
Reliability Support for the Model Driven Architecture ∗

Genáina Nunes Rodrigues, Graham Roberts, Wolfgang Emmerich and James Skene
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{G.Rodrigues|G.Roberts|W.Emmerich|J.Skene }@cs.ucl.ac.uk

Abstract

Reliability is an important concern for software dependabil-
ity. Quantifying dependability in terms of reliability can
be carried out by measuring the continuous delivery of a
correct service or, equivalently, of the mean time to failure.
The novel contribution of this paper is to provide a means
to support reliability design following the principles of the
Model Driven Architecture(MDA). By doing this, we hope
to contribute to the task of consistently addressing depend-
ability concerns from the early to late stages of software
engineering. Additionally, we believe MDA can be a suit-
able framework to realize the assessment of those concerns
and therefore, semantically integrate analysis and design
models into one environment.

1. Introduction

Component-based development architectures (CBDA) are
increasingly being adopted by software engineers. These
architectures support distributed execution across machines
running on different platforms (e.g. Unix, Windows). Ex-
amples of component models include Sun’s Enterprise Java
Beans (EJB), OMG’s CORBA Component Model (CCM)
and Microsoft’s .NET. Additionally, CBDAs rely on the
construction and deployment of software systems that have
been assembled from components [3].

One of the advantages of applying a component-based
approach is reusability. It is easier to integrate classes
into coarse-grained units that provide one or more clearly
defined interfaces. However, the lack of interoperability
among diverse CBDAs may be one of the major problems
that hinders the adoption of distributed component tech-
nologies. Once a platform has been chosen and the system
has been developed, porting to a different platform becomes
troublesome.

∗This research is partially supported by CAPES and the European
Union under grant IST-2001-34069

To fill the gap, the OMG has focused on paving the way
to provide CBDAs interoperability standards through the
Model Driven Architecture (MDA). Essentially, ”the MDA
defines an approach to IT system specification that sepa-
rates the specification of system functionality from the spec-
ification of the implementation of that functionality on a
specific technology platform” [9]. To accomplish this ap-
proach, MDA structures the system into key models: the
Platform Independent Models (PIMs) and the Platform Spe-
cific Models (PSMs). While a PIM provides a formal spec-
ification of the structure and function of the system that ab-
stracts away technical details, a PSM expresses that speci-
fication in terms of the model of the target platform. Basi-
cally, PIMs are mapped to PSMs when the desired level of
refinement of PIMs is achieved.

The Unified Modeling Language (UML) is the core el-
ement to represent those models. According to the OMG,
UML supports the formalization of an abstract, though pre-
cise, models of the state of an object, with functions and pa-
rameters provided through a predefined interface [9]. Fur-
thermore, UML models facilitate the assessment of a design
in the early stages of software development, when it is eas-
ier and cheaper to make changes.

The defined and standard structure of MDA would seem
suitable to address software dependability, in that the MDA
designates the system function as required by the stakehold-
ers. Issues such as reliability, safety, security and availabil-
ity comprise software dependability [8, 12]. However, there
is no standard representation for dependability in MDA
models. During the software execution this can lead to sit-
uations not foreseen in the platform models.

Reliability assurance is an important concern in software
dependability. Quantifying dependability in terms of relia-
bility can be carried out by measuring the continuous deliv-
ery of correct services or equivalently, of the mean time to
failure [4]. A system can be considered reliable if it per-
forms at a constant level, as the stresses on that system
change. For example, if a0 request takes 10 ms to com-
plete with one user, then it takes the same time to process

the same request with 1000 concurrent users.
To overcome the lack of dependability concern in the

current MDA specification, we propose to explicitly tackle
this problem in the levels of abstraction suggested by
OMG’s MDA. We believe it is feasible to accomplish this
task using the standard meta-modeling approach of MDA
and specifications, such as the work in [10], as sources to
achieve this goal. Our focus on dependability at the moment
is reliability. To guarantee and assess reliability properties
of software systems using the MDA approach, we plan to
achieve reliability in such a way that it would be specified in
the early stages of software architecture design. In this way,
we aim to provide reliability in a platform-independent way.
In the context of MDA and current distributed component-
based architectures, early reliability assessment is important
as the software architecture design is specified in the con-
text of software development.

The novel contribution of this paper is to provide a
means to support reliability design following the principles
of MDA. By doing this, we hope to contribute to the task of
consistently carrying out dependability concerns from the
early to the late stages of software engineering. Besides,
MDA appears to be a suitable framework to realize the as-
sessment of those concerns and therefore, semantically in-
tegrate analysis and design models into one environment.

In this position paper, we elaborate our approach on how
the provision of reliability can be suitably realized through a
standard model-driven architecture approach. In Section 2,
we present the related work targeting reliability support and
analysis in the CBDA scenario. In Section 3, we show
how we plan to provide reliability modeling in MDA and
the steps to be followed to accomplish this goal. In Sec-
tion 4, we provide a sample scenario of how our approach
addresses reliability support in MDA. Finally, Section 5
summarizes our contribution and discusses future work to-
wards achieving standard reliability support from designing
models to programatic interfaces.

2. Related Work

The work described in [1, 2, 7] looks at part of the problems
we identify in our work, in terms of addressing dependabil-
ity concerns in the early stages of software development.
We can basically find in these works analysis techniques to
validate design tools based on UML.

However, they differ from our approach in some impor-
tant aspects. Primarily, they do not conform to the prin-
ciples stated by MDA. MDA uses the straightforward ap-
proach through the concepts of mapping models among dif-
ferent platforms. Therefore, we believe that MDA offers
a suitable environment to consistently integrate the analy-
sis and design of dependability issues, and from design to
implementation. [1] provides a useful transformation tech-

nique to automate dependability analysis of systems de-
signed using UML. Nevertheless, to properly contemplate
dependability in all stages of the software engineering pro-
cess, we believe that one of the main concern is to provide a
unified semantic between the analysis and the design mod-
els.

Another approach to address software dependability is to
provide mechanisms to improve reliability of software af-
ter it has been implemented. Works such as [5] use testing
techniques to identify faults in the software that are likely
to cause failures. Although they carry out an important re-
search agenda, we believe that is cheaper to design and eval-
uate dependability concerns in the early stages of software
engineering processes . Besides, levels of abstraction like
the one expressed by the PIM and PSM models of MDA
seems to be necessary in a scenario where each of the ex-
isting CBDA holds distinct mechanisms to support depend-
ability.

A meta-model is a model of a language expressed using
a modeling technique. This feature in UML allow us to ex-
press the design and analysis domains naturally, using the
concepts inherent to these domains. Moreover, this facil-
ity permits to map the behavior of distributed component
architectures into a domain knowledge keeping the seman-
tics of the modeling requirements of UML. Following this
principle, our approach to meta-modeling using the UML
lightweight extension mechanisms, i.e. profiles, is consis-
tent with the official MDA white paper [9], which defines
basic mechanisms to consistently structure the models and
formally express the semantics of the model in a standard-
ized way. Moreover, the profiles define standard UML ex-
tensions to describe platform-based artifacts in a design and
implemented model. For example, the UML Profile for
EJB [6] supports the capture of semantics expressible with
EJB through the EJB Design Model and the EJB Implemen-
tation Model. Although currently cannot be found UML
profiles to thoroughly address dependability, MDA seems to
be a feasible environment to consistently assess and express
dependability by means of profiles properly constructed.

Another benefit that arises from this consistent integra-
tion is the facility to realize reverse engineering. However,
it is out of scope of our current work to cope with this topic.

3. A Profile for Reliability

To provide a reliability profile for MDA, we follow a
bottom-up approach as MDA allows this flexibility (see Fig-
ure 2). Having J2EE as a first target to realize a reliability
profile, we plan to extend the UML Profile for EJB [6] to
express reliability primitives available in J2EE in a stan-
dard way. By standard way, we mean to specify a subset
of UML meta-model that describes the semantics of mech-
anisms in J2EE to achieve reliability. This subset contains

����������	�
��
������

���������
���

���
��������������

����������	�
��
������

���

���

��
������	��	��

����������

��������������� ��
�

����������

��������������� ��
�

������������

��!�������� ��
�

��!�������� ��
�

��!�������� ��
�

��������	
�����
�����������

����������������

����	
�����
�����������

����	
�����
�����������

Figure 1. MDA Metamodel Description [9]

stereotypes, tagged values and OCL constraints.
To assure reliability, the J2EE platform has several

mechanisms [15]:

• Fail-Over through clustering of containers1

• Asynchronous communication with persistent JMS
and Message Beans;

• Persistent Entity Beans;

• Transactions through the two-phase commit protocol;

• Security.

For the sake of achieving abstraction, these mechanisms
should be supported by the UML/EJB profile. In order to
realize this task, UML meta-models must be designed to re-
flect each of those mechanisms, relying on the current UML
Specification [11]. By doing this, it will be possible to ex-
press semantics and notations that adequately address those
reliability mechanisms in a standard way.

MDA

PIM

PSM

J2EE

Abstract Reliability Profile

1

2

Reliability Primitives
 Clustering
 Persistent MOB
 Persitent Entity

Beans
 …

UML/EJB Reliability Profile

 UML Diagram
Types

 Stereotypes
 Tagged Values
 OCL Constraints

Reliability Profiles

Figure 2. Reliability Profiles in MDA

1Interested readers may refer to [13], chapter 14

UML provides a wide set of modeling concepts and
notations to meet current software modeling techiniques.
The various aspects of software systems can be represented
through UML, what makes it suitable for architecture mod-
eling. Besides, it is widely used for software analysis and
development. To model complex domains in UML, new se-
mantics can be added through extension mechanisms pack-
ages that specify how specific model elements are cus-
tomized and extended with those semantics. We adopt pro-
file as our extension mechanism, which comprises model
elements customized for a specific domain or purpose (e.g.
designing reliability) by extending the meta-model using
stereotypes, tagged definitions and constraints [11]. In or-
der to design and formalize J2EE reliability mechanisms,
we will first map them into a profile, the Refactoring mech-
anism in Figure 1.

In MDA, a mapping is a set of rules and techniques
used to modify one model in order to get another model.
The following step is to design reliability in the highest ab-
stract level stated by the architecture of MDA, which is the
PIM. Achieving a platform-independent reliability model,
the task of designing dependability concerns can be carried
out in the early stages of software engineering where the
software architecture is designed. The steps to accomplish
this goal are as follows:

1. Determine the reliability properties of interest.

2. Create a set of stereotypes, tagged values and con-
straints to build the UML/EJB Profile for Reliability.

3. Provide the design domain mappings between each re-
liability profile instances and the UML/EJB Profile.

4. Define a mapping between the design domain achieved
in the previous step and a platform-independent design
domain that correctly represents the semantics of each

reliability mechanism. A preliminary PIM version is
expected at the end of this step.

5. Identify those qualities that are of interest but re-
quire formal analysis to determine. Choose an appro-
priate analysis technique for reliability analysis (e.g
Bayesian Networks) and define a profile to represent
the entities within the analysis domain.

6. Define a mapping between the design domain and the
analysis domain that correctly represents the semantics
of each.

7. Choose a commercial existing component model other
than EJB for J2EE platform to make the PIM to PSM
mapping, providing the PIM reliability profile.

8. Automate the mapping.

9. Provide scenarios to monitor and assess the models in
a real-life case study.

It should be noticed that in Step 4, the mapping from
PSM to PIM will be carried out in order to reach the highest
abstract level of reliability mechanism. The MDA princi-
ples allows this bottom-up approach and we decided to fol-
low this step in order to raise the kind of resources needed
in a reliability UML profile. This mapping can be formal-
ized using the Object Constraint Language (OCL), which is
the formal language used to specify well-formedness rules
of the meta-classes comprising the UML meta-model [11].
However, this formalization would require an assessment
of the designed properties. That is the purpose of Step 6.
Achieving this level of abstraction is not the whole plan
however. In Step 8, mechanisms to automate the target reli-
ability primitive may be desired by those who want to apply
the reliability profile attained in our work. Finally in Step
9, we apply and evaluate our approach using a real-life case
study.

4. A Scenario of Reliability Support in MDA

This section shows how we plan to achieve the previously
stated goals through an example. We highlight how one of
the reliability mechanisms can be mapped to a UML profile
in a standard way and how it would reflect on the deploy-
ment of the components. To make it concrete, we plan to
first build a reliability profile for a target platform, which
is the J2EE platform. By doing this, it will be easier to
identify the kind of resources for reliability that should be
comprised in a platform-specific model and therefore those
to be comprised in a platform-independent model through
MDA mappings.

In this scenario, we exploit one of the mechanisms of
EJB to provide reliability, the fail-over through clustering.

The fail-over mechanism redirects a single request to an-
other node in the cluster because the original node could not
process the request. This implies another concept, which is
clustering. The overall goal of employing a cluster is to in-
crease the availability or reliability of the system by joining
services into groups that provide services to their clients in
a loosely coupled way. The number of nodes comprising
a cluster will vary according to the degree of reliability we
want to assure.

The first step towards achieving reliability in MDA prin-
ciples, is to define the architecture of the application by
means of the UML Profile for EJB [6]. To express how
reliable the method invocations will be and the deployment
relationships between the application components, a relia-
bility profile is needed. Figure 3 shows what the overall sce-
nario would look like. Basically, there are three main pro-
files: the design (where the reliability mechanism is mod-
eled), the mapping (to map the desired reliability to the de-
signed classes), and the deployment (to provide how the
components will be distributed in the network according to
the required reliability support).

<<profile>>

Design

<<profile>>
Real -Time

<<profile>>
UML/EJB

<<profile>>
Reliability <<profile>>

Mapping
<<profile>>
Deployment

Figure 3. Profiles to model reliability in EJB
applications

In the design profile, meta-modeling techniques will be
used to map out reliability mechanisms in a profile. This
profile is composed of three main specifications:

1. UML/EJB Profile - which expresses the basic seman-
tics of EJB in the UML notation.

2. UML Profile for Schedulability, Performance and
Real-Time Specification (briefly, Real-Time Pro-
file) [10] - for the reason that it specifies how appli-
cations requiring a quantitative measure of time can be
modelled in a MDA standard way.

3. UML Specification [11] - to realize what is lacking in
the above specifications to carry out the reliability pro-
file following standardized UML notations, definitions
and semantics.

In the mapping domain, where the mapping profile
will be realized, constraints that rule the desired reliabil-
ity mechanism are mapped to a designed application. For

example, all the stateful session beans to be replicated
throughout the clusters should be idempotent (i.e. they can
be called repeatedly without worrying about altering the
system so that it becomes unusable or provides errant re-
sults). Finally, the deployment profile will provide the con-
figuration of how the components will communicate and be
distributed throughout the network.

In order to map the clustering mechanism proposed in
this scenario, we should know what is the desired reliability
assurance of the system. By this means, it is possible to
know how many replicated components there should be in
each cluster to guarantee the desired reliability level.

The functional formula for this assurance is:

1− (1− c)n > a (1)

wherec is the reliability of each component,a is the re-
quired reliability of the system andn is the number of com-
ponents that should be comprised in each cluster. Suppose
a is 95% andc is 75%. Then, according to Formula 1 the
value ofn is 3. Therefore, each cluster of the deployment
diagram should have at least 3 copies of the component to
be replicated.

To reflect this scenario, the classes of the design profile
to be replicated should be mapped to the deployment profile
through the mapping profile. A fragment of the mapping
profile to assure the reliability property above is described
in OCL as follows:

context mapping inv:
self.supplier.ownedElements->select(

m : ModelElement | m.oclIsType(Class) and
m.stereotype->exists(name =
"replicatedComponent"))-> forAll(

(1 - (1 - m.taggedValue->any(type =
"componentReliability").dataValue)ˆ

self.consumer.ownedElements->
select(n : ModelElement |

n.oclIsType(Component) and
n.name = m.name))->
size())> m.taggedValue->any(type =
"aggregateReliability").dataValue)

whereself.supplier refers to the classes in the de-
signed profile andself.consumer refers to the compo-
nents in the deployment profile.

There is, however, one important step that is not de-
scribed here but must be accomplished, which is the sup-
port in MDA for formal analysis. In this regard, it is re-
quired a formal analysis profile to separately express de-
pendability in an analysis model. This accomplishment
might follow the approach in [14], which is under develop-
ment here at UCL. That work aims at providing a MDA per-
formance analysis to enterprise applications and has shown
that worthwhile benefits arise, such as:

• Flexible application of analysis techniques to design
domains by defining new mappings;

• Use of model checking tools to check the semantic va-
lidity of the analytic model against the design model.

5. Conclusions And Future Work

In this paper we have presented the idea on how we plan
to tackle the problem of reliability assurance in MDA. The
motivation to achieve this purpose is the identified impor-
tance and benefits arising from addressing dependability
concern in the stage of software engineering where the ar-
chitecture is designed.

There are many steps, however, to accomplish that task.
First of all, a reliability profile should be carried out. In or-
der to achieve a consistent and integrated environment, all
the steps should be expressed within the available mecha-
nisms of MDA. Exploiting the standard UML and the pro-
files already created constitutes the basis of our work. How-
ever, there are complementary mechanisms that the current
MDA does not provide. For example, ways to assess the
designed dependability issues. Therefore, a profile to carry
out this assessment should be created by means of meta-
modeling techniques, following the same approach of [14].

Immediate future challenges include determining pre-
cisely a profile to translate reliability in terms of a valid
MDA profile. To achieve this goal within a more concrete
approach, we plan to map into that profile the reliability
mechanisms available in the J2EE platform. This bottom-
up approach is expected to aid in identifying the required re-
sources that should be mapped in a reliability-aware PSM.
Following all the steps presented in Section 3, we finally
wish to enhance the level of automation for mappings and
evaluate the practicality of our approach using real-life case
studies with realistic complexity.

Acknowledgments

We would like to thank Licia Capra, Rami Bahsoon and
Philip Cook for their assistance with this document.

References

[1] A. Bondavalli, I. Majzik, and I. Mura. Automatic De-
pendability Analysis for Supporting Design Decisions
in UML. In R. Paul and C. Meadows, editors,Proc.
of the4th IEEE International Symposium on High As-
surance Systems Engineering. IEEE, 1999.

[2] V. Cortellessa, H. Singh, and B. Cukic. Early reliabil-
ity assessment of uml based software models. InPro-
ceedings of the third international workshop on Soft-
ware and performance, pages 302–309. ACM Press,
2002.

[3] W. Emmerich. Distributed Component Technologies
and Their Software Engineering Implications. InProc.
of the24th Int. Conference on Software Engineering,
Orlando, Florida, pages 537–546. ACM Press, May
2002.

[4] J. C. L. et.al.Dependability: Basic Concepts and Ter-
minology. Springer–Verlag, 1992.

[5] P. Frankl, R. Hamlet, B. Littlewood, and L. Strig-
ini. Choosing a Testing Method to Deliver Reliability.
In International Conference on Software Engineering,
pages 68–78, 1997.

[6] J. Greenfield. UML Profile for EJB. Technical report,
http://www.jcp.org/jsr/detail/26.jsp, May 2001.

[7] G. Huszerl and I. Majzik. Modeling and analysis of re-
dundancy management in distributed object–oriented
systems by using UML statecharts. InProc. of the
27th EuroMicro Conference, Workshop on Software
Process and Product Improvement, Poland, pages
200–207, 2001.

[8] B. Littlewood and L. Strigini. Software Reliability and
Dependability: A Roadmap. In A. Finkelstein, editor,
The Future of Software Engineering, pages 177–188.
ACM Press, Apr. 2000.

[9] Object Management Group. Model
Driven Architecture. Technical report,
http://cgi.omg.org/docs/ormsc/01-07-01.pdf, July
2001.

[10] Object Management Group. UML Profile for
Schedulability, Performance and Real-Time Specifi-
cation. Technical report, http://www.omg.org/cgi-
bin/doc?ptc/02-03-02.pdf, March 2002.

[11] Object Management Group. Unified Modeling
Language (UML), version 1.4. Technical re-
port, http://www.omg.org/cgi-bin/doc?formal/01-09-
67.pdf, January 2002.

[12] B. Randell. Software Dependability: A Personal
View (Invited Paper). InProc. 25th Int. Symp. Fault-
Tolerant Computing (FTCS-25, Pasadena), pages 35–
41. IEEE Computer Society Press, 1995.

[13] E. Roman. Mastering Enterprise Java Beans. John
Wiley & Sons, Inc, 2002.

[14] J. Skene and W. Emmerich. Model Driven Perfor-
mance Analysis of Enterprise Information Systems.
Electronical Notes in Theoretical Computer Science,
March 2003. To appear.

[15] Sun MicroSystems. Enterprise JavaBeans
Specification, version 2.1. Technical report,
http://java.sun.com/j2ee/docs.html, August 2002.

	. Introduction
	. Related Work
	. A Profile for Reliability
	. A Scenario of Reliability Support in MDA
	. Conclusions And Future Work

