action, the size of the computational effort
for decision making, and timeliness requirements.

Adaptive resource management is very demanding
nowadays; the approach we propose is mainly character-
ized by two aspects. Firstly, we introduce a model-based
activity, which provides on-line quantitative evaluation of
the impact of different reconfiguration strategies and thus
helps in the selection of the most appropriate one. Secondly,
the decision making process is decomposed in a hierarchi-
cal fashion, each level differing in the visibility of, and the
ability to act on, the portion of the system under its control.
Resorting to a hierarchical approach brings benefits under
several aspects, among which: i) favoring fault tolerance by
distribution of control; ii) avoiding heavy computation and
coordination activities whenever faults can be managed at
local level; iii) facilitating the construction and on-line so-
lution of analytical models; iv) favoring scalability.

In our framework, the Light-weight Infrastructure for
Reconfiguring Applications (Lira) [2] is used to perform
remote control and dynamic reconfigurations over single
components or applications. Lira does not formally de-
scribe the procedure of decision making, it only assumes
that a proper subsystem is in place, in charge of deciding
when and in which way the system needs to be reconfig-
ured. In this paper, we are enriching the Lira framework
with a hierarchical Decision Maker (DM) in charge of on-
line selection of the reconfiguration policy to apply. The
DM exploits a model-based support to guide its decision.
Lira monitors system and environment conditions passing
the state of components and applications to the DM as input
for taking decisions.

Upon receiving inputs requiring a reconfiguration, the
DM activates the model-based evaluator to devise the most
appropriate configuration and behavior to face the current
situation [4]. For example, it permits to evaluate the de-
pendability of a new architecture of the system achieved re-
arranging resources due to faults, or to carry out cost-benefit
tradeoff choices. The output provided by the decision maker
is a new system configuration; such output is then managed
by Lira, to put into action the selected reconfiguration.

3 The Lira Management Infrastructure and
the Decision Maker

Lira is inspired to the Network Management [9] in terms
of reconfiguration model and basic architecture. The re-
configuration model of the Network Management is quite
simple: a network device, such as a router or a switch, ex-
ports some reconfiguration variables and functions through
an Agent, which is implemented by the device’s producer.

These variables and functions exported by the agent are
defined in the MIB (Management Information Base) and
can be modified using the set and ger messages of SNMP
(Simple Network Management Protocol) [9]. For software
components, a reconfiguration is any allowed change in the
component behavior, while an application reconfiguration is
any change in the application’s topology in terms of number
and location of components [6][S][11].

In the next sections we will first provide an overview of
the Lira infrastructure, and then integrate in it the Decision
Maker.

3.1 The Lira Infrastructure

The Lira architecture specifies three elements: (i) the
Agent, which acts on the managed components, imple-
ments the reconfiguration logic and communicates with
other Agents, (ii) the MIB which contains the list of vari-
ables and functions exported by the agent, and (iii) the
Management Protocol, which allows the communication
among the agents.

A Lira Agent is a program that runs on its own thread
of control and communicates with other Agents in an asyn-
chronous way, using the Management Protocol. There are
four kinds of agents organized in a hierarchical way [10]
(see Figure 1) and specialized in different tasks: (i) Com-
ponent Agents (CompAgents), associated to software com-
ponents, (ii) Host Agents, associated to the host where the
components are deployed, (iii) Application Agents (AppA-
gent), which control part of the system (different compo-
nents and hosts), (iv) and the Manager Agent (Manager),
on the top of the hierarchy, that controls the whole system.
Accordingly to the hierarchical structure, an agent has man-
ager capabilities on the portion of the system under its own
control (helped in the decisions by the Decision Maker),
while it is a simple actuator with respect to the higher level
agents. In this paper we are discussing a logical architec-
ture without addressing the deployment of the agents on the
hosts. Of course, it is a delicate issue for fault tolerance,
since it is necessary to have separate containment regions
for the monitoring units and the monitored ones.

The Component Agent (CompAgent) directly controls
and manages the component. Lira does not specify how the
component is attached to the agent, but it only assumes that
the agent is able to act on the component. The logical model
of communication between CompAgent and component is
through shared memory; in fact, the Component shares a
part of its state with the Agent and explicitly allows the re-
configuration. To avoid synchronization problems, the com-
ponent has to provide atomic access to the shared state. The
CompAgent manages the component’s life-cycle by export-
ing the functions start, stop, suspend, resume and shutdown.
The function shutdown stops the component and kills the



agent. For monitoring purpose, the CompAgent exports a
predefined read-only variable STATUS, which maintains the
current state of the component (starting, started, stopping,
stopped, suspending, suspended, resuming). Each agent is
able to notify the value of a variable to its manager, ad-
dressed by the variable NOTIFYTO also defined in the MIB.
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Figure 1. Lira general architecture

The Host Agent runs on the host where components and
agents must be deployed. It dynamically installs and ac-
tivates components and agents by exporting the functions
install, uninstall, activate, deactivate. Moreover, this agent
maintains the lists of both installed and activated compo-
nents on the host: these lists are exported in the variables
ACTIVEAGENTS and INSTALLEDAGENTS. Note that the
Host Agent does not manage components, but it monitors
and controls host’s resources and parameters. All the vari-
ables and functions are specified in the MIB.

The Application Agent (AppAgent) is a higher level
agent which controls a set of components through the as-
sociated CompAgents. These agents manage a subsystem
as an atomic component, hiding the reconfiguration’s com-
plexity and increasing infrastructure scalability.

The Manager is the highest level agent which has the
global knowledge to control the whole system. AppA-
gents communicate with the controlled components through
the Management Protocol, so they are independent from
the specific components and can be programmed by means
of an interpreted language: the Lira Reconfiguration Lan-
guage. By means of this language, the agent’s developer
defines a reconfiguration as a function: the function is in-
voked internally when the agent is acting in a manager role,
or it is exported in the MIB and called by a manager when
the agent acts in the actuator role.

The Management Protocol is inspired to SNMP, with
some modifications and extensions. Each message is either
a request or a response, as shown in the following table:

request response
SET(var_name, var_value) | ACK(msg _text)
GET(var_name) REPLY (var_name, var_val)
CALL(func_name, par_list) | RETURN(ret_value)

Requests are sent by higher level agents to lower level ones

and responses are sent backwards. There is one additional
message, which is sent from agents to communicate an alert
at upper level (even if in the absence of any request):

NOTIFY (variable_name, variable_value, agent_name)

As in the Network Management, the MIB represents the
agreement among agents that allows them to communicate
in a consistent way. The MIB provides the list of variables
and functions exported by the agent which can be remotely
managed. A function is usually a reconfiguration process
that the agent makes available for its manager. Note that
also the predefined variables and functions that characterize
the different agents (for example, the variable STATUS or
the function sfop in the CompAgent) are defined in the MIB.
In [3] the MIB is presented in detail.

The Lira infrastructure described here was not created
with dependability requirements, so we are investigating
how to modify the infrastructure providing new features
which guarantee continuous monitoring and distributed
management of components and hosts, making Lira de-
pendable itself.

3.2 Decision Maker

The decision maker takes decisions about system’s re-
configuration. Decisions can be taken at any level of the
agents hierarchy as proposed by Lira (four levels) and, con-
sequently, the power of the reconfiguration is different.

The first, bottom level is that of a Component Agent. At
this level, the Decision Maker can only autonomously de-
cide to perform preventive maintenance on the controlled
component. At the second level, that of the Host Agent,
the DM can decide about installation and de-installation of
such components. The third level concerns the Application
Agent; at this level, the DM’s reconfiguration capabilities
span all software and hardware resources under its respon-
sibility. At the highest level there is the Manager agent,
which has a “global” vision of the system; therefore the DM
at this level can perform an overall reconfiguration. After
taking the decision on reconfiguration at a certain level, it is
sent to the lower level agents which act as actuators on the
controlled portion of the system.

For the sake of simplicity, the status of each monitored
system unit may assume three values: Up indicating that
the component is well working; Degraded indicating that
the component is working in a degraded manner (e.g., in the
case the component is hit by a transient fault which reduces
its functionalities); and Down indicating that the component
is definitely wrongly working (e.g., it is hit by a permanent
fault). At each level of the decision making hierarchy, the
DM perceives the behavior of each system unit visible at
the one-step lower level in terms of up, degraded or down.
To make an example, at the manager agent level, the DM



has knowledge of the behavior of each application running
in the system, each one seen as single system unit; in turn,
at application agent level, the DM has knowledge of the be-
havior of each host involved in that application, again each
one seen as a single system unit, and so on.

According to the depicted hierarchical reconfiguration
process, when an event triggering a reconfiguration action
at a certain level occurs, the DM at that level attempts the
reconfiguration, if possible. In case it cannot manage the
reconfiguration, it notifies the upper level DM about both
detected problem and its healthy status. In turn, the upper
level DM receiving such request to trigger a reconfiguration,
uses such heathy status information, together with those of
the other system units under its control.

As introduced in Section 2, the way to make decisions
may be different. If it is possible to assume stochastic in-
dependence among failure and repair processes of various
components, the new reconfiguration scheme can be simply
retrieved from a look-up table where pre—evaluated policies
(e.g. by means of combinatorial models, like fault tree) have
been stored. If some environmental parameters may change
at the moment of the reconfiguration, combinatorial models
must be solved each time. In case the failure of a compo-
nent may affect other related components, space—state mod-
els are necessary. These are solved by the DM on the basis
of the information collected from the subordinated agents.
In this case, each unit component is modeled with a simple
Petri net which describes its forecasted behavior given its
initial state. It is in charge of the Decision Maker to solve
such overall composed model as quickly as possible to take
appropriate decisions online identifying the most rewarding
reconfiguration action among a pool of pre—defined options.

Therefore, the status of any controlled component (pro-
vided by Lira) is used as input for the appropriate deci-
sion maker, that reasons, decides and gives back as output
(to Lira) the optimal reconfiguration action. Decisions are
taken resolving analytical models (not shown for brevity),
essentially based on Deterministic and Stochastic Petri Nets
(DSPN) [7], and solved by means of the tool DEEM [8].

Obviously, the correctness of the decisions depends both
on the accuracy of the models and on its input parameters.

4 A Simple Example: Path Availability of a
Communication Network

To better motivate our methodology a possible scenario
is presented. A simple, but meaningful scenario, is the case
of distributed computing where two peer—to—peer clients on
the network are communicating. To prevent service’s in-
terruption, we need to provide an adequate level of paths
redundancy among the clients involved in the communica-
tion. We suppose to have a network topology where six
hosts are physically (wired) connected as shown in Figure

2. For management purpose, we consider the network di-
vided in two subnetworks Net; and Nets, which contain
the hosts Hy, Hy and Hs, H, respectively. The hosts Hy
and Hg, where the clients are deployed, are not included in
the managed network.

Figure 2. Hosts physical connection

A logical communication network composed by logical
nodes connected through logical channels is installed on
the managed hosts. The nodes N1, N2, N3, Ny connected
through the channels a, b, ¢, d, e, f, g are deployed on the
subnetwork Net;, as shown in Figure 3. These channels
provide different choices for establishing the communica-
tion among the clients, as listed in Table 1.
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Figure 3. Logical infrastructure topology

| Path | Route |
1 a-IN- 1 —c—N: 3—f

2 a-IN- 1 —c—N: 3—d—N Q—C—N 4—g

3 b-NV. Q—C—N 4—g

4 | b-No—d—N;5—f

Table 1. Available paths

These path options can be used to improve the overall
availability of the logical network by providing redundancy.
The goal of the management infrastructure is to keep at
least two paths available between the clients involved in the



Figure 4. Lira infrastructure for the controlled
network

communication. When a hardware or software fault causes
paths failure, a reconfiguration is triggered to re-establish
path’s redundancy. In this example, we consider that mani-
festation of both a hardware fault (such as a wired connec-
tion’s interruption or a damage in the physical machine) and
a software fault (at operating system, application and logi-
cal communication level) have a fail-stop semantics, that is
the component stops working.

We are interested in monitoring paths availability, so for
a path to be available, all the nodes and links in the corre-
sponding route must be available. Note that failures of a
particular link or node may result in unavailability of more
than one path. For example, if node N3 fails, path 1, 2, and
4 become unavailable.

4.1 Lira infrastructure

In this section we describe how the Lira infrastructure
is instantiated to manage the network previously described
(see Figure 4). Each host H; is controlled by a Host Agent
H A;, each subnetwork Net; is controlled by an Applica-
tion Agent AA;, while the whole network is controlled by
the Manager. The hosts Hs and Hg are considered outside
the network, so they are not controlled by host agents.

The logical network is also controlled by the Lira agents.
The Component Agents A; control the logical nodes N,
and they are managed by AA;. AA; may decide to perform
a reconfiguration (following the policies specified by the
Decision Maker) if it has the necessary information, while
it has to ask the general Manager when a global reconfig-
uration is needed and the local information is not enough.
Figure 4 details the Lira management infrastructure.

Each CompAgent associated to a logical node exports the
enumerated variable HEALTH_STATE, which can assume

the values Up, Degraded, and Down. In addition to the de-
fined variables and functions, each CompAgent A; exports
the variable CONNECTED_NODES, i.e. the address list of
connected nodes, and the function connectTo(Node nextN-
ode), able to connect the local node with the (remote) node
specified as parameter. The CompAgent manages also the
life cycle of the logical node, by exporting the functions
start, stop, suspend, resume, shutdown, as defined in Sec-
tion 3.

Each Host Agent exports the functions install, uninstall,
activate, deactivate and the enumerated variable HEAL-
TH_STATE, whose possible values are Up, Degraded or
Down. The result of diagnosis over each component is
accessible by the agent, and it is notified through a Lira
NOTIFY message before a complete crash of the machine.
Moreover, the host agent exports the read-only variable
CONNECTED_HOSTS, which contains the hosts physically
connected with the variable’s owner. For the host Hs, this
variable contains the list H1, H3. Note that a host agent can
install and activate new logical nodes, creating new routing
paths, increasing redundancy and repairing software faults.

The Application Agent monitors the subsystem’s state
and makes it available by exporting the read-only vari-
ables AVAILABLE PATHS, ACTIVE_NODES and WOR-
KING_HOSTS. The first one contains the number of avail-
able paths between the clients: for the subsystem controlled
by AA;, the value is 4 (see Table 1). The second one main-
tains the list of active nodes in the controlled network: in
the situation depicted in Figure 4, this variable for AA; is
{N1, No, N3, N,}. The third one contains the list of still
working hosts in controlled network: when H A; notifies
that H; is down, this variable is modified by the applica-
tion agent. To change the network topology, the applica-
tion agent exports the function connect(Node source, Node
dest), which is able to connect a source node to a destination
node.

The Manager Agent controls the subnetworks Net;
and Nety by checking the WORKING_HOSTS variable ex-
ported by the AppAgents. Thus, it can arrange reconfigura-
tions on the two networks.

4.2 Performing reconfigurations

Reconfigurations can be triggered both at AppAgent and
Manager Agent levels by their associate Decision Makers.
Decisions are taken when a lower level agent notifies that its
controlled component is faulty. Moreover, to prevent faults
of the agent itself, higher level agents proactively ask to the
controlled agents for the value HEALTH_STATE with a fre-
quency 7.

As an example of reconfiguration at the ApplAgent level,
let’s suppose that the node N3 is starting to work in a de-
graded manner: the associated agent A3 notifies the variable



HEALTH _STATE with the value Degraded. AA; receives
the NOTIFY message, and it checks the path availability on
the controlled network. There are still more than 2 paths
between the clients (see Figure 3) even if one is degraded.
In this case three different solutions can be pursued. The
first is continuing in the same degraded configuration. An-
other is to temporarily bypass the node N3 creating a new
logical channel between N; and N4 and waiting for restart-
ing N3. In this case, the redundancy in terms of paths is
reduced because only the first link of the paths is replicated.
The third can be to activate a new node N5 on the host Ho,
and to connect it to the client and to the nodes Ny and Ns,
creating new paths. Obviously the different solutions have
different costs in terms of time, CPU consuming and paths
redundancy. It is responsibility of the DM to select the best
one.

We suppose to be in a case where there are not fail-
ure/repair dependencies among components and transient
phenomena tied to reconfiguration are negligible; then, sim-
ple combinatorial models can be evaluated to take the ap-
propriate decision. Assuming that, at given time, the failure
probability of a link or component is 10~3 when in the Up
state, and 10~2 when in the Degraded state; for a com-
ponent which undergoes restart the failure probability be-
comes 5 * 1072 and links and components belonging to the
new path have probability 5% 1073, then the three configura-
tions options can be compared in terms of failure probability
Pr. Table 2 summarizes the results of a fault tree analysis,
and points out that the best choice is to restart the node N3.

| Policy options | Pr |
1.73848 %+ 10~8
5.19695 * 10~°

4.77510 % 1078

Working in degraded manner
Restart node N3
Set—up a new path

Table 2. Policy comparison

In this simple example, the decision can be based on
combinatorial models computed a priori. Relaxing the
above assumptions makes the analysis more complex by re-
quiring dynamic resolution of state—based models.

5 Conclusions

This work presents an architecture for dependability pro-
visioning which integrates Lira, a light-weight infrastruc-
ture for reconfiguring applications, with a model-based De-
cision Maker. In particular, our goal is to provide a dis-
tributed real-time systems with fault—tolerance capabilities.
We concentrate only on system reconfiguration as conse-
quence of both faults of software components and host com-
puters that can affect the system.

The work presented in this paper is still ongoing activ-
ity and several extensions are currently under investigation
to improve and validate our approach. Firstly, Lira infras-
tructure has to be fault—tolerant itself and different solutions
are currently under investigation in this direction. Secondly,
for validation purposes a prototype of the case study and
a performability evaluation campaign have been planned.
Another possible research direction is to improve error di-
agnosis capabilities of each agent, to better calibrate system
reconfiguration.
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