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Abstract

Software architecture has been of increasing impor-
tance for designers to analyze and verify system prop-
erties. Non-functional properties reflect the quality of a
software system and are essential for a successful soft-
ware system, but analysis of non-functional properties
is less well studied compared to functional verification
in the filed of software architecture. Performance and
dependability are most concerned non-functional prop-
erties in safety and mission critical systems. SAM is a
framework for specifying and analyzing software archi-
tecture and has been used to verify a variety of func-
tional properties. In this paper, we extend SAM with
stochastic constructs so that it can be used to model
and analyze performance and dependability.

1. Introduction

As software systems keep growing in size and com-
plexity, software architecture as a high-level abstrac-
tion is of increasing importance for designers to rea-
son about the software systems and make early de-
sign decisions. As a result, many architecture descrip-
tion languages (ADLs) have been proposed [10]. Most
ADLs, however, focus mainly on the formal notation,
and many of them do not offer analytical techniques
to verify the properties of their designs. Some ADLs
do provide analytical techniques, but tend to focus on
a particular property and leave other properties unex-
plored. For example, Wright [2] allows deadlock de-
tecting; MetaH [18] and UniCorn [13] support schedu-
lability analysis [10]. To contribute to the analysis of
software architectures, we extend Software Architec-
ture Model (SAM) with stochastic constructs for non-
functional property evaluation in addition to its exist-
ing capability of functional property verification.

SAM is a formal framework for specifying and an-
alyzing software architectures [19]. It supports hier-

archical decomposition and automatic analysis of soft-
ware architectures. Different techniques and tools have
been used to analyze a SAM model for the evaluation of
various properties, and the SAM framework has proved
to be useful and desirable in specifying and verifying
software architectures. For example, in [19], reachabil-
ity analysis technique was used to analyze the timeli-
ness of a real time system. The symbolic model checker
SMYV was used in [14] to verify the functional correct-
ness of a communication protocol, and the theorem
prover STeP was used to reason about the correctness
of an electronic commercial system [20].

To date, the SAM framework mainly focuses on
functional property analysis. However, non-functional
properties, such as performance and dependability, are
of the same importance to the quality of a software
system. Dependability, known as the collection of re-
liability, availability, safety and related measures, is
especially concerned in safety and mission critical sys-
tem. Different modeling and analyzing techniques have
been exploited to evaluate various non-functional prop-
erties. For example, fault-trees were used for system
reliability modeling [11]; queuing networks have been
used for performance analysis of computer and commu-
nication systems [1, 12]; a variety of Stochastic Petri
Nets (SPNs), as a convenient high level formalism of
Markov chains, have become popular for the analysis
of performance, dependability and performability [5, 9].
In most research work, functional properties and non-
functional properties are separately modeled and eval-
uated because of the complexity of integration. The
separation eases the work of modeling and analysis, but
is prone to inconsistency of models and imprecision of
evaluations. With incorporated stochastic constructs,
the SAM model can be transformed to a Stochastic
Reward Net [5] (SRN) model. While functional prop-
erty verification is conducted using the techniques men-
tioned above, performance and dependability can be
evaluation by solving the derived SRN model.

The rest of the paper is organized as follows. Sec-



tion 2 introduces SAM and SRNs. In section 3, a
multiprocessor system is given as an running example
throughout the paper. Section 4 depicts the stochastic
extension on SAM, and section 5 explains how to trans-
form the SAM model into an SRN. The results of re-
liability analysis for the example system are described
in section 6, and conclusions are drawn in section 7.

2. Overview of Formalisms

To give readers a rough idea about the formalisms
used in this paper, we briefly introduce SAM and SRN.

2.1. Software Architecture M odel

SAM is a formal framework for specifying and ana-
lyzing software architectures. A SAM model consists of
a set of compositions and a hierarchical mapping relat-
ing the compositions. A composition in turn consists of
multiple components and connectors, and a set of com-
position constraints. Each component (or connector)
consists of a behavior model and a set of component
(or connector) constraints. A SAM model is said to be
correct if the behavior models satisfy each constraint.
For a formal definition and description of SAM, refer
to [8].

There are two complement formal methods under-
lying a SAM model. Petri nets are used to define the
behavior models of components and connector, while
temporal logic is used to specify the constraints. To
be flexible, the underlying formal foundation of SAM
is not limited to a fixed pair of Petri net and tempo-
ral logic. The selection of a particular Petri net and
temporal logic is based on the application under con-
sideration. For example, real-time Petri nets and real-
time computational tree logic were used to study soft-
ware architectures of real-time systems [19], Predicate
Transition nets (PrT nets) and first order linear time
temporal logic were used to specify and verify a com-
munication protocol [14].

In this paper, we use PrT nets as the behavior mod-
eling formalism of the SAM framework. PrT nets are
a class of high level Petri nets. Using the conventions
and definitions in [8], a PrT net is defined as a tuple
(N, Spec,ins), where N = (P,T, F) is the net struc-
ture; Spec defines the used sorts, operations and re-
lations; and ins = (p, L, R, My) defines the mapping
of places to sorts, the labels, the constraint of each
transition, and the initial marking respectively. For a
complete definition of a PrT net, refer to [8].

2.2. Stochastic Reward Net

SRN [5] is an extension to SPN. An SRN can be
mapped into a Markov Reward model [5]. By defini-
tion, an SRN is an 11-tuple consisting of:

A finite set of places.

A finite set of transitions.

A finite set of input arcs from place to transition.
A finite set of output arcs from transition to place.
A finite set of inhibitor arcs from place to transi-
tion.

6. Enabling function for each transition. A transition
is disabled if the enabling function is evaluated
false.

7. Priorities for each transitions. A transition is dis-
abled if there exists an enabled transition with a
higher priority.

8. The initial marking.

9. A positive exponential distributed rate for each
timed transition, and an immediate transition fires
at no time.

10. A weight for each transition.
11. Reward measures.

Cup N

SPNP [15] and SMART [4] are two tools for SRNs.
By solving the underlying Markov chains of an SRN,
performance and dependability of the model can be
evaluated.

3. A Multiprocessor Example

We use a multiprocessor system depicted in [3] as a
running example to demonstrate the use of extended
SAM. As illustrated in Figure 1, a multiprocessor sys-
tem consists of n subsystems Si,...,S,. Each subsys-
tem S; is composed of one processor P;, one local mem-
ory M;, and m replicated mirrored disk units D;;. A
bus B connects the n subsystems and a shared memory
M,, which is shared by all subsystems. The complete
system fails when the bus B fails or when &k (1 < k < n)
subsystems fail. A subsystem fails when its processor
fails or all its disks fail or both the local memory and
the shared memory fail.

The reliability (i.e. probability of system down) is
the main issue of the multiprocessor system. Figure 2
depicts the behavior model in SAM for the failures
of the multiprocessor system. Fach net element in
the behavior model is described in Table 1. Initially,
every element of system is working, The net inscrip-
tion of the behavior model is as follows. Symbol
g denotes power set; m is the number of subsys-
tems; m is the number of disks in each subsystem;
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Figure 1. The multiprocessor system.

Table 1. Description of net elements.

Elements Description

Pp/Ppy Processor P; is working/not working.
Pp/Ppy Disk D;; is working/not working.
Pgr/Pauys | memory My is working/not working.
Pry/Pravy | memory M; is working/not working,.
Pg/Ppy Bus B is working/not working.
Ps/Psy The system is working/not working.
Pgyup Subsystem S; is not working.

Tp Processor P; fails.

TD Disk Dij fails.

Tem Shared memory M, fails.

T Local memory M; fails.

Tr Bus B fails.

T S; fails due to processor failure.

T S; fails due to memory failures.

T3 S; fails due to disk failures.

Ty system fails due to subsys. failures.
Ts system fails due to bus failure.

and k is the minimum number of subsystems whose
failures will result in the failure of the complete system.

(Pp) = ¢(Ppy) = p({i]l <i<n})
o(Prm) = ¢(Prmy) = ¢(Psus) = (Pp)
¢(Pp) = ¢(Ppy) = p({ “notempty”})
¢(Pam) = ¢(Ps) = ¢(Pamy) = ¢(Psy) = ¢(Pp)
¢(Pp) = ¢(Ppy) = p({(i,j)1 <i <n,1 < j <m})
R(Tp) = R(Trm) = R(TB) = R(TaMm) = true
R(Tp) = R(T\) = R(T») = R(Ts) = true
R(T3) = (AYCX. Y= {{i, |1 < j < M}AX' = X-Y)
R(T) = (YCX. [V|=KAX' =X - ¥

A T = “notempty”)
M(Pp) = M(Ppy)={i|1<i<n}
M(Pp) ={(,j)|1<i<n A 1<j<m}
M (Pg) = M(Pgm) = M(Ps) = {“notempty”}
M(Ppyg) = M(Pps) = M(Pps) = M(Psf) = {}
M(Pryy) = M(Pamy) = M(Psu) = {}
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Figure 2. The SAM model for the example.

In this behavior model, the failure rate of each ele-
ment of the multiprocessor system is not addressed yet.
Therefore, the reliability of the system cannot be ana-
lyzed based on this model. The next section shows how
SAM is extended to express stochastic information.

4. Stochastic Extension on SAM

In SAM, each behavior model is represented by a
PrT net, and each requirement constraint is specified
in temporal logic. The SAM framework is extended in
two ways for non-functional property analysis. First, a
stochastic construct is add to the behavior model (PrT
net model) to express stochastic information. Second,
a formalism is introduced to specify the non-functional
requirements.

A special variable RATE is added into the con-
straint of a transition (i.e. the mapping R in the net
inscription) in a PrT net to denote the firing rate of
the transition. A predicate RATE = X in the con-
straint of transition T denotes that T fires at rate A,
and RATE = 0 denotes that T is an immediate tran-
sition and takes zero time to fire. For example, if the
bus B in the multiprocessor system fails at rate Ap,
the constraint of transition 77 as in Figure 2 can be ex-
pressed as R(Tg) = (RATE = Ap). The firing rate of a
transition is not necessary constant, it can be expressed
as marking dependent by making more than one occur-
rence of variable RATE. For example, if local memory
M in subsystem S; is more dependable than all other
local memories, and M, fails at rate A\; while others fail
at rate Aa (A1 < A2), then the constraint of 77,5 in Fig-
ure 2 can be specified as R(Try) = (RATE = M Ai =
1) V(RATE = XA A2 <4 < n)). The extra stochas-
tic construct in the constraint of a transition does not
affect the enabling and firing rules of this transition.
That is, the PrT net model with the special variable
RATE has the same semantics with a original PrT net
regarding the enabling and firing of a transition.

After extending the behavior model in SAM with the



stochastic construct, a formalism is desirable to pre-
cisely specify non-functional requirements. Although
some non-functional properties (e.g. maintainability)
cannot be quantified and can only be specified infor-
mally, performance, dependability and performability
can usually be precisely specified and verified at run-
time. Temporal logic is sufficient to specify functional
properties. However, it is incapable of specifying de-
pendability and performability since those properties
usually involve probability and precise time. To spec-
ify dependability and performability in SAM, we in-
troduce a logic called Probabilistic real time Compu-
tation Tree Logic (PCTL), proposed by Hansson and
Jonsson [7]. PCTL extends Computation Tree Logic,
a branching-time temporal logic, and is capable of ex-
pressing time and probability in systems. For example,
the property “after a request for service there is at least
a 98% probability that the service will be successfully
finished within 5 seconds” can be expressed in PCTL
as AG[(p — Fgg.gsq)], where proposition p represents
that a request is issued and proposition g represents
that the service is successfully finished. Since perfor-
mance, dependability and performability can usually
be expressed in terms of time and probability, it is
sufficient to express most indices of dependability and
performability to be verified using PCTL. The advan-
tage of specifying properties formally in PCTL is that
it allows flexible analytical techniques. For example,
we can also apply model checking over the underlying
Markov chain of an SRN to verify properties specified
in PCTL [7]. However, there do exist some indices
of performance and dependability that cannot be ex-
pressed in PCTL. For example, PCTL cannot express
the average time it takes to finish a service. For those
properties that cannot be expressed by PCTL, we spec-
ify them informally in natural language.

By assuming that each element of the same type in
the multiprocessor system fails at the same rate, the
constraint mapping of the behavior model in Figure 2 is
modified as follow to reflect the stochastic information.

R(Tp) = (RATE = Ap)

R(Tiu) = (RATE = A1)

R(Tawm) = (RATE = Agu)

R(Th) = (RATE = Ap)

R(Ti) = (RATE = Ap)

R(T1) = R(T») = R(Ts) = (RATE = 0)
R(T3) = (RATE = 0 A (3YCX.

Y={@H1<j<MIANX'=X-Y))
R(Ty) = (RATE =0 A (AYCX.
Y|=KAX'=X-Y A r = “notempty”))

For the reliability requirement of the multiprocessor
system, we assume that there is at least 95% proba-

bility that the system is working continuously for 4000
hours. This reliability requirement can be specified in
PCTL as AG[F=,%° M (Pss) = ¢, where M(Ps;) = ¢
denotes that place Psy in Figure 2 holds no token,
which means the system is working.

5. Transformation from SAM to SRN

In order to analyze non-functional properties, the
behavior model in SAM is transformed to an SRN. The
procedure of the transformation is as follows.

1. The PrT net model in SAM is first unfolded to
a low level Petri net. A PrT net can be unfolded
using the method proposed in [6]. First, each tran-
sition is unfolded into a set of transitions accord-
ing to the set of constant substitutions that sat-
isfy constraint of the transition. Second, places
are connected to the transitions according to the
substitutions. Finally, remove the dead transitions
and combine equivalent elements if any. It is not
necessary to unfold the whole PrT net if we are
only interested in part of the PrT net model.

2. The SRN model is derived from the unfolded Petri
net based on the stochastic information. After the
PrT net model is unfolded, each transition is des-
ignated either as an immediate transition or as a
timed transition with a proper firing rate based
on the stochastic information. By making use of
the features of SRNs such as enabling function,
marking dependent arc cardinality and marking
dependent firing rate, the SRN model can be more
concise and readable.

3. After the SRN model is derived, existing solution
techniques and tools can be applied to obtain the
non-functional property measures, and then the
numerical results are checked against the property
specifications in PCTL to see whether the model
satisfies the specifications. The SRN model may
need to be revised for the analysis of some non-
functional properties. For example, to analyze the
mean time to failure (MTTF) of a system, all the
failure states should be made absorbing (outgoing
arcs from those states are removed) [17].

Following the procedure above, the behavior model
in Figure 2 is transformed to the SRN model in Fig-
ure 3, by assuming that n = 3, m = 2, and k = 2. That
is we assume that there are three subsystems in the
multiprocessor system, each subsystem has two disks
and the whole system fails if at least two subsystems
fail. In the SRN model, a bar represents an immedi-
ate transition and a box represents a timed transition.
Figure 3(a) is the SRN model for a subsystem .S;, and



Figure 3. (&) The SRN model for subsystem P;. (b) The SRN model for the example system.

Figure 3(b) illustrates the SRN model for the multi-
processor system with the detailed structure of each
subsystem being hidden. By calculating the number of
expected tokens in place Psy at time ¢, the probability
that the multiprocess system fails at time ¢ is obtained.

In recent research work, SRNs have been applied
to evaluate a variety of non-functional properties like
performance, dependability and performability. After
extending SAM as mentioned above, the SAM frame-
work is capable of modeling and analyzing all the non-
functional properties that can be evaluated in SRNs.
However, this methodology also inherits the limitations
of SRN models. There are three main difficulties in
SRN model—largeness, stiffness, and the assumption
of exponentially distributed firing rates of timed tran-
sitions [16]. Largeness means the large size of the un-
derlying Markov model of an SRN and stiffness repre-
sents the large disparity between the firing rates of an
SRN. Largeness and stiffness cause difficulties in solv-
ing the underlying Markov model of an SRN. Fortu-
nately, a number of approaches have been proposed to
avoid and/or tolerate largeness and stiffness [16]. The
“exponential assumption” limits the modeling power
and precision of SRNs. While exponentially distributed
rates are reasonable in some situations such as failure
rates of a system, they are invalid in other situations
like deadlines of a system. This problem, however, can
be reduced either by phase approximations [16] (ap-
proximating a non-exponential distribution by a set of
states and transitions such that the holding time in
each state is exponentially distributed) or by allowing
non-exponential distributions in SRNs.

6. Analysis Results

For the reliability analysis of the multiprocessor sys-
tem, we assign the failure rates of each elements as

Probability of system down
°
4
8

o 5000 10000 15000 20000 25000
Time (in hours)

Figure 4. Reliability of the example system.

listed in Table 2!. Based on the SRN model in Fig-
ure 3, we evaluate the probability of the system failure
at a function of the time. The probability of system
failure is obtained by using the tool SMART [4] to cal-
culate the probability that place Psy in Figure 3 is not
empty at time ¢t. Figure 4 shows the distribution of
the probability of system down. The numerical results
show that there is 96.9% probability that the system
keeps working at the 4000th hour, which means that
the reliability requirement specified in section 5 is sat-
isfied in the modeled system.

7. Conclusions

A method to extend SAM for performance and de-
pendability analysis has been presented. After incor-
porating stochastic information into a SAM model, an
SRN model is derived. By solving the SRN model us-
ing existing tools, a variety of non-functional properties
such as performance, dependability and performability

I The failure rates are adopted from [3]



Table 2. Failure rates for the example system.

Elements Failure rates (fault/hour)
processor Ap=5x10""7
disk Ap =8 x107°

shared memory | Agyr = 3 x 1078
local memory Ay =3 x 1078
bus Ag=2x1077

can be evaluated. After the extension with stochastic
construct, the SAM framework is capable of the analy-
sis of both functional properties and the common non-
functional properties. To illustrate the method, the
multiprocessor system was used as a running example,
and its reliability was evaluated. The presentation of
the example and its numerical results proved the via-
bility of the proposed method, and allowed significant
insight to the system qualities to be gained.

The analysis of performance and dependability us-
ing SRNs is not new. Our contribution lies in incorpo-
rating stochastic techniques into the SAM framework
so that both functional properties and non-functional
properties like dependability can be analyzed under one
unified framework. Currently, the transformation from
SAM to SRN model is done by hand, we are inter-
ested in developing tools to automate the transforma-
tion. We also plan to do the tradeoff analysis of certain
conflicting non-functional properties.
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