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Abstract

Many human activities today depend critically on sys-
tems where substantial functionality has been realized using
complex software. Therefore, appropriate means to achieve
a sufficient degree for dependability are required, which use
the available information about the software components
and the system architecture. For the special case of service-
based architectures – an architecture proposed to cope with
the complexity and dynamics of today’s systems – we iden-
tify in this paper a set of architectural principles which can
be used to improve dependability. A service-based archi-
tecture which extends Jini and employs the identified archi-
tectural principles is further proposed and realized. The
dependable operation of the infrastructure services of the
architecture further enables to systematically control and
configure some dependability attributes of application ser-
vices.

1. Introduction

The dependability of today’s complex systems often re-
lies on the employed computers and their software compo-
nents. Availability, reliability, safety and security (cf. [10])
are the attributes of dependability that are used to describe
the required system characteristics. These four attributes in
practice often depend on each other. Availability and relia-
bility can in principle be systematically studied at the level
of components and their composition in form of specific ar-
chitectures. The ever increasing system complexity and the
increasingly ubiquitous character of computing, however,
render such an analysis a difficult task.

For complex systems the required prediction models
for availability and reliability become quite complex when
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maintenance activities and component modifications are
also taken into account. When further considering dynamic
systems where no statica priori known system configura-
tion exists, the analysis and prediction of the reliability or
availability is thus usually not possible. We therefore pro-
pose to build dynamic and dependable complex systems not
by relying on design-based quantitative analysis of its static
architecture. Instead the observed obstacles should be ad-
dressed by a dynamic reconfiguration of the architecture to
prevent system reliability and availability to decrease be-
low the required level. Such a software tries to compen-
sate failures (originated from defects of its hardware and
software components) by means of adaption. In accordance
with [12], which definesself-adaptive softwareas software
that modifies its own behavior in response to changes in its
operating environment, we thus classify it asself-healing
software.

We further restrict our considerations for dependability
on reliability and availability and study how the dynamic
management of redundant component instances with iden-
tical implementation can contribute to improvements for
these two dependability attributes. The questionable im-
pact of using multiple diverse implementations (cf. [7]) is
not considered. The application services are further treated
as black-boxes with given dependability characteristics. We
make the strong simplification that hardware and software
component failures simply result in the inability of the af-
fected services to fulfill the regular behavior. Thus, failures
can be detected externally by monitoring the services.

A number of architectural principles which permit to en-
hance the dependability of service-based architectures are
presented in Section 2 and their benefits are motivated re-
ferring to the Jini architecture. Then, we propose in Section
3 to enhance the Jini architecture by a number of infras-
tructure services that systematically employ the identified
principles. We then discuss the benefits achieved for appli-
cation specific services concerning availability and reliabil-



ity in Section 4 and demonstrate the systematic application
of the identified architectural principles within the enhanced
architecture. For a special class of services the possible de-
sign alternatives are studied by means of the detailed design
of two infrastructure services in Section 5. Related work is
discussed in Section 6 and we close the paper with a final
conclusion and some comments on future work.

2. Architectural Principles for Dependability

Software systems typically consist of different parts.
Since dependencies between these parts exist, problems oc-
cur if a part fails. Service-based architectures handle the
increasing complexity of today’s systems by means of on-
line lookup and binding of services. The integral part of a
service-based architecture is aservice registry. The use of
such a service registry is a key factor for availability, since
service instance connections are not hard-wired. Instead
they can spontaneously connect to recover from failures.
One example of a self-healing service-based architecture is
the Jini architecture [1, 13]. It has been designed (cf. [19])
to support the development of dependable distributed sys-
tems. One of its features is alookup servicethat remains
operational even when single nodes in the network have
crashed.

The leasingprinciple extends the allocation of resources
with time [18]. The lease represents a period of time during
which the resource is offered. Therefore this lease needs
to be extended (renewed) if the resource remains to be of-
fered after the timeout of the lease. If the owner of the
resource fails to renew the lease, a client can assume that
the resource is no longer available. Leasing is the principle
which provides the self-healing behavior of the Jini lookup
service. Every service registration on the lookup service is
accompanied by a lease. If this lease expires, the lookup
service removes the accompanied service registration from
its lookup tables. Thus no service gets this apparently failed
service instance in response to a search request. If this ser-
vice is restarted or the communication system is repaired,
the service can re-register on the lookup service.

A proxyprovides a surrogate or placeholder for another
object [4]. In distributed systems a proxy typically acts as
a local placeholder for a remote object encapsulating the
forwarding of requests via network communication (e.g. as
the stub in Java Remote Method Invocation (RMI) [15]).
In the Jini architecture the proxy pattern is an integral part
of every service. A service is divided into a proxy and an
optional backend. The proxy instance is registered in the
lookup service. If a service is to be used by a client, the
proxy instance is downloaded as mobile code to the client
and executed there.

Redundancyof service instances is a key factor to
achieve a required degree of availability. A non redundant
service is a single-point-of-failure. Thus in case of a fail-

ure of this service or a communication subsystem failure,
which results in a network partition, all dependent clients
of that service cease to work. In the Jini architecture more
than one lookup service can be used. Thus a failed lookup
service does not compromise the dependability of the com-
plete system.

This leads us to the concept of asmart proxy[9, 11].
A smart proxy is not restricted to forwarding but can be
used much more flexible. Thus in the context of availabil-
ity the proxy may communicate with multiple backends at
once to recover from or mask failures. Hence a smart proxy
can be used to encapsulate and hide the complexity of self-
adapting code and therefore the use of complex concepts
becomes transparent to the user of the service. For example
the service registration in the Jini architecture is sent to all
available lookup services by the proxy at once using multi-
cast messages.

Analogue to the redundancy of services a key point for
dependability is the availability of data in a distributed sys-
tem. This can be achieved by the use ofreplication. Repli-
cating is the process of maintaining multiple copies of the
same entity at different locations. In the Jini architecture
the service registrations are replicated in multiple lookup
services.

The maintenance of these distributed copies depends on
the required consistency for the entity. There exist differ-
ent consistency models (for an overview see [16]). A con-
sistency model provides stronger or weaker consistency in
the sense that it affects the values, a read-operation on a
data item returns. There is a trade-off between consistency
and availability and no general solution can be given. The
weaker the consistency model the easier availability can
be achieved. The possibility to use different consistency
models for different data aids in the development of a self-
healing architecture as we will show in the next section.

3. Architecture

In this section we will show the application of the intro-
duced architectural principles. We give a short introduction
of the proposed architecture and the requirements of the dif-
ferent infrastructure services. More details and the descrip-
tion of the implementation can be found in [17].

The Jini architecture supports ubiquitous computing in
ad-hoc networks and provides a dependable infrastructure
for service lookup and operation. However, the basic infra-
structure only avoids to provide any element that can com-
promise the dependability of application components. But
to achieve the required dependability for any specific ser-
vice or application remains to be realized by the application
developer. Our proposed architecture provides availability
for application services.

A key to the improved availability of the infrastructure
services is the idea to have redundant instances of every



service type running concurrently in the system to prevent a
single-point-of-failure as proposed in the last section. Keep
this idea in mind while we describe the specific infrastruc-
ture services next.

Four different services are building the overall architec-
ture on top of Jini. Ideally on every computation node of
the system one instance of each infrastructure service is ex-
ecuted and will be restarted automatically during each re-
boot (see Figure 1).
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Figure 1. Architecture

Basically on every node of the distributed system an in-
stance of thenodeservice is running. Using this node ser-
vice, new application service instances can be created (and
old ones stopped).

A service description storagecontains service descrip-
tions (like name of the service, package-path, used and pro-
vided interfaces, deployment constraints, etc.) for all ser-
vices which have to be executed. Each instance of the ser-
vice description storage contains one replica of the service
descriptions. A strong consistency model for these data is
required since a weaker consistency model would result in
a possible loss of service descriptions in case of failures.
This in turn would cause the unavailability of the affected
application services.

Monitorssupervise that the services contained in the ser-
vice description storage are indeed executed in the system.
The availability of the services will be checked periodically.
The detection speed of service failures can be configured
by changing this period. If more than one instance of one
specific application service has to be executed in the sys-
tem, each instance is monitored by a different monitor. To
control which monitor is supervising which service, every
monitor needs to acquire a responsibility for a service (i.e.
to assure a new instance is started, if a service instance is
not available).

These responsibilities are stored in amonitor responsi-
bility storage. Responsibilities are accompanied by a con-

figurable lease, which is used to detect failed monitors (i.e.
the lease times out). Each instance of the monitor respon-
sibility storage contains a copy of these monitor responsi-
bilities. Inconsistencies between these copies only result
in changed responsible monitors and potentially additional
started service instances. Therefore we trade reliability
for overhead and weaken the consistency requirements for
these copies. Additionally after a repaired network partition
failure merging the responsibilities in the former partitions
must be possible. The monitors whose behavior depends on
these responsibilities must be able to cope with a weaker
consistency model.

4. Evaluation

After this short introduction to the different infrastruc-
ture services we show how the architecture achieves avail-
ability for application services in case of node failures and
network partition failures. Afterwards we show how to
achieve a required degree of reliability for different cate-
gories of application services based on the availability pro-
vided by the architecture.

4.1. Availability

In case of a node failure different scenarios, w.r.t. fail-
ures of a responsible monitor and monitored services, are
possible. The case that neither a responsible monitor nor
a monitor service is affected by the node failure is trivial.
If a node is affected by the failure which does host only
application services, the monitors responsible for these ap-
plication services will detect the services’ failures because
they do not renew their leases with the lookup service. The
monitors will choose new nodes for the application services
and start new instances there. Figure 2 shows this scenario.
Note the displayed monitor and lease periods, which influ-
ence the achievable degree of availability.
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Figure 2. Node Failure

In the case of a failed responsible monitor and failed
monitored services the responsibility lease of this moni-
tor times out and another monitor steps in. This monitor
replaces the failed monitor, and starts supervising the cur-
rently unmonitored services which includes starting new in-



stances when needed. Figure 3 shows the leases and the
events in a condensed form.
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Figure 3. Monitor Failure

During a network partition failure, communication is
only possible inside the different partitions and no commu-
nication can cross the borders between the different parti-
tions.

A monitor, which has been responsible for services in
the complete network, is in one part of the system during
the partition. In this part the monitor recognizes the absence
of some monitored services and restarts them. In the other
parts the monitor’s responsibility times out, other monitors
step in, and create all needed service instances. Thus in each
partition a responsible monitor and all service instances are
available after a certain amount of time (cf. Figure 3).

After reuniting the different partitions, the responsibility
storages are merged to determine a new unified responsible
monitor. This new monitor takes over the service instances
started by the other responsible monitors in the other par-
titions. Additionally it can consolidate the number of ser-
vice instances in the reunited network. The monitors for-
merly responsible in the other partitions stop monitoring
their started service instances.

As seen the availability of application services (and the
Mean Time to Repair (MTTR)) can be configured by chang-
ing the lease given by the Jini lookup service, the monitor-
ing period and the responsibility lease. Therefore the pro-
posed architecture can be customized for a high degree of
availability.

4.2. Reliability

The presented architecture ensures the availability of the
application services in the system. Nevertheless for each
application service there must exist a concept to achieve the
required degree of reliability based on the availability pro-
vided by the architecture. Different categories of services
require different approaches to achieve reliability.

According to [3] services can be categorized in terms
of modeling anentity or containing an activity (session).
A session service may either be stateless or stateful. The
state of a session is the history of relevant actions executed
throughout this session. If an action is independent of the
previous actions, the service is stateless, if not it is stateful.
An entity service always has a state (its local data).

For stateless session services it is irrelevant which ser-
vice instance is used for a given action, since the actions are

independent of each other. Thus the availability provided
by the architecture is sufficient. If a service instance fails,
another instance can be used.

If a used stateful session service instance fails, just using
another service instance from thereon does not work. Es-
sentially the last state of the failed service instance must be
recreated on the newly used service instance. Thus the his-
tory (relevant actions) until the point of failure needs to be
replayed.

To achieve reliability for entity services it is necessary to
replicate copies of the entity over a number of nodes to be
able to mask failures. Additionally the consistency of these
entities according to a suitable consistency model must be
assured. This replication is highly application-specific and
thus no general solution can be given. For example in our
architecture we have data with two very different require-
ments (service descriptions and monitor responsibilities)
which can be provided by appropriate consistency models
(see section 5).

The implementation of the above mentioned concepts
leads to a reliable system, but unfortunately the maintain-
ability of the resulting system deteriorates. We propose the
usage of the smart proxy pattern to encapsulate the com-
plexities of achieving reliability. Since the proxy does not
fail independently of the using application, the client does
not need to handle a failed proxy. Thus a service client only
needs to know the interface to the service and nothing about
the different means of accomplishing reliability. It uses the
smart proxy via an interface and all additional processing
for reliability is done internally in the smart proxy (see Fig-
ure 4).
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Figure 4. Smart proxy

5. Design of Infrastructure Services

In the following we further describe in detail the design
of two infrastructure services. These services serve as ex-
amples how to achieve the required degree of reliability for
entity services according to the last section.

Service Description Storage This storage contains the
descriptions of the services which must be available in the
system. These descriptions are replicated in the system on
a number of service backends. A strong consistency model
is required for this replication. Write operations are only
executed by an administrator whereas read operations are
regularly executed by the infrastructure services.



Since changes in the service descriptions happen rarely,
the number of read operations on these descriptions sur-
passes the number of write operations. For a certain degree
of the system’s reliability, it is necessary that the read opera-
tions of the infrastructure services succeed with a very high
probability in case of failures whereas the write operations
are unimportant. To exploit this bias for read operations we
have chosen to implement theweighted votingapproach [5]
which provides sequential consistency.

This approach offers the possibility to configure the reli-
ability, based on the assumed distribution of read and write
operations. Each node has a number of votes to weight its
data. Additionally this number of votes can be changed to
match the reliability of that node. The weighted voting ap-
proach uses a voting where the needed read (nr) and write
quorums (nw) can be adjusted as long as read-write quo-
rums (nw + nr > n) and write-write quorums (2nw > n)
overlap to prevent inconsistencies (n : number of votes).
For our scenario we choose a highnw and a lownr to
achieve a high probability for a successful read operation.

Multiple node failures can be masked as long as the re-
quired number of votes is available to reach the required
quorum. In case of a network partition read operations are
possible in every partition containing more thannr votes.
Write operations are only possible in the rare case that one
partition contains more thannw votes.

The weighted voting approach is implemented in a smart
proxy. Thus a client does not need to know about the spe-
cific implementation; it just calls read and write operations
on the proxy and all replication and consistency manage-
ment is done internally.

Monitor Responsibility Storage Storing the monitor re-
sponsibilities is a problem similar to storing the service de-
scriptions. In contrast write and read operations are equally
important. In case of failures it is necessary that another
monitor can take over the responsibility of a broken monitor
and needs to write that information back into the responsi-
bility storage.

Therefore we can weaken the consistency requirements
for the responsibility storage to be able to read and write
to it anytime especially in the failure case. An appropri-
ate weaker consistency model iseventual consistency[16].
Eventual consistency demands that in absence of write op-
erations the storages eventually stabilize in a globally con-
sistent state after a certain amount of time.

Our approach to achieve eventual consistency is based on
multicast messages and a decentral majority voting on every
responsibility storage in the network. Because of the multi-
cast messages, every message is received by every storage.
Thus, in case of a read operation, all available storages re-
ceive the read request and respond by returning their local
data as a multicast message. Therefore every storage and

the requester get the responsibilities stored in every storage.
Since the number of storages is unknown in case of fail-
ures a timeout is used to finish waiting for responses. After
that, all storages and the requester do a decentral majority
voting on the received data. In case of parity each partici-
pant chooses the data with the highest hashcode to achieve
a consistent result. A write operation simply sends a write
multicast message which is processed by all storages, which
receive the message.

Before a globally consistent state is reached there may
exist local inconsistencies. For example, during a network
partition failure the local data in the storages in the different
partitions diverge because updates are only visible within
one partition. After the failure is repaired the conflicts be-
tween all partitions are resolved by the next read operation.
After the decentral majority voting the data of only one par-
tition holds, the others are discarded. Therefore only one
monitor is responsible for a specific service description. All
other, former responsible monitors notice their responsibil-
ity loss on their next responsibility check.

From a user point of view this complex dealing with mul-
ticast messages and the voting is completely encapsulated
within a smart proxy.

6. Related Work

In the Jini-context the problem of availability is some-
what supported by use of the RMI-Daemon [15]. This dae-
mon supports the on demand creation of remote objects.
Additionally if the node fails, after a reboot and a restart of
the daemon all remote objects are recreated. Nevertheless
this daemon only restarts the remote objects on the same
node. Therefore this is not a solution if a node fails perma-
nently or if the remote objects should be available during
the repair of the node.

The RIO-Project [14] uses a somewhat similar approach
compared to ours. One single monitor is loaded with the
service descriptions and ensures the availability of the con-
tained services in the system. The fact that the service de-
scriptions are only available inside of the monitor makes the
monitor a single-point-of-failure in the system. If the moni-
tor process fails, the service descriptions are lost since they
are not replicated. No other monitor can use those service
descriptions and replace the existing monitor without man-
ual intervention. Thus the reliability of the RIO approach
depends heavily on the reliability of one monitor instance.
Additionally during a network partition failure the approach
does not work since the monitor instance cannot be in more
than one partition of the network. Hence this approach is
not applicable for dependable systems.

The Master-Slave pattern [2] can be applied when ser-
vices are replicated and a result must be selected which is
returned to the client. This is similar to our smart proxy
approach. The slaves are the different service instances



whereas the smart proxy is the master in our approach. The
Master-Slave pattern is aimed at stateless session services
whereas our approach can also be used for the consistent
management of entity services.

The Willow-Architecture by Knight et al. [8] provides
survivability for critical distributed systems. As a response
to faults reconfiguration is used to ensure the survivabil-
ity of the system. The response to failures is based on a
monitor/analyze/respond-control loop which is similar to
our behavior of the monitor.

Gustavsson and Andler describe in [6] a distributed real-
time database which uses eventual consistency. Similar to
our approach they use this consistency model to improve
the availability and efficiency and to avoid blocking for un-
predictable periods of time.

7. Conclusions and Future Work
For the proposed architecture implemented on top of

Jini, we have shown that the infrastructure services itself
build a dependable system. This includes that in contrast to
related proposals no single-point-of-failure for node crashes
or network partition failures is possible. The number of
parallel running service instances and lease times for reg-
istry and monitoring can be chosen. Thus for any architec-
ture conform application specific service availability can be
configured. For different kinds of application services we
presented appropriate concepts to also realize a higher re-
liability. The required additional efforts are systematically
hidden to the service clients using the smart proxy concept
of Jini. The smart proxy concept itself can be used in ev-
ery service-based architecture. But the reliability provided
by the presented architecture highly depends on the robust-
ness of the underlying service-based architecture. To adapt
it to other architectures than Jini, the leasing concept of Jini
needs to be reimplemented in the different application ser-
vices to offer a Jini-like robustness.

In addition to the implementation of the presented de-
pendable architecture and its run-time system, tool support
by means of UML component and deployment diagrams
has been realized [17]. This includes code generation for
the services, generation of XML deployment descriptions,
and the visualization of the current configuration by means
of UML deployment diagrams. We further plan to evaluate
the architecture in the context of complex embedded and
real-time systems. For small examples a formal analysis
using Markov models will be performed. Additionally, we
will look how run-time measurements of node, network and
component dependability characteristics can be employed
to adjust the system parameters such as monitor supervision
periods accordingly. In a next step, we want to employ clas-
sical approaches for learning and adaption to automatically
use this feedback to improve the system’s dependability.
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