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Abstract

The CA action concept has been proven successful for
building dependable distributed systems due to its support
for error recovery for both competitive and cooperative
concurrent actions. This paper introduces the formal speci-
fication of dependability mechanisms offered by CA actions
using the B formal method, from which an XML-based lan-
guage is derived. The resulting language then allows devel-
oping dependable systems, where the B formal specification
is refined to obtain an implementation of the associated run-
time support.

1. Introduction

Dependability of systems is defined by the reliance that
can be put on the service they deliver. Developing dis-
tributed systems that are dependable is recognized as a com-
plex task, requiring adequate mechanisms for dealing with
the occurrence of failures. Coordinated Atomic Actions
(CA actions) [8] provide a general structuring mechanism
for developing dependable systems through the exploitation
of atomic actions and transactions. The composition of CA
actions [6] further extends the base CA action model for
developing open distributed systems.

Several applications have proven that CA actions are ef-
fective for building dependable concurrent systems [9, 2].
Formalization of applications based on CA actions, us-
ing Petri nets and temporal logic, further enables to prove
the applications’ dependability properties through model-
checking [7, 5]. However, dependability properties are
proved with respect to a specific application.

Our approach aims at providing a language for devel-
oping distributed systems using dependability mechanisms
that are formally specified and implemented. Towards that
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goal, we provide a formal specification of the dependability
mechanisms associated with the CA action concept using
the B formal method, from which we derive an XML-based
language to be used to develop dependable applications.

The paper is structured as follows. Section 2 briefly
presents CA actions and their composition. Sections 3 and 4
then introduce the B formal specification of CA actions,
discussing in particular the specification of dependability
mechanisms offered by CA actions. Definition of the result-
ing XML-based development support follows in Section 5.
Finally, Section 6 concludes, summarizing our contribution
and discussing areas for future work.

2. Architecting Dependable Systems with Co-
ordinated Atomic Actions

CA Actions

The CA actions [8] are a structuring mechanism for de-
veloping dependable concurrent systems through the gen-
eralization of the concepts of atomic actions [3] and trans-
actions [4]. Atomic actions are used for controlling coop-
erative concurrency among a set of participating processes
and for realizing coordinated forward error recovery using
exception handling; transactions are used for maintaining
the coherency of shared external resources that are compet-
itively accessed by concurrent actions. Each CA action is
designed as a multi-entry unit with roles activated by action
participants, which cooperate within the action. A transac-
tion is started upon each first access to a given external ob-
ject by a CA action participant and it terminates at the end
of the CA action. A CA action terminates with a normal
outcome if no exception has been raised or if an exception
has been raised and handled successfully; all transactions on
external objects are then committed. If a participant raises
an exception inside an action and if the exception cannot be
handled locally by the participant, the exception is propa-



gated to all the other participants of the CA action for co-
ordinated error recoveryl. If coordinated recovery fails, the
CA action terminates with an exceptional outcome. An ex-
ception is then signalled by the CA action and transactions
on external objects are aborted.

CA actions can be designed in a recursive way using ac-
tion nesting. Several participants of a CA action can enter
into a nested CA action, which defines an atomic opera-
tion inside the embedding CA action. Accesses to exter-
nal objects within a nested action are performed as nested
transactions so that if the embedding CA action terminates
exceptionally, all sub-transactions that were committed by
nested actions are aborted as well. A CA action participant
can only enter one nested action at a time. Furthermore, a
CA action terminates only when all its nested actions have
completed. Note that if the nested action terminates excep-
tionally, an exception is signalled to the containing CA ac-
tion.

As an illustration, Figure 1 depicts a CA action A/ that
is entered by participants P/-P3 and that comprises two
nested CA actions, Al and A2; transaction are further ex-
ecuted on external objects. An exception raised by partici-
pant P2 causes the CA action to enter an exceptional state,
as showned by the greyed box, where the participants coop-
erate for handling the exception.
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Figure 1. Coordinated atomic actions

CA actions mainly focus on structuring concurrent
systems and on providing their fault tolerance by exception
handling. One of the main intentions behind CA actions is
to employ them as the mechanism for structuring complex
distributed applications: they promote recursive view on
system execution with abstracting away both normal and
abnormal behaviour of the low level software.

CA Actions Composition

Composing CA actions allows the design of open dis-
tributed systems built out of several CA actions. Unlike
classical action nesting where a subset of action participants

UIf several exceptions have been raised concurrently they are resolved
using a resolution tree imposing a partial order on all action exceptions,
and the participants handle the resolved exception [3].

enters into a nested action, composed CA actions are au-
tonomous entities with their own participants and external
objects. In this model, a participant of a CA action can dy-
namically initiate the creation of a composed CA action (or
dynamically nested action).

The internal structure of a composed CA action (i.e., set
of participants, accessed external objects and participants’
behavior) is hidden from the calling CA action, which only
has an access to the composed CA action’s interface. A par-
ticipant that calls a composed CA action enters a waiting
state in a way similar to a synchronous RPC. The partici-
pant then resumes its execution according to the outcome
of the composed CA action. If the composed CA action
terminates exceptionally, its calling participant raises an in-
ternal exception which is possibly locally handled. If local
handling is not possible, the exception is propagated to all
the peer participants for coordinated error recovery. Note
that unlike static nesting, when a composed CA action has
terminated with a normal outcome, an abort operation of
the containing CA action does not automatically compen-
sate effects of the composed one; specific handling must be
performed at a higher level, e.g., a composed action can be
initiated to abort/compensate actions on external objects if
needed.

Figure 2 illustrates the use of nested and composed CA
actions, considering a travel agency system. The top-level
CA action comprises the User and the Travel participants;
the former interacts with the user while the latter achieves
joint booking according to the user’s request. The CA ac-
tion has further access to the Banking System. In a first step,
the User participant requests the Travel participant to search
for a trip. This leads the participants to enter the nested
action SearchTrip in which the Travel participant invokes a
composed action comprising the Hotel and the Flight partic-
ipants. The external objects accessed by those participants
are the hotel and flight booking system. The SearchTrip ac-
tion, if successful, returns a list of possible trips. Then, ac-
cording to the User’s selection, the BookTrip nested action
is executed, where another composed CA action is initiated
to book the given trip. If an exception is raised within the
composed CA action (e.g., no_flight_available for a given
destination) and if it cannot be handled internally, the com-
posed action terminates exceptionally by aborting all trans-
actions on external objects and signals a failure exception
to the higher level.

3 Specifying CA Actions in B

The B method

B is a complete formal method [1] that supports a large
part of the development life cycle, from abstract specifica-
tion to implementation. The B formal method is a model-
based method, which is based on set theory and predicate
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Figure 2. CA actions composition

logic and extended by generalized substitutions. B specifi-
cations are represented by abstract machines encapsulating
operations and states. Generally speaking, the B method al-
lows us to define abstract machines and refinements over
them. During the refinement nondeterminism is reduced
and preconditions are relaxed, but the interfaces of the op-
erations remain the same. At the end of the refinement pro-
cess, an implementation can be written, which corresponds
to an executable code.

Proofs are an essential part of the model: it should be
proven that all operations preserve the invariants of the
machine, and that the implementations and refinements
preserve the invariants and the behaviour of the initial
abstract machine. There are various tools that help writing
and proving B specifications. The main of them are
B-Tool? and Atelier B*. Both tools include a type checker,
an animator, a proof obligation generator, theorem provers,
code translators and documentation facilities. Atelier B has
been used in our investigation, however the notation we
used is compatible with B-Tool.

Modelling CA Actions

Our goal in providing the B specification of CA actions
is to offer a general framework that can be instantiated to
describe the implementation of a specific system that is de-
veloped using CA actions. The framework thus defines the
dependability properties associated with CA actions, which
will be enforced for any system based on them.

The B formal specification of CA actions is given by the
CAACTIONS abstract machine. The machine extends ma-
chines OBJECTS and PARTICIPANTS, which respectively
describe external objects that can be accessed or modified
by a CA action, and the participants of a CA action (see
Figure 3). The CONST machine further contains global
declarations and is seen by all the other machines. In the

Zhttp://www.b-core.com/btool.html
3http://www.atelierb.societe.com

remainder, we introduce the main elements of the B specifi-
cation, focusing on dependability properties associated with
CA actions; the interested reader may find the overall speci-
fication at http://www—-rocq.inria.fr/ tartanog/dsos/.
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Figure 3. Structure of the B specification

The state of the PARTICIPANTS abstract machine char-
acterizes the participants of a CA action as follows:

e The PARTICIPANT set is declared in the CONST ma-
chine and represents all possible participants that can
be involved in a CA action.

e A participant that is activated by entering in a CA ac-
tion is included in the subset participant of PARTICI-
PANT and removed at the end of the action:

participant C PARTICIPANT

e Each participant enters in a sequence of modes (re-
ferred to as state), which can be normal, exceptional
when an exception has been raised, or waiting if
the participant invokes a composed CA action and is
blocked until the action’s termination:

participant_state € PARTICIPANT —+ seq(PARTICIPANT_STATE)

e Each participant has a value (local variables) that is
logged for later use in case of backward recovery:

participant_value € PARTICIPANT + VALUE A
initial_values € PARTICIPANT -+ seq(VALUE)

The CAACTIONS abstract machine defines operations
associated with the execution of CA actions: creation,
termination, nesting and composition of CA actions,
message exchange between participants, and exception
handling. An abstract set CAACTION of all possible CA
actions is introduced together with subset caaction of the
CA actions that are running at a given state of the system.
Three types of CA actions are distinguished: the top-level,
nested and composed CA actions; two variables are used to
memorize the nested and the composed CA actions:



is_nested € caaction < caaction N\
is_composed € participant - caaction

The state of the CAACTIONS abstract machine is defined
by the following attributes:

e CA actions have a mode (referred to as state) that can
be normal (if all the participants are in normal mode)
or exceptional (if all the participants are in exceptional
mode).

CAACTION_STATE = {caa_normal, caa_exceptional}
caaction_state € caaction — CAACTION_STATE

e Each CA action has a set of participants and each of
them participates to a sequence of nested CA actions:

participant_of_caaction € caaction — P (participant)

caaction_of_participant € participant — seq(caaction)

e CA actions access several external objects:

caaction_ext_objects € caaction < objects

Several invariant properties of the CA actions have been
identified and specified. They are written as constraints on
the variables of the abstract machines. The state transforma-
tions associated with the execution of CA actions are further
defined by the following preconditioned operations*:

® create_{main,nested,composed}_caaction: initiates a CA ac-
tion, either top-level, nested or composed;

® {send,recv}_message(participant,participant,message): sends or
receives a message from one participant to a peer par-
ticipant;

o {read,write}_object(participant,object,{function}): reads,

writes the value of an external object;

® raise_exception(participant,exception),
propagate_exception(participant): raises, propagates an ex-
ception;

® abort_{main,nested,composed}: aborts a CA action, sending
an abort message to all its external objects;

® terminate_{main,nested,composed } _{normal,exceptional }
(caaction): terminates a CA action, either in a normal or
in an exceptional state.

Invariant properties and operations are specified in such
a way that properties of the dependability mechanisms as-
sociated with CA actions are enforced.

“4Braces are used to denote multiple distinct operations.

4 Dependability Properties

The dependability mechanisms embedded within CA
actions fall into three categories: (i) transactional access
to external objects, (ii) atomicity of CA actions, and (iii)
coordinated exception handling.

Transactions on External Objects

Access to external objects within CA actions are per-
formed according to classical nested transaction rules. The
operation that creates a top-level CA action initiates the
transaction on external objects associated to the CA action:

add_objects(obj) =
PRE
obj C OBJECT A obj N object =0
THEN
values := values < obj X {begin} ||
object := object U obj
END;

Participants setpar of nested CA action caal can
only access subset sefobj of external objects associ-
ated to containing CA action caa2. This constraint
is ensured with the following precondition of the
create_nested_caaction(caal,caa2,setpar,setobj) operation:

Y obj.(obj € setobj = obj € caaction_ext_objects[{caa2}])

Then, the operation initiates a nested transaction on the
external object (add_nested_object(setobj)). When a (possibly
nested) CA action terminates its execution normally
(terminate_caaction(caaction)), it commits transactions on

external objects:
terminate_transaction(caaction_ext_objects[{ caaction} ], commit)

On the other hand, if the CA action terminates excep-
tionally or aborts, all the transactions that it initiated on
external objects are aborted as well:

terminate_transaction(caaction_ext_objects[{ caaction} ], abort)

Note that nested transactions are aborted recursively by
the underlying transactional support of external objects.

Atomicity of CA Actions

Cooperation of participants is encapsulated inside
atomic computation units using nested or composed CA ac-
tions.

The following invariant property states that participants
of nested CA action caal are also participants of containing
action caa2:



V (caal, caa2).((caal € caaction A caa2 € caaction N\
(caal caal) € is_nested )
= participants_of_caaction(caal)

C participants—_of—caaction(caa2) )

In the case when a participant invokes a composed CA
action, participants setpar of the composed CA action must
not be involved in any other CA action:

setpar N participant = ()

Communication between participants p/ and p2 within a
CA action is realized by message exchanges. Preconditions
of the send_message operation set the rules of message
exchange that is only allowed between participants of the
same (possibly nested) CA action. The participants must
be in the same state (normal or exceptional). Finally, a
participant that is in a waiting state (i.e., waiting for a
composed CA action to terminate) cannot send or receive a
message:

caaction_of_participant(pl) = caaction_of_participant(p2) N\
last(participant_state(p1)) # waiting A
last(participant_state(p1)) = last(participant_state(p2)) N\

Rules of nesting and composition are further specified
with the following preconditions of the CA action ter-
mination operation stating, that a CA action terminates
when all embedded nested and composed CA actions have
terminated:

caaction ¢ ran(is_nested) N caaction ¢ ran(is_composed)

Furthermore, a participant can only enter one sibling
nested CA action at a time, which means that all partici-
pants in setpar willing to enter a nested CA action are in
the same containing CA action:

card(ran({ p, ¢ | p € setpar A ¢ € CAACTION A
c= last(caaction_of_participant(p)) } )) = 1

Finally, the participants willing to enter a nested CA
action must all be in the same state, normal or exceptional:

card(ran({ p, state | p € setpar A
state € PARTICIPANT_STATE A
state= last(participant_state(p))} )) = 1 A
Y (p).(p € setpar = last(participant_state(p)) # waiting )

Coordinated Exception Handling

The following invariant ensures that a CA action is set
to an exceptional state if all of its participants are in the
exceptional state. Note that the participant can be in a

waiting state following a call to a composed CA action, in
which case case the test is performed on the last state of the
participant before the call:

Y (caa). (caa € caaction N caaction_state(caa)= caa—_exceptional
=Y (p).(p € participant_of_caaction(caa)
= ((last(participant_state(p)) € EXCEPTIONAL_STATE) V
((ast(participant_state(pa)) = waiting N\
last(front(participant_state(p))) € EXCEPTIONAL_STATE)))))

Exception raising and propagation (to other participants)
is realized by two operations defined in the CAACTIONS
machine. The raise_exception operation requires that the
participant and the CA action are in the normal state, and
sets the participant’s state to exceptional:

raise_exception (p, exception) =
PRE
P € participant N\
exception € EXCEPTIONAL_STATE A
last(participant_state(p)) = normal A\
caaction_state(last(caaction_of—_participant(p))) = caa_normal
THEN
set_participants_state({p}, exception)

END;

The propagate_exception operation is then called to
propagate the exception to all participants of the CA action.

If a CA action terminates in an exceptional state, all
transactions on external objects are aborted. If this CA ac-
tion is a nested or composed one, then the participant in
the containing CA action raises an exception by calling the
raise_exception operation (i.e., the exception is signalled to
a higher level).

5. From the B Specification to the Development
Support

In order to have an implementation of the CA action’s
run-time support, the abstract machines are refined. At the
end of the refinement process, we have a set of executable
codes that correspond to the implementation of the opera-
tions defining the B machines, offered as a programming li-
brary. Note that, when implementing the CA actions, some
existing libraries such as drivers for running transactions are
used. For all these libraries, what is usually known is the in-
terfaces of the offered methods. In order to be able to prove
the correctness of the implementation it would be neces-
sary: (i) to have in addition the formal specification of the
behavior of these methods and (ii), to prove that the refine-
ments of the machines that use these methods are correct (in
the B sense). During the refinement, the nondeterminism
will be reduced (e.g., by introducing of message queues).



The preconditions have to be relaxed in order to take into
account all the possible cases.

We introduce an XML-based language derived from the
B specification in order to provide to the developer, which
may not necessarily have a B knowledge, a convenient
declarative language for building CA action-based systems.

Each XML document defines a main CA action which
contains composed and nested CA actions, where composed
CA actions are defined in a distinct document. The external
objects are also declared.

<caaction name="nmtoken"? >

<composedActions> ?

<action name="gname" /> *
</composedActions>
<nestedActions> ?

<nested name="nmtoken" /> *
</nestedActions>
<external> ?

<object name="nmtoken" /> *
</external>

Each participant is then declared within the CA action,
defining its local variables, which correspond to values used
in the B specification (participant_value), and its behaviour
composed of a normal and an exceptional parts. A partici-
pant executes this exceptional part when the CA action is in
an exceptional state, which means that the exception raised
by a participant has been automatically propagated to all of
them.

<participants>
<participant name="nmtoken"> +
<var>
<element name="nmtoken" type="gname" /> *
</var>
<behavior>
<normal>
Statements *
</normal>
<exceptional handle="gname"> *
Statements *
</exceptional>
</behavior>
</participant>
</participants>

The statements declared in the behaviour part of the par-
ticipant’s definition describe a sequence of operations to be
executed. Each operation corresponds to the implementa-
tion of an operation of the CAACTIONS machine

Statements:

<invoke action="gname" input="gname"?
output="gname"? />

= create_composed

<send rcpt="gname" input="gname" />
= send_message

<recv from="gname" output="gname" />
= recv_message

<call rcpt="gname" input="gname"?
output="gname"? />

= {read, write}_object

<assign element="gname" value="XPATH" />

= set_value

<raise exception="gname" message="gname"? />
= raise_exception

<nest nestedaction="gname">
<behavior>
<normal>
Statements *
</normal>
<exceptional handle="gname"> *
Statements *
</exceptional>
</behavior>
</nest>
= create_nested

The above language enables the development of systems
using CA actions. It hides the details of the dependability
mechanisms such as automatic exception propagation, and
more generally the behavior of the operations described in
the B specification and that will be executed during runtime.
Furthermore, it enables static analysis to be performed in
order to verify the structural properties of a given system
described in the invariant of the specification.

6. Conclusion

This paper has presented both how to specify depend-
ability mechanisms using the B formal method and a devel-
opment support relying on an XML-based language and on
the refinement process of B.

We have considered the use of CA actions that have been
proved useful for building dependable systems. We have
defined a generic formal specification using the B method,
defining systems composed of several CA actions that make
concurrent accesses to external objects. B was chosen be-
cause of its powerful theorem proving ability and because
of availability of a number of mature tools. We have shown
how to specify the following dependability mechanisms of
CA actions: (i) constraints related to the atomic access to
external transactional objects, (ii) encapsulation of compu-
tations inside atomic action units ensured through action
nesting and composition and (iii), properties related to the
behaviour of the system in case of exception occurrences.

The XML-based language is to be used for describing
a specific system instance such as a travel agency system,
by giving the behavior of each participant. Refinement of
the B specification is exploited for offering a correct imple-
mentation of the language. This includes static analysis and
run-time support, whose correct implementation further de-
pends on the one of third-party libraries.

Up to now several implementations of CA actions have
been proposed and experimented with, but mainly on closed
systems [9, 2]. We are working on an implementation of
CA action-based systems to be defined as a composition
of Web services such as the travel agency. This kind of
systems clearly needs new dependability properties (e.g.,



relaxed atomicity properties for accessing external objects).
We intend to use this initial B specification to study such
properties.
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