

WADS 2003
Workshop on

Software Architectures
for Dependable Systems

ICSE’03
International Conference on Software Engineering

Portland, Oregon
May 3-11, 2003

Preface

Architectural representations of systems have shown to be effective in assisting the understanding of broader
system concerns by abstracting away from details of the system. The dependability of systems is defined as the
reliance that can justifiably be placed on the service the system delivers. Dependability has become an important
aspect of computer systems since everyday life increasingly depends on software. Although there is a large body
of research in dependability, architectural level reasoning about dependability is only just emerging as an
important theme in software engineering. This is due to the fact that dependability concerns are usually left until
too late in the process of development. In addition, the complexity of emerging applications and the trend of
building trustworthy systems from existing, untrustworthy components are urging dependability concerns be
considered at the architectural level. Hence the questions that the software architecture and dependability
communities are currently facing: what are the architectural principles involved in building dependable systems?
How should these architectures be evaluated?

By bringing together researchers from both the software architectures and the dependability communities, this
workshop makes contributions from dependability more visible within the software engineering community and
vice-versa, thus helping to build strong collaboration possibilities among the participants. The workshop provides
software engineers with systematic and disciplined approaches for building dependable systems, as well as allows
further dissemination of the state of the art methods and techniques.

During ICSE 2002 we organized the first workshop, which was a success (http://www.cs.ukc.ac.uk/wads/), and a
LNCS volume has been edited that combines the state-of-the-art articles in the area. The aim of this Second
Workshop on Software Architectures Dependable Systems is once again to bring together the communities of
software architectures and dependability to discuss the state of research and practice when dealing with
dependability issues at the architecture level.

We have received 20 submissions mainly from academic contributors. Each paper was reviewed by 3 members of
the Program Committee, and a total of 14 papers have been accepted. We are thankful for the support and
dedication of the Program Committee towards making this workshop a success. The Program Committee
consisted of:

Jean Arlat, France
Andrea Bondavalli, Italy
Jan Bosch, The Netherlands
David Garlan, USA
Paola Inverardi, Italy
Valérie Issarny, France
Philip Koopman, USA
Nicole Levy, France
Nenad Medvidovic, USA
Dewayne E. Perry, USA
Debra Richardson, USA
Cecília Rubira, Brazil
William Scherlis, USA
Francis Tam, Finland
Kishor S. Trivedi, USA
Frank van der Linden, The Netherlands
Paulo Veríssimo, Portugal

We look forward to an interesting and stimulating workshop.

Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky

Table of Contents

Perspective-Based Architectural Approach for Dependable Systems……………………………………….…1
 S. X. Liang, J. Puett, Luqi

Reliability Support for the Model Driven Architecture……………………...……………………………….…7
 G. N. Rodrigues, G. Roberts, W. Emmerich, J. Skene

FaTC2: An Object-Oriented Framework for Developing Fault-Tolerant Component-Based Systems….…13
 F. J. C. de Lima Filho, P. A. de C. Guerra, C. M. F. Rubira

A Dependable Real-Time Platform for Industrial Robotics……………...…...……………………….………19
 G. Mustapic, J. Andersson, C. Norstrom

A Framework for Using Component Redundancy for Self-Optimising and Self-Healing
Component Based Systems………………………………………….……...…...……….………………….……25
 A. Diaconescu, J. Murphy

Elements of the Self-Healing System Problem Space………….……...…...…….……………….….….………31
 P. Koopman

Dependability Analysis Using SAM………………….……...…...……………………..………………….….…37
 T. Shi, X. He

Formalizing Dependability Mechanisms in B:From Specification to Development Support…………..……43
 F. Tartanoglu, V. Issarny, N. Levy, A. Romanovsky

Layered Dependability Modeling of an Air Traffic Control System..………………..…………………….…50
 O. Das, C. M. Woodside

Design for Verification: Enabling Verification of High Dependability Software - Intensive Systems…..….56
 P. C. Mehlitz, J. Penix, L. Z. Markosian

Toward a Framework for Classifying Disconnected Operation Techniques……..………………….……….59
 M. Mikic-Rakic, N. Medvidovic

An Architecture for Configurable Dependability of Application Services………..………………..…………65
 M. Tichy, H. Giese

An Approach to Manage Reconfiguration in Fault-Tolerant Distributed Systems………………..…………71
 S. Porcarelli, M. Castaldi, F. Di Giandomenico, A. Bondavalli, P. Inverardi

Dependability in Software Families………………….……...…...……………………..………………….….…77
 F. van der Linden

Perspective-based Architectural Approach for Dependable Systems

Sheldon X. Liang, J. Puett, Luqi

Software Engineering Automation Center
US Naval Postgraduate School

{xliang, jfpuett, luqi}@nps.navy.mil

Abstract

Explicitly architecting dependable systems inevitably
involves establishing consensus among different
stakeholders' concerns and then anchoring the design on
architectural components that provide robustness. The
goal is to architect evolvable systems upon which users
can reasonably rely on receiving anticipated services.
Unfortunately, there are few established approaches for
rapidly prototyping architecture to identify dependable
architectural components during the early stakeholder
requirements resolution phases of software design. This
paper presents a perspective-based architectural (PBA)
approach process using rapid prototyping to build
dependable architectures using compositional patterns.
The approach is achieved through explicit architecting
and system composition to provide a set of rules
governing the system composition from coarser-grained
dependable components. The approach provides a
rationale for treating dependability as a set of semantic
constraints localized on compositional patterns.

1. Introduction
Building dependability into the architectural design

aims at attaining the benefits of reduced cost and
increased quality. The central idea is that dependable
architectures in large, complex, evolving systems will
provide their users with a reasonable assurance that the
system will deliver the services promised. Explicitly
architecting such systems requires identifying and
resolving different stakeholders' concerns. For instance,
the architect may have to resolve the inherit conflicts
between a user stakeholder that is concerned with
achieving a particular computational requirement and an
implementer stakeholder that may be concerned with
achieving systematic long-term evolution of the system.
Perspective-based architectural design [1-4] allows some
resolution between these perspectives.

The difficulties in engineering software-intensive
systems are further exacerbated by requirements
uncertainty, dynamic organizational structures (and
concerns), and the requirement for rapid application
development. Engineering dependable systems involves
three crucial aspects: 1) accurately identifying all
customer requirements, 2) resolving customer

requirement conflicts within the context of different
customer perspectives, and 3) verifying that the resulting
system satisfies customer intent (and if not, correcting
the requirements and the system).

A number of techniques, frameworks, and approaches
have emerged to address the problems in engineering
software-intensive systems. Widely embraced efforts
include rapid system prototypes [5-6], software
architectures [7-11], and component techniques [12-14];
all of which focus on composing software systems from
coarser-grained components. Rapid system prototyping is
useful in effectively capturing and resolving uncertainty
about requirements and providing computational
visibility [6]. Component techniques assume a
homogeneous architectural environment in which all
components adhere to certain implementation constraints
(e.g., design, packaging, and runtime constraints). They
are unalterably associated with derivational
implementation with little concern of the perspectives of
the customer or architect [8-10]. Software architecture
approaches typically separate computation (components)
from interaction (connectors) in a system. However, the
current level of understanding and support for connectors
has been insufficient, so that connectors are often
considered to be explicit at the level of architecture, but
intangible in the system implementation [9-10]. Several
sources have recommended the use of architecture views
[1, 2]. Yet, while they provide guidance on how
architecture should be represented, they generally do not
provide a prototyping process for the early development
of the artifacts that are used in that representation [3-4].

The rapid prototyping of architectural components
shows promise in acquiring accurate and timely
requirements and in establishing appropriate
compartmentalization of functionality [2-4]. To reduce
the amount of re-certification effort required after each
requirement change, the approach presented in this paper
helps to maintain the assurance of dependability as the
system evolves by combining rapid prototyping with
explicit architecting so that the system's architecture is
based on properties that are invariant with respect to
system requirements changes. This research integrates
requirements validation techniques and stakeholder
perspective resolution into a single model of explicit
architectural composition.

2. Overview of the Approach
Fig. 1 depicts the PBA approach embodied in three

perspectives: computational activity, compositional
architecture and derivational implementation. Starting by
rapid prototyping the user’s informal needs, an initial
prototyping model is created that represents the
computational activity needed to implement the
operational concept. Continued analysis and refinement
of the prototype then derives the explicit architecture
from which it is possible to extract valuable architectural
properties. Compositional architecture is then explicitly
built under the support of compositional patterns, and the
generation of application framework is driven by both
prototyping and architecting documentations. Next, PBA
composers are applied to derive PBA components.

Fig 1 Synthesizing Approach

For each perspective design artifact, a computer-aided
foundation is provided with significant formulated
attributes enabling automated analysis, reasoning and
code/framework generation. For instance, the
computational activity captures the activities and
information flows that will accomplish the operational
concept (e.g., real-time support is the foundation for hard
real-time systems [5]); the compositional architecture
details what kinds of rules (patterns) are used to govern
the interactions among components (e.g., compositional
patterns [8,11] and design inspection [15-17] support
semi-automated architecture generation); and the
derivational implementation identifies physical
components and connectivity that will be instantiated to
carry out the computational activities (e.g., based on PBA
composers [18]). Thus, compositional architecture
bridges gaps between the computational and derivational
artifacts (user and implementer perspectives).

3. Perspective-based Architecting
Central to the PBA approach, compositional patterns

provide principles for guiding the design and evolution
of system architecture and can be treated as architectural
elements governing system composition from
coarser-grained components. The transitional process is

embodied in three perspective designs.

3.1 Computational activity
Computational activity accounts for the customer

perspective concerns of computation and interconnection.
This perspective addresses system requirements by
capturing three kinds of formal arguments: components
from which the system is built, interconnections
enforcing interactions among them, and constraints on
both components and interconnections:

P computation = [Cc, I, Ct (Cc, I)]
Where Cc is the set of conceptual components hierarchically
decomposed, I is the set of interconnections among components,
Ct (Cc, I) is the set of constraints localized on components and
their interconnections, respectively.

Fig. 2 Computational Responsibility and Properties

The constraints on components have properties of
decomposability (representing the hierarchical level at
which the constraint is implemented) and granularity
(representing the logical packaged complexity of the
component). Granularity is an important factor for
constructing complex systems because well-grained
components are helpful not only to increase productivity
but also to improve understandability, reliability and
maintainability. As illustrated in Fig. 2, a schema is
introduced for PBA components, which identifies the
granularity and decomposability of each level of
computational responsibility.

3.2 Compositional architecture
Compositional architecture accounts for the architect's

perspectives of explicit treatment of system composition
and architecture with constraints localized on
compositional patterns. Detailing what kinds of rules
(patterns) are used to govern interactions among
components and how quantitative constraints are
associated with the patterns, this perspective addresses
what kinds of interactions are applied among components
and how to associate constraints with compositional
patterns. This perspective is represented as follows:

P composition = [Cc ⇒ R, Ro─S/P→Ri, Ct (R, S, P)]

 CSCS
CSCS: Computer Software Complex System
is a top - level component that undertakes
global a ctivity in distributed and concurrent
collaboration .

 CSCI
CSCI: Computer software Configuration Item
is a 1 st level component that undertakes a
specific mission and is a part of the top-level
collaboration (CSCS)

 CSCC
CSCC: Computer Software Common
Component is a 2 nd level component that
undertakes a specific function and comprises
 the 1 st level mission (CSCI)

 CSCU
CSCU:Computer Software Computing Unit is
a 3 rd level component that undertakes a specific
task and comprises the 2 nd level function
(CSCC).

Collaboration

Mission

Function

Task

Computational Component Systematic
Responsibility Granularity Decomposability

EASYC
Composers

Compositional
Patterns

Prototype
(Model)

Refine
(Coding)

System
Architecture

Component
Evolution

Construct
(Prototype)

Functional Behavior
Real-time Constraints

Architectural Properties

Real-time
Support

Computational Activity

User’s
Informal
Needs

Highly
Dependable

Systems

Operational
Concept

Rules / patterns for
Interconnections

Derivational
Implementation

Compositional
Architecture

Components and
Connectivity

Design
Inspection

Generating
(Framework)

PBA

Where Cc ⇒ R is the set of roles extracted from conceptual
components. Ro─ S/P→Ri is the set of compositional patterns: Ro
(output/producer) interacts with Ri (input/consumer) via
architectural styles S while complying with communicatory
protocols P. Ct(R, S, P) is the set of constraints localized on roles,
styles, and protocols, respectively.

 Constraints on interactions further localized on

architectural styles are embodied in such properties as
composability and heterogeneity. Composability
represents the hierarchical composition of architecture
(i.e., an entire architecture becomes a single component
in another larger architecture). Heterogeneity represents
the diverse ways components interact with each other.
Heterogeneity is inevitable in complex systems because
diverse components or systems will have to work and
interact together. In Fig. 3, a compositional coupling
schema is introduced for PBA approach.

Fig. 3 Compositional Coupling and Properties

3.3 Derivational implementation
Derivational implementation accounts for the

implementer's perspectives of component derivation and
connectivity. This perspective addresses what kinds of
components are needed to carry out computational
activity, what connectivity is needed between the
components and how to glue the components to specific
roles. This perspective is represented as follows:

Pderivation = [R ⊃Cp, (Cp Ro)─S/P→(Ri Cp), Ct (Cp S, P)]

Where R ⊃ Cp is the set of physical components derived from the

associated role. Cp R (its peer Ri Cp) is the set of instantiated
components that are glued to associated roles. Ct(Cp, S, P) is the
set of constraints localized on physical components, styles, and
protocols, respectively.

Constraints on components are embodied in such

properties as connectivity (representing the way
components are derived from the related role) and
evolvability (representing the evolution from roles to
components). Interactive roles are represented as
generalized role wrappers (GRWs) (an abstract class) to
support component evolution through sub-typing and
refinement. As illustrated in Fig. 4, the GRWs defined in
PBA composers introduce derivational gluing to refer to
connectivity and evolvability.

Fig. 4 Derivational Gluing and Properties

3.4 Automated transitional process
Starting with a prototyping model in the computational

activity perspective, a transitional process is formed from
computational activity, through compositional
architecture, to derivational implementation. Two kinds
of architectural elements evolve: PBA composers and
PBA components. Under the support of automated
software tools, two key mappings are used to bridge the
gaps between perspectives: explicit architecting via
compositional patterns and physical evolution via PBA
composers. PBA approach is associated with support
tools such as Prototyping Analyzer, Pattern Selector,
Framework Generator, and Component Evolver [5,8]. Fig.
5 illustrates this transitional process.

P computation P composition P derivation
Cc Cc ⇒ R R ⊃Cp
I Ro─S/P→Ri (Cp R)─S/P→(R Cp)

Ct(COM, INT)

Explicit Architecting
via

Compositional patterns
Ct (R, S, P)

Physical Derivation
via

PBA composers
Ct (Cp, S, P)

Fig. 5 Transitional Process between Architectural Perspectives

O2 NH3 H2O

Water_Flow

Display_status

Drain Inlet Feeder

F_Time

Repository

Adjusting Listener Feeding Listener

Sampler

Source

Sensor

Adjusting Announcer
Feeding Announcer

COM1 COM2

P

Sro ri

glue glue

COM1 COM2

P

Sro ri

glue glue

COM1 COM2

P

Sro ri

glue glue

Prototyping Analyzer Pattern Selector Framework Generator Component Evolver

 IDI
I DI: Interoperable - Distributed Interaction is
used for composing CSCS from CSCI
components to enforce distributed
interactive collaboration

 LCI
LCI: Loose- Coupled Interaction is used for
composing CSCI from CSCC compo nents to
encourage flexible configuration with minimal
communication between components

 TCI
TCI: Tight -Coher ent Interaction is used for
composing CSCC from CSCU components
to emphasize independent partition of
components with high internal complexity

Distributed

Loose

Coherent

Compositional Interactive Architectural
Coupling Heterogeneity Composability

 IsA
IsA: “is a ” connectivity let s a system
component be derived from the
correspond ing role wrapper and then
extend s its behavioral compu tation.

 ToA
ToA: “to a” connectivity let s a system
component associate with the corresponding role
wrapper and then refine s its behavioral
computation.

 HasA
HasA: “has a” connectivity lets a system
component aggregate one or more of the
corresponding role wrapper and then refines
its behavioral computation.

Extension

Import

Assembly

Derivational Physical Componential
Gluing Connectivity Evolvability

Explicit architecting of the computational activity starts
with assigning components with specific roles.
According to the architectural styles, related interactive
roles and communicatory protocols can be determined so
that suitable compositional patterns can be selected and
applied to govern the interconnections among the roles.
According to the assignment of which components play
which specific roles, the components will be derived
from the associated role facility. After being derived, the
components will be instantiated and then glued to the
associated roles by the PBA configuration.

A PBA composer is designed as a generic package-like
architectural entity that includes two kinds of GRWs: one
is for the "interactive producer" and the other is for the
"interactive consumer." GRWs provide adherence to
restricted, plug-compatible interfaces for interaction and
provide the template of behavior that components are
expected to refine. The physical connectivity between a
component and a role is implemented by refining or
overriding the restricted, plug-compatible interfaces
defined by the GRW [11, 18].

4. Dependable Compositional patterns
Compositional patterns provide a set of rules that

govern the interactions among components with
localized constraints. They are characterized by three
kinds of formulated arguments: interactive roles,
architectural styles, and communicatory protocols.

Fig. 6 Compositional pattern for interconnections

Fig. 6 depicts a compositional pattern. For a given
interaction between two components (COM1, COM2),
both are assigned to play specific roles ro and ri in the
specific compositional pattern. An architectural style s
specifies how ro (output / producer) interacts with ri
(input / consumer), while communicatory protocol p
builds a specific channel for message transportation
during the interaction. More specifically, in order to
construct the components as autonomous entities, roles in
the compositional pattern are deputized for the
components in dealing with interaction while the
associated components are mainly concerned with their
functionality (computation separated from interaction).
The pattern also provides a means for gluing a specific
component to a role.

By mathematically defining the compositional patterns,
it is possible to translate, localize, and analyze them
using automated CASE tools. Compositional patterns
involve three sets: R representing interactive roles, S

representing architectural styles, and P representing
communicatory protocols. Examples include:

R = { S = { P = {
Caller, Definer,
Announcer, Listener,
Outflow, Inflow,
Source, Repository,
Read, Writer, …
}

Explicit-invocation,
Implicit-invocation,
Pipe-filter (Pipeline),
Repository-centric,
Blackboard, …
}

Message-passing,
Event-broadcast
Data-stream,
Sampled-stream
Shared-data, …
}

Regardless of any constraint, a composition is defined as
an interaction between two roles (e.g., Caller and Definer)
via an architectural style (e.g., explicit-invocation), while
complying with a communicatory protocol (e.g.,
message-passing). So, the Cartesian product R х S х P х
R enumerates all possible compositions C, represented as
follows:

C (R, S, P)={ ro─s/p→ri | ro, ri ∈ R, s∈ S, p∈ P }

Where ro─s/p→ ri represents interaction between ro and
ri via a style s while complying with a protocol p.

Applying specific constraints on compositions develops
sophisticated compositional patterns. While GRWs
provide adherence to restricted, plug-compatible
interfaces for interaction and template of behavior for
computation, the components derived from GRWs will
specify, refine or override the template. In this way,
interactions are separated from computations.

Compositional patterns CP are the relation on the
Cartesian product of compositions with the constraints
reasonably localized on roles, styles and protocol:

CP(R, S, P) = {GRW(ro)─s/p→GRW(ri) |
 ro, ri∈ R, s∈ S, p∈ P, Ct(ro, s, p, ri) }

Where GRW(r) abstracts the role r as a GRW that separates
interaction from computation (the GRW "provides" while the
component "performs"). ─s/p→ represents interaction between ro
and ri via a specific style s while complying with a specific
protocol p. Ct(ro, s, p, ri) represents localized constraints.

4.1 Example of compositional patterns
Compositional patterns can be implemented as

composers, an explicit architectural element. They can be
organized in a reusable composer library that provides
the evolutionary foundation for component derivation.
Fig. 7 gives the typical composer Pipeline that exhibits
dependable architectural properties (e.g., loose
component coupling, asynchronous communication, and
data buffering). The two sides interconnected by the
composer are the Outflow and Inflow roles, respectively.
Outflow deputizes the producer to output the data, while
Inflow deputizes the consumer to input the data via
Pipeline. The formal Pipeline composer provides two
generic parameters for enhancing reusability: transported
Data (a basic item for dataflow) and buffer Size (a data
transportation buffer).

COM1 COM2
P

S ro ri

glue glue

This example provides a template for GRWs. With
respect to behavioral computation of components, the
CSP-based semantic description provides not only
synchronous constraints but also asynchronous control
transits. Both Output and Input are designed as exclusive
procedures (execution guards are used to coordinate
concurrent synchronization). Reference timing
constraints [5-6], the role of Outflow is subjected to a
maximum execution time (met) while Inflow is subject to
a maximum response time (mrt). Both met(100) and
mrt(100) are translated as asynchronous control transits
for runtime monitoring of the real time constraints. " "
represents an asynchronous operation. When outputting
produced data onto the given pipeline, Outflow must be
synchronized within a met(100) otherwise, an exception
is triggered.

composer Pipeline is generalized
 type Data is private;
 Size : Integer : = 100;
style as <#pipe-filter#>;
protocol as <#dataflow-stream#>;
wrapper
 role Outflow is

port
 procedure Output(d: Data);
 procedure Produce(d: Data) is abstract;
computation
 Produce (d);
 *[Output (d) Produce (d) met(100) exception;]
end Outflow;
role Inflow is
port
 procedure Input(d: Data);
 procedure Consume(d: Data) is abstract;
computation
 *[Input (d) Consume (d) mrt(100) exception;]
end Inflow;

collaboration (P : Outflow; C : Inflow)
 P•Produce(d);

*[P•Output(d) P•Produce(d) C•Input(d) C•Consume (d)]
end Pipeline;

Fig. 7 A Formal composer for Pipeline
The collaboration portion of the composer description

will generate topological configurations that are
connected graphs of components and composers. In
concert with models of components and composers,
configurations enable assessment of the autonomous and
concurrent aspects of an architecture (such as the
potential for deadlocks, starvation, reduced performance,
reliability, security, etc.). Configurations also enable
concurrent execution immediately after the roles are
glued with the instances of corresponding components.

4.2 Substantiated interconnection
It used to be that interconnections in the architecture of

a software system were annotated as a series of
“box-line-box” diagrams [8-10]. Over time, this
annotation has become much richer (for instance, the use
of Architecture Description Languages (ADLs)) in order
to more precisely capture and communicate more
complex ideas related to interconnection. PBA continues
in this vein by substantiating the interconnections among
components so that large, complex architectures of

systems can be built, dealing with following four aspects:
• Dependable composers by which interaction among

components are promoted,
• Heterogeneous forms by which communication during

interaction can be established.
• Topological connectivity that guides the connected

configuration of components, and
• Constraint localization that governs interconnections

by associating constraints on patterns
Dependable composers are used to implement

compositional patterns by analyzing interactive roles of
interconnected components in the prototyping model.
Heterogeneous forms are associated with architectural
styles and the way information is transported and refers
to as communicatory protocols in compositional patterns.
Constraint localization is presented next.

Topological connectivity simplifies the interconnection
among components and comes in the following forms:
• Fork (1~N): single producer to multiple consumers
• Merge (N~1): multiple producers to single consumer
• Unique (1~1): single producer to single consumer
• Hierarchy: external1 producer to interact with the internal1

consumer, and vice versa.

Fig. 8 illustrates how to use a composer to implement
Fork between one producer and more than one consumer.

Fig. 8 Fork Connectivity with one PBA composer

4.3 Dependability as a set of Constraints
In this case “localization” represents the abstraction of

dependability, its translation to quantitative constraints,
and the handling of these constraints applied (localized)
in the design, construction, and evolution of a
software-intensive system. In order to achieve high
confidence in the dependability of a system there must be
a systematic method for expressing the dependability
objectives via measurable constraints associated with the
subsystems of the architecture. In a macro view,
dependability can be abstracted as availability, reliability,
safety, confidentiality, integrity and flexibility [15-17].
How these qualitative global requirements translate into
quantitative constraints becomes crucial. Which
dependable properties need translating and how they are
localized on compositional patterns are the questions that
have to be answered.

1 External and internal refer to hierarchical decomposition. For a given
hierarchical level of decomposition, a component in the current level is external
to a component in a lower level, while the latter is the internal to the former.

Component

Composer

Dependability Translation Constraints Localization Patterns

• Availability
• Reliability
• Security
• Integrity
• Flexibility

 • Consistency
• Compatibility
• Granularity
• Heterogeneity
• Real time
• Synchronization

• Role

• Style

• Protocol

Fig. 9 Localization of Dependability

Fig. 9 shows a framework of localization applied to
dependability. With respect to translating dependability
and localizing the semantic constraints on the
compositional patterns, the handling of real-time
constraints provides a good example. Reliability of the
time-critical system may be embodied as an immediate
reply of a particular component, under a given request,
within an met, or as a data stream between components
performed within a specific latency [5]. First, this
time-critical reliability should be translated into timing
constraints met and latency (two quantitative constraints).
Both are associated with the patterns referring to the role
and protocol, respectively. met requires computation of
the role (the component acts) and must be executed
within a specific amount of time (a hard real-time
constraint). The latency constrains the maximum delay
during data transportation within the protocol. These
timing constraints can be also verified by runtime
monitoring and correctness assurance [15-17].
Dependability of the system would be translated into in
the form of maximum execution time or latency of the
data stream communication between components as
shown in Fig. 10.

composer Pipeline is generalized
 …
 role Outflow is
 port
 procedure Output(d: Data);
 procedure Produce(d: Data) is abstract;
 computation
 Produce (d);
 *[Output (d) latency(60) Produce (d) met(100)

 latency-signaled LAT-EXCEPTION
 met-signaled MET-EXCEPTION

]
 end Outflow;
 … …
end Pipeline;

Fig. 10 A Formal composer for Pipeline

Procedure Output can be treated as execution guard that
is tied to the communication protocol, so latency is
associated with to the protocol by Output (d)
latency(60). When executing Output is beyond the
latency, the asynchronous control will set
latency-signaled and abort current execution, and then
raise LAT_EXECPTION. Similarly, met is directed to the
procedure Produce by Produce (d) met(100). When
executing Produce is beyond the met limitation, the
asynchronous control will set met-signaled and abort
current execution, and then raise MET_EXCEPTION.

5. Conclusion
Explicitly architecting software-intensive systems

provides the promise of faster, better, cheaper systems.
In order to consistently engineer dependable
software-intensive systems, the PBA approach provides a
process that uncovers perspective concerns of different
stakeholders, and increases the effectiveness of
requirements validation techniques. Because PBA
approach can be used to localize and quantify invariant
architectural constraints (such as "dependability" in the
example above) it will also reduce the amount of
re-certification effort required after each requirement
change. The PBA approach illustrates that with
automated tool support, the prototyping of software
architecture can be used to identify and resolve
conflicting stakeholder perspectives and develop reliable,
dependable, consistent software-intensive systems.

References
[1] C. Hofmeister, R. Nord, D. Soni. Applied Software

Architecture. Addison-Wesley, 2000.
[2] IEEE Standard Board, Recommended Practice for

Architectural Description of Software-Intensive Systems
(IEEE-std-1471 2000), September 2000.

[3] H. Alexander, et el, C4ISR Architectures: I. Developing a
Process for C4ISR Architecture Design. Systems
Engineering, John Wiley and Sons, Inc., Vol. 3 No. 4,
2000.

[4] W. Lee, et el, Synthesizing Executable Models of Object
Oriented Architectures. Proc. Formal Methods in Software
Engineering & Defence Systems. Adelaide, Australia,
2002.

[5] Luqi, M. Ketabchi, A computer-Aided Prototyping System,
IEEE Software, March 1988.

[6] Luqi, Ying Qiao, Lin Zhang, Computational Model for
High-Confidence Embedded System Development,
Monterey workshop 2002, Venice, Italy, Oct 7-11, 2002.

[7] M. Shaw, D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, Inc., 1996.

[8] Andrew P., Systems Integration and Architecting: An
Overview of Principles, Practices, and Perspectives,
System Engineering, John Wiley and Sons, Inc., 1998.

[9] N. R. Mehta, N. Medvidovic. Towards a Taxonomy of
software Connectors. Proc. ICSE, Limerick Ireland, 2000.

[10] N. Medvidovic, Taylor, A classification and comparison
framework for software architecture description languages.
IEEE Transactions on Software Engineering, 2000, 26(1).

[11] X Liang, Event-based implicit invocation decentralized in
Ada, ACM AdaLetters, March, 2002.

[12] Sessions N., COM and DCOM: Microsoft's Vision for
Distributed Objects. John Wiley & Sons, Inc., NY, 1997.

[13] OMG/ISO Standard, CORBA: Common Object Request
Broker Architecture, http://www.corba.org/.

[14] Sun Microsystems, Inc. Java 2 Enterprise Edition
Specification v1.2. http://java.sun.com/j2ee/.

[15] E. M. Clarke (CMU), R. P. Kurshan (Bell Lab).
Computer-Aided Verification, Feb. 17, 1996.

[16] James C. Corbett, et el, Bandera: Extracting Finite-state
Models from Java Source Code, Proc of the ICSE 2000.

[17] M. Kim, et el, Monitoring, Checking, and Steering of
Real-Time Systems, 2nd Intl. Workshop on Run-time
Verification. Copenhagen, Denmark, July 26, 2002.

[18] X Liang, Z. Wang. Omega: A Uniform Object Model Easy
to Gain Ada's Ends, ACM AdaLetters, June, 2000.

Reliability Support for the Model Driven Architecture ∗

Genáina Nunes Rodrigues, Graham Roberts, Wolfgang Emmerich and James Skene
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{G.Rodrigues|G.Roberts|W.Emmerich|J.Skene }@cs.ucl.ac.uk

Abstract

Reliability is an important concern for software dependabil-
ity. Quantifying dependability in terms of reliability can
be carried out by measuring the continuous delivery of a
correct service or, equivalently, of the mean time to failure.
The novel contribution of this paper is to provide a means
to support reliability design following the principles of the
Model Driven Architecture(MDA). By doing this, we hope
to contribute to the task of consistently addressing depend-
ability concerns from the early to late stages of software
engineering. Additionally, we believe MDA can be a suit-
able framework to realize the assessment of those concerns
and therefore, semantically integrate analysis and design
models into one environment.

1. Introduction

Component-based development architectures (CBDA) are
increasingly being adopted by software engineers. These
architectures support distributed execution across machines
running on different platforms (e.g. Unix, Windows). Ex-
amples of component models include Sun’s Enterprise Java
Beans (EJB), OMG’s CORBA Component Model (CCM)
and Microsoft’s .NET. Additionally, CBDAs rely on the
construction and deployment of software systems that have
been assembled from components [3].

One of the advantages of applying a component-based
approach is reusability. It is easier to integrate classes
into coarse-grained units that provide one or more clearly
defined interfaces. However, the lack of interoperability
among diverse CBDAs may be one of the major problems
that hinders the adoption of distributed component tech-
nologies. Once a platform has been chosen and the system
has been developed, porting to a different platform becomes
troublesome.

∗This research is partially supported by CAPES and the European
Union under grant IST-2001-34069

To fill the gap, the OMG has focused on paving the way
to provide CBDAs interoperability standards through the
Model Driven Architecture (MDA). Essentially, ”the MDA
defines an approach to IT system specification that sepa-
rates the specification of system functionality from the spec-
ification of the implementation of that functionality on a
specific technology platform” [9]. To accomplish this ap-
proach, MDA structures the system into key models: the
Platform Independent Models (PIMs) and the Platform Spe-
cific Models (PSMs). While a PIM provides a formal spec-
ification of the structure and function of the system that ab-
stracts away technical details, a PSM expresses that speci-
fication in terms of the model of the target platform. Basi-
cally, PIMs are mapped to PSMs when the desired level of
refinement of PIMs is achieved.

The Unified Modeling Language (UML) is the core el-
ement to represent those models. According to the OMG,
UML supports the formalization of an abstract, though pre-
cise, models of the state of an object, with functions and pa-
rameters provided through a predefined interface [9]. Fur-
thermore, UML models facilitate the assessment of a design
in the early stages of software development, when it is eas-
ier and cheaper to make changes.

The defined and standard structure of MDA would seem
suitable to address software dependability, in that the MDA
designates the system function as required by the stakehold-
ers. Issues such as reliability, safety, security and availabil-
ity comprise software dependability [8, 12]. However, there
is no standard representation for dependability in MDA
models. During the software execution this can lead to sit-
uations not foreseen in the platform models.

Reliability assurance is an important concern in software
dependability. Quantifying dependability in terms of relia-
bility can be carried out by measuring the continuous deliv-
ery of correct services or equivalently, of the mean time to
failure [4]. A system can be considered reliable if it per-
forms at a constant level, as the stresses on that system
change. For example, if a0 request takes 10 ms to com-
plete with one user, then it takes the same time to process

the same request with 1000 concurrent users.
To overcome the lack of dependability concern in the

current MDA specification, we propose to explicitly tackle
this problem in the levels of abstraction suggested by
OMG’s MDA. We believe it is feasible to accomplish this
task using the standard meta-modeling approach of MDA
and specifications, such as the work in [10], as sources to
achieve this goal. Our focus on dependability at the moment
is reliability. To guarantee and assess reliability properties
of software systems using the MDA approach, we plan to
achieve reliability in such a way that it would be specified in
the early stages of software architecture design. In this way,
we aim to provide reliability in a platform-independent way.
In the context of MDA and current distributed component-
based architectures, early reliability assessment is important
as the software architecture design is specified in the con-
text of software development.

The novel contribution of this paper is to provide a
means to support reliability design following the principles
of MDA. By doing this, we hope to contribute to the task of
consistently carrying out dependability concerns from the
early to the late stages of software engineering. Besides,
MDA appears to be a suitable framework to realize the as-
sessment of those concerns and therefore, semantically in-
tegrate analysis and design models into one environment.

In this position paper, we elaborate our approach on how
the provision of reliability can be suitably realized through a
standard model-driven architecture approach. In Section 2,
we present the related work targeting reliability support and
analysis in the CBDA scenario. In Section 3, we show
how we plan to provide reliability modeling in MDA and
the steps to be followed to accomplish this goal. In Sec-
tion 4, we provide a sample scenario of how our approach
addresses reliability support in MDA. Finally, Section 5
summarizes our contribution and discusses future work to-
wards achieving standard reliability support from designing
models to programatic interfaces.

2. Related Work

The work described in [1, 2, 7] looks at part of the problems
we identify in our work, in terms of addressing dependabil-
ity concerns in the early stages of software development.
We can basically find in these works analysis techniques to
validate design tools based on UML.

However, they differ from our approach in some impor-
tant aspects. Primarily, they do not conform to the prin-
ciples stated by MDA. MDA uses the straightforward ap-
proach through the concepts of mapping models among dif-
ferent platforms. Therefore, we believe that MDA offers
a suitable environment to consistently integrate the analy-
sis and design of dependability issues, and from design to
implementation. [1] provides a useful transformation tech-

nique to automate dependability analysis of systems de-
signed using UML. Nevertheless, to properly contemplate
dependability in all stages of the software engineering pro-
cess, we believe that one of the main concern is to provide a
unified semantic between the analysis and the design mod-
els.

Another approach to address software dependability is to
provide mechanisms to improve reliability of software af-
ter it has been implemented. Works such as [5] use testing
techniques to identify faults in the software that are likely
to cause failures. Although they carry out an important re-
search agenda, we believe that is cheaper to design and eval-
uate dependability concerns in the early stages of software
engineering processes . Besides, levels of abstraction like
the one expressed by the PIM and PSM models of MDA
seems to be necessary in a scenario where each of the ex-
isting CBDA holds distinct mechanisms to support depend-
ability.

A meta-model is a model of a language expressed using
a modeling technique. This feature in UML allow us to ex-
press the design and analysis domains naturally, using the
concepts inherent to these domains. Moreover, this facil-
ity permits to map the behavior of distributed component
architectures into a domain knowledge keeping the seman-
tics of the modeling requirements of UML. Following this
principle, our approach to meta-modeling using the UML
lightweight extension mechanisms, i.e. profiles, is consis-
tent with the official MDA white paper [9], which defines
basic mechanisms to consistently structure the models and
formally express the semantics of the model in a standard-
ized way. Moreover, the profiles define standard UML ex-
tensions to describe platform-based artifacts in a design and
implemented model. For example, the UML Profile for
EJB [6] supports the capture of semantics expressible with
EJB through the EJB Design Model and the EJB Implemen-
tation Model. Although currently cannot be found UML
profiles to thoroughly address dependability, MDA seems to
be a feasible environment to consistently assess and express
dependability by means of profiles properly constructed.

Another benefit that arises from this consistent integra-
tion is the facility to realize reverse engineering. However,
it is out of scope of our current work to cope with this topic.

3. A Profile for Reliability

To provide a reliability profile for MDA, we follow a
bottom-up approach as MDA allows this flexibility (see Fig-
ure 2). Having J2EE as a first target to realize a reliability
profile, we plan to extend the UML Profile for EJB [6] to
express reliability primitives available in J2EE in a stan-
dard way. By standard way, we mean to specify a subset
of UML meta-model that describes the semantics of mech-
anisms in J2EE to achieve reliability. This subset contains

����������	�
��������

���������
���

���
��������������

����������	�
��������

���

���

��������	��	��

����������

��������������� ���

����������

��������������� ���

������������

��!�������� ���

��!�������� ���

��!�������� ���

��������	
����������������

����������������

����	
����������������

����	
����������������

Figure 1. MDA Metamodel Description [9]

stereotypes, tagged values and OCL constraints.
To assure reliability, the J2EE platform has several

mechanisms [15]:

• Fail-Over through clustering of containers1

• Asynchronous communication with persistent JMS
and Message Beans;

• Persistent Entity Beans;

• Transactions through the two-phase commit protocol;

• Security.

For the sake of achieving abstraction, these mechanisms
should be supported by the UML/EJB profile. In order to
realize this task, UML meta-models must be designed to re-
flect each of those mechanisms, relying on the current UML
Specification [11]. By doing this, it will be possible to ex-
press semantics and notations that adequately address those
reliability mechanisms in a standard way.

MDA

PIM

PSM

J2EE

Abstract Reliability Profile

1

2

Reliability Primitives
 Clustering
 Persistent MOB
 Persitent Entity

Beans
 …

UML/EJB Reliability Profile

 UML Diagram
Types

 Stereotypes
 Tagged Values
 OCL Constraints

Reliability Profiles

Figure 2. Reliability Profiles in MDA

1Interested readers may refer to [13], chapter 14

UML provides a wide set of modeling concepts and
notations to meet current software modeling techiniques.
The various aspects of software systems can be represented
through UML, what makes it suitable for architecture mod-
eling. Besides, it is widely used for software analysis and
development. To model complex domains in UML, new se-
mantics can be added through extension mechanisms pack-
ages that specify how specific model elements are cus-
tomized and extended with those semantics. We adopt pro-
file as our extension mechanism, which comprises model
elements customized for a specific domain or purpose (e.g.
designing reliability) by extending the meta-model using
stereotypes, tagged definitions and constraints [11]. In or-
der to design and formalize J2EE reliability mechanisms,
we will first map them into a profile, the Refactoring mech-
anism in Figure 1.

In MDA, a mapping is a set of rules and techniques
used to modify one model in order to get another model.
The following step is to design reliability in the highest ab-
stract level stated by the architecture of MDA, which is the
PIM. Achieving a platform-independent reliability model,
the task of designing dependability concerns can be carried
out in the early stages of software engineering where the
software architecture is designed. The steps to accomplish
this goal are as follows:

1. Determine the reliability properties of interest.

2. Create a set of stereotypes, tagged values and con-
straints to build the UML/EJB Profile for Reliability.

3. Provide the design domain mappings between each re-
liability profile instances and the UML/EJB Profile.

4. Define a mapping between the design domain achieved
in the previous step and a platform-independent design
domain that correctly represents the semantics of each

reliability mechanism. A preliminary PIM version is
expected at the end of this step.

5. Identify those qualities that are of interest but re-
quire formal analysis to determine. Choose an appro-
priate analysis technique for reliability analysis (e.g
Bayesian Networks) and define a profile to represent
the entities within the analysis domain.

6. Define a mapping between the design domain and the
analysis domain that correctly represents the semantics
of each.

7. Choose a commercial existing component model other
than EJB for J2EE platform to make the PIM to PSM
mapping, providing the PIM reliability profile.

8. Automate the mapping.

9. Provide scenarios to monitor and assess the models in
a real-life case study.

It should be noticed that in Step 4, the mapping from
PSM to PIM will be carried out in order to reach the highest
abstract level of reliability mechanism. The MDA princi-
ples allows this bottom-up approach and we decided to fol-
low this step in order to raise the kind of resources needed
in a reliability UML profile. This mapping can be formal-
ized using the Object Constraint Language (OCL), which is
the formal language used to specify well-formedness rules
of the meta-classes comprising the UML meta-model [11].
However, this formalization would require an assessment
of the designed properties. That is the purpose of Step 6.
Achieving this level of abstraction is not the whole plan
however. In Step 8, mechanisms to automate the target reli-
ability primitive may be desired by those who want to apply
the reliability profile attained in our work. Finally in Step
9, we apply and evaluate our approach using a real-life case
study.

4. A Scenario of Reliability Support in MDA

This section shows how we plan to achieve the previously
stated goals through an example. We highlight how one of
the reliability mechanisms can be mapped to a UML profile
in a standard way and how it would reflect on the deploy-
ment of the components. To make it concrete, we plan to
first build a reliability profile for a target platform, which
is the J2EE platform. By doing this, it will be easier to
identify the kind of resources for reliability that should be
comprised in a platform-specific model and therefore those
to be comprised in a platform-independent model through
MDA mappings.

In this scenario, we exploit one of the mechanisms of
EJB to provide reliability, the fail-over through clustering.

The fail-over mechanism redirects a single request to an-
other node in the cluster because the original node could not
process the request. This implies another concept, which is
clustering. The overall goal of employing a cluster is to in-
crease the availability or reliability of the system by joining
services into groups that provide services to their clients in
a loosely coupled way. The number of nodes comprising
a cluster will vary according to the degree of reliability we
want to assure.

The first step towards achieving reliability in MDA prin-
ciples, is to define the architecture of the application by
means of the UML Profile for EJB [6]. To express how
reliable the method invocations will be and the deployment
relationships between the application components, a relia-
bility profile is needed. Figure 3 shows what the overall sce-
nario would look like. Basically, there are three main pro-
files: the design (where the reliability mechanism is mod-
eled), the mapping (to map the desired reliability to the de-
signed classes), and the deployment (to provide how the
components will be distributed in the network according to
the required reliability support).

<<profile>>

Design

<<profile>>
Real -Time

<<profile>>
UML/EJB

<<profile>>
Reliability <<profile>>

Mapping
<<profile>>
Deployment

Figure 3. Profiles to model reliability in EJB
applications

In the design profile, meta-modeling techniques will be
used to map out reliability mechanisms in a profile. This
profile is composed of three main specifications:

1. UML/EJB Profile - which expresses the basic seman-
tics of EJB in the UML notation.

2. UML Profile for Schedulability, Performance and
Real-Time Specification (briefly, Real-Time Pro-
file) [10] - for the reason that it specifies how appli-
cations requiring a quantitative measure of time can be
modelled in a MDA standard way.

3. UML Specification [11] - to realize what is lacking in
the above specifications to carry out the reliability pro-
file following standardized UML notations, definitions
and semantics.

In the mapping domain, where the mapping profile
will be realized, constraints that rule the desired reliabil-
ity mechanism are mapped to a designed application. For

example, all the stateful session beans to be replicated
throughout the clusters should be idempotent (i.e. they can
be called repeatedly without worrying about altering the
system so that it becomes unusable or provides errant re-
sults). Finally, the deployment profile will provide the con-
figuration of how the components will communicate and be
distributed throughout the network.

In order to map the clustering mechanism proposed in
this scenario, we should know what is the desired reliability
assurance of the system. By this means, it is possible to
know how many replicated components there should be in
each cluster to guarantee the desired reliability level.

The functional formula for this assurance is:

1− (1− c)n > a (1)

wherec is the reliability of each component,a is the re-
quired reliability of the system andn is the number of com-
ponents that should be comprised in each cluster. Suppose
a is 95% andc is 75%. Then, according to Formula 1 the
value ofn is 3. Therefore, each cluster of the deployment
diagram should have at least 3 copies of the component to
be replicated.

To reflect this scenario, the classes of the design profile
to be replicated should be mapped to the deployment profile
through the mapping profile. A fragment of the mapping
profile to assure the reliability property above is described
in OCL as follows:

context mapping inv:
self.supplier.ownedElements->select(

m : ModelElement | m.oclIsType(Class) and
m.stereotype->exists(name =
"replicatedComponent"))-> forAll(

(1 - (1 - m.taggedValue->any(type =
"componentReliability").dataValue)ˆ

self.consumer.ownedElements->
select(n : ModelElement |

n.oclIsType(Component) and
n.name = m.name))->
size())> m.taggedValue->any(type =
"aggregateReliability").dataValue)

whereself.supplier refers to the classes in the de-
signed profile andself.consumer refers to the compo-
nents in the deployment profile.

There is, however, one important step that is not de-
scribed here but must be accomplished, which is the sup-
port in MDA for formal analysis. In this regard, it is re-
quired a formal analysis profile to separately express de-
pendability in an analysis model. This accomplishment
might follow the approach in [14], which is under develop-
ment here at UCL. That work aims at providing a MDA per-
formance analysis to enterprise applications and has shown
that worthwhile benefits arise, such as:

• Flexible application of analysis techniques to design
domains by defining new mappings;

• Use of model checking tools to check the semantic va-
lidity of the analytic model against the design model.

5. Conclusions And Future Work

In this paper we have presented the idea on how we plan
to tackle the problem of reliability assurance in MDA. The
motivation to achieve this purpose is the identified impor-
tance and benefits arising from addressing dependability
concern in the stage of software engineering where the ar-
chitecture is designed.

There are many steps, however, to accomplish that task.
First of all, a reliability profile should be carried out. In or-
der to achieve a consistent and integrated environment, all
the steps should be expressed within the available mecha-
nisms of MDA. Exploiting the standard UML and the pro-
files already created constitutes the basis of our work. How-
ever, there are complementary mechanisms that the current
MDA does not provide. For example, ways to assess the
designed dependability issues. Therefore, a profile to carry
out this assessment should be created by means of meta-
modeling techniques, following the same approach of [14].

Immediate future challenges include determining pre-
cisely a profile to translate reliability in terms of a valid
MDA profile. To achieve this goal within a more concrete
approach, we plan to map into that profile the reliability
mechanisms available in the J2EE platform. This bottom-
up approach is expected to aid in identifying the required re-
sources that should be mapped in a reliability-aware PSM.
Following all the steps presented in Section 3, we finally
wish to enhance the level of automation for mappings and
evaluate the practicality of our approach using real-life case
studies with realistic complexity.

Acknowledgments

We would like to thank Licia Capra, Rami Bahsoon and
Philip Cook for their assistance with this document.

References

[1] A. Bondavalli, I. Majzik, and I. Mura. Automatic De-
pendability Analysis for Supporting Design Decisions
in UML. In R. Paul and C. Meadows, editors,Proc.
of the4th IEEE International Symposium on High As-
surance Systems Engineering. IEEE, 1999.

[2] V. Cortellessa, H. Singh, and B. Cukic. Early reliabil-
ity assessment of uml based software models. InPro-
ceedings of the third international workshop on Soft-
ware and performance, pages 302–309. ACM Press,
2002.

[3] W. Emmerich. Distributed Component Technologies
and Their Software Engineering Implications. InProc.
of the24th Int. Conference on Software Engineering,
Orlando, Florida, pages 537–546. ACM Press, May
2002.

[4] J. C. L. et.al.Dependability: Basic Concepts and Ter-
minology. Springer–Verlag, 1992.

[5] P. Frankl, R. Hamlet, B. Littlewood, and L. Strig-
ini. Choosing a Testing Method to Deliver Reliability.
In International Conference on Software Engineering,
pages 68–78, 1997.

[6] J. Greenfield. UML Profile for EJB. Technical report,
http://www.jcp.org/jsr/detail/26.jsp, May 2001.

[7] G. Huszerl and I. Majzik. Modeling and analysis of re-
dundancy management in distributed object–oriented
systems by using UML statecharts. InProc. of the
27th EuroMicro Conference, Workshop on Software
Process and Product Improvement, Poland, pages
200–207, 2001.

[8] B. Littlewood and L. Strigini. Software Reliability and
Dependability: A Roadmap. In A. Finkelstein, editor,
The Future of Software Engineering, pages 177–188.
ACM Press, Apr. 2000.

[9] Object Management Group. Model
Driven Architecture. Technical report,
http://cgi.omg.org/docs/ormsc/01-07-01.pdf, July
2001.

[10] Object Management Group. UML Profile for
Schedulability, Performance and Real-Time Specifi-
cation. Technical report, http://www.omg.org/cgi-
bin/doc?ptc/02-03-02.pdf, March 2002.

[11] Object Management Group. Unified Modeling
Language (UML), version 1.4. Technical re-
port, http://www.omg.org/cgi-bin/doc?formal/01-09-
67.pdf, January 2002.

[12] B. Randell. Software Dependability: A Personal
View (Invited Paper). InProc. 25th Int. Symp. Fault-
Tolerant Computing (FTCS-25, Pasadena), pages 35–
41. IEEE Computer Society Press, 1995.

[13] E. Roman. Mastering Enterprise Java Beans. John
Wiley & Sons, Inc, 2002.

[14] J. Skene and W. Emmerich. Model Driven Perfor-
mance Analysis of Enterprise Information Systems.
Electronical Notes in Theoretical Computer Science,
March 2003. To appear.

[15] Sun MicroSystems. Enterprise JavaBeans
Specification, version 2.1. Technical report,
http://java.sun.com/j2ee/docs.html, August 2002.

FaTC2: An Object-Oriented Framework for Developing Fault-Tolerant
Component-Based Systems

Fernando J. Castor de Lima Filho Paulo Asterio de C. Guerra
Cecı́lia Mary F. Rubira

Instituto de Computac¸ão
Universidade Estadual de Campinas, Brazil

{fernando.lima, asterio, cmrubira}@ic.unicamp.br

Abstract

Component-based systems built out of reusable software
components are being used in a wide range of applica-
tions that have high dependability requirements. In order
to achieve the required levels of reliability and availabil-
ity, it is necessary to incorporate into these complex sys-
tems means for coping with software faults. In this paper
we present FaTC2, an object-oriented framework which fa-
cilitates the construction of fault-tolerant component-based
systems by giving support to fault tolerance techniques.
FaTC2 is an extension of C2.FW, an OO framework which
provides an infrastructure for building applications using
the C2 architectural style. More specifically, FaTC2 ex-
tends C2.FW in order to introduce a forward error recovery
mechanism by means of an exception handling system. Our
main contribution is to provide a framework which gives
support to a software architectural level exception handling
system. We also present a case study showing how our
framework can be employed for building a fault-tolerant
component-based application.

1. Introduction

Modern computing systems require evolving software
that is built from existing software components, developed
by independent sources[2]. Hence, the construction of sys-
tems with high dependability requirements out of software
components represents a major challenge, since few as-
sumptions can generally be made about the level of con-
fidence of third party components. In this context, an archi-
tectural approach for fault tolerance is necessary in order to
build dependable software systems assembled from untrust-
worthy components[8].

Fault tolerance at the architectural level is a young
research area that has recently gained considerable

attention[7]. Most of existing works in this area empha-
size the creation of fault tolerance mechanisms[9, 11] and
description of software architectures with respect to their
dependability properties [12, 14].

The work of Guerra et al[6] presents a structuring con-
cept for the incorporation of an exception handling mecha-
nism in component-based systems, at the architectural level.
This notion is based on the concept of the Idealised Fault-
Tolerant Component(IFTC)[1]. The IFTC separates the
abnormal (fault tolerance measures) activities of a system
from its normal activity. Upon the receipt of a service re-
quest, an IFTC produces three types of responses:normal
responses in case the request is successfully processed,in-
terface exceptions in case the request is not valid, and fail-
ure exceptions, which are produced when a valid request is
received but cannot be correctly processed.

In this paper we present an object-oriented framework,
called FaTC2, for building fault-tolerant component-based
systems based on the IFTC. Our framework is an extension
of C2.FW[10], an OO framework which provides an infras-
tructure for building applications using the C2 architectural
style[15]. FaTC2 introduces forward error recovery in the
original framework by means of an exception handling sys-
tem (EHS). An EHS offers control structures which allow
developers to define actions that should be executed when
an error is detected. This materializes by the capability to
signal exceptions and, in the code of the handler, to put the
system back in a coherent state. A forward error recov-
ery mechanism manipulates the state of a system in order
to remove errors and enable it to resume execution without
failing. Forward error recovery is usually implemented by
means of exception handling.

The C2 architectural style[10, 15] is a component-based
architectural style which supports large grain reuse and
flexible system composition, emphasizing weak bindings
between components. The C2 style has been chosen
due to its ability to compose heterogeneous off-the-shelf

components[10]. The work of Rakic and Medvidovic[11]
is the only one we know of which describes means for sup-
porting the construction of fault-tolerant C2 applications. It
presents the concept ofMulti-Version Connector, a mecha-
nism created to permit the reliable upgrade of software com-
ponents in a configuration, by means of design diversity[1].

Our main contribution is the construction of a framework
which supports an architectural level EHS. In component-
based development, source code for the components which
make up a system might not be available, specially if third
party components are employed. Hence, it is not possible to
introduce exception handling directly in the component. An
architectural level EHS deals with this kind of problem by
providing an infrastructure for defining exceptions and at-
taching the corresponding handlers to components without
the need to modify them.

The rest of this paper is organized as follows. Section 2
provides some background information. Section 3 presents
the proposed framework, FaTC2, describing its most im-
portant elements. An example application is presented in
Section 4. Final conclusions are given in Section 5.

2. Background

2.1. The C2 Architectural Style

In the C2 architectural style components communicate
by exchanging asynchronous messages sent through con-
nectors, which are responsible for the routing, filtering, and
broadcast of messages. Figure 1 shows a Software Archi-
tecture using the C2 style where the elements A, B, and D
are components, and C is a connector.

Components and connectors have atop interface and a
bottom interface(Figure 1). Systems are composed in a lay-
ered style, where the top interface of a component may be
connected to the bottom interface of a connector and its
bottom interface may be connected to the top interface of
another connector. Each side of a connector may be con-
nected to any number of components or connectors. Two
types of messages are defined by the C2 style: requests,
which are sent upwards through an architecture, and notifi-
cations, which are sent downwards. Requests ask compo-
nents in upper layers of the architecture for some service
to be provided, while notifications signal a change in the
internal state of a component.

2.2. C2.FW Framework

The C2.FW framework[10] provides an infrastructure
for building C2 applications. It is part of the ArchStudio[16]
environment, which is an architecture-oriented integrated
development environment which comprises a collection of
tools to help in the development of applications based on

Figure 1. An example architecture using the
C2 style.

the C2 style. C2.FW has been implemented in C++, Java,
Python and Ada.

The C2.FW Java[5] framework comprises a set of classes
and interfaces which implement the abstractions of the C2
style, such as components, connectors, messages, and in-
terconnections. The framework provides various features,
such as support to different threading models and queuing
policies, and sophisticated message processing and event
propagation mechanisms. It does not, however, implement
any mechanisms for the provision of error recovery.

2.3. Idealised C2 Component

The work of Guerra et al[6] uses the concept of Idealised
Fault-Tolerant Component (IFTC) to structure the architec-
ture of component-based software systems compliant with
the C2 architectural style. It introduces the Idealized C2
Component(iC2C), which is equivalent, in structure and be-
havior, to the IFTC. Service requests and normal responses
of an IFTC are mapped as requests and notifications in the
C2 architectural style. Interface and failure exceptions of an
IFTC are considered subtypes of notifications.

The iC2C is composed of five elements: NormalAc-
tivity and AbnormalActivity components, and iC2Ctop,
iC2C internal, and iC2Cbottom connectors. Its internal
structure is presented in Figure 2.

The NormalActivity component processes service re-
quests and answers them through notifications. It also im-
plements the error detection mechanisms of the iC2C. The
AbnormalActivity component encapsulates the exception
handlers of the iC2C. While a system is in a normal state,
the AbnormalActivity component remains inactive. When
an exceptional condition is detected, it is activated to han-
dle the exception. In case the exception is successfully han-
dled, the system enters a normal state and the NormalAc-
tivity component resumes processing. Otherwise, a failure
exception is sent and components in lower layers of the ar-
chitecture become responsible for handling it.

The iC2Cbottom connector is responsible for filtering
and serializing requests received by the iC2C. This con-
servative policy aims at guaranteeing that requests are al-
ways received by the NormalActivity component in its ini-

Figure 2. Internal structure of an iC2C.

tial state, to avoid possible side-effects of an exceptional
condition caused by a concurrent service request. The
iC2C internal connector is responsible for the routing of
messages inside the iC2C. The destination of the messages
sent by the internal elements of the iC2C depends on the
message type and whether the iC2C is in a normal or abnor-
mal state.

The iC2Ctop connector encapsulates the interaction be-
tween the iC2C and components located in upper levels of
the architecture. It is responsible for guaranteeing that ser-
vice requests sent by the NormalActivity and AbnormalAc-
tivity components to other components located in upper lev-
els of the architecture are processed synchronously. And
that response notifications reach the intended destinations.
The iC2Ctop connector also performs domain translation,
converting incoming notifications to a format which the
iC2C understands and outgoing requests to a format which
the application understands.

The structure of the iC2C makes it compatible with the
constraints imposed by the C2 architectural style. Hence,
an iC2C may be incorporated into an existing C2 config-
uration. Previous experiments[6, 8] with the IC2C model
have shown its adequacy for the construction of component-
based systems, including systems built from off-the-shelf
components[7].

3. Description of the Framework

In order to facilitate the development of fault-tolerant ap-
plications using the C2 style, we have extended the Java[5]
version of C2.FW with the concept of iC2C. The original
C2.FW framework does not provide adequate support for
the construction of fault-tolerant systems. Our aim is to

Figure 3. A summarized class hierarchy for
C2.FW and FaTC2.

provide the support for error recovery, more specifically,
forward error recovery, by means of an EHS.

The extended C2.FW framework has been baptized
FaTC2, which is an abbreviation for Fault-Tolerant C2.
FaTC2 allows fault-tolerant systems to be built in a well-
organized manner, using iC2Cs as structural units. The
main advantage of this approach is the fact that frame-
work users do not need to implement an EHS in or-
der to create fault-tolerant applications. Only the nor-
mal activity(functional requirements) and abnormal activ-
ity(exception handling) of the component should be de-
fined. Connections between normal and abnormal parts are
managed by FaTC2.

Figure 3 presents a summarized class hierarchy for
FaTC2, and its intersection with C2.FW. In the following
sections we describe FaTC2, based on the elements which
compose an iC2C(Figure 2).

3.1. IC2C

The creation of an iC2C is encapsulated by theIC2C
class. Instances ofIC2C are created by a factory method[3]
which takes as arguments the name of the iC2C to be
created and objects representing the NormalActivity and
AbnormalActivity components(Figure 2). Optionally, it
may also receive objects representing the iC2Ctop and
iC2C bottom connectors as arguments, in case filtering or
domain-translation are required. If these arguments are
omitted, default implementations are employed.

Although theIC2C class may be used directly in an
application, it is recommended that developers create sub-
classes of it, specifying the NormalActivity and Abnor-
malActivity components, and iC2Ctop and iC2Cbottom
connectors which are to be used.

3.2. NormalActivity Component

The NormalActivity component is one of the ele-
ments of the iC2C which must be implemented by
developers employing FaTC2. In order to define a
NormalActivity component, a developer must provide
a class that implements theINormalActivity inter-
face. This interface declares three operations which de-
fine the application-dependent behavior of the compo-
nent: handleRequest(), returnToNormal(), and
reset(). These operations must be implemented by the
developer. TheAbstractNormalActivityComponent ab-
stract class should also be extended. This class implements
the internal protocol of the iC2C, which is application-
independent.

The handleRequest() method is responsible for
processing service requests. It takes as argument a message
corresponding to the request to be executed, and returns a
response notification to be delivered to the client compo-
nent. It is important to note that the framework provides the
reusable code which actually sends the response notifica-
tion and receives the service request. The code responsible
for these tasks is implemented byAbstractNormalActivi-
tyComponent.

If an error occurs during the processing of a service re-
quest, an exception is thrown, which may be a failure excep-
tion (classIC2CFailureException) or an interface excep-
tion (classIC2CInterfaceException). These are caught by
the framework and packaged as exception messages, which
are sent to the AbnormalActivity component. It is impor-
tant to note that the application code only throws language-
specific exceptions. Architecture-level exceptions are man-
aged by the framework itself.

In case the handling of a request demands the NormalAc-
tivity component to request services from components lo-
cated in upper levels of the architecture, theAbstractNor-
malActivityComponent class provides a utility method,
requestService(), which may be used to send syn-
chronous(request/response) requests transparently, upwards
the architecture.

ThereturnToNormal() andreset()methods are
related to the abnormal activity of the iC2C. The former
is called when the iC2C has successfully handled an ex-
ception, and should return to normal activity. The latter is
called when the iC2C is unable handle an exception, and
should return to its initial state so that the erroneous state
does not affect subsequent requests.

3.3. AbnormalActivity Component

In order to implement an AbormalActivity compo-
nent, a developer must provide a class that implements
the IAbnormalActivityComponent interface and extends

theAbstractAbnormalActivityComponent abstract class.
Similarly to the NormalActivity component, the Abnor-
malActivity component has both application-dependent
and application-independent behaviors.AbstractAb-
normalActivityComponent implements the application-
independent behavior of the AbnormalActivity compo-
nent, whileIAbnormalActivityComponent specifies the
application-dependent behavior.

A single operation is defined by theIAbnormalActiv-
ityComponent interface: handleException(). This
operation must be implemented by the developer and de-
fines the exception handler of the iC2C. This operation takes
the exception to be handled as argument. If an exception
is successfully handled,handleException() returns a
message object which is sent to the NormalActivity compo-
nent. Processing is then resumed. Otherwise, an exception
is thrown from the body ofhandleException(). This
exception is caught by FaTC2 and a failure exception mes-
sage is sent to the components in the lower levels of the
architecture. In case the exception handler for a component
which is in the lowest level of an architecture is unable to
handle a given exception, it should notify an external user
about this fact.

In case the handling of an exception requires the Ab-
normalActivityComponent to request services from other
components, or from the NormalActivityComponent in the
same iC2C, classAbstractAbnormalActivityComponent
provides methods which allow synchronous requests to be
carried transparently, similarly to theAbstractNormalAc-
tivityComponent class.

3.4. iC2C top, iC2C bottom and iC2C internal
Connectors

The IC2CTopConnector, IC2CBottomConnector,
and IC2CInternalConnector classes are default im-
plementations for the iC2Ctop, iC2Cbottom, and
iC2C internal connectors, respectively.

IC2CTopConnector andIC2CBottomConnector may
be extended in order to implement filtering of notifica-
tions in the top domain of an iC2C, or requests in its bot-
tom domain, respectively. A filtering scheme is defined
by implementing theaccept() method in a subclass of
IC2CTopConnector or IC2CBottomConnector. A mes-
sagem is processed only ifaccept(m) == true.

Subclasses ofIC2CTopConnector may also imple-
ment domain translation in the top domain of the iC2C.
The methodstranslateIncomingMessage() and
processOutgoingMessage() are responsible for this
task and are called by FaTC2, respectively, immediately af-
ter a message has beenaccepted by the iC2Ctop connector,
and immediately before a given message is sent by it.

The iC2Cbottom connector is not expected to perform

domain translation. In the C2 architectural style, an element
placed in an upper layer of an architecture should make no
assumptions about elements in the lower layers[15].

In case no filtering or domain translation is necessary, the
default implementations for the iC2Ctop and iC2Cbottom
connectors may be used.

The IC2CInternalConnector class is reused without
needing any specialization, since its only task is to route
messages inside an iC2C.

4. An Application Example

In order to show the usability of FaTC2, we present
a small example extracted from the Mine Pump Control
System[13]. The problem is to control the amount of water
that collects at the mine sump, switching on a pump when
the water level rises above a certain limit and switching it
off when the water has been sufficiently reduced. In this
section, we describe an implementation for the example ap-
plication which uses the infrastructure provided by FaTC2.

4.1. Description of the Architecture

The C2 architecture of our example is shown in Figure
4. The Pump component commands the physical pump
to be turned on/off. ComponentLowWaterSensor sig-
nals a notification when the water level is low.Water-
FlowSensor checks whether water is flowing out of the
sump. TheIdealPumpControlStation component con-
trols the draining of the sump by turning on/off the pump,
according to the level of the water in the sump. It in-
cludes an exception handler which is executed when the
pump is turned on but no water flow is detected. The er-
ror handler is implemented by theAbnormalPumpCon-
trolStation component. ThePump, LowWaterSensor and
WaterFlowSensor components have been implemented as
simple C2 components, whileIdealPumpControlStation
is an iC2C. In order to build theIdealPumpControlSta-
tion, five classes are implemented:NormlPumpControl-
Station, AbnormalPumpControlStation, PumpControl-
StationTop, IdealPumpControlStation andTranslation-
Connector.

Class NormalPumpControlStation implements the
NormalActivity component ofIdealPumpControlStation,
that is, the methods defined by theINormalActivity-
Component interface(Section 3.2). Due to the support pro-
vided by FaTC2, no messages need to be explicitly sent by
any of the methods inNormalPumpControlStation; that
is, the architect does not need to understand the internal pro-
tocol of the iC2C or the way it is implemented.

The AbnormalPumpControlStation class implements
the exception handler of theIdealPumpControlSta-
tion. When an exception message is received by the

Figure 4. C2 configuration for the Fault Toler-
ant Mine Pump Control System.

handleException() method, the latter keeps sending
new requests toPump until either water flow is detected
or the maximum number of retries permitted is reached.
In the former case, normal activity is resumed(the method
simply returns). In the latter, a failure exception message
is sent downwards the architecture(the method throws an
IC2CFailureException). The following code snippet par-
tially illustrates this situation.

public Message handleException(Exception e)

throws Exception {
(...)

if(this.retries >= this.MAX RETRIES) {
throw new IC2CFailureException(e);

}
(...)

In order to send an exception message downwards the
architecture, the architect should throw a Java excep-
tion. In the example above, an exception of type
IC2CFailureException, a subtype of Exception, is
thrown.

The PumpControlStationTop class provides theIde-
alPumpControlStation component with an extension
of the IC2CTopConnector class which performs filter-
ing. When a request is issued by theIdealPump-
ControlStation, PumpControlStationTop records the
type of the request sent, so that only a notifica-
tion which is a response to that request is allowed
to be processed. To build this filtering scheme, two

methods had to be implemented:accept() and
processOutgoingMessage()(Section 3.4).

IdealPumpControlStation is a subclass ofIC2C. The
IdealPumpControlStation class defines a public construc-
tor which takes as argument the name of theIdealPump-
ControlStation instance to be created.TranslationCon-
nector translates requests and notifications at the bottom
interface of theIdealPumpControlStation (Figure 4).

It is important to note thatno classes other than the
one which originally implemented thePumpControlSta-
tion component were modified. Working versions of
FaTC2 and the example application can be downloaded at
http://www.ic.unicamp.br/˜ra014861/FaTC2.

5. Conclusions

Component-based systems built out of reusable software
components are being used in a wide range of applica-
tions that have high dependability requirements. In order
to achieve the required levels of reliability and availability,
it is necessary to incorporate into these complex systems
means for coping with software faults. In component-based
development, source code for the components which make
up a system might not be available. This motivates the cre-
ation of architectural level fault tolerance mechanisms.

In this work, we have presented FaTC2, an object-
oriented framework for the construction of fault-tolerant
component-based systems. FaTC2 is an extension of
C2.FW, a framework which provides an infrastructure for
bulding applications in the C2 architectural style, but
lacks support for the construction of fault-tolerant systems.
FaTC2 extends C2.FW with a software architectural level
exception handling system which is based on the concept
of idealised C2 component. We have also presented an ex-
ample demonstrating how to use FaTC2 to make a fault-
tolerant system.

We plan to apply our framework to build a more complex
case study where some off-the-shelf components are used.
In order to meet this goal, it is necessary to expand the im-
plementations of the NormalActivity and AbnormalActivity
components of the iC2C, according to the models proposed
by Guerra et al[7, 8], so as to deal with the architectural
mismatches[4] which usually arise from the integration of
COTS components.

Until the present moment, the iC2C has been modeled
as a synchronous entity and the implementation of FaTC2
conforms to this model. That means that an iC2C is unable
to handle asynchronous notifications and that requests are
issued under the assumption that a response will be even-
tually received. This restriction might be undesirable for
some applications, since a large amount ofglue code may
be necessary if a synchronous iC2C needs to interact with
asynchronous components. Hence, another future work for

FaTC2 is the implementation of an iC2C for which these
restrictions are relaxed.

Finally, we also plan to construct a tool that facilitates
the incorporation of exception handling into new and ex-
isting applications. We plan to integrate this tool with the
ArchStudio environment.

References

[1] T. Anderson and P. A. Lee.Fault Tolerance: Principles and
Practice. Prentice-Hall, 2nd edition, 1990.

[2] A. Brown and K. Wallnau. The current state of CBSE.IEEE
Software, 15(5):37–46, September/October 1998.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Software Systems. Addison-
Wesley, 1995.

[4] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match: Why reuse is so hard.IEEE Software, 12(6):17–26,
1994.

[5] J. Gosling, B. Joy, and G. Steele.The Java Language Spec-
ification. Addison-Wesley, 1996.

[6] P. Guerra, C. Rubira, and R. de Lemos. An idealized fault-
tolerant architectural component. InProceedings of the 24th
International Conference on Software Engineering - Work-
shop on Architecting Dependable Systems, May 2002.

[7] P. Guerra, C. Rubira, A. Romanovsky, and R. de Lemos. In-
tegrating COTS software componentes into dependable soft-
ware architectures. InProceedings of the 6th ISORC. To Ap-
pear. IEEE Computer Society Press, 2003.

[8] P. A. C. Guerra, C. M. F. Rubira, and R. de Lemos.Archi-
tecting Dependable Systems, chapter A Fault-Tolerant Ar-
chitecture for Component-Based Software Systems. Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[9] V. Issarny and J. P. Banatre. Architecture-based exception
handling. InProceedings of the 34th Annual Hawaii Inter-
national Conference on System Sciences. IEEE, 2001.

[10] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-
the-shelf components in c2-style architectures. InProceed-
ings of the 1997 Symposium on Software Reusability, 1997.

[11] M. Rakic and N. Medvidovic. Increasing the confidence in
off-the-shelf components: A software connector-based ap-
proach. InProceedings of the 2001 Symposium on Software
Reusability, pages 11–18. ACM/SIGSOFT, May 2001.

[12] T. Saridakis and V. Issarny. Fault-tolerant software architec-
tures. Technical Report 3350, INRIA, February 1999.

[13] M. Sloman and J. Kramer.Distributed Systems and Com-
puter Networks. Prentice Hall, 1987.

[14] V. Stavridou and A. Riemenschneider. Provably depend-
able software architectures. InProceedings of the Third
ACM SIGPLAN International Software Architecture Work-
shop, pages 133–136. ACM, 1998.

[15] R. N. Taylor, N. Medvidovic, K. Anderson, J. E. J. White-
head, and J. Robbins. A component- and message- based
architectural style for GUI software. InProceedings of
the 17th International Conference on Software Engineering,
pages 295–304, April 1995.

[16] UCI. ArchStudio 3.0 homepage.
http://www.isr.uci.edu/projects/archstudio.

A Dependable Real-Time Platform for Industrial Robotics

Goran Mustapic, Johan Andersson, Christer Norstrom

ABB Robotics, Västerås, Sweden

goran.mustapic, johan.x.andersson, christer.e.norstrom @se.abb.com

Abstract

Industrial Robots are complex systems with hard real
time, high safety, reliability and availability
requirements. Robot Controllers are part of these systems
and they are complex hard real time computers, which
control a robot’s mechanical parts. To be useful, Robot
Controllers must be programmable by end customers.
This is typically done through a domain and vendor
specific programming languages.

In this position paper, we will describe some of the
architectural challenges we are facing and work we have
done, in the process of turning the Robot Controller from
an application platform into a dependable platform
whose base functionality can be extended by a third party
which is not necessarily the end customer.

1. Introduction
Industry demands for safety at work and 60.000 hours of
mean time between failures put high demands on the
quality of hardware and software of industrial robots.
Industrial robots are systems, which consist of a
mechanical unit (robot arms that can carry different
tools), electrical motors, Robot Controller (computer
hardware and software) and clients. Clients are used for
on-line and off-line programming of the Robot
Controller.

The focus of this article will be the open software
architecture of the Robot Controller. According to Issarny
[6], in open systems, components do not depend on a
single administrative domain and are not known at design
time. In this article, we describe a domain specific
platform, which faces significant new challenges on the
way to become an open platform.

The reason for opening up the controller for third parties
is to increase the possibility for partners to provide
functionality that ABB Robotics do not either find

prioritized or do not have resources for. In a closed
platform, the development organization responsible for
the platform is the limiting factor. To increase the
development speed in the future we can either increase
the size of the development organization or open up the
system for third party. We believe in the latter, that the
number of new types of usages of the robot will increase
if we let niche companies adapt the robot for a specific
type of applications and customers. The challenges can be
divided into:

• developing an appropriate business model,

• determining what type of extensions that should be
supported,

• defining an open and dependable architecture,

• defining the certification process and technical
details

In this paper we will focus on the technical challenges.

Since we have the system responsibility towards our
customers we have to ensure our customers that
extensions made by a third party do not have negative
side effect on the delivered system. This is a big
difference compare to the desktop based systems, where a
company that builds a system on top of for example
Microsoft Windows© is responsible towards the end
customer of the system quality.

The contributions presented in the remainder of this paper
are the following:

• We make a short analysis of an industrial robot
system and analyze the relevance of the individual
dependability attributes for the industrial robot
domain.

• We present some initial thoughts on the architectural
level reasoning about the open dependable platform
for the Robot Controller.

• We present the results of the work to model the
platform and enable early reasoning of the
architectural level choices.

The outline of the paper is as follows. Section 2 presents
a short background about ABB Robot Controller. Section
3 explains the relevance of the individual dependability
attributes for our system. In Section 4 we discuss
similarities and differences of an open Robot Controller
and open desktop systems. Section 5 describes the initial
ideas about an open architecture and also the results of an
initial case study to model our control system. Finally, in
Section 6 we make some conclusions and discuss future
work.

2. Background about ABB Robot Controller
 The ABB Robot Controller was initially designed in the
beginning of the 1990. The requirement was that the same
controller should be used for all different types of robots,
and thus the architecture is a product line architecture. In
essence, the controller has an object-oriented architecture
and the implementation consists of approximately 2500
KLOC of C language source code divided on 400-500
classes organized in 15 subsystems. The system consists
of three computers that are tightly connected: a main
computer that basically generates the path to follow, the
axis computer, which controls each axis of the robot, and
finally the I/O computer, which interacts with external
sensors and actuators.

Only one of those three mentioned computer nodes is
open to the end users, and that is the main computer. End
users write their programming logic in the form of an
imperative language called RAPID. This can be done
through off-line programming on a PC, or on-line
programming on a client called Teach Pendant Unit
(custom hardware).

The system was originally designed to support easy
porting to new HW-architectures and new operating
systems. There were no initial requirements to have an
open architecture. Further, the system was not initially
designed to support temporal analysis, because of its
closed nature and limited amounts of changes that could
only be done by the internal development groups.

3. Discussion of dependability attributes in
the context of industrial robots
The analysis of the dependability attributes in this section
is done using the terminology presented by Avizienis,
Randell and Laprie in [2]. Dependability is described by
the following attributes: Reliability, Availability, Safety,
Integrity, Confidentiality, and Maintainability.

Security related attributes (confidentiality and integrity),
tend to be of less importance for industrial robots as
robots tend to be physically isolated, or only connected to

a control network together with other industrial devices.
Integrity of data which is not security related is very
important, as it is unacceptable that e.g. one task in the
system causes a hazard situation by damaging the safety
subsystem. All other dependability attributes are very
relevant.

Even though the contact of humans and robots in
industrial environments is restricted (robots work in their
cells, which are physically isolated by a fence), safety can
never be underestimated because a lack of safety can
cause substantial physical damages to the robot
equipment and its environment. For example, larger types
of robots are powerful machines capable of manipulating
a weight of 500 kg. Industrial robots belong to the
category of safety-critical systems, which do have a safe
state.

Because of the nature of the application, it is crucial to
have very high availability and reliability. Unreliability
leads to un-availability, which means production stop and
huge costs. Because of the complex setup of e.g. car
production line, a stop of a single robot leads most often
to unavailability of a whole production line. In a complex
case, a stop of a single robot can cause up to one day
production stop.

Maintainability is important in the sense that it is related
to availability. The shorter maintenance time the higher is
availability of the system. Ideally, the system should be
upgradeable without stopping the production. System
upgrades are complicated even for a closed platform, but
get much more complicated in a platform which is
extendable by a third party, because of the compatibility
issues.

When it comes to the dependability threats – fault, error
and failures, both hardware and software faults need to be
considered. Robot Controller software has both roles of
sending control sequences to the hardware as well as
predicting preventive hardware maintenance.

There are many different fault-tolerance methods that can
be applicable for industrial robots. Error recovery with
temporary graceful degradation of performance is not
acceptable. A robot either works or it does not work; it
cannot make its tasks by working slower depending either
on the task (such as arc welding) or because it is a link in
the production flow.

4. Towards an open architecture
In the introduction of this paper, we presented some of
the motivations for opening up the system. In this section
we will try to describe similarities and differences
between industrial robots and open desktop platforms
where openness is taken for granted. We will conclude

this section by a short analysis about which dependability
attributes are most threatened by opening up the system.

 4.1. A comparison to Windows© platform

Good examples of open platforms are Microsoft
Windows© and perhaps even more Linux operating
systems. We shall take the example of Microsoft
Windows©, which is closer to our case. It is possible to
extend the base platform on three basic different levels:
device driver level, win32 programs and .Net
applications. This is illustrated in the Figure 1.

Windows Kernel
Device
DriverDevice

DriverDevice
Driver

Win32 API

Windows
Application

Windows
Application

Windows
Application

.Net Framework

.Net
Application

.Net
Application .Net

Application

Figure 1: Different ways to extend Windows© platform

The architecture of the system guarantees that each of the
different extensibility mechanism only can make certain
amount of harm to the system, where device drivers can
do the most harm and .Net application least harm. Apart
from the basic or native ways to extend the platform,
many of the applications define their own extensibility
mechanisms, e.g. Internet Explorer and SQL Server.

The current way of adding functionality to the Robot
Controller corresponds to adding .Net applications to
Windows©. As previously mentioned, this is by adding
RAPID programs. This is shown in the Figure 2.

IO
Subsystem

OS Isolation Layer

RAPID
Robot

Application

RAPID
Robot

Application
RAPID
Robot

Application

OS Kernel

Safety
Subsystem

Motion
Subsystem

Program Server
Subsystem

RAPID
extensions

Figure 2: Current ways to extend the Robot Controller
software

We are considering the following additional ways of
extending the Robot Controller:

• Extensions to the robot programming language
RAPID

• New subsystems

• Extension logic to the existing subsystems (e.g.
fine-tuning of the robot path, new type of IO
card, new types of sensors for fine tuning of the
robot path etc.)

Let us consider the first type of extensions – RAPID
instructions. Basic commands in programming of a robot
are “motion” instructions instructing a robot to move its
arms to different positions. Some of the basic motion
commands are implemented as RAPID extensions and
perform their tasks by communicating to the motion
subsystem. The basic part of the Program Server contains
the engine for executing RAPID programs, and has
features like single stepping and executing the program
backwards (that is, running the robot backwards). There
is a limited set of commands that make the robot
programming language. New instructions can be added to
enable easier programming and facilitate e.g. very special
kinds of tools that a robot is using. This has traditionally
been restricted for in-house development because of the
harm these extensions can do to the system and
prohibitive costs of verifying the correctness of
extensions. This harm is equivalent to the harm that
unmanaged (native) code can do to a .Net application.
This extension code can bring the .Net application down
and .Net Framework has no ways to prevent it from doing
this. In the Robot Controller case, situation gets more
complicated when timing requirements of the Robot
Controller are considered.

Other types of extensions mentioned are potentially even
more dangerous to the overall system because they most
likely require more open access to the lower level
services in the system.

4.2. Revisiting the dependability attributes
If we shortly revisit the dependability attributes, which
we have analyzed in the section 3, we will see that
opening up the architecture will have some significant
consequences for several of the attributes. In particular:
reliability, availability and safety of the system are
threatened by a third party code. Maintainability of the
system gets much harder because of the need to handle
versioning problems between the platform and the
extensions.

Thus we have to find a dependable architecture to support
extending the platform in a predictable way.

5. Initial architecture reasoning about open
Robot Controller platform
We see the following as the most important architectural
goals and also biggest challenges we are facing:

• Defining the dependable platform architecture

• Good support for the development of extensions

• Support for the predictable assembly of extensions
and the platform

The platform will provide a Software Development Kit
(SDK) for developing the platform extensions. SDK
functionality may be grouped with focus on different
types of extensions. Support for modeling and simulation
will be a part of the SDK, as well as a framework for
certification of extensions.

Because timing aspects are crucial in the Real-Time
environment, we have already done some initial studies
on modeling/simulation of the system, to be able to verify
the architectural design in early stages. The rest of the
work mentioned below is in an initial phase.

5.1. Platform architecture
The work on architecture for dependable systems is
relevant in the context of defining the architecture of an
open dependable platform. According to [3] Non-
Functional Requirements (NFR) can be divided to:
Separation, Additive (a subset of the Separation) and
Integral NFR. The classification is based on the way NFR
can be taken into account in the system architecture.
Additive non-functional requirements (AFNR) are pure
add-on components to the architecture, while integral
non-functional requirements (INFR) can affect the
components of the entire system.

In the case of an open dependable platform, we will need
to use means for dependability to create a framework for
adding extensions. The choice of the architecture and
implementation of the dependability requirements, will
lead to this framework. Means for dependability can be
transparent, with a different degree of transparency, to
extension developers. We believe that for a hard-real time
system, extensions of the platform will have to be aware
of the platform dependability requirements. An example
is the timing requirements.

Some of the existing frameworks for implementing fault-
tolerant software present interesting ideas that we may
benefit from. An example is a framework for
implementing complex fault-tolerant software presented
by Xu, Randel and Romanovsky in [13].

It is also important for the software architecture to
support good testability, which is a contradictory
requirement to fault-tolerance. Example of the work in

this field that is relevant for us, is the work done by Voas
[9,10], and especially some of the work in the area of
distributed real time systems [8].

5.2. Research in Component Based Software
Engineering (CBSE)
The extensions of our platform could also be called
components. Component-Based Software Engineering
(CBSE) and Software Architecture research are much
related [4] and experiences from this field can help us in
architecting our platform. It is recognized that current
Component Technologies handle only syntactic aspects of
component compositions, while semantic and especially
extra-functional (non-functional) aspects of component
specification are open areas of research [4]. One of the
biggest challenges of the CBSE is predictable assembly of
components and an example of a technology in this
research area is called PECT. We believe our ideas are
quite inline with the PECT framework presented by the
research group at SEI Carnegie Mellon University in the
article “Packaging Predictable Assembly” [5]. In this
article, prediction-enabled component technology (PECT)
is presented, as both a technology and a method for
producing the instances of the technology. A PECT
instance is created by integrating a software component
technology with one or more analysis models. However,
focus of their work seems to be more on integration of the
existing technology and models, while our focus will be
more towards defining a dependable platform and a
simple custom component model with good dependability
characteristics.

Besides the predictable assembly, research experiences in
CBSE can be very useful for handling problems of
maintainability and compatibilities between platform and
extensions.

5.3. Certification of extensions

An example of a certification process for platform
extensions is Microsoft’s WHQL (Windows Hardware
Quality Lab [7]) certification program for the device
drivers. Some ideas from this process are definitely
applicable to our case. We would also need to act as a
certification authority. In our case, the situation is more
complicated because it is not only the certification of a
single component we are concerned about, but also the
already mentioned predictable-assembly. One of the
possible approaches to certification of COTS software is
presented by Voas in [11].

5.4. Model Checking and Simulation
In an open real-time system, with third party components
we need a method for extending the base system in a safe
way. Since the robot system is very sensitive for timing
errors, we have developed a method for analyzing the

impact of adding third party components. In a large
system such as the robot controller, this temporal side-
effect is hard to predict without models, due to the size
and complexity of the system.

Testing and debugging of a complex real-time system is
already difficult and when introducing a low-level
interface for extending the system with new components
makes it even harder. Now, not only the base system has
to be verified, but all combinations of extending
components that are to be used must be verified as well.

A component might work perfectly, but when it is
combined with another component it might introduce an
overload situation in some scenarios. This is dangerous
since an error caused by this side-effect can be hard to
find by testing and affects not only the current task, but
may cause a global overload situation, possible delaying
several tasks, causing multiple task deadlines to be
missed, and finally that the robot fails doing its task
properly.

Often the manufacturer of the base system wants to focus
on the performance and features of the base system, not
integration of special third party components. Letting the
component manufacturer be responsible for the extended
system is not better and in the industrial robot business,
big customers do not accept this. The third party
developers will not have access to the source code of the
base system, except perhaps an SDK, and will not have
the same expertise in the internal structure of the system.
Also, they are probably not able to achieve the same
quality on their system verification as the base system
manufacturer.

A better solution is to let the component developer create
a model of their component and let the base system
manufacturer certify the component. Their component
can through the process be certified for use with the
system as well as together with other certified
components. This is good for the component developer
since it provides a quality label for their software and the
base system manufacturer can sell more base systems.

We have developed a method and a prototype tool for
describing and analyzing these models. The approach is
developed for a robot controller, but the method can be
used for other systems as well.

In earlier work, the language-based simulation tool-suite
called ART-ML [1,12] was developed, a model creation
process has been developed and using it we created a
rough model of the controller. A specialized query-
language for powerful analysis simulation results as well
as data measured on the target system has been developed
[12].

So our approach consists of one base step were we
develop an initial model of the system and validate that
the model represents the modeled system correct. When
we have a model of the base system we can add
component models to the base model and analyze the
consequences of adding a particular set of components.
Currently this analysis will be performed off-line but in
the future we could do this even on-line.

When creating an initial model M0, of an existing system
S0, several distinct activities are required. These activities
are depicted in Figure 4. First the structure has to be
identified and modeled, i.e. the tasks in the system and
synchronization and communication among them. In the
next step, we measure the system and populate the
structural model with data about the temporal behavior.
Moreover, information needed in the validation phase is
collected, e.g. response times. When tuning the model,
the initial model M0 is compared with S0 by simulating
the model and comparing the results with the validation
data collected in the previous step. In this step it is
possible to introduce more details about the tasks
behavior in order to capture the system's behavior
accurately.

S0

T0

Structural modeling

U0

V0

M0

Populate the model

Tune the model

Sensitivity analysis

Figure 4: The model creation process

To validate the usefulness of the model it is necessary to
perform a sensitivity analysis. The sensitivity analysis
should be based on foreseen potential extensions or
changes in the particular system. The extensions are
introduced in the model as well as in the system and the
new systems are compared. Any divergence between the
behavior of the simulated model and the system indicates
that more details must be introduced in the model. This
increases the confidence in the created model.

In the robot controller we have studied, the following
typical changes were identified:

• Change existing behavior of a task which results
in changes in the execution time distribution.

• Add a task to the system.

• Change the priority of an existing task.

When a third party adds a component to the system a
model of the added component has to be provided. This
model is composed with all other added components’
models and the basic system model. Based on this
composed model, we can verify if the defined properties
still hold for that particular combination of components,
and if so draw the conclusion that the added components
do not affect the system behavior badly.

6. Future Work and Conclusions
We intend to continue our work in the direction of
defining architecture of a reliable, safe and maintainable
platform. We will also continue working on the modeling
and simulation to support the predictable assembly of the
platform and extension components.

From the initial analysis, which we have presented in this
paper, it can be seen that we will need to use experiences
from multiple areas of research and to combine them to
create an optimal domain specific solution.

Besides the technical challenges, there are also significant
business challenges around the certification process.
Without proper architecture, tool support etc, costs of
certification may turn out to be larger than the benefits of
having an open platform.

7. References

 [1] Andersson J., Neander J., Timing Analysis of a
Robot Controller, Master Thesis, Mälardalen
University, Sweden, http://www.mdh.se/, 2002.

 [2] Avizienis A., Randell B., and Laprie J.C.,
"Fundamental Concepts of Computer System
Dependability", IARP/IEEE RAS Workshop On
Robot Dependability, 2001.

 [3] Brandozzi M. and Perry E.D., "Architectural
Prescriptions for Dependable Systems", ICSE 2002
Workshop on Architecting Dependable Systems,
2002.

 [4] Crnkovic I., Hnich B., Jonsson T., and Kiziltan Z.,
Specification, Implementation and Deployment of
Components, Communications of the ACM,
volume 45, issue 10, 2002.

 [5] Hissam S., Stafford J., Wallnau K., and Moreno
G., "Packaging Predictable Assembly",
Proceedings of the First IFIP/ACM Working
Conference on Component Deployment, Berlin,
Germany, 2002.

 [6] Issarny V., "Software Architectures of Dependable
Systems: From Closed To Open Systems", ICSE
2002 Workshop on Architecting Dependable
Systems, 2002.

 [7] Microsoft Corporation, Windows Hardware
Quality Lab homepage,
http://www.microsoft.com/hwdq/hwtest/, 2003.

 [8] Thane H., "Monitoring, Testing and Debugging of
Distributed Real-Time Systems", Doctoral Thesis,
Royal Institute of Technology, KTH, Mechatronics
Laboratory, TRITA-MMK 2000:16, Sweden, 2000

 [9] Voas J., "Factors That Affect Software
Testability", Pacific Northwest Software Quality
Conference, Inc., 1991.

 [10] Voas J., Software Assessment - Reliability, Safety,
Testability, John Wiley & Sons, Inc, 1995.

 [11] Voas J., A Defensive Approach to Certifying
COTS Software, report RSTR-002-97-002.01,
Reliable Software Technologies Corporation,
1997.

 [12] Wall A., Andersson J, and Norstrom C.,
"Probabilistic Simulation-based Analysis of
Complex Real-Time Systems", will appear in the
6th IEEE International Symposium on Object-
Oriented Real-time Distributed Computing,
Hakodate Hoikado, Japan, 2003.

 [13] Xu J., Randell B., and Romanovsky A., "A
Generic Approach to Structuring and
Implementing Complex Fault-Tolerant Software",
nr 5th ISORC'02, IEEE Computer Society, 2002.

A Framework for Using Component Redundancy for
self-Optimising and self-Healing Component Based Systems

Ada Diaconescu*, John Murphy*

Performance Engineering Laboratory, Dublin City University
{diacones,murphyj}@eeng.dcu.ie

* The authors’ work is funded by Enterprise Ireland Informatics Research Initiative 2001

Abstract

The ever-increasing complexity of software systems
makes it progressively more difficult to provide
dependability guarantees for such systems, especially
when they are deployed in unpredictably changing
environments. The Component Based Software
Development initiative addresses many of the complexity
related difficulties, but consequently introduces new
challenges. These are related to the lack of component
intrinsic information that system integrators face at
system integration time, as well as the lack of information
on the component running-context that component
providers face at component development time.

We propose an addition to existing component models,
for enabling new capabilities such as adaptability,
performance optimisation and tolerance to context-driven
faults. The concept of ‘component redundancy’ is at the
core of our approach, implying alternate utilisation of
functionally equivalent component implementations, for
meeting application-specific dependability goals.

A framework for implementing component redundancy
in component-based applications is described and an
example scenario showing the utility of our work is given.

1. Introduction

Extensive employment of software systems in various
domains raised the concern for the dependability
guarantees provided by such systems (e.g. performance,
reliability, robustness). Nevertheless, the ever-increasing
size and complexity of modern software systems leads to
more complicated and expensive system design, testing
and management processes, decreasing system flexibility
and making it difficult to control dependability
characteristics of such systems [1].

In this context, Component Based Software
Development (CBSD) has emerged as a new solution that
promises to increase the reliability, maintainability and
overall quality of large-scale, complex software
applications. In the CBSD approach, software applications
are developed by assembling made or bought (i.e.

commercial off-the-shelf - COTS) components, according
to a well-defined software architecture.

Consequently, the dependability of component-based
software applications is determined by both the
dependability of the individual components involved, as
well as by the adopted software architecture. Considerable
research efforts towards determining optimal software
architectures ([2], [3], [4]) with respect to the system
quality attributes [5], as well as towards achieving
dependability guarantees for COTS components ([6], [7]),
support this idea. The impact software architecture has on
the overall software system performance is also
demonstrated in [8]. In this paper, it is shown how
different software architectures, providing the same
functionalities, yielded different performance results while
running in identical environmental conditions.

Information on the context in which a software
component or application will run (e.g. hardware and
software resources, workloads and usage patterns) is vital
when taking architectural, or design decisions. At software
development or integration time though, it is impossible to
predict with sufficient accuracy, the environmental
conditions in which software components or applications
will be deployed. In addition, the initial deployment
conditions can dynamically change at runtime. Using
COTS components exacerbates the problem, by increasing
the level of indetermination and making it hard to provide
dependability guarantees for the running system [6], [7].

Assuming that different architectural, design and
implementation-related choices proved optimal in
different environmental circumstances, we argue that it
would be beneficial for system quality if the software
application could accordingly adapt at runtime, when
accurate information were available. We propose the use
of redundancy in order to enable such capabilities for
component-based software systems. Our intent is to
enhance one of the existing component platforms (e.g.
EJB, .NET, or CCM) with support for software
component redundancy. The predicted benefits of this
approach include constant, automatic performance
optimisation for running applications, as well as tolerance
to certain categories of non-functional, integration-
specific faults (e.g. deadlocks, data corruption). By non-

functional faults, we mean faults that are not related to an
application’s expected functionality and therefore do not
imply any application-specific behavioural knowledge or
extra implementation effort to detect.

The rest of the paper is structured as follows. Section 2
provides an overview of our research proposal. An
example scenario, indicating the benefit of our work, is
presented in Sections 3. A general architecture for our
proposed framework is described in Section 4. Section 5
places our approach in the context of similar work in the
area. We conclude and present future work in Section 6.

2. Research overview

Our research goal is to enable dynamic adaptability
capabilities in complex, component-based software
systems, running in unpredictably changing environments,
in order to automatically optimise and maintain their
dependability characteristics.

Central to our solution is the concept of (software)
component redundancy. By this concept, we mean that a
number of component implementation variants, providing
the same or similar services, are available at runtime. We
refer to these component variants as redundant
components and say that a set of redundant components
providing an equivalent service constitutes a redundancy
group (with respect to that service). Any component
variant in a certain redundancy group can be functionally
replaced with any other component variant in the same
redundancy group.

Only one of the redundant components providing a
service is assigned, at any moment in time, for handling a
certain client request for that service (i.e. an instance of
that component is forwarded the client request). This
differs from other approaches (e.g. N-version
programming; agent-based systems [9]), where a number
of the available redundant variants work in parallel,
towards a common result. We refer to a component
variant that the application is currently using (i.e. sending
client requests to instances of that component version) as
an active component variant. Component variants that are
not currently considered for handling client requests are
referred to as passive component variants.

If instances of an active component variant fail, or
perform poorly in a certain context, the component variant
can be deactivated and replaced with an alternative
member of the same redundancy group. This is the main
means by which redundancy groups continually optimise
themselves, while dealing with changing execution
contexts, or context-driven faults.

We do not constrain the component redundancy
concept to the level of atomic components [10] [Figure 1-
a]. This concept can also be applied to composite
components [Figure 1-b] (i.e. composites [10],

‘containing’ a number of sub-components) or to
component sets, or groups (i.e. components ‘using’ other
components) [Figure 1 – c]. Therefore, through the rest of
the paper, references to redundant components can imply
atomic, composite, or sets of components.

Figure 1: Redundancy granularities

We intend to implement all functionalities that are
required to support and benefit from component
redundancy at the component platform level. No
development effort overhead is to be placed on the
developers of software components that are to be
deployed and run on such platforms. Of course, in order
for redundancy to be enabled, alternative variants would
have to be provided. However, our approach does not
require that multiple redundant components be available
at software application deployment or runtime. The only
constraint is that at least one component version must be
available for each external interface, at all times. While
complying with this constraint, redundant components can
be dynamically added or removed from the software
system, at runtime.

We propose that a formal component description be
available for every deployed component variant. The
description includes information on both functional (e.g.
provided and required services) and non-functional (e.g.
quality attributes, recommended resources) characteristics
of the component (e.g. similar to contracts as in [10], or
[11]). Most system quality characteristics depend upon the
execution context (e.g. response time is influenced by
workload and available resources). These variations are
represented in component descriptions as a list of
[environment related parameters, corresponding values]
pairs. Initially, component non-functional characteristics
can optionally be provided by component developers,
based on estimations, test results, or previous experience
with the supplied components. While a component variant
is active, its initial quality description is updated with run-
time monitoring information, for the precise application
configuration and execution environment.

3. Example

In this section, we provide an example of a possible
scenario in which our approach proves to be beneficial.
For this example, we opted for the EJB component

technology. However, we believe our framework is
generic enough to be applied to other component models.

The example involves two different component
implementations providing the same functionality:
repeatedly retrieving information from a remote database.
The two components differ at the design level. The first
design variant involves a single Session Bean, containing
SQL code for directly accessing the database. We will
refer to this variant as the Direct DB variant. In the second
design variant, a Session Bean uses an Entity Bean as
means of interacting with the database. We will refer to
this variant as the Using Entity Bean variant. A client
Session Bean is used for calling these two variants,
repeatedly requesting information.

We deployed our EJB example on an IBM WebSphere
application server, on Windows2000, running on an Intel
Pentium4, with 1.6GHz CPU and 512 MB RAM. We used
a DB2 database, running on Windows2000, Intel Pentium
4, 1.6 GHz CPU and 256 MB RAM. A third machine was
used for generating traffic and loading the network link to
the remote database, to various degrees. We used the
Tfgen traffic generator for this purpose. The three
machines were connected through a switched 100 Mbps
Ethernet LAN, completely separated from other traffic.

We measured the response delays for each version, in
different environmental conditions (i.e. available
bandwidth on the network links) and usage patterns (i.e.
number of repetitive read requests per client transaction).

When the network is lightly loaded, we experience
smaller delays in the Direct DB variant than in the Using
Entity Bean variant, regardless of the number of repetitive
client requests (e.g. 1, 10, 100, 1000 [requests per
transaction]). This can be accounted for by the overhead
incurred (in the Using Entity Bean variant) by the extra
inter-process communication and Entity EJB management.

However, increasing the load on the network link to the
remote database has significant impact on the Direct DB
approach, while hardly affecting the Using Entity Bean.
This can be explained by the fact that the Direct DB
variant needs to access the database for each individual
(client) read request. The Using Entity Bean variant,
involves a single database access per client transaction
(i.e. only for the first read request in the transaction), as
the data is then locally stored at the Entity Bean instance
level and retrieved from there for subsequent requests.
Therefore, for increased network loads (e.g. 90% load)
and number of read requests, the Direct DB design choice
produces higher delays than the Using Entity Bean does.
Using an Entity Bean to read from the database becomes,
in these circumstances, the optimal choice.

The optimal variant switching point between the two
implementations is reached when the inter-process
communication and CPU overhead (i.e. in the Using
Entity Bean variant) is exceeded by the repeated remote

database access overhead (i.e. in the Direct DB variant).
Figure 2 shows the response-time curves corresponding to
the two redundant variants, for various network loads,
when 1000 read requests were made per client transaction.
For obtaining these curves, we repeatedly measured the
response delays of such repetitive client requests, for
different network loads. We then calculated the average
delay value, for each network load.

Figure 2: response-time curves

Even though simple, this example shows how
alternating the activation of two redundant variants can
ensure better performance than either variant could, at all
times. We argue that it is hard, if not impossible to devise
a component version that exhibits optimal characteristics
in all possible running contexts. The optimal component
variant depends on the component execution environment,
which can frequently change. Our focus is on the
adaptation logic for automatically determining optimal
component variants and optimal combinations of
component variants, in different running contexts.

4. Framework general architecture

We propose implementing component redundancy as a
new service provided by component platforms (i.e.
besides already provided services, such as security,
transaction support, or life-cycle management). Three
main functionalities were identified as needed for the
support, utilization and management of redundant
components and were associated with three logical tiers in
our framework [Figure 3]: i) Monitoring tier; ii)
Evaluation tier and iii) Action tier. In this section, we
present the main roles and functionalities of each of these
tiers and discuss the way they interact in order to provide
the component redundancy service.

The Monitoring tier is concerned with acquiring run-
time information on the software application as well as on
its execution environment. Run-time monitoring implies
that information is collected exclusively for the active
component variants. It is also the responsibility of the
Monitoring tier to analyse the collected information and
identify any potential ‘problem’ components [1], [12].

The Evaluation tier is responsible for determining the
optimal redundant component variant(s) in certain
contexts, using adaptation logic, component descriptions
and monitoring information on the current environment
and application state. It also updates the descriptions of
active component variants, with runtime information from
the Monitoring tier. This helps the Evaluation tier to
‘learn’ in time about the performance characteristics of the
software application it has to manage.

Adaptation logic, for deciding which redundant
component(s) to activate (and deactivate respectively), is
reified in the Evaluation tier in the form of decision
policies. These are sets of rules, dictating the actions to be
taken in case certain conditions are being satisfied.
Decision policies can be customised for each deployed
application (e.g. requested quality attributes values,
default redundant components to activate) in order to
serve the specific application goals and can be
dynamically added, modified or deleted at runtime.

We split decision policies into two layers, based on
their complexity. The bottom layer comprises basic
decision policies, of the condition-action type. These
policies are used to remedy poor performance or critical
situations (e.g. response time thresholds are being
exceeded) and take immediate effect. The top layer is
reserved for decision policies concerned with application
optimisations, in conditions in which the application is not
necessarily evaluated as under-performing or faulty. These
policies are designed for activities such as reasoning,
predicting, planning, or scheduling, in order to optimise
application performance, anticipate and prevent failures or
emergencies. Policies in the top layer are also used to

control the adaptation process. They can decide when to
stop an optimisation evaluation or enforcement operation,
in case it becomes too costly (e.g. in time, or resources),
or it seems to have entered an infinite loop (e.g.
oscillating state, chain reaction).

The Action tier encompasses the actual software
application and a component-swapping mechanism. Based
on optimisation decisions, the Evaluation tier sends
corresponding configuration commands to the Action tier,
indicating the redundant component variant(s) to be
activated or deactivated respectively. The component-
swapping mechanism performs the requested operations.
As stated in related research on component hot swapping,
two main issues occur when replacing component variants
at runtime. One issue is concerned with state transfer from
an executing component instance to a replacement
component instance. This is only needed in case instances
of different component variants handled the same client
request or session, one after the other. Since in the
targeted problem domain client calls are usually short-
lived, we believe such action would bring little
performance benefit to requests already being handled
(when component replacement occurred). Therefore, in a
first phase, we do not attempt to transfer state between
instances of different component variants. Rather,
incoming client calls are directed to an instance of the
appropriate component variant, upon arrival. Instances of
component variants to be deactivated finish handling
current requests before being removed. This allows for
instances of different redundant components to coexist. In
a future phase, we will consider one of the solutions
proposed in the ongoing research in this area (e.g. [13],

Figure 3: Framework architecture

[14]). The other issue is maintaining client references
consistency. We adopt a proxy-based solution to address
this issue. Component technologies based on contextual
composition frameworks [10] provide a straightforward
way of implementing this. That is because clients can only
call component instances through the component
container, in which the component was deployed and run.
The component container can consequently be modified
so that to transparently (re)direct client requests to
instances of active component variants. In brief, in a first
phase of our research, we adopt a client request
indirection strategy for implementing the component hot-
swapping mechanism.

In our framework, the three presented tiers operate in
an automated, feedback-loop manner [Figure 3]: the
application performance is monitored and evaluated, the
optimal redundant component(s) are identified and
activated and the resulting application is monitored and
(re-)evaluated. Decision policies at both layers can be
dynamically tuned in effect. It is important to note that as
these are logical tiers, the boundaries between them may
not be as clearly marked when implemented.

4.1. Hierarchical adaptation mechanism

When considering large-scale component-based
applications, global optimisations may not always be
desirable. Evaluating an overall application, potentially
consisting of hundreds of components, whenever an
individual component or a group of components does not
behave as expected, might induce unnecessary overhead
and not scale well. We propose distributing the adaptation
mechanism. That is, if a problem is detected at an
individual component level, the problem is dealt with
locally, by means of redundant component replacement.
Nevertheless, exclusively concentrating on local
optimisations might not globally optimise the system.
Therefore, our framework employs (three-tiered)
adaptation mechanisms with different scopes (e.g. local,
group, global), organised in a hierarchal manner. Detected
problems can be dealt with locally or/and signalled
upwards the hierarchical tree, up to the global level.
Adaptation mechanisms can be dynamically activated or
deactivated, in order to reduce overhead, when possible.
This idea is also presented in [12], in the context of non-
intrusive, EJB system monitoring.

5. Related Work

Redundancy for increased robustness or reliability has
been successfully used in various domains (e.g. hardware,
mechanics, or constructions). The same concept was
introduced in the software domain (e.g. [9], or as ‘design

diversity’ in [6], [15]), in order to achieve fault-tolerance
capabilities for software systems. A few examples of fault
tolerant schemes implementing this concept are N-version
programming, N self-checking software, recovery blocks
[16], or exception handling approaches. However, as these
schemes target system fault tolerance, they imply both the
presence of knowledge of the correct system behaviour, as
well as of methods for assessing system behaviour at
runtime, in order to detect faults. We target a different
problem domain, encompassing performance-related
problems and non-functional faults, which can generally
be detected without needing application semantics
information. Our framework can consequently be
implemented as part of the component platform layer, for
the benefit of all applications deployed on such platforms.

Similar to our performance optimisation related intent,
the Open Implementation initiative [17] allows clients to
decide which implementation variant to use (i.e.
instantiate) for optimal performance, in a specific context.
We propose that the component platform automatically
take such decisions. In our view, it is very expensive, or
even impossible for a system manager to optimally
perform such activities in due time, in the case of complex
systems or frequent environmental changes.

Redundancy as a means of achieving dependability for
Internet systems (i.e. Web Services based) is proposed in
the RAIC [13] project. The addressed problem domain in
this case however, is different in scope from our work.
This is because such systems rely on Internet services
offered by different providers, from different locations.
No single authority owns, or has complete control over the
entire system. The Internet system developer has no
knowledge of, or access to the implementation,
deployment platform, or supporting resources of the
services it needs to use. Redundancy support cannot be
implemented in this case at the component deployment
platform level. Instead, redundancy support for the
services that Internet systems use is implemented at the
software application level of such systems.

Research in the area of dynamic component versioning
presents certain similarities to our work. However, the
main intent of the two research directions is different,
emphasising different aspects. Component versioning is
concerned with verifying whether new versions are better
than old ones, before dynamically upgrading the system.
In [14] for example, the best component version is
determined by means of online testing. Even though the
possibility of multiple versions being kept is considered,
the way such versions are to be used is not elaborated.

A significant research area, closely related to our work,
is concerned with specifying and building dynamic
adaptability capabilities for self-repairing systems.
Mostly related to our work are approaches based system
architectural models [18], [19]. A feedback-loop

mechanism (separated from system business logic) is
employed for adapting running systems to changing
requirements, or environmental conditions. This
mechanism is designed in a centralised manner.
Monitoring information is centralised, evaluated using
analytical methods (e.g. queuing theory) and the system is
globally optimised. Our approach adopts a hierarchical
adaptation approach, where global system optimisation
can generally be avoided. We focus on adaptation
operations related to redundant component replacements.

An important aspect of our research is the fact that we
exclusively target component-based applications based on
contextual composition frameworks [10]. The unique
nature of such applications (e.g. soft inter-component
bindings; unpredictable number of component instances)
might make approaches devised for component-based
systems in general (i.e. in which ‘components’ can mean
clients, servers, or software modules), difficult to apply.

6. Conclusions and Future Work

This paper proposed the use of component redundancy
for enabling self-optimisation, self-healing and dynamic
adaptation capabilities in component-based software
systems. A component redundancy related terminology
was defined. We argued that system complexity, lack of
sufficient information and changing execution conditions
make it impossible to create and ascertain components
that exhibit optimal dependability characteristics at all
times. An example was presented to support this idea. In
this example, different strategies were selected for
implementing two distinct component variants providing
the same functionality. Each implementation variant
proved optimal (with respect to response delays) in
different environmental conditions. As these results
indicate, knowledgeably alternating the usage of
redundant components, optimised for different running
contexts, ensures better overall performance than either
component variant could provide.

A framework for implementing the component
redundancy concept was described. We identified the
main roles and functionalities this framework needs to
provide and categorised them into three logical tiers:
monitoring, evaluation and action. We proposed
distributing the three logical tiers, organising them (each)
in a hierarchical manner, in order to reduce overhead.

As future work, we intend to provide a proof-of-
concept implementation of our framework and test it
against our example scenario. In addition, further
scenarios and case studies will be identified and
documented. The cost of acquiring multiple redundant
components, as well as the impact of using redundant
components on the overall application performance and
resource usage will have to be analysed.

7. References

[1] J. O. Kephart, D. M. Chess, “The Vision of Autonomic
Computing”, IEEE Computer, January 2003
[2] C. U. Smith, L. G. Williams, “Software Performance
Engineering: A Case Study with Design Comparisons”, IEEE
Trans. Software Eng., Vol. 19, No 7, July 1993
[3] F. Aquilani, S. Balsamo, P. Inverardi, “Performance
Analysis at the Software Architectural Design Level”,
Performance Evaluation, Volume 45, Number 2-3, July 2001
[4] J. Bosch, P. Molin, “Software Architecture Design:
Evaluation and Transformation”, IEEE Conference and
Workshop on Engineering of Computer-Based Systems,
Nashville, Tennessee, March 1999
[5] M. Klein et al., “Attribute-Based Architecture Styles”, in
Proceedings of the First Working IFIP Conference on Software
Architecture (WICSA1), San Antonio, TX, 1999, pp 225-243
[6] P. Popov, L. Strigini, A. Romanovsky, “Diversity for Off-
The-Shelf Components”, International Conference on
Dependable Systems&Networks, NY, USA, 2000, pp. B60-B61
[7] P. A. C. Guerra, C. M. F. Rubira, R. de Lemos, “An
Idealized Fault-Tolerant Architectural Component”, Workshop
on Architecting Dependable Systems, Orlando, FL, May 2002
[8] E. Cecchet et al., “Performance and Scalability of EJB
Applications”, Proc of 17th ACM Conference on Object-
Oriented Programming, Seattle, Washington, 2002, pp 246-261
[9] M.N. Huhns, V.T. Holderfield, "Robust Software", Agents
on the Web, IEEE Internet Computing, March/April 2002
[10] C. Szyperski, with D. Gruntz and S. Murer, “Component
Software: Beyond Object-Oriented Programming”, Second
Edition, Addison-Wesley Pub Co, 1 November 2002
[11] B. Meyer, C. Mingins, H. Schmidt: Trusted Components
for the Software Industry. IEEE Computer 5/1998, pp. 104-105
[12] A. Mos, J. Murphy, “Performance Management in
Component-Oriented Systems using a Model Driven
Architecture Approach”, The 6th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), Lausanne,
Switzerland, September 2002
[13] C. Liu, D. J. Richardson, “RAIC: Architecting Dependable
Systems through Redundancy and Just-In-Time Testing”, ICSE,
Workshop on Architecting Dependable Systems (WADS),
Orlando, Florida, 2002
[14] M. Rakic, N. Medvidovic, “Increasing the Confidence in
Off-the-Shelf Components: A Software Connector-Based
Approach”, Symposium on Software Reusability: putting
software reuse in context, Toronto, Ontario, Canada, 2001
[15] B. Littlewood et al., “Modeling software design diversity: a
review”, ACM Press, New York NY, USA, 2001, pp 177-208
[16] B.Randell and J.Xu, “The Evolution of the Recovery Block
Concept”, Software Fault Tolerance, JohnWiley&SonsLtd, 1995
[17] G. Kiczales, “Beyond the Black Box: Open
Implementation”, IEEE Software, January 1996
[18] S. Cheng et al., “Using Architectural Style as a Basis for
Self-repair”, Proc. Working IEEE/IFIP Conference on
Software Architecture, Montreal, August, 2002
[19] P. Oriezy et al., “An Architecture-Based Approach to
Self-Adaptive Software”, IEEE Intelligent Systems,
May/June 1999, p. 54-62

Elements of the Self-Healing System Problem Space

Abstract

One of the potential approaches to achieving
dependable system operation is to incorporate so-called
“self-healing” mechanisms into system architectures and
implementations. A previous workshop on this topic
exposed a wide diversity of researcher perspectives on
what self-healing systems really are. This paper proposes a
taxonomy for describing the problem space for self-healing
systems including fault models, system responses, system
completeness, and design context. It is hoped that this
taxonomy will help researchers understand what aspects of
the system dependability problem they are (and aren’t)
addressing with specific research projects.

1. Introduction

Self-healing systems form an area of research that is in-

tuitively appealing and garnering increased attention, but

not very well defined in terms of scope. At the 2002 Work-

shop on Self-Healing Systems [WOSS02], it became clear

that researchers have differing views on what comprises re-

search on self-healing systems. This paper attempts to doc-

ument those views in the form of a description of the

self-healing systems research problem space.

There is a rich set of existing knowledge on the general

topic of dependable systems, and on techniques that can

reasonably be considered to comprise “self-healing.” For

example, one view of self-healing systems is that they per-

form a reconfiguration step to heal a system having suffered

a permanent fault. The use of standby spares in such a man-

ner has been called “self-repair” [Bouricius69]. Systems

that use modular redundancy (e.g., [vonNeuman56]) can

tolerate component failures and might be considered to be

self-healing.

It is premature to propose a consensus-based definition

of the term “self-healing,” so we do not attempt to do this

beyond an appeal to intuition that such a system must some-

how be able to “heal” itself. Whether this means that

self-healing systems are really a subset of traditional

fault-tolerant computing systems is unclear. However, the

topic of self-healing systems has attracted a number of re-

searchers who would not otherwise have been involved in

the fault tolerant computing area. So, if nothing else, the la-

bel of self-healing has broadened the pool of researchers

addressing the difficult problems of creating dependable

systems.

To give researchers in this area a common basis for de-

fining the scope of self-healing systems research, it seems

worthwhile to set forth a description of issues being ad-

dressed by various research projects. This might provide a

way for researchers to realize they mean considerably dif-

ferent things by their use of the phrase “self-healing,” as

well as to understand the similarities and differences in

their approaches and domains. Toward that end, this paper

attempts to describe the general problem space relevant to

self-healing system research.

2. Elements of the model

Based on our experiences and observations at the

WOSS02 workshop, we propose that there are four general

categories of aspects to the self-healing system problem

space: fault model, system response, system completeness,

and design context (Table 1). (The particular categories

are not important, but simply form a way to group related

concepts for the purposes of discussion.) We shall discuss

the elements of each category in turn.

[Avizienis01] contains an extensive taxonomy of fault

tolerant computing terminology and approaches. We use

this as the basis for terminology, and as the basis for the

fault modeling portion of the taxonomy.

2.1. Fault model

Self-healing systems have similar goals to the general

area of dependable computer systems. (Not all dependable

computing research areas are “self-healing”, but one can ar-

gue that all “self-healing” techniques ultimately are de-

pendable computing techniques.)

One of the fundamental tenets of dependable computing

is that a fault hypothesis (often called a fault model) must

be specified for any fault tolerant system. The fault hypoth-

Philip Koopman
Institute for Software Research, International

& ECE Department
Carnegie Mellon University

Pittsburgh, PA, USA
koopman@cmu.edu

esis answers the question of what faults the system is to tol-

erate. (If one doesn’t know what types of faults are to be

tolerated, it is difficult to evaluate whether a given system is

actually “fault tolerant.”)

In a similar vein, self-healing systems must have a fault

model in terms of what injuries (faults) they are expected to

be able to self-heal. Without a fault model, there is no way

to assess whether a system actually can heal itself in situa-

tions of interest. The following are typical fault model

characteristics that seem relevant.

Fault duration: Faults can be permanent, intermittent

(a fault that appears only occasionally), or transient (due to

an environmental condition that appears only occasion-

ally). Since it is widely believed that transient and intermit-

tent faults outnumber permanent faults, it is important to

state the fault duration assumption of a self-healing ap-

proach to understand what situations it addresses.

Fault manifestation: Intuitively, not all faults are as se-

vere as others. Beyond that, components themselves can be

designed to exhibit specific characteristics when they en-

counter faults that can make system-level self-healing sim-

pler. A common approach is to design components that are

fail-fast, fail-silent. However, other systems must tolerate

Byzantine faults which are considered “arbitrary” faults.

(It is worth noting that Byzantine faults exclude systematic

software defects that occur in all nodes of a system, so the

meaning of “arbitrary” is only with respect to an assump-

tion of fault independence.)

Beyond the severity of the fault manifestation, there is

the severity of how it affects the system in the absence of a

self-healing response. Some faults cause immediate sys-

tem crashes. But many faults cause less catastrophic conse-

quences, such as system slow-down due to excessive CPU

loads, thrashing due to memory hierarchy overloads, re-

source leakage, file system overflow, and so on.

Fault source: Assumptions about the source of faults

can affect self-healing strategies. For example, faults can

occur due to implementation defects, requirements defects,

operational mistakes, and so on. Changes in operating en-

vironment can cause a previously working system to stop

working, as can the onset of a malicious attack. While soft-

ware is essentially deterministic, there are situations in

which it can be argued that a random or “wear-out” model

for failures is useful, suggesting techniques such as

periodic rebooting as a self-healing mechanism. Finally,

some self-healing software is designed only to withstand

hardware failures such as loss of memory or CPU capacity,

and not software failures.

Granularity: The granularity of a failure is the size of

the component that is compromised by that fault. (The re-

lated notion of the size of a fault containment region is a key

design parameter in fault tolerant computers.) A fault can

cause the failure of a software module (causing an excep-

tion), a task, an entire CPU’s computational set, or an entire

computing site. Different self-healing mechanisms are

probably appropriate depending on the granularity of the

failures and hence the granularity of recovery actions.

Fault profile expectations: Beyond the source of the

fault is the profile of fault occurrences that is expected.

Faults considered for self-healing might be only expected

faults (such as defined exceptions or historically observed

faults), faults considered likely based on design analysis, or

faults that are unexpected. Additionally, faults might be

random and independent, might be correlated in space or

time, or might even be intentional due to malicious intent.

2.2. System response

The first step in responding to a fault is, in most cases,

actually detecting the fault. Beyond that there are various

ways to degrade system operation as well as attempt recov-

ery from or compensation for a fault. Each application do-

main has extra-functional aspects that are important, such

as reliability, safety, or security. These extra-functional

concerns influence desired system responses.

Fault Detection: Fault detection can be performed in-

ternally by a component, by comparing replicated compo-

nents, by peer-to-peer checking, and by supervisory

checks. Additionally, the intrusiveness of fault detection

can vary from nonintrusive testing of results, to execution

of audit or check tasks, redundant execution of tasks,

Fault model:
Fault duration
Fault manifestation
Fault source
Granularity
Fault profile expectations

System response:
Fault Detection
Degradation
Fault response
Fault recovery
Time constants
Assurance

System completeness:
Architectural completeness
Designer knowledge
System self-knowledge
System evolution

Design context:
Abstraction level
Component homogeneity
Behavioral predetermination
User involvement in healing
System linearity
System scope

Table 1. Problem space model elements.

on-line self-test, and even periodic reboots for the purpose

of more thorough self tests. Systems might inject faults in-

tentionally as on-line tests of fault detection mechanisms.

A related area is that of ensuring that all aspects of a system

are activated periodically so that any latent accumulated

faults can be detected within a bounded time. Not all sys-

tems can achieve 100% fault detection in bounded time.

Degradation: Self-healing systems might not restore

complete functionality after a fault. The degree of de-

graded operation provided by a self-healing system is its re-

silience to damage that exceeds built-in redundancy. Some

systems must fail entirely operational (i.e., cannot fulfill

their mission without full functionality). But many systems

can degrade performance, shed some tasks, or perform

failover to less computationally expensive degraded mode

algorithms.

Fault Response: Once a fault has been detected, the

system must select a response mechanism. Typical on-line

responses include masking a fault (e.g., modular redun-

dancy that performs a majority vote of independent compu-

tational results), rollback to a checkpoint, rollforward with

compensation, or retrying an operation using the original or

alternate resources. Heavier-weight responses include sys-

tem architectural reconfiguration (on-the-fly or involving a

reboot), invoking alternate versions of tasks, killing less

important tasks, and requesting assistance from outside the

system. The fault response might be optimized to maintain

desired properties such as correctness, quality of service

contracts, transactional integrity, or safety. Fault responses

might also be preventative (such as a periodic system re-

boot), proactive (such as an action triggered by a burst of

faults which were tolerated but are indicative of a possible

near-term failure), or reactive.

Recovery: After a system has detected a fault, poten-

tially degraded, and invoked a fault response, it must re-

cover operation to complete the self-healing process.

Recovery involves issues such as integrating newly com-

mitted resources into ongoing processes, “warming up” re-

sources by transferring system state into them, or taking

action to bring the system to a clean known state before pro-

ceeding with operations. A component might be

hot-swapped, require a warm system reboot, or require a

cold system reboot to finish recovery.

Time constants: The time constants of a system, along

with the fault distribution assumptions, play a large role in

determining what types of self-healing are feasible. The

time constant of faults with respect to the forward progress

of computations determines things like the frequency at

which checkpoints must be taken, or whether a system can

reboot itself quickly enough to prevent an overall system

outage. Additionally, if intermittent or transient faults are

in the majority as is typical in many systems, the speed of

the detection-response-recovery cycle might need to be

faster than typical fault arrival periods to avoid system

thrashing.

Assurance: Every domain has a specific set of system

properties of importance. Every system requires assur-

ances of some level of functional and extra-functional cor-

rectness for normal operation. Self-healing systems

additionally require a way to assure that such properties are

maintained during and after fault occurrences. Challenges

in this area include assurance between the time a fault oc-

curs and the time the fault is detected (keeping in mind that

not all faults are detected); assurance during degraded

mode operations; and assurance during recovery opera-

tions. This assurance might be provided at design time or

might involve checks at run time. Finally, the assurance

might be absolute or probabilistic, and might involve all

functionality or partial assurance of only a few key system

properties.

2.3. System completeness

Real systems are seldom complete in every sense.

Self-healing approaches must be able to deal with the real-

ity of limits to knowledge, incomplete specifications, and

incomplete designs.

Architectural completeness: Few system architectures

are completely elaborated when the first implementation is

built. Architectures and implementations evolve over time.

Many systems are “open” in that third-party components

can be added during or after system deployment. And,

many systems are designed using prebuilt components that

have details and behavior so opaque to the overall system

designer that the architecture might as well be considered

incomplete. Finally, a system might be built upon discov-

ery mechanisms which are intended to extend the architec-

ture or implementation at run-time. A related issue is that

implementations of components evolve, are patched, suffer

configuration management problems, and so on.

Designer knowledge: Designers in the typical case do

not have complete knowledge of the systems they design.

Any system is designed using a set of abstractions about un-

derlying components. But beyond that the designer must

deal with missing knowledge about aspects of components,

and in all likelihood incorrect knowledge about system

components due to documentation and implementation de-

fects. It is common for designers to have a thorough under-

standing of typical system behaviors, but to have little or no

understanding of atypical system behaviors – especially

system behaviors in the presence of faults. A vital aspect of

designer knowledge is how well the fault model for the sys-

tem is characterized and whether field information about

faults is fed back to the system designer.

System self-knowledge: Systems must have some level

of knowledge about themselves and their environment in

order to provide self-healing. This self-knowledge is lim-

ited by the aspects of knowledge built into a component (for

example, a component might or might not be able to predict

its execution time in advance), the accessibility of knowl-

edge about one component to another component, and de-

fects in representation of such knowledge either due to

initial design defects or staleness caused by system evolu-

tion. The concept of reflection is often discussed in the

context of system self-knowledge; however it also seems

possible to build systems that have no awareness of their

state but rather exhibit emergent correctness as a conse-

quence of the interaction of their component behaviors.

System evolution: Self-healing systems must deal with

the fact that they change over time. Sources of change in-

clude designed operating mode changes, accumulated com-

ponent and resource faults, adaptations to external

environments, component evolution, and changes in sys-

tem usage. Making use of available information on system

dynamics might help with self-healing, such as being able

to count on a scheduled system outage (or self-schedule an

outage) to perform healing.

2.4. Design context

There are several other factors that influence the scope

of self-healing capabilities that could be considered to form

the design context of the system.

Abstraction level: Systems can attempt to perform vari-

ous forms of self-healing to application software,

middleware mechanisms, operating systems, or hardware.

Self-healing techniques can be applied to implementations

(such as wrappers to deal with unhandled exceptions) or ar-

chitectural components.

Component homogeneity: While some systems have

completely homogenous components, it is common to have

systems that are heterogeneous to some degree. Server

farms often have different versions of processing hardware,

and might well have different versions of operating systems

or other software installed, especially when changes are ap-

plied incrementally across a fleet of components as a risk

management technique. Homogeneity can consist of exact

component duplicates, or components that are “plug-com-

patible” even though they have differing implementations.

Some systems are inherently heterogenous, such as the

computational components within embedded systems such

as automobiles. The heterogeneity of a system tends to

limit its ability to simply migrate computational tasks as a

self-healing strategy and requires that self-healing ap-

proaches deal with the issue of configuration management

of systems both before and after healing.

Behavioral predetermination: Most systems do not

have perfectly predetermined and deterministic behavior,

and some self-healing approaches must be able to accom-

modate this. Non-deterministic behavior abounds in hard-

ware and in software infrastructure. But, beyond that, it is

often impractical to quantify things such as absolute

worst-case execution time. Even things that might seem

determinable in theory such as enumeration of all possible

exceptions that can be generated by a software component

might be impractical due to obscure component interac-

tions or defects. In the time dimension, system tasks might

be event-based or periodic, necessitating differing assump-

tions and approaches by healing mechanisms.

Both the system and the self-healing mechanism can

have differing levels of behavioral predeterminism. For ex-

ample, a rule-based application or one that employs neural

networks might not be readily analyzed for behavior. Simi-

larly, a self-healing mechanism might employ

nondeterministic or analytically complex approaches that

make design-time analysis of behavior impractical.

User involvement in healing: While the goal of much

thinking about self-healing systems is to achieve complete

autonomy, this might be an over-ambitious goal. Most sys-

tems have a limit to healing ability, beyond which users

must become involved in system repair. The opportunity

for self-healing system collaborations with users are two-

fold: users can adapt their behavior to help systems func-

tion despite failures, and users can provide advice to

systems to guide aspects of their self-healing behavior.

System linearity: Overall system linearity and compo-

nent coupling can greatly affect the ability of a system to

self-heal. If a system is completely linear (i.e., all aspects

of the system are completely composable from component

aspects) then self-healing of one component can be carried

out without concern for its effect upon other components.

While many well-architected systems have good linearity,

component interaction is a typical situation that must be ad-

dressed by self-healing approaches.

System scope: How big is the system? A single-node

computing system does not have all the self-healing possi-

bilities available to a geographically distributed computing

system. Similarly, portions of the system might be consid-

ered out-of-bounds when creating a self-healing mecha-

nism, such as a requirement to use an off-the-shelf

operating system or existing Internet communication proto-

cols. The scope of system self-healing might therefore be a

single component; a computer system; a computer system

plus a person; an enterprise automation suite; or the com-

puter in the context of society including regulatory agen-

cies, maintenance groups, and insurance mechanisms.

3. Examples of use

Because the purpose of this paper is to propose a way of

structuring a complex and still relatively unexplored re-

search area, it is unlikely that the results are complete or in-

Property RoSES Graceful Degradation Semantic Anomaly Detection Amaranth QoS

F
a
u
lt

M
o
d
e
l

Fault Duration Permanent Permanent+Intermittent Permanent+Intermittent

Fault Manifestation Fail fast+silent components

Potentially correlated

Unexpected data feed values;

Recovery only if uncorrelated

Resource exhaustion

Potentially correlated

Fault Source All non-malicious sources Representable by templates;

Non-malicious

Peak resource demand;

Non-malicious

Granularity Component failure in distributed

embedded system

Failure of Internet data feed Depletion of memory, CPU, etc. in

distributed system

Fault Profile

Expectations

Random; arbitrary; unforeseen Anomalies compared to prior

experience

Random; resource consumption

only

S
y
s
te

m

R
e
s
p
o
n
s
e

Fault Detection State variable staleness Anomaly detection Resource monitoring alarm

Degradation Fail-operational;

Maximize system utility

Not addressed Preserve predetermined baseline

functions; eject nonessential tasks

Fault Response Reconfigure SW based on data

and control flow graphs

Substitute redundant data feed Admission control policy:

Admit “baseline” tasks and reject

some enhanced tasks

Recovery Reconfigure SW & reboot system On-the-fly data feed switch Terminate enhanced tasks as

necessary

Time constants Long time between failures;

Can handle multiple failures

Valid data samples occur much

more often than anomalies

Can handle multiple failures;

Tasks can be terminated instantly

Assurance Future work; reliability-driven “Good enough” data quality Static analysis of baseline load

S
y
s
te

m

C
o
m

p
le

te
n
e
s
s

Architecture

Completeness

Closed, complete system;

Graceful upgrade/downgrade;

System must work in worst case

Dynamic Internet data feeds;

Unknown gaps & defects;

Common case handling complete

Closed, complete system;

System must work in worst case

Designer Knowledge Assumed to be complete Component specifications

unknown -- must be inferred

Complete; workload information is

statistical distribution

System

Self-Knowledge

System knows component

presence & failure; data/control

flow

History used as basis for anomaly

detection

Available resources and

approximate task resource

consumption

System Dynamicism Upgrades & downgrades;

System stable during mission

Data feeds come and go Workload is stochastic

D
e
s
ig

n

C
o
n
te

x
t

Abstraction Level HW & SW components within

distributed system

Nodes on Internet Tasks within distributed system

Component

Homogeneity

Heterogenous components and

resources

Redundant or correlated data

feeds

Homogenous resources;

heterogeneous tasks

Behavioral

Predetermination

Components characterized;

Functions must be composable

Predetermined data feed type;

Behavior of data feed discovered

System design predetermined;

Workload is stochastic

User Involvement Fully automatic User accepts/rejects templates Fully automatic

System Linearity Multiattribute utility theory;

Scalability assumes linearity;

Bin-packing task approach

Not applicable Tasks have discrete operating

points;

Bin-packing approach

System Scope Multiple computers in embedded

control system

Multiple computers + user on

Internet-based system

Multiple computers on Internet or

closed network system

Table 2. Self-Healing Problem Spaces Addressed By Example Research Projects.

deed even apply to all research projects. Additionally, the

type of information required to describe many projects is

not fully available from published sources. In the interest

of providing concrete examples, three of our own research

projects are briefly described in terms of the proposed cate-

gories in Table 2.

RoSES (Robust Self-configuring Embedded Systems)

[Shelton03] is a project that is exploring graceful degrada-

tion as a means to achieve dependable systems. It concen-

trates on allocating software components to a distributed

embedded control hardware infrastructure, and is con-

cerned with systems that are entirely within the designer’s

control.

The semantic anomaly detection research project

[Raz02] seeks to use on-line techniques to infer specifica-

tions from underspecified components (e.g., Internet data

feeds) and trigger an alarm when anomalous behavior is ob-

served. An emphasis of the research is using a tem-

plate-based approach to make it feasible for ordinary users

to provide human guidance to the automated system to im-

prove effectiveness.

The Amaranth project [Hoover01] is a Quality of Ser-

vice project that emphasizes admission policies. A key idea

is to have tasks with at least two levels of service: baseline

and optimized. A system could thus be operated to

guarantee critical baseline functionality via static system

sizing, with idle resources employed to provide optimized

performance on an opportunistic per-task basis.

All three projects are, in our opinion, “self-healing soft-

ware system” research projects. But as shown by Table 2

they have widely varying areas of exploration, assump-

tions, and areas that are unaddressed. The area in which all

three projects are substantially similar is the last attribute,

in which all three systems assume a distributed computing

environment. It is worth noting that the categories were

created before Table 2 was constructed, so this provides ini-

tial evidence that the categories capture differences among

general projects rather than being specific to just these pro-

jects. But of course since the people involved in the three

projects discussed overlap, this does not prove generality

and certainly does not demonstrate completeness.

4. Conclusions

It is too soon to tell whether “self-healing” system ap-

proaches are just a different perspective on the area of fault

tolerant computing, and whether that perspective brings

significant benefits. Resolving this issue requires better un-

derstanding of what is meant by the term “self-healing” in

the first place. To that end, this paper proposes a taxonomy

for describing the problem space for self-healing systems.

Relevant aspects of self-healing system approaches in-

clude fault models, system responses, system complete-

ness, and design context. It is of course unreasonable to ex-

pect every research paper on self-healing systems to

address every possible aspect discussed, and no doubt some

important aspects are yet to be discovered. It remains to be

seen how different aspects interact in various domains, and

which aspects matter the most in practice. However, it is

hoped that this taxonomy will provide a checklist for re-

searchers to use in explaining the part of the problem space

they are addressing, and perhaps to help avoid inadvertent

holes in self-healing system approaches.

5. Acknowledgments

I would like to thank the participants of WOSS02 for

stimulating discussions that made this paper possible, the

anonymous reviewers for their comments, and the mem-

bers of my research group for their additional suggestions.

The techniques in this paper come from the experience of

others and decades of research, especially in the fault toler-

ant/dependable computing community. Interested readers

should consult the proceedings of the Fault Tolerant Com-

puting Symposium (FTCS) and Dependable Systems &

Networks (DSN) conference for further information.

This work was supported in part by the High Depend-

ability Computing Program via NASA Ames cooperative

agreement NCC-2-1298, and in part by the General Motors

Collaborative Research Laboratory at Carnegie Mellon

University.

6. References

[Avizienis01] A. Avizienis, J.-C. Laprie and B. Randell,
Fundamental Concepts of Dependability, Research Report
N01145, LAAS-CNRS, April 2001.

[Bouricius69] Bouricius, W.G., Carter, W.C. & Schneider, P.R,
“Reliability modeling techniques for self-repairing computer
systems,” Proceedings of 24th National Conference, ACM, 1969,
pp. 395-309.

[Hoover01] Hoover, C., Hansen, J., Koopman, P. & Tamboli, S.,
“The Amaranth Framework: policy-based quality of service
management for high-assurance computing,” International
Journal of Reliability, Quality, and Safety Engineering, Vol. 8,
No. 4, 2001, pp. 1-28.

[Raz02] Raz, O., Koopman, P., & Shaw, M., “Enabling
Automatic Adaptation in Systems with Under-Specified
Elements,” 1st Workshop on Self-Healing Systems (WOSS’02),
Charleston, South Carolina, November 2002.

[Shelton03] Shelton, C., Koopman, P. & Nace, W., “A framework
for scalable analysis and design of system-wide graceful
degradation in distributed embedded systems,” WORDS03,
January 2003.

[vonNeuman56] von Neumann, J., “Probabilistic logics and the
synthesis of reliable organisms from unreliable components,”
1956, in Taub, A. H., (ed.), John von Neumann: collected works,
Volume V, pp. 329-378, New York: Pergamon Press, 1963.

[WOSS02] 1st Workshop on Self-Healing Systems (WOSS’02),
Charleston, South Carolina, November 2002, ACM Press.

�����������
	��
������������	������������������! "�$#

%'&)(�*,+.-�*0/21�&4325�-�6�7�*�8:9�;
/2<=1�7>7@?A7�BDCE7@FHG�-�IJ;LK"/2<L&M;L*�<N;

OP?Q7�KJ&Q6�(SR�*TIU;LK.*V(WIJ&Q7@*V(W?AX"*�&ZY@;NKJ[J&ZI�\@3^]0&Q(�F_&`3�OPacb@b�dfe@e
g IU[J1�&)h�d@3�1�;jilkWm�<L[NnpoV-qnr;N6�-

sut�vNwyx,zV{�w

|T}�~��Q�l�=�`�"�=�`���f���������Q�y�`�E�,�U���������H}�~��������`���U�����L��������}=���
�)�������l~�}��E�N�����p�j���������)}"�=�@�=���.�J�'�=�@�" U����� ~������U���)���¡���`}����
�����Q�Z����¢¤£¥}=�W��~��y�����M�Z}����=�J�@�`}4�������M�Z���q�4�Z¦A�����>�����¨§����=�����Q��}�~A�
��}�~��M�l���`�����U�������©�=���"�=�`�¥�����������Q�Z�=�j~�}����E�����4��������~��y�@��}�~��M�
�l�=�`�¥���U���)���¥ªA���y���=�������U���«��}�~��@}=����~��y�@���Q�Z}=�@�=�����`}��,�����Q�Z���
�«���r���4�E�l���������Q���=�Z������}=�¨�,���`�����)}P~��y�@���Q�Z}=�@�=�� U����� ¬^�����M�Z}��
���S��,��¬¤�r���
}�~���}�~��Q�l�=�`�"�=�`���f���������Q�y�`�J¢¥®A���~�}=���'�=�@�����=�@�
�j���,�����N�j���������M�
�=�4���'}U������}=�������������'�@}=�W��~��y�����M�Z}����=�,���`}����
�����Q�Z�������¯����~����Q�E�=�@�¥�¥�«�����Z}=���������M�Z���=�����U���)���¥��¢A|y°D±$�«�P�
~��`�=�'���l}��`²�~�}��P�M������� ~��=���f�"���������������.�����L����}�~��M�l���`�����`���f���
�)�����M�y�`�"�=�@�¯���U�"�������:�f���4���)}³ =����� ~��´�� =�=���Z���M�S}�~¨~��y�@���
�M�Z}����=�T���`}��,�����M�Z����¢�µ��_���y�«�D�,���,����ªD�l�"�4¶N�)�����
|y°P±·�V����
����}J�4���U���M�Z�S��}=�����Q�������Z�¯��}¸��,���¥���'���=�¹���³�f���4�º�)}¸��}J�j���
�=���"�=�@�=���.�J���,���~�}=���'�=�@���E�����"�j���,�����N�j���������M�j¢

»V¼�½L¾ wfx�¿ÁÀ�Â¨{�w,Ã�¿ ¾

Ä�ÅDÅ�ÆjÇ�È�ÉqÊjË`Ì�Å`ÍyÅ�È4Ì�Î'Å¨ÏNÌ�Ì.Ð
ÑjË4Æ=ÉAÒrÓ,Ñ�ÒrÓ³Å`ÒÕÔ�Ì¥ÊjÓ�Ö�×�ÆjÎEØ
Ð,ÙrÌ�ÚyÒpÈ�ÍNÛ^Å`Æ�Ç�È�ÉÁÊ�Ë4Ì"Ê�Ë�×�Ü,ÒrÈ`ÌJ×�È`Ý�Ë`Ì¯ÊjÅ�Ê³Ü�ÒrÑNÜyØQÙÕÌ�ÞNÌ�ÙAÊ�ßWÅ�È4Ë4ÊN×�Ø
È`ÒÕÆjÓHÒ«Å�Æ�Ç�ÒrÓ�×�Ë`ÌJÊjÅ`ÒrÓ�Ñ�ÒÕÎ�ÐWÆNË�È�Ê�Ó�×�Ì�ÇÆNË�Ö,Ì.Å`ÒrÑNÓ,Ì�Ë�Å�È4Æ´Ë`ÌJÊ=Ø
Å�ÆNÓ0Ê�ß�ÆjÝ,È"È4Ü,ÌºÅ�ÆjÇ�È�ÉqÊjË`ÌSÅ�ÍyÅ�È`Ì�Î'Å�Ê�ÓWÖàÎ'Ê�ÏNÌ�ÌJÊ�Ë4ÙrÍàÖyÌ�Ø
Å�ÒÕÑjÓ�ÖyÌ.×�ÒÕÅ`ÒÕÆjÓ�Å.álÄ¨Å¨Ê�Ë`ÌJÅ�Ý,ÙrÈ.Û�Î�ÊjÓfÍ�Ê�Ë�×�Ü,ÒrÈ`Ì.×�È`Ý,Ë4ÌâÖyÌ.Å4×�Ë4ÒÕÐyØ
È`ÒÕÆjÓ�ÙÕÊjÓ,ÑjÝWÊ�ÑjÌJÅDãZÄ¨äPå>Å�æÁÜ�ÊUÞNÌDßWÌ.Ì�Ó�Ð,Ë4ÆjÐ�ÆNÅ`Ì.ÖSçpèJéUêQáqë
ÆNÅ�È
Ä¨äPå>Å.ÛìÜ,Æ=ÉqÌ�ÞjÌ.Ë.Û�ÇÆy×�ÝWÅDÎ�ÊjÒrÓ�ÙrÍ�ÆNÓ�È4Ü,Ì�ÇÆjË4Î'Ê�Ù�Ó,Æ�È�Ê=È4ÒrÆNÓìÛ
Ê�Ó�ÖºÎ'ÊjÓLÍ´ÆjÇ�È`Ü,Ì.ÎíÖyÆSÓ,Æ�È�Æ�î@Ì�Ë�Ê�Ó�ÊjÙrÍLÈ4ÒÕ×.Ê�Ù^È`Ì.×�Ü�Ó,ÒÕïLÝ,ÌJÅ
È`Æ
ÞjÌ.Ë`ÒrÇÍ�È4Ü,Ì�Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.ÅDÆjÇÁÈ`Ü,Ì.ÒrË�Ö,Ì.Å`ÒrÑNÓ�Å�á�ðfÆjÎ�Ì�Ä�ä�å2Å
ÖyÆ'Ð,Ë4Æ=ÞLÒ«ÖyÌâÊ�ÓWÊ�ÙÕÍNÈ4ÒÕ×.Ê�Ù@È4Ì.×�Ü,Ó,Ò«ïLÝ,Ì.Å.Û,ß,Ý,È�È`Ì.Ó�Ö"È`Æ�ÇÆy×�Ý�Å¨ÆjÓ
Ê¥ÐWÊ�Ë`È`Ò«×�Ý,Ù«Ê�ËAÐ,Ë4ÆjÐ�Ì�Ë`È�Í�Ê�ÓWÖ"ÙÕÌ.ÊUÞNÌDÆ�È`Ü�Ì�ËAÐ,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.ÅÁÝ,Ó�Ì�ÚfØ
Ð,ÙrÆNË`ÌJÖTáuñ,ÆjË�Ì�ÚyÊjÎ�Ð,ÙrÌNÛ^òSË4ÒrÑNÜNÈ�ç óJê�ÊjÙrÙÕÆ=É�Å¥Ö,Ì.ÊjÖ,ÙrÆy×�ÏHÖyÌ�Ø
È`Ì.×�È`ÒÕÓ,Ñ�ô,ë�Ì�È4ÊNõöçpèJ÷Uê2ÊjÓ�Ö�ø�Ó,Òù^ÆjË4ÓSçrè.ú=ê2Å�Ý�Ð,ÐWÆNË�È�Å4×�Ü,Ì.Ö,ÝyØ
ÙÕÊjß,ÒrÙÕÒrÈ�Í�Ê�Ó�ÊjÙrÍyÅ`ÒÕÅEçpèJéUê)áEû2Æ¯×�ÆjÓLÈ`Ë4ÒÕß,ÝyÈ`Ì¥È`Æ¯È4Ü,Ì'Ê�Ó�ÊjÙrÍyÅ`ÒÕÅ�Æ�Ç
Å�ÆjÇ�È�ÉqÊjË`Ì³ÊjË4×�Ü�ÒpÈ4Ì.×�È4Ý,Ë4Ì.Å.Û¨ÉqÌ�Ì�ÚLÈ4Ì�Ó�Ö |@}�~��M�l���`�³°��`���f���������
�M�y�`��±³}.�N��� ãQðyÄ¨ë�æ�ÉAÒrÈ`Ü�Å�È`Æy×�Ü�ÊNÅ�È4ÒÕ×�×�ÆjÓ�Å�È`Ë4Ý�×�È4ÅÁÇÆNË¨Ó,ÆNÓyØ
ÇÝ,Ó�×�È4ÒrÆNÓ�Ê�Ù>Ð,Ë`ÆNÐWÌ.Ë�È�Í�Ì�Þ=Ê�ÙÕÝ�Ê=È4ÒrÆNÓ"ÒÕÓ
ÊjÖ,Ö,ÒpÈ4ÒrÆNÓ"È4Æ'ÒpÈ�ÅAÌ�ÚyÒ«Å�È`Ø
ÒrÓ,Ñ'×.Ê�Ð�Êjß,ÒrÙÕÒrÈ�Í�Æ�Ç2ÇÝ,Ó�×�È4ÒrÆNÓ�Ê�Ù>Ð,Ë`ÆNÐWÌ.Ë�È�Í�ÞjÌ�Ë4ÒrüW×�Ê�È`ÒÕÆjÓìá
ð,Ä¨ëýÒ«Å�Ê¯ÇÆjË4Î'Ê�ÙVÇË�Ê�Î�Ì�ÉqÆjË4Ï�ÇÆjË¥Å�Ð�Ì.×�ÒpÇÍfÒÕÓ,Ñ�Ê�Ó�Ö´ÊjÓyØ

Ê�ÙÕÍLÔ.ÒrÓ�ÑSÅ`Æ�Ç�È�ÉÁÊ�Ë4Ì
Ê�Ë�×�Ü,ÒpÈ4Ì.×�È`Ý,Ë4Ì.Å�çrè.þUê)áàÿ)È�Å`Ý,Ð,Ð�ÆjË`È4Å�Ü,ÒÕÌ�Ë`Ø

Ê�Ë�×�Ü,Ò«×�Ê�Ù@ÖyÌJ×�ÆjÎ�Ð�ÆNÅ`ÒpÈ4ÒrÆNÓ"ÊjÓ�Ö"ÊjÝyÈ`ÆNÎ'Ê=È`Ò«×PÊ�Ó�ÊjÙrÍyÅ`ÒÕÅ^Æ�Ç�Å�ÆjÇ�È�Ø
ÉqÊjË`ÌÁÊ�Ë�×�Ü,ÒrÈ`ÌJ×�È`Ý�Ë`ÌJÅ�á>ä�Òrî�Ì.Ë`Ì.ÓNÈVÈ4Ì.×�Ü,Ó�ÒÕïLÝ,ÌJÅ�ÊjÓ�Ö�È`ÆfÆjÙ«Å�Ü�ÊUÞjÌ
ßWÌ.Ì�Ó�ÝWÅ�ÌJÖPÈ`Æ�ÊjÓ�Ê�ÙÕÍfÔ�Ì¤ÊPðyÄ¨ëöÎ�ÆyÖyÌ.ÙjÇÆNËìÈ`Ü�ÌlÌ�Þ=ÊjÙrÝ�Ê�È`ÒÕÆjÓâÆjÇ
Þ=Ê�Ë4ÒrÆNÝ�Å>Ð�Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅ�Û=Ê�ÓWÖâÈ`Ü�ÌÁðyÄ�ë ÇË�Ê�Î�Ì.É^ÆNË`ÏPÜ�ÊjÅ2Ð,Ë4Æ=ÞjÌJÖ
È`Æ�ß�Ì�Ý�Å`Ì�ÇÝ�Ù^Ê�ÓWÖºÖyÌ.Å`ÒrË�Ê�ß�ÙrÌ'ÒÕÓ¸Å�Ð�Ì.×�ÒpÇÍfÒÕÓ,Ñ³ÊjÓ�Ö´ÞjÌ.Ë`ÒrÇÍfÒrÓ,Ñ
Å�ÆjÇ�È�ÉqÊjË`Ì�Ê�Ë�×�Ü,ÒpÈ4Ì.×�È`Ý,Ë4Ì.Å.á�ñ�ÆjËqÌ�Ú,Ê�Î�Ð,ÙÕÌjÛfÒÕÓ�çrè.þUê)ÛyË4Ì.Êj×�ÜWÊ�ß,ÒÕÙpØ
ÒpÈ�Í�ÊjÓ�Ê�ÙÕÍyÅ�Ò«Å�È`ÌJ×�Ü,Ó,Ò«ïNÝ�Ì¥ÉÁÊjÅPÝ�Å`Ì.Ö�È`Æ
Ê�Ó�ÊjÙrÍfÔ.Ì�È`Ü�Ì¥È4ÒrÎ�Ì.ÙrÒrØ
Ó,Ì.Å4Å�Æ�ÇWÊ¨Ë`ÌJÊ�ÙNÈ`ÒÕÎ�ÌÁÅ`ÍyÅ�È4Ì�Î�á2ûÁÜ�ÌÁÅ`ÍfÎ�ß�ÆjÙÕÒÕ×lÎ�ÆfÖ,Ì�Ùy×�Ü,Ì.×�ÏNÌ�Ë
ðyë � ÉÁÊjÅ�Ý�Å�ÌJÖ�ÒrÓ¸çrè���ê>È`Æ�ÞjÌ�Ë4ÒrÇÍ�È`Ü�ÌâÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙ2×�ÆNË`Ë4Ì.×�È�Ø
Ó,Ì.Å4Å¯Æ�Ç�Ê_×�ÆjÎ�Î�Ý,Ó�ÒÕ×.Ê=È`ÒÕÆjÓ0Ð,Ë4Æ�È`Æy×�ÆjÙQÛ�Ê�ÓWÖ È`Ü�Ì�È4Ü,Ì�ÆNË`Ì.Î
Ð,Ë4Æ=ÞjÌ�Ë�ðyû2Ì��uÉÁÊjÅÁÝWÅ�ÌJÖ�È4Æ'Ë`ÌJÊjÅ`ÆjÓ¯Ê�ß�ÆjÝyÈAÈ4Ü,Ì�×�ÆNË`Ë4Ì.×�È`Ó,ÌJÅ`Å
Æ�Ç�Ê�Ó�Ì�ÙÕÌ.×�È`Ë4ÆjÓ,Ò«×D×�ÆjÎ�Î�Ì�Ë�×�Ò«Ê�ÙTÅ`ÍyÅ�È4Ì�Î�ç ó�éUê)á
û>Æ Ö,Ê=È4ÌjÛ¥È`Ü,Ì ðyÄ�ë ÇË�Ê�Î�Ì�ÉqÆjË4Ï0Î'ÊjÒrÓ,ÙÕÍ ÇÆy×�Ý�Å`Ì.Å�ÆjÓ

ÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙ2Ð,Ë4ÆjÐ�Ì�Ë`È�Í"ÊjÓ�Ê�ÙÕÍyÅ�Ò«Å.á¨õ�Æ=ÉqÌ�ÞNÌ�ËJÛ,Ó,ÆjÓ,ØMÇÝ,ÓW×�È`ÒÕÆjÓWÊ�Ù
Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å.ÛNÅ`Ý�×�Ü�ÊjÅlÐWÌ.Ë�ÇÆNË`Î'Ê�ÓW×�Ì¨ÊjÓ�Ö'ÖyÌ�Ð�Ì�ÓWÖ,Ê�ß,ÒÕÙÕÒpÈ�ÍNÛfÊjË`Ì
Æ�ÇDÈ`Ü�Ì³Å`ÊjÎ�Ì
ÒrÎ�Ð�ÆjË`È4Ê�ÓW×�Ì
È4Æ´È`Ü,ÌSïNÝWÊ�ÙÕÒpÈ�Í_Æ�Ç�ÊºÅ�ÆjÇ�È�ÉqÊjË`Ì
Å�ÍyÅ�È`Ì.Î¯á�ä�Ì�Ð�Ì�Ó�Ö,Êjß,ÒÕÙrÒrÈ�ÍjÛìÏfÓ,Æ=ÉAÓ´ÊjÅ�È4Ü,Ì'×�ÆjÙÕÙÕÌ.×�È4ÒrÆNÓ�ÆjÇ^Ë4Ì�Ø
ÙrÒ«Ê�ß�ÒrÙÕÒpÈ�ÍNÛPÊUÞ=ÊjÒrÙ«Ê�ß,ÒÕÙÕÒpÈ�ÍNÛ�Å4Ê=ÇÌ�È�Í0Ê�Ó�Ö Ë`Ì.ÙÕÊ�È`Ì.Ö0Î�Ì.ÊNÅ�Ý,Ë4Ì.Å.Û¨Ò«Å
Ì.Å`ÐWÌJ×�Ò«Ê�ÙÕÙrÍ"×�ÆjÓW×�Ì�Ë4Ó,ÌJÖ�ÒÕÓ
Å`Ê�ÇÌ�È�Í�ÊjÓ�Ö�Î�Ò«Å`Å`ÒÕÆjÓ
×�Ë4ÒpÈ4ÒÕ×.Ê�ÙìÅ`ÍyÅ�Ø
È`Ì.Î¯á�ä�Òpî@Ì�Ë4Ì�ÓLÈ�ÎEÆyÖyÌ.ÙrÒÕÓ,ÑDÊ�Ó�Ö¥Ê�Ó�ÊjÙrÍfÔ.ÒrÓ,Ñ¨È`ÌJ×�Ü,Ó,Ò«ïNÝ�Ì.Å�Ü�ÊUÞjÌ
ßWÌ.Ì�Ó¥Ì�ÚyÐ,ÙÕÆjÒrÈ`Ì.Ö�È`Æ�Ì�Þ=Ê�ÙÕÝ�Ê=È4Ì^Þ=ÊjË`ÒÕÆjÝ�Å>Ó,ÆjÓ,ØMÇÝ,ÓW×�È`ÒÕÆjÓWÊ�ÙfÐ,Ë4ÆjÐyØ
Ì�Ë`È`ÒÕÌ.Å.á³ñ,ÆNË�Ì�ÚyÊjÎ�Ð,ÙrÌNÛ�ÇZÊ�Ý,ÙrÈ�ØQÈ`Ë4Ì�ÌJÅ�ÉqÌ�Ë4Ì�Ý�Å`Ì.Ö´ÇÆNË¥Å`ÍfÅ�È`Ì.Î
Ë`Ì.ÙrÒ«Ê�ß�ÒrÙÕÒpÈ�Í³ÎEÆyÖyÌ.ÙrÒÕÓ,ÑHçrèjè�êQôVïLÝ,Ì�Ý�ÒrÓ,Ñ
Ó�Ì�È�ÉqÆjË4ÏfÅDÜWÊUÞjÌ�ßWÌ.Ì�Ó
Ý�Å`Ì.ÖDÇÆNË2Ð�Ì�Ë`ÇÆjË4Î'Ê�Ó�×�Ì^Ê�ÓWÊ�ÙÕÍfÅ`Ò«ÅìÆ�Ç�×�ÆjÎ�Ð,Ý,È`Ì�Ë�Ê�ÓWÖ�×�ÆNÎEÎ¥ÝyØ
Ó,Ò«×�Ê=È4ÒrÆNÓ¸Å�ÍyÅ�È`Ì.Î�Å"çpèNÛ^èUóJê)ôlÊ
Þ=Ê�Ë4ÒrÌ�È�Í�ÆjÇ |W��}.���,�=���Q�Z��®A���M���
£����Z� ãQð�����Å4æ�Û�ÊNÅ�Ê�×�ÆjÓfÞjÌ.Ó,ÒrÌ.ÓLÈDÜ�ÒrÑNÜºÙrÌ.ÞjÌ�ÙlÇÆjË4Î'Ê�ÙÕÒÕÅ`Î�ÆjÇ
ë�Ê�Ë4ÏjÆ=Þ�×�ÜWÊ�ÒÕÓ�Å�Û2Ü�ÊUÞjÌ�ß�Ì.×�ÆjÎ�Ì'ÐWÆNÐ,Ý,Ù«Ê�ËâÇÆNËDÈ`Ü,Ì"Ê�Ó�ÊjÙrÍyÅ`ÒÕÅ
Æ�ÇfÐWÌ.Ë�ÇÆNË`Î'ÊjÓ�×�ÌNÛJÖyÌ.ÐWÌ.Ó�Ö,Êjß,ÒrÙÕÒrÈ�ÍPÊjÓ�ÖPÐWÌ.Ë�ÇÆNË`Î'Ê�ß�ÒrÙÕÒpÈ�ÍEç 	yÛ.þUê)á
ÿ�Ó
Î�ÆNÅ�È¨Ë`ÌJÅ�ÌJÊ�Ë�×�Ü"ÉqÆjË4Ï@ÛyÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙ>Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å¨Ê�Ó�Ö�Ó,ÆNÓyØ
ÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙTÐ,Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅÁÊ�Ë4Ì�Å`Ì�Ð�ÊjË4Ê�È`Ì�ÙÕÍ'Î�ÆyÖyÌ�ÙÕÌ.Ö¯Ê�Ó�Ö�Ì�Þ=Ê�ÙrØ
Ý�Ê=È4Ì.ÖHßWÌJ×�Ê�ÝWÅ�Ì¯Æ�Ç�È`Ü,Ì�×�ÆNÎEÐ�ÙrÌ�ÚfÒrÈ�ÍºÆ�ÇPÒrÓLÈ4Ì�ÑjË�Ê=È4ÒrÆNÓìá¸ûÁÜ,Ì
Å�Ì.Ð�Ê�Ë�Ê=È4ÒrÆNÓDÌ.ÊjÅ`Ì.ÅìÈ`Ü,Ì^É^ÆNË`Ï�Æ�Ç,Î�ÆyÖyÌ�ÙÕÒÕÓ,Ñ¨Ê�ÓWÖ�Ê�Ó�ÊjÙrÍyÅ`ÒÕÅ.ÛJß,ÝyÈ
ÒÕÅ�Ð,Ë`ÆNÓ,ÌDÈ`Æ'ÒÕÓ�×�ÆjÓ�Å`ÒÕÅ�È`Ì.Ó�×�Í�Æ�ÇVÎ�ÆfÖ,Ì�Ù«Å�Ê�Ó�Ö¯ÒÕÎ�Ð,Ë`ÌJ×�Ò«Å�ÒÕÆjÓ�ÆjÇ
Ì�Þ=Ê�ÙÕÝ�Ê�È`ÒÕÆjÓ�Å.á�ò ÒrÈ`Ü´ÒÕÓ�×�ÆNË`Ð�ÆjË�Ê=È4Ì.Ö�Å�È`Æy×�Ü�ÊNÅ�È4ÒÕ×E×�ÆNÓ�Å�È4Ë`ÝW×�È4Å.Û
È`Ü,Ì´ðyÄ¨ë ÎEÆyÖyÌ.ÙP×.Ê�Ó ß�Ì³È4Ë4ÊjÓ�Å�ÇÆjË4ÎEÌJÖ_È`Æ_Ê_ðLÈ`Æy×�Ü�ÊNÅ�È4ÒÕ×

 Ì�ÉÁÊ�Ë�Ö���Ì�È�ç 	Jê�ãMð
 ��æ¨Î�ÆfÖ,Ì�ÙQá�ò Ü,ÒÕÙÕÌ�ÇÝ,ÓW×�È`ÒÕÆjÓWÊ�Ù�Ð,Ë4ÆjÐyØ
Ì�Ë`È�Í¨ÞNÌ�Ë4ÒpüW×.Ê=È4ÒrÆNÓPÒ«Å�×�ÆjÓWÖyÝ�×�È4Ì.ÖDÝ�Å`ÒÕÓ,ÑAÈ`Ü�Ì¤È`ÌJ×�Ü,Ó,Ò«ïLÝ,Ì.Å>ÎEÌ.ÓyØ
È`ÒÕÆjÓ,ÌJÖuÊ�ß�Æ=ÞjÌjÛ^ÐWÌ.Ë�ÇÆNË`Î'ÊjÓ�×�Ì�Ê�Ó�ÖuÖyÌ.ÐWÌ.Ó�Ö,Êjß,ÒrÙÕÒrÈ�Í_×�ÊjÓ_ß�Ì
Ì�Þ=Ê�ÙÕÝ�Ê�È`ÒÕÆjÓ¯ßLÍ"Å�ÆNÙrÞfÒÕÓ,ÑEÈ`Ü,Ì�ÖyÌ.Ë`ÒÕÞjÌJÖ"ð
 � Î�ÆfÖ,Ì�ÙQá
ûÁÜ,Ì'Ë`ÌJÅ�ÈâÆjÇ^È4Ü,Ì�Ð�Ê�Ð�Ì�ËâÒ«ÅâÆjË4ÑNÊjÓ,ÒÕÔ�Ì.Ö�ÊjÅ�ÇÆjÙÕÙÕÆ=É�Å�á�ðfÌJ×�Ø

È`ÒÕÆjÓ ó:ÒrÓLÈ4Ë`ÆyÖyÝ�×�Ì.Å�ðyÄ�ë Ê�Ó�Ö ð
 �¨Å.á�ÿ�Ó Å`Ì.×�È4ÒrÆNÓ ú,Û�Ê
Î�Ý,ÙrÈ`ÒÕÐ,Ë4Æf×�Ì.Å4Å�ÆNË¨Å`ÍfÅ�È`Ì.Î�Ò«Å�ÑNÒrÞNÌ�Ó�ÊNÅ¨Ê�Ó³Ë`Ý,Ó�Ó,ÒrÓ�Ñ�Ì�Ú,Ê�Î�Ð,ÙÕÌ
È`Ü,Ë4ÆjÝ,ÑNÜ,ÆjÝ,È¤È`Ü,ÌPÐ�ÊjÐWÌ.Ë.á¤ðfÌJ×�È`ÒÕÆjÓ��¥ÖyÌ.Ð,ÒÕ×�È4Å^È`Ü�Ì�Å�È`Æy×�Ü�ÊjÅ�È`Ò«×
Ì�ÚfÈ`Ì.Ó�Å�ÒÕÆjÓ�ÆjÓ¥ðyÄ�ëºÛ=Ê�Ó�Ö�Å�ÌJ×�È`ÒÕÆjÓ	AÌ�ÚyÐ,Ù«Ê�ÒÕÓ�Å2Ü,Æ=ÉSÈ`Æ¨È`Ë�Ê�Ó�Å�Ø
ÇÆjË4Î È`Ü,Ì�ðyÄ�ë Î�ÆyÖyÌ�ÙVÒÕÓLÈ`Æ�Ê�Óºð
 ��áìûÁÜ,Ì�Ë`ÌJÅ�Ý,ÙrÈ4ÅPÆjÇlË`Ì�Ø
ÙrÒ«Ê�ß,ÒÕÙÕÒpÈ�Í�ÊjÓ�Ê�ÙÕÍyÅ�Ò«ÅqÇÆjË�È`Ü,ÌâÌ�ÚyÊjÎ�Ð,ÙrÌ�Å`ÍyÅ�È4Ì�Î©Ê�Ë4ÌDÖ,Ì.Å4×�Ë4Òrß�Ì.Ö
ÒrÓ�Å�ÌJ×�È4ÒrÆNÓ���Û,Ê�Ó�Ö¯×�ÆNÓ�×�ÙÕÝ�Å`ÒrÆNÓ�ÅAÊ�Ë4ÌDÖyË4ÊUÉAÓ¯ÒÕÓ�Å`Ì.×�È`ÒÕÆjÓ��fá

�Á¼������ x � Ã ��� ¿�����¿¤x��cz! �Ã�v"� v

û2Æ�ÑjÒÕÞjÌ�Ë4Ì.ÊjÖ,Ì�Ë�Å�Ê¯Ë4ÆjÝ,ÑNÜ³Ò«ÖyÌ.Ê�Ê�ß�ÆjÝ,ÈâÈ`Ü,ÌEÇÆjË4Î'Ê�ÙÕÒÕÅ`Î'Å
Ý�Å�ÌJÖ�ÒÕÓ¥È`Ü,Ò«Å�Ð�Ê�Ð�Ì�ËJÛ�ÉqÌ^ß�Ë`ÒÕÌ$#�Í�ÒrÓLÈ`Ë4ÆyÖyÝ�×�ÌÁðyÄ�ë Ê�Ó�Ö�ð
 ��á

2.1. Software Architecture Model

ð,Ä¨ë Ò«Å�ÊEÇÆjË4Î'Ê�Ù@ÇË�Ê�Î�Ì�ÉqÆjË4Ï�ÇÆjË¨Å`Ð�Ì.×�ÒrÇÍfÒrÓ�Ñ�Ê�Ó�Ö�Ê�ÓWÊ=Ø
ÙrÍfÔ�ÒÕÓ,ÑPÅ�ÆjÇ�È�ÉqÊjË`Ì¤ÊjË4×�Ü,ÒrÈ`ÌJ×�È4Ý,Ë`ÌJÅ�á2Ä:ðyÄ�ë Î�ÆyÖyÌ�Ùy×�ÆjÓ�Å`ÒÕÅ�È4Å>Æ�Ç
ÊâÅ�Ì�ÈlÆ�Ç ��}=�¨�,}=�����M�Z}��,� ÊjÓ�Ö'Ê �f�Z���`���`�4�y�Z���=�T�'�4�j�@���L� Ë4Ì�Ù«Ê=È`Ø
ÒrÓ,Ñ¨È`Ü,ÌÁ×�ÆNÎ�ÐWÆLÅ�ÒrÈ`ÒÕÆjÓ�Å.á2Ä:×�ÆNÎ�ÐWÆLÅ�ÒrÈ`ÒÕÆjÓ�ÒÕÓ¥È`Ý,Ë4Ó�×�ÆNÓ�Å`ÒÕÅ�È4Å2Æ�Ç
Î�Ý,ÙrÈ`ÒÕÐ,ÙÕÌ ��}=�¨�,}��������M� ÊjÓ�Ö ��}=���@������}=��� ÛfÊ�Ó�Ö�ÊâÅ`Ì�ÈlÆjÇ@×�ÆjÎEØ
ÐWÆLÅ�ÒrÈ`ÒÕÆjÓ ��}��,���M�4�=�����M� á&%^Êj×�Ü¸×�ÆNÎ�ÐWÆNÓ,Ì�ÓLÈ¯ãZÆjËE×�ÆjÓ�Ó,Ì.×�È`ÆjË�æ
×�ÆjÓWÅ�Ò«Å�È�ÅâÆ�Ç¨Ê�ßWÌ.Ü�ÊUÞfÒrÆNË�Î�ÆfÖ,Ì�Ù^ÊjÓ�Ö¸Ê�Å`Ì�È¥Æ�Ç¨×�ÆNÎ�ÐWÆNÓ,Ì�ÓLÈ
ãÆjËq×�ÆNÓ,Ó,Ì.×�È`ÆNË�æV×�ÆjÓ�Å�È`Ë�Ê�ÒÕÓLÈ4Å.á�Ä¹ðyÄ¨ë�Î�ÆfÖ,Ì�Ù�ÒÕÅqÅ`ÊjÒÕÖEÈ4Æ�ß�Ì
×�ÆjË4Ë4Ì.×�È�ÒpÇ¤È4Ü,ÌEßWÌ.Ü�ÊUÞfÒrÆNË�Î�ÆyÖyÌ�Ù«ÅPÅ`Ê�È`Ò«Å�ÇÍ
ÌJÊj×�Ü³×�ÆjÓ�Å�È`Ë�Ê�ÒÕÓLÈ.á
ñ,ÆjË�Ê"ÇÆNË`Î'Ê�Ù¤Ö,Ì�ü�Ó,ÒrÈ`ÒÕÆjÓºÊjÓ�Ö�Ö,Ì.Å4×�Ë4ÒrÐyÈ4ÒrÆNÓ�ÆjÇAð,Ä¨ëºÛìË4Ì�ÇÌ.Ë
È`Æ
ç ÷�êQá
ûÁÜ�Ì�Ë4Ì�Ê�Ë4Ì�È�É^Æ�×�ÆjÎ�Ð,ÙÕÌ�Î�Ì�ÓLÈ�ÇÆNË`Î'ÊjÙlÎ�Ì�È4Ü,ÆyÖ,Å�Ý,ÓWÖyÌ�Ë`Ø

ÙrÍfÒÕÓ,Ñ"Ê¯ðyÄ¨ë ÎEÆyÖyÌ.ÙMá'��Ì�È`Ë4Ò2Ó,Ì�È4ÅDÊ�Ë4Ì�Ý�Å`Ì.Ö�È`Æ¯ÖyÌ�ü�Ó�Ì�È4Ü,Ì
ßWÌ.Ü�ÊUÞfÒrÆNË�Î�ÆfÖ,Ì�Ù«Å�ÆjÇ¨×�ÆjÎ�Ð�ÆjÓ,Ì.ÓLÈ4ÅEÊ�Ó�Öº×�ÆjÓ,Ó,ÌJ×�È4ÆjËJÛ�ÉAÜ�ÒrÙÕÌ
È`Ì�Î�Ð�ÆjË�Ê�ÙqÙrÆNÑjÒ«×'Ò«Å¥ÝWÅ�ÌJÖ´È`Æ´Å�Ð�Ì.×�ÒpÇÍ´È4Ü,Ì"×�ÆjÓ�Å�È`Ë�Ê�ÒÕÓLÈ4Å.áSû2Æ
ßWÌ(#�Ì�ÚyÒrß,ÙÕÌjÛìÈ`Ü,Ì'Ý,ÓWÖyÌ�Ë4ÙrÍfÒÕÓ,Ñ¯ÇÆjË4Î'Ê�Ù�ÇÆjÝ�Ó�Ö,Ê=È4ÒrÆNÓ�ÆjÇAð,Ä¨ë
ÒÕÅDÓ,ÆjÈâÙrÒÕÎ�ÒpÈ4Ì.Ö�È`Æ�Ê"ü,ÚyÌ.Ö�Ð�ÊjÒrËâÆjÇ)��Ì�È4Ë`Ò�Ó,Ì�È�Ê�Ó�Ö³È`Ì.Î�ÐWÆjØ
Ë4ÊjÙlÙÕÆjÑjÒ«×�á�ûÁÜ�Ì"Å`Ì�ÙÕÌ.×�È4ÒrÆNÓ¸Æ�Ç�Ê³Ð�Ê�Ë`È`Ò«×�Ý,Ù«Ê�Ë*��Ì�È`Ë4ÒlÓ�Ì�È'Ê�Ó�Ö
È`Ì�Î�Ð�ÆjË�Ê�Ù�ÙÕÆjÑjÒ«×¥ÒÕÅPß�ÊNÅ�ÌJÖ�ÆjÓ�È`Ü�Ì�ÊjÐ,Ð,ÙÕÒÕ×.Ê=È4ÒrÆNÓ³Ý,Ó�Ö,Ì�Ëâ×�ÆNÓyØ
Å�Ò«ÖyÌ�Ë�Ê=È4ÒrÆNÓìá�ñ,ÆjËAÌ�Ú,Ê�Î�Ð,ÙÕÌjÛyË4Ì.Ê�ÙrØQÈ`ÒÕÎEÌ'��Ì�È`Ë4ÒTÓ,Ì�È�ÅAÊ�Ó�Ö¯Ë4Ì.Ê�ÙrØ
È`ÒÕÎEÌ�×�ÆjÎ�Ð,ÝyÈ�Ê=È4ÒrÆNÓ�Ê�Ù@È4Ë`Ì.ÌPÙÕÆjÑNÒÕ×�ÉqÌ�Ë4ÌPÝWÅ�ÌJÖ�È4Æ'Å�È4Ý�ÖyÍ"Å`Æ�Ç�È`Ø
ÉqÊjË`Ì�ÊjË4×�Ü,ÒrÈ`ÌJ×�È4Ý,Ë`ÌJÅ�ÆjÇ¤Ë`ÌJÊ�ÙrØMÈ4ÒrÎ�Ì¥Å`ÍyÅ�È4Ì�Î'Å�çrè.þ=êQÛ ®q�`�����Z�4���)�
+ �`���,�����Q�Z}=�º�����M� ã,�lË4û Ó,Ì�È4Å�æ¨ÊjÓ�Ö�ü�Ë�Å�ÈPÆNË4ÖyÌ.Ë¨ÙÕÒrÓ�Ì.Ê�Ë�È`ÒÕÎ�Ì
È`Ì�Î�Ð�ÆjË�Ê�Ù�ÙrÆNÑjÒ«×�ÉqÌ�Ë4Ì�Ý�Å`Ì.Ö�È`Æ"Å`Ð�Ì.×�ÒrÇÍ�Ê�ÓWÖ�ÞjÌ.Ë`ÒrÇÍ
Ê�×�ÆjÎEØ
Î�Ý,Ó,Ò«×�Ê�È`ÒÕÆjÓ¯Ð,Ë4Æ�È`Æy×�ÆjÙVçpè��=ê)á
ÿ�Ó�È4Ü,Ò«ÅVÐ�Ê�Ð�Ì�ËJÛjÉqÌAÝ�Å`Ì-�¤Ë�ûHÓ�Ì�È4ÅlÊjÅ�È4Ü,Ì�ß�Ì�Ü�ÊUÞfÒÕÆjËVÎ�ÆyÖfØ

Ì�ÙÕÒrÓ,Ñ�ÇÆjË4Î'Ê�ÙÕÒÕÅ`Î Æ�Ç¤È4Ü,Ì�ð,Ä¨ë ÇË�Ê�Î�Ì.É^ÆNË`Ï@á.�lË4û Ó�Ì�È4ÅPÊ�Ë4Ì
Ê�×�Ù«ÊjÅ4Å�ÆjÇ¤Ü,ÒrÑNÜ�ÙÕÌ�ÞjÌ.Ù/��Ì�È`Ë4Ò>Ó,Ì�È4Å.á�ø¨Å`ÒÕÓ,Ñ�È4Ü,Ì¥×�ÆjÓfÞjÌ.ÓNÈ4ÒrÆNÓ�Å
Ê�Ó�ÖSÖyÌ�üWÓ,ÒpÈ4ÒrÆNÓ�ÅâÒÕÓ ç ÷Uê)Û2Ê��lË4û Ó,Ì�È�Ò«Å�ÖyÌ�ü�Ó,Ì.Ö´ÊNÅâÊ�È4Ý,Ð,ÙÕÌ
ã,0�132547698:1<;>=@?Uæ�Û�ÉAÜ�Ì�Ë4Ì�0BA�ãDCE1GF-1IH�æ�Ò«Å�È4Ü,Ì¯Ó,Ì�È�Å�È4Ë`Ý�×�Ø
È`Ý,Ë4Ìjô-254J6K8"ÖyÌ�üWÓ,Ì.Å¥È`Ü�Ì
Ý�Å�ÌJÖHÅ`ÆjË`È4Å.Û¤ÆjÐ�Ì�Ë�Ê=È4ÒrÆNÓ�Å�Ê�Ó�ÖHË`Ì�Ø
ÙÕÊ�È`ÒÕÆjÓ�Å.ô¤Ê�Ó�ÖL;>=@?�A�ã,M)1IN-1<O13PRQJæ�ÖyÌ�ü�Ó�Ì.Å�È`Ü,Ì"Î�ÊjÐ,Ð,ÒÕÓ,Ñ
Æ�Ç�Ð,Ù«Êj×�Ì.Å'È4Æ_Å`ÆjË`È4Å.ÛÁÈ`Ü,ÌSÙ«Ê�ß�Ì�Ù«Å�ÛAÈ4Ü,Ì�×�ÆjÓ�Å�È`Ë�Ê�ÒÕÓLÈ�Æ�Ç�ÌJÊj×�Ü
È`Ë�Ê�Ó�Å`ÒpÈ4ÒrÆNÓìÛ@Ê�Ó�Ö�È`Ü,ÌEÒrÓ�ÒpÈ4ÒÕÊjÙ�Î'ÊjË`ÏfÒÕÓ,Ñ�Ë4Ì.Å`ÐWÌJ×�È`ÒÕÞjÌ.ÙrÍNáâñ,ÆjËDÊ
×�ÆjÎ�Ð,ÙÕÌ�È4ÌâÖyÌ�ü�Ó�ÒpÈ4ÒrÆNÓ¯ÆjÇ�Ê(�lË4û Ó,Ì�ÈJÛ,Ë`Ì�ÇÌ�ËqÈ`Æ�ç ÷Uê)á

2.2. Stochastic Reward Net

ð
 �íç 	Uê¨Ò«Å'Ê�ÓuÌ�ÚLÈ4Ì�Ó�Å`ÒÕÆjÓ_È`ÆHð��S��álÄ¨Ó ð
 �$×�ÊjÓ_ß�Ì
Î'Ê�Ð,Ð�Ì.Ö´ÒÕÓLÈ`Æ�Ê
ë�ÊjË`ÏNÆ=Þ
 Ì�ÉÁÊ�Ë�ÖSÎEÆyÖyÌ.Ù¨ç 	Uê)á�TqÍSÖ,Ì�ü�Ó,ÒrØ
È`ÒÕÆjÓìÛWÊ�Ó
ð
 � Ò«Å�Ê�ÓSèjè�ØMÈ4Ý,Ð,ÙÕÌD×�ÆjÓ�Å`Ò«Å�È4ÒrÓ,ÑEÆ�ÇVU
èjáAÄ¹ü�Ó,ÒrÈ`Ì�Å`Ì�È�ÆjÇ2Ð,Ù«Êj×�Ì.Å.á
óyáAÄ¹ü�Ó,ÒrÈ`Ì�Å`Ì�È�ÆjÇ>È4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓWÅ�á
ú,áAÄ¹ü�Ó,ÒrÈ`Ì�Å`Ì�ÈAÆjÇ�ÒÕÓ,Ð,ÝyÈ¨ÊjË4×.ÅqÇË`ÆNÎ Ð,Ù«Êj×�Ì�È4ÆEÈ`Ë�Ê�Ó�Å`ÒpÈ4ÒrÆNÓìá
��áAÄ_ü�Ó,ÒrÈ`Ì�Å`Ì�ÈVÆ�ÇWÆjÝyÈ4Ð,ÝyÈlÊ�Ë�×�Å>ÇË4ÆjÎ È4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓ�È`ÆDÐ,Ù«Êj×�Ìjá
	yáAÄ üWÓ,ÒpÈ4Ì¥Å`Ì�ÈPÆ�ÇVÒrÓ�Ü,Òrß�ÒpÈ4ÆjËDÊ�Ë�×�ÅÁÇË4ÆjÎ©Ð,Ù«Êj×�Ì�È`Æ�È4Ë4ÊjÓ�Å`ÒpØ
È`ÒÕÆjÓ>á

�,áW%¤ÓWÊ�ß,ÙÕÒrÓ�ÑAÇÝ,Ó�×�È`ÒÕÆjÓ�ÇÆNË>ÌJÊj×�ÜDÈ`Ë�Ê�ÓWÅ�ÒrÈ`ÒÕÆjÓìá�ÄºÈ4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓ
Ò«Å¯Ö,ÒÕÅ4Ê�ß,ÙÕÌ.ÖàÒpÇ�È4Ü,Ì´Ì�Ó�Êjß,ÙÕÒrÓ,ÑHÇÝ,Ó�×�È`ÒÕÆjÓ Ò«Å¯Ì�Þ=Ê�ÙÕÝ�Ê�È`Ì.Ö
ÇZÊ�Ù«Å`Ìjá

�fáW�¤Ë4ÒÕÆjË4ÒpÈ4ÒrÌJÅlÇÆNËAÌ.ÊN×�Ü�È4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓWÅ�áVÄ¹È`Ë�Ê�ÓWÅ�ÒrÈ`ÒÕÆjÓ¯ÒÕÅ¨ÖyÒÕÅ�Ø
Ê�ß�ÙrÌJÖ³ÒrÇlÈ4Ü,Ì�Ë4Ì�Ì�ÚyÒÕÅ�È4ÅDÊjÓ�Ì.Ó�Ê�ß,ÙÕÌ.Ö�È`Ë�Ê�Ó�Å`ÒrÈ`ÒÕÆjÓSÉAÒpÈ4ÜSÊ
Ü,ÒÕÑjÜ,Ì.ËAÐ,Ë4ÒrÆNË`ÒrÈ�Íjá

÷,áAûÁÜ,ÌâÒÕÓ,ÒrÈ`Ò«Ê�ÙTÎ'Ê�Ë4ÏfÒrÓ,ÑWá
þ,áAÄ�ÐWÆLÅ�ÒrÈ`ÒÕÞjÌ�Ì�ÚyÐWÆNÓ,Ì�ÓLÈ4ÒÕÊjÙPÖyÒ«Å�È`Ë4Òrß,Ý,È`Ì.Ö Ë4Ê�È`Ì³ÇÆjË¯Ì.Êj×�Ü
È`ÒÕÎ�Ì.ÖDÈ4Ë4ÊjÓ�Å`ÒpÈ4ÒrÆNÓìÛ=Ê�Ó�Ö�ÊjÓ�ÒÕÎEÎ�ÌJÖyÒÕÊ�È`ÌlÈ`Ë�Ê�Ó�Å`ÒpÈ4ÒrÆNÓDü�Ë4Ì.Å
Ê=ÈAÓ,Æ�È4ÒrÎ�ÌNá

èJé,áAÄ ÉqÌ�ÒÕÑjÜLÈÁÇÆjËAÌ.ÊN×�Ü�È4Ë4ÊjÓ�Å`ÒpÈ4ÒrÆNÓìá
èNèjá
 Ì.ÉqÊjË4Ö�ÎEÌJÊjÅ`Ý,Ë4Ì.Å.á
ð����.� çpè9	Jê�ÊjÓ�Ö�ðyë�Ä
 ûcç ��ê�Ê�Ë4ÌDÈ�É^Æ�È4ÆfÆjÙ«ÅÁÇÆjË�ð
 �¨Å.á

TqÍ�Å`ÆjÙÕÞLÒÕÓ,Ñ¯È`Ü�Ì�Ý,Ó�ÖyÌ.Ë`ÙÕÍfÒrÓ�Ñ�ë�Ê�Ë4ÏjÆ=Þ�×�Ü�ÊjÒrÓWÅâÆ�ÇAÊ�Ó¸ð
 ��Û
ÐWÌ.Ë�ÇÆNË`Î'ÊjÓ�×�Ì³ÊjÓ�Ö Ö,Ì�Ð�Ì�Ó�Ö,Êjß,ÒÕÙrÒrÈ�Í Æ�ÇâÈ4Ü,Ì�Î�ÆyÖyÌ.ÙD×.Ê�Óàß�Ì
Ì�Þ=Ê�ÙÕÝ�Ê�È`Ì.Öìá

XÁ¼ sZYíÂ. �w,ÃV[�x,¿A{ � vfvN¿lx]_^Az!�`[a �

ò�ÌâÝ�Å`ÌâÊEÎ�Ý,ÙrÈ`ÒÕÐ,Ë4Æf×�Ì.Å4Å�ÆNËqÅ`ÍyÅ�È4Ì�Î Ö,Ì�Ð,Ò«×�È4Ì.Ö"ÒrÓºç úUê2ÊjÅÁÊ
Ë`Ý�Ó,Ó,ÒÕÓ,Ñ�Ì�Ú,ÊjÎEÐ�ÙrÌ�È`Æ�Ö,Ì�Î�ÆjÓ�Å�È`Ë�Ê=È4Ì'È`Ü�Ì�Ý�Å`Ì�ÆjÇÁÌ�ÚfÈ`Ì�ÓWÖyÌ.Ö
ðyÄ¨ë¸á�Ä¨ÅAÒÕÙÕÙrÝ�Å�È`Ë�Ê=È4Ì.Ö¯ÒÕÓ�ñ�ÒÕÑjÝ,Ë4Ì�èjÛ,Ê�Î¥Ý,ÙpÈ4ÒrÐ�Ë`Æy×�ÌJÅ`Å`ÆjËAÅ`ÍyÅ�Ø
È`Ì.Î ×�ÆNÓ�Å�Ò«Å�È4ÅqÆ�Çb=³Å�Ý�ß�Å�ÍyÅ�È`Ì.Î�Å-2/c91�d�d�d$132�e@á�%lÊN×�Ü"Å`Ý,ß�Å`ÍyÅ�Ø
È`Ì.Î`2�f�ÒÕÅ�×�ÆjÎ�ÐWÆLÅ�ÌJÖ�ÆjÇ�ÆjÓ,ÌqÐ,Ë4Æy×�Ì.Å4Å`ÆjË/Cbf`Û�ÆjÓ,ÌqÙÕÆf×.Ê�ÙfÎ�Ì�ÎEØ
ÆjË4Í�P�f�Û2Ê�Ó�Öhg Ë`Ì.Ð,ÙrÒ«×�Ê�È`ÌJÖ�Î�ÒrË4Ë4ÆjË4Ì.Ö�ÖyÒ«Å`Ï�Ý,Ó,ÒrÈ4Å'i(fkjjá¥Ä
ß,Ý�Åml ×�ÆNÓ,Ó,Ì.×�È4Å2È`Ü�ÌS=�Å`Ý,ß�Å`ÍyÅ�È4Ì�Î'Å�Ê�Ó�Ö¥Ê�Å`Ü�ÊjË`ÌJÖâÎ�Ì�Î�ÆjË4Í
PRnLÛ�ÉAÜ�ÒÕ×�Ü�Ò«ÅPÅ�Ü�ÊjË`ÌJÖ�ßfÍ¯ÊjÙrÙ�Å�Ý�ß�Å�ÍyÅ�È`Ì.Î�Å.á�ûÁÜ�Ì¥×�ÆNÎ�Ð,ÙrÌ�È`Ì
Å�ÍyÅ�È`Ì.Î0ÇZÊjÒrÙ«ÅìÉAÜ�Ì�Ó�È4Ü,Ìlß�Ý�Å/làÇZÊ�ÒÕÙÕÅ2ÆjË2ÉAÜ,Ì�Ó(o�ã�è'pqo�pr=>æ
Å�Ý�ß�Å�ÍyÅ�È`Ì.Î�Å¨ÇZÊ�ÒÕÙQá�Ä¡Å`Ý,ß�Å`ÍyÅ�È4Ì�Î ÇZÊjÒrÙ«Å¨ÉAÜ�Ì�ÓSÒpÈ�Å�Ð�Ë`Æy×�ÌJÅ`Å`ÆjË
ÇZÊ�ÒÕÙÕÅ¨ÆjËPÊ�ÙÕÙ2ÒrÈ4ÅPÖyÒ«Å�ÏyÅAÇZÊjÒrÙ�ÆjË�ßWÆjÈ`Ü
È4Ü,ÌEÙrÆy×�ÊjÙ>Î�Ì�Î�ÆNË`Í�Ê�Ó�Ö
È`Ü,Ì�Å`Ü�ÊjË`ÌJÖ�Î�Ì�Î�ÆjË4Í'ÇZÊjÒrÙQá
ûÁÜ,Ì'Ë`Ì.ÙrÒ«Ê�ß�ÒrÙÕÒpÈ�Í:ãÒQá ÌNá�Ð,Ë4Æjß�Êjß,ÒÕÙrÒrÈ�Í�Æ�ÇÁÅ�ÍyÅ�È`Ì.Î�ÖyÆ=ÉAÓWæPÒ«Å

È`Ü,Ì�Î�ÊjÒrÓ
Ò«Å4Å�Ý,Ì�Æ�Ç�È`Ü,Ì¥Î�Ý,ÙrÈ`ÒÕÐ,Ë4Æy×�Ì.Å4Å`ÆjË�Å`ÍfÅ�È`Ì.Î�á�ñ2ÒÕÑjÝ�Ë`Ì�ó
ÖyÌ�Ð�ÒÕ×�È4Å¯È`Ü�ÌºßWÌ.Ü�ÊUÞfÒrÆNË¯Î�ÆyÖyÌ.ÙâÒrÓ ðyÄ�ë!ÇÆNË�È`Ü,ÌSÇZÊjÒrÙÕÝ,Ë4Ì.Å
Æ�ÇEÈ`Ü,ÌHÎ�Ý,ÙrÈ`ÒÕÐ,Ë4Æf×�Ì.Å4Å�ÆNË�Å�ÍyÅ�È`Ì.Î¯ás%lÊN×�Ü0Ó�Ì�È³Ì.ÙrÌ.ÎEÌ.ÓLÈ�ÒrÓ
È`Ü,Ì�ßWÌ.Ü�ÊUÞfÒrÆNËâÎEÆyÖyÌ.ÙlÒ«Å�ÖyÌJÅ`×�Ë`ÒÕßWÌJÖ´ÒrÓ¸û�Ê�ß�ÙrÌ
èNá�ÿ�Ó,ÒrÈ`Ò«Ê�ÙÕÙrÍNÛ
Ì�ÞNÌ�Ë4ÍSÌ.ÙrÌ.Î�Ì�ÓLÈEÆjÇ�Å`ÍfÅ�È`Ì.Î ÒÕÅEÉqÆjË4ÏfÒrÓ,ÑWÛ¤ûÁÜ,Ì¯Ó,Ì�È�ÒrÓWÅ`×�Ë`ÒÕÐyØ
È`ÒÕÆjÓöÆjÇ¯È4Ü,Ìàß�Ì�Ü�ÊUÞfÒÕÆjË¸Î�ÆyÖyÌ.Ù�Ò«ÅHÊjÅ¸ÇÆjÙÕÙrÆ=É�Å.á ðfÍfÎ�ß�ÆjÙ
t ÖyÌ�Ó�Æ�È`ÌJÅ:ÐWÆ=ÉqÌ�Ë Å`Ì�È.ô]=$Ò«Å:È`Ü,Ì ÓfÝ,Î�ß�Ì�Ë ÆjÇSÅ`Ý,ß�Å`ÍyÅ�Ø
È`Ì.Î�Å.ôug Ò«Å¯È`Ü�ÌºÓLÝ�Î�ß�Ì�Ë
Æ�Ç�ÖyÒ«Å�ÏyÅ¯ÒrÓ ÌJÊj×�Ü0Å`Ý,ß�Å`ÍyÅ�È4Ì�Î�ô

vIw x/y z { | } ~ � � � �
�V� ��� � � � � � � � � �

��� �5� � � � � � � � � �

� �
¡

¢5£

Figure 1. The multiprocessor system.

Table 1. Description of net elements.¤)¥§¦©¨�¦«ª¬¯® °*¦±®¯²K³�´¶µ5¬3´¶·�ª
¸�¹»º�¸ ¹7¼ ½»¾V¿:ÀIÁ3Â�Â�¿�¾ ¸5Ã@Ä Â!Åm¿�¾VÆ ÄÈÇ«É:Ê$Ç ¿�Ë�Åm¿�¾VÆ ÄÈÇ«É«Ì
¸�Í!º�¸ Í/¼ Î Ä Â�ÆÏ Ã Ð-Ä Â�Åb¿�¾VÆ ÄkÇ©É:Ê$Ç ¿�Ë�Åb¿�¾VÆ ÄkÇ©É±Ì
¸�Ñ�Òº�¸ Ñ7Ò.¼ Ó'Á3Ó'¿�¾�Ô*Õ�Ö Ä Â!Åm¿�¾VÆ ÄkÇ«É:Ê�Ç ¿�Ë�Åm¿�¾VÆ ÄkÇ«É«Ì
¸�×±Ò*º�¸ ×±Òa¼ Ó'Á3Ó'¿�¾�Ô*Õ Ã@Ä Â!Åm¿�¾VÆ ÄkÇ«É:Ê�Ç ¿�Ë�Åm¿�¾VÆ ÄkÇ«É«Ì
¸�Ø/º�¸ Ø7¼ ÙbÚ©Â�Û Ä Â!Åb¿�¾VÆ ÄkÇ©É:Ê$Ç ¿�Ë�Åb¿�¾VÆ ÄkÇ©É±Ì
¸�Ü"º�¸ ÜÝ¼ Þmß©ÁWÂ Ô±Â ËVÁ3Ó Ä Â!Åm¿�¾VÆ ÄkÇ«É:Ê�Ç ¿�Ë�Åm¿�¾VÆ ÄkÇ«É«Ì
¸5à á�â ã Ú«ä©Â Ô±Â ËVÁ3Óæå Ã@Ä Â Ç ¿�Ë�Åm¿�¾VÆ ÄkÇ©É±Ì
ç ¹ ½»¾V¿:ÀIÁ3Â�Â�¿�¾ ¸ Ã»èêé Äkë Â Ì
ç Í Î Ä Â�ÆÏ Ã ÐWèìé ÄÈë Â Ì
ç Ñ�Ò ã ß é ¾VÁ¯íuÓ'Á3Ó'¿�¾�Ô*Õ Ö èìé Äkë Â Ì
ç ×±Ò î ¿:À é ë Ó'Á3Ó'¿�¾�Ô*Õ Ã�èìé Äkë Â Ì
ç Ø ÙbÚ©Â�Û èìé Äkë Â Ì
ç�ï å Ã èìé Äkë Â)í«Ú«Á)ËV¿að±¾V¿:À3Á3Â�Â�¿�¾ èìé ÄÈë Ú±¾VÁ Ì
ç7ñ å Ã èìé Äkë Â)í«Ú«Á)ËV¿aÓ'Á3Ó'¿�¾�Ô èìé ÄÈë Ú±¾VÁ3Â Ì
ç�ò å Ã èìé Äkë Â)í«Ú«Á)ËV¿óí Ä Â�Æ èìé Äkë Ú±¾VÁ3Â Ì
ç�ô Â Ô±Â ËVÁ3Ó èìé ÄÈë ÂSí«Ú«ÁEËV¿aÂ�Ú©ä«Â Ô±Â Ì èêé Äkë Ú«¾VÁ3Â Ì
ç7õ Â Ô±Â ËVÁ3Ó èìé ÄÈë ÂSí«Ú«ÁEËV¿aä©Ú«Â èìé Äkë Ú«¾VÁ Ì

Ê�Ó�Öqo:Ò«Å�È`Ü,Ì³ÎEÒÕÓ,ÒÕÎ�Ý,ÎýÓfÝ,Î¥ßWÌ.Ë�Æ�Ç�Å`Ý,ß�Å`ÍfÅ�È`Ì.Î'Å'ÉAÜ,ÆNÅ`Ì
ÇZÊ�ÒÕÙrÝ,Ë4Ì.Å2ÉAÒÕÙrÙLË`ÌJÅ�Ý�ÙpÈ�ÒrÓ�È`Ü,Ì^ÇZÊ�ÒÕÙrÝ�Ë`ÌqÆ�ÇyÈ4Ü,Ìq×�ÆjÎ�Ð,ÙÕÌ�È4ÌqÅ`ÍyÅ�È4Ì�Î�á
MqãDC/ö^æ�A÷MÁã,Cbö@øfæ�A t ãVù�;$ú�èóp];�pû=müUæ
MqãDC/ý7þ¯æ�AÿMÁã,Cbý�þ ø æ�A÷MÁã,C�� ��� æ�AÿMqãDC ö æ
MqãDC��Áæ�AÿMqãDC�� ø æ�A t ã�ù��G=
	��V6Kg4������ü=æ
MqãDC��bþ�æ�A÷MÁã,C��@æ�A÷MÁãDC��bþ ø æ�AÿMÁã,C�� ø æ�AÿMÁã,C��qæ
MqãDC���æ�A÷MÁã,C�� ø æ�A t ãVù�� ;31�����ú�èópû;�pû=!1�èóp�� prg&üUæ
OEã,F ö æSAqO�ã F�ý�þ¯æ�A÷O�ã,F��qæ�A÷O�ã,F��bþ"æ�A������J6
OEã,F �ÁæSAqO�ã F@c�æ�AÿO�ã F !.æ�AÿO�ã F "�æ�A#�����J6
OEã,F $�æ�A ã&%�')(+*�d,'óA ù-� ;31&�-��úpèóp�� pûP`ü/.0*21�A3*546'�æ
OEã,F�7.æ�A ã&%�')(+*�d@ú '_ú±A98:.;* 1 A#*<4='

.>��A:�G=
	��V6Kg4�����Næ
P ã,Cbö¤æ�AÿP ãDC ý�þ æ�A ù�; ú@è'p];�pû=mü
P ã,C � æ�A ù-� ;31&�-��ú�è'p];�pû=?. è'p�� pûghü
P ã,C � æ�A P ã,C �/þ æ�A÷P ãDC � æ�A ù@�G=
	��V6Kg4������ü
P ã,Cbö@øNæ�A P ã,C � øLæ�A÷P ãDC � øLæ�A÷P ãDC ��A æ�A ù«ü
P ã,Cbý�þ ø æ�A P ã,C��/þ ø æ�A÷P ãDC�� ��� æ�A ù±ü

B C
D E F

G H I
J K

L M
N O

P Q
R S

T U
V W X
Y Z [\

] ^ _ `
a b c

d e f
g
hi j
k

l�m n oqp r
s

t u v w x y z

{}| ~ � �
�
�

��
���

�

�

�

��� � �q�
� � �

��

� �
� � �

� � �
� �

�

¡ ¢
£ ¤

Figure 2. The SAM model for the example.

ÿ�Ó
È`Ü,Ò«Å�ßWÌ.Ü�ÊUÞfÒrÆNË�Î�ÆfÖ,Ì�ÙQÛWÈ4Ü,Ì�ÇZÊjÒrÙÕÝ,Ë4Ì�Ë�Ê=È`Ì�Æ�ÇVÌ.ÊN×�Ü
Ì�ÙÕÌ�Ø
Î�Ì�ÓLÈ�ÆjÇ,È`Ü�Ì^Î¥Ý,ÙpÈ4ÒrÐ�Ë`Æy×�ÌJÅ`Å`ÆjË�Å`ÍfÅ�È`Ì.Î ÒÕÅ�Ó,ÆjÈ�ÊNÖ,ÖyË4Ì.Å4Å�ÌJÖâÍjÌ�È.á
ûÁÜ,Ì�Ë4Ì�ÇÆNË`ÌNÛLÈ`Ü,ÌâË4Ì�ÙÕÒÕÊjß,ÒÕÙrÒrÈ�Í'Æ�Ç�È`Ü,ÌâÅ`ÍyÅ�È4Ì�Î ×.Ê�Ó,Ó,ÆjÈAßWÌ�ÊjÓ�Ê=Ø
ÙrÍfÔ.Ì.Ö�ßWÊjÅ`Ì.Ö�ÆNÓ�È4Ü,ÒÕÅ�Î�ÆyÖyÌ.ÙMá�ûÁÜ,ÌqÓ,Ì�ÚfÈ¤Å�ÌJ×�È4ÒrÆNÓ¥Å`Ü,Æ=É�Å>Ü�Æ=É
ðyÄ¨ë�Ò«ÅAÌ�ÚfÈ4Ì�Ó�ÖyÌJÖ�È4Æ'Ì�ÚyÐ,Ë4Ì.Å4ÅÁÅ�È4Æf×�ÜWÊjÅ�È`Ò«×�ÒÕÓyÇÆNË`Î'Ê=È4ÒrÆNÓìá

¥�¼§¦ wy¿A{¨�zVvNw,Ã�{ÿ\�^Áw �>¾ vLÃ�¿ ¾ ¿ ¾©¦ sqY

ÿ�Ó ð,Ä¨ëºÛVÌJÊj×�Ü:ßWÌ.Ü�ÊUÞfÒrÆNË¥Î�ÆyÖyÌ�Ù¨ÒÕÅEË4Ì�Ð,Ë4Ì.Å`Ì�ÓLÈ`ÌJÖ¸ßfÍHÊ
�¤Ë�û Ó,Ì�È.Û2ÊjÓ�ÖSÌ.ÊN×�Ü³Ë4Ì.ïLÝ,ÒÕË`Ì.ÎEÌ.ÓLÈâ×�ÆjÓ�Å�È`Ë�Ê�ÒÕÓLÈPÒ«ÅâÅ`ÐWÌJ×�Òrü�Ì.Ö
ÒrÓ"È`Ì.Î�ÐWÆNË4ÊjÙTÙrÆNÑjÒ«×�á�ûÁÜ,Ì�ðyÄ¨ë�ÇË�Ê�Î�Ì�ÉqÆjË4Ï�ÒÕÅÁÌ�ÚLÈ4Ì�Ó�Ö,Ì.Ö"ÒrÓ
È�É^Æ�ÉqÊUÍyÅ�ÇÆNËlÓ,ÆNÓyØMÇÝ�Ó�×�È4ÒrÆNÓ�Ê�ÙWÐ,Ë`ÆNÐWÌ.Ë�È�ÍEÊ�Ó�ÊjÙrÍyÅ`ÒÕÅ.á�ñ2ÒÕË�Å�ÈJÛLÊ
Å�È4Æy×�Ü�ÊjÅ�È`Ò«×Á×�ÆjÓWÅ�È4Ë`Ý�×�ÈVÒÕÅ¤ÊNÖ,Ö¥È`ÆDÈ4Ü,Ì�ß�Ì�Ü�ÊUÞfÒÕÆjË�Î�ÆfÖ,Ì�Ù>ãD�¤Ë�û
Ó,Ì�È�ÎEÆyÖyÌ.Ù«æAÈ`Æ�Ì�ÚyÐ,Ë`ÌJÅ`Å¨Å�È4Æf×�ÜWÊjÅ�È`Ò«×âÒrÓ,ÇÆjË4Î�Ê�È`ÒÕÆjÓìá�ðfÌJ×�ÆNÓ�ÖTÛ
ÊPÇÆjË4Î'Ê�ÙÕÒÕÅ`Î Ò«ÅVÒÕÓNÈ4Ë`ÆyÖyÝW×�Ì.ÖEÈ4Æ�Å�Ð�Ì.×�ÒpÇÍ¥È`Ü�Ì�Ó,ÆjÓ,ØMÇÝ,ÓW×�È`ÒÕÆjÓWÊ�Ù
Ë`ÌJïLÝ,ÒrË4Ì�Î�Ì.ÓNÈ�Å�á
ÄíÅ�Ð�Ì.×�ÒÕÊjÙ�Þ=Ê�Ë4ÒÕÊjß,ÙÕÌLO«ª F¬ ÒÕÅ�ÊNÖ,ÖyÌJÖ ÒrÓLÈ`ÆuÈ4Ü,Ì¸×�ÆNÓyØ

Å�È4Ë4ÊjÒrÓLÈDÆ�ÇÁÊ�È4Ë4ÊjÓ�Å`ÒpÈ4ÒrÆNÓ_ãÒQá ÌjáEÈ`Ü,Ì'Î'ÊjÐ,Ð,ÒÕÓ,Ñ�O ÒrÓSÈ`Ü�ÌEÓ�Ì�È
ÒrÓWÅ`×�Ë`ÒÕÐyÈ`ÒÕÆjÓ�æâÒÕÓHÊ��¤Ë�ûcÓ,Ì�È¥È`ÆSÖyÌ�Ó,ÆjÈ`Ì�È`Ü,Ì�ü�Ë`ÒÕÓ,Ñ�Ë4Ê�È`Ì�ÆjÇ
È`Ü,Ì�È`Ë�Ê�Ó�Å`ÒpÈ4ÒrÆNÓìá Ä Ð�Ë`ÌJÖyÒÕ×.Ê=È4Ì�O«ª F¬ A¯®àÒrÓuÈ4Ü,Ì�×�ÆNÓyØ
Å�È4Ë4ÊjÒrÓLÈâÆ�ÇqÈ`Ë�Ê�ÓWÅ�ÒrÈ`ÒÕÆjÓ FöÖyÌ�Ó,ÆjÈ`ÌJÅPÈ`Ü�Ê�È�F¡üWË`ÌJÅâÊ=È�Ë�Ê=È`Ì°®>Û
Ê�Ó�Ö�O6ª F¬ A é�ÖyÌ�Ó,ÆjÈ`ÌJÅAÈ`ÜWÊ=È.F Ò«Å¨ÊjÓ�ÒÕÎEÎ�ÌJÖyÒÕÊ�È`ÌâÈ4Ë4ÊjÓyØ
Å�ÒrÈ`ÒÕÆjÓ�Ê�Ó�Ö�È4Ê�ÏNÌ.Å�Ô�Ì.Ë`Æ'È4ÒrÎ�ÌEÈ`Æ�ü�Ë4Ìjáâñ,ÆNË�Ì�ÚyÊjÎ�Ð,ÙrÌNÛ@ÒpÇ¤È4Ü,Ì
ß,Ý�Å(l�ÒrÓ_È`Ü,Ì¯Î�Ý�ÙpÈ4ÒrÐ,Ë4Æy×�ÌJÅ`Å`ÆjË�Å�ÍyÅ�È`Ì.Î ÇZÊ�ÒÕÙÕÅ�Ê=È�Ë�Ê=È`Ì±®��Û
È`Ü,Ì�×�ÆjÓWÅ�È4Ë4ÊjÒrÓLÈ¤Æ�Ç@È4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓ F�ý�þ ÒrÓ�ñ�ÒÕÑjÝ,Ë4Ì¨óâ×.Ê�Ó'ß�Ì�Ì�ÚfØ
Ð,Ë4Ì.Å4Å�ÌJÖPÊNÅ»O�ã F �læ�A ã,O6ª-F²¬ A9®�Áæ�á�ûÁÜ,ÌVü�Ë4ÒÕÓ,ÑAË4Ê�È`ÌVÆjÇfÊ
È`Ë�Ê�Ó�Å`ÒrÈ`ÒÕÆjÓâÒ«Å>Ó,ÆjÈ2Ó,ÌJ×�ÌJÅ`Å4Ê�Ë4Í�×�ÆjÓ�Å�È4ÊjÓNÈJÛUÒpÈ�×�Ê�Ó�ßWÌ^Ì�ÚyÐ,Ë4Ì.Å4Å�ÌJÖ
ÊjÅ�Î'Ê�Ë4ÏfÒrÓ,ÑDÖyÌ.ÐWÌ.Ó�ÖyÌ�ÓLÈVßfÍ�Î'Ê�ÏfÒÕÓ,Ñ�Î�ÆNË`Ì^È`Ü�ÊjÓ¥ÆNÓ,ÌÁÆy×�×�Ý�Ë�Ø
Ë`Ì.Ó�×�ÌAÆjÇ�Þ=ÊjË`Ò«Ê�ß,ÙÕÌ-O6ª-F¬�á�ñ�ÆjËVÌ�Ú,ÊjÎEÐ�ÙrÌNÛjÒrÇìÙrÆy×�ÊjÙyÎ�Ì�Î�ÆjË4Í
Prc�ÒrÓ¯Å�Ý,ßWÅ�ÍyÅ�È`Ì�Î 2@c¨Ò«ÅlÎ�ÆNË`ÌPÖyÌ�Ð�Ì�Ó�Ö�Ê�ß,ÙÕÌPÈ`Ü�ÊjÓ"Ê�ÙÕÙ�Æ�È`Ü�Ì�Ë
ÙrÆy×.Ê�ÙLÎEÌ.Î�ÆjË4ÒrÌJÅ�Û�ÊjÓ�ÖuPrcVÇZÊ�ÒÕÙÕÅ�Ê�È�Ë�Ê=È4Ì³®5cVÉAÜ,ÒÕÙÕÌqÆjÈ`Ü,Ì.Ë4Å>ÇZÊ�ÒÕÙ
Ê=È�Ë4Ê�È`Ì³® ! ã´® c«µ ® ! æ�Û=È`Ü�Ì�Ó�È4Ü,Ì^×�ÆjÓ�Å�È`Ë�Ê�ÒÕÓLÈ2ÆjÇF ý7þ ÒÕÓ¥ñ�ÒÕÑ�Ø
Ý,Ë4ÌqóA×.Ê�Ó�ß�ÌqÅ`Ð�Ì.×�Òrü�ÌJÖ�ÊjÅbO�ã F ý�þ æ�A ã`ã,O6ª-F¬ A¶® c .S;!A
èJæ�·¸ãDO«ª F¬ A¸® ! .³óhpæ;'pæ=>æ`æ�á�ûÁÜ,Ì�Ì�ÚLÈ4Ë4Ê�Å�È`Æy×�Ü�ÊNÅ�Ø
È`Ò«×â×�ÆNÓ�Å�È4Ë`ÝW×�È�ÒÕÓ"È4Ü,Ì�×�ÆNÓ�Å�È`Ë�Ê�ÒÕÓNÈAÆjÇ�ÊEÈ4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓ�ÖyÆfÌ.Å�Ó,Æ�È
Ê=î@Ì.×�È�È`Ü�Ì"Ì.Ó�Ê�ß,ÙÕÒÕÓ,Ñ�ÊjÓ�Ö´ü�Ë4ÒrÓ�Ñ³Ë4Ý,ÙrÌJÅ�ÆjÇ�È`Ü,Ò«Å�È`Ë�Ê�Ó�Å`ÒpÈ4ÒrÆNÓìá
ûÁÜ�Ê=È¥ÒÕÅ.Û>È4Ü,Ì��lË4û¡Ó,Ì�È�Î�ÆfÖ,Ì�ÙlÉAÒrÈ`Ü¸È`Ü,Ì�Å`Ð�Ì.×�Ò«Ê�Ù^Þ=Ê�Ë4ÒÕÊjß,ÙrÌ
O6ª-F¬0Ü�ÊjÅVÈ`Ü,Ì¨Å4Ê�Î�Ì�Å`Ì�Î'Ê�ÓLÈ4ÒÕ×.ÅVÉAÒpÈ4Ü�ÊDÆjË4ÒrÑNÒrÓWÊ�Ù�¤Ë�û¸Ó�Ì�È
Ë`Ì.ÑNÊjË4ÖyÒÕÓ,Ñ�È`Ü,ÌâÌ.Ó�Ê�ß,ÙÕÒÕÓ,Ñ'Ê�Ó�Ö"ü�Ë4ÒrÓ�ÑEÆjÇ�ÊEÈ4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓ>á
ÄAÇ�È`Ì.Ë2Ì�ÚfÈ`Ì�ÓWÖyÒrÓ�ÑÁÈ`Ü,Ì¤ß�Ì�ÜWÊUÞLÒÕÆjË>ÎEÆyÖyÌ.ÙjÒÕÓ�ðyÄ¨ë ÉAÒrÈ`ÜDÈ4Ü,Ì

Å�È4Æf×�ÜWÊjÅ�È`Ò«×"×�ÆjÓ�Å�È`Ë4Ý�×�ÈJÛlÊ�ÇÆjË4Î'Ê�ÙÕÒÕÅ`Î ÒÕÅ'Ö,Ì.Å`ÒrË�Ê�ß,ÙÕÌ�È4Æ´Ð,Ë`Ì�Ø
×�Ò«Å�Ì.ÙrÍ¸Å`ÐWÌJ×�ÒrÇÍºÓ,ÆjÓ,ØMÇÝ,ÓW×�È`ÒÕÆjÓWÊ�ÙÁË`ÌJïLÝ,ÒrË4Ì�Î�Ì.ÓNÈ�Å�á¸Ä¨ÙpÈ4Ü,ÆjÝ�ÑjÜ
Å�ÆNÎEÌ�Ó,ÆjÓyØQÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙlÐ,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å�ãÌjá Ñ�á³Î�ÊjÒrÓLÈ�Ê�ÒÕÓ�Ê�ß,ÒÕÙÕÒpÈ�Í,æ
×�Ê�Ó�Ó,Æ�È�ß�Ì"ïLÝ�ÊjÓLÈ`Òrü�Ì.ÖºÊjÓ�Ö¸×�ÊjÓºÆjÓ,ÙÕÍSßWÌ¯Å�Ð�Ì.×�Òpü�ÌJÖºÒÕÓyÇÆjË`Ø
Î�ÊjÙrÙÕÍjÛ�Ð�Ì�Ë`ÇÆjË4Î�ÊjÓ�×�ÌNÛ2ÖyÌ.ÐWÌ.Ó�Ö,Êjß,ÒrÙÕÒrÈ�Í´ÊjÓ�ÖSÐWÌ.Ë�ÇÆNË`Î'Êjß,ÒrÙÕÒrÈ�Í
×�Ê�ÓSÝ�Å`Ý�Ê�ÙÕÙÕÍ�ßWÌ�Ð,Ë4Ì.×�ÒÕÅ`Ì�ÙÕÍ³Å`ÐWÌJ×�Òrü�Ì.Ö´ÊjÓ�Ö³ÞNÌ�Ë4ÒpüWÌ.ÖSÊ=ÈâË`Ý�ÓyØ
È`ÒÕÎEÌNáqû2Ì�Î�Ð�ÆjË�Ê�ÙìÙÕÆjÑNÒÕ×DÒ«Å�Å`Ý�¹�×�ÒÕÌ�ÓLÈ�È4Æ�Å�Ð�Ì.×�ÒpÇÍ"ÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙ
Ð,Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅ�á
õ¨Æ=É^Ì.ÞjÌ�ËJÛ>ÒrÈ�Ò«Å�ÒÕÓ�×�ÊjÐ�Ê�ß�ÙrÌ�ÆjÇ�Å�Ð�Ì.×�ÒpÇÍfÒÕÓ,Ñ�ÖyÌ�Ø
ÐWÌ.Ó�Ö,Ê�ß�ÒrÙÕÒpÈ�Í¸ÊjÓ�Ö¸Ð�Ì�Ë`ÇÆjË4Î'Ê�ß,ÒÕÙÕÒpÈ�ÍºÅ`ÒrÓ�×�Ì�È4Ü,ÆNÅ`Ì¯Ð,Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅ
Ý�Å�ÝWÊ�ÙÕÙrÍ¯ÒrÓfÞNÆjÙÕÞjÌâÐ,Ë4Æjß�Êjß,ÒÕÙrÒrÈ�Í¯ÊjÓ�Ö
Ð,Ë4Ì.×�ÒÕÅ`ÌâÈ4ÒrÎ�ÌjáPû>Æ¯Å�Ð�Ì.×�Ø
ÒpÇÍ:ÖyÌ�Ð�Ì�Ó�Ö�Ê�ß,ÒÕÙrÒrÈ�Í_ÊjÓ�Ö:ÐWÌ.Ë�ÇÆNË`Î'Êjß,ÒrÙÕÒrÈ�Í¸ÒrÓàðyÄ�ëºÛlÉqÌ�ÒrÓ,Ø
È`Ë4ÆfÖ,Ý�×�Ì�ÊSÙrÆNÑjÒ«×"×.Ê�ÙÕÙrÌJÖ ®q�4}j���j�������«���M�Z���`�����q�Q���'�»º¤}=�¨���y�
�)���M�Z}�� + �`���½¼2}4���Z� ã,�ÁùqûAå2æ�Û2Ð,Ë4ÆjÐ�ÆNÅ`Ì.ÖSßfÍ�õ¨ÊjÓ�Å4Å�ÆNÓ¸Ê�Ó�Ö
¾ ÆNÓ�Å`Å`ÆjÓ ç �.ê)á&�qùqûAåàÌ�ÚfÈ`Ì.Ó�Ö,Å ºV}����@�y�)���M�Z}�� + �`���¿¼2}`�j�Z� Û
Ê�ß,Ë4ÊjÓ�×�Ü,ÒÕÓ,Ñ�ØQÈ`ÒÕÎ�ÌPÈ`Ì�Î�Ð�ÆjË�Ê�ÙìÙÕÆjÑNÒÕ×jÛ�Ê�ÓWÖ"Ò«Å¨×.Ê�Ð�Êjß,ÙÕÌPÆjÇVÌ�ÚfØ
Ð,Ë`ÌJÅ`Å`ÒÕÓ,Ñ¨È4ÒrÎ�Ì�ÊjÓ�Ö�Ð�Ë`ÆNß�Ê�ß,ÒÕÙÕÒpÈ�Í�ÒÕÓ�Å�ÍyÅ�È`Ì�Î'Å.á�ñ�ÆjËVÌ�ÚyÊjÎ�Ð,ÙrÌNÛ
È`Ü,Ì^Ð,Ë`ÆNÐWÌ.Ë�È�Í±�4Ê=Ç�È`Ì.Ë2Ê�Ë`ÌJïLÝ,Ì.Å�ÈìÇÆjË�Å`Ì�Ë4ÞLÒ«×�ÌlÈ`Ü,Ì.Ë`Ì^ÒÕÅ�Ê=È�ÙÕÌ.ÊjÅ�È
Ê�þj÷-ÀöÐ,Ë4ÆjßWÊ�ß,ÒÕÙrÒrÈ�Í�È4Ü�Ê=È�È`Ü,ÌEÅ�Ì.Ë`ÞfÒ«×�ÌâÉAÒÕÙrÙ�ß�Ì¥Å`Ý�×�×�Ì.Å4Å�ÇÝ,ÙÕÙÕÍ
ü�Ó,Ò«Å�Ü,ÌJÖ�ÉAÒrÈ`Ü,ÒÕÓL	�Å`Ì.×�ÆjÓ�Ö�ÅÁ�"×�Ê�Ó�ßWÌ�Ì�ÚfÐ�Ë`ÌJÅ`Å`Ì.Ö
ÒÕÓR�qùqûAå
ÊjÅ«ªÂ'çÕãk4=Ã HÅÄ "Æ Q�Ç ÈÊÉ�Ë æ�êQÛìÉAÜ�Ì�Ë4Ì�Ð,Ë4ÆjÐ�ÆNÅ`ÒpÈ4ÒrÆNÓ 4SË`Ì.Ð,Ë`ÌJÅ�Ì.ÓLÈ4ÅÈ`Ü�Ê�È'Ê�Ë4Ì.ïLÝ,Ì.Å�È�ÒÕÅEÒ«Å`Å`Ý,Ì.Ö:Ê�ÓWÖ¸Ð,Ë4ÆjÐ�ÆNÅ`ÒpÈ4ÒrÆNÓ Ë Ë`Ì.Ð,Ë`ÌJÅ�Ì.ÓLÈ4Å
È`Ü�Ê�ÈâÈ`Ü,Ì�Å`Ì�Ë4ÞfÒÕ×�ÌEÒ«Å�Å`Ý�×�×�Ì.Å4Å�ÇÝ�ÙrÙÕÍ�ü�Ó�ÒÕÅ`Ü,Ì.Öìá"ðfÒÕÓ�×�Ì'Ð�Ì�Ë`ÇÆjË`Ø
Î�ÊjÓ�×�ÌNÛqÖ,Ì�Ð�Ì�Ó�Ö,Êjß,ÒÕÙrÒrÈ�Í_ÊjÓ�Ö:ÐWÌ.Ë�ÇÆNË`Î'Ê�ß�ÒrÙÕÒpÈ�Í¸×.Ê�ÓuÝ�Å`Ý�Ê�ÙÕÙÕÍ
ßWÌ´Ì�ÚyÐ,Ë4Ì.Å4Å`Ì.Ö ÒÕÓ È4Ì�Ë4Î'Å�Æ�Ç�È4ÒrÎ�Ì¸Ê�ÓWÖàÐ,Ë4Æjß�Êjß,ÒÕÙrÒrÈ�ÍjÛ�ÒpÈ�Ò«Å
Å�Ý�¹�×�ÒrÌ.ÓNÈAÈ4Æ'Ì�ÚyÐ,Ë4Ì.Å4ÅAÎ�ÆNÅ�È�ÒrÓWÖyÒÕ×�Ì.ÅAÆjÇ¤ÖyÌ�Ð�Ì�Ó�Ö�Ê�ß,ÒÕÙrÒrÈ�Í�Ê�Ó�Ö
ÐWÌ.Ë�ÇÆNË`Î'Ê�ß�ÒrÙÕÒpÈ�Í�È`Æ�ß�Ì�ÞNÌ�Ë4Òpü�ÌJÖ¯Ý�Å�ÒÕÓ,Ñ��ÁùqûAå¤á�ûÁÜ�Ì�ÊjÖyÞ=ÊjÓyØ
È4Ê�ÑNÌDÆ�Ç�Å`Ð�Ì.×�ÒrÇÍfÒrÓ�Ñ'Ð,Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅqÇÆjË4Î'Ê�ÙÕÙrÍ�ÒÕÓ��qùqûAåSÒ«ÅÁÈ`Ü�Ê�È
ÒpÈ'Ê�ÙÕÙrÆ=É�Å�#�Ì�ÚyÒÕß,ÙÕÌ¯ÊjÓ�Ê�ÙÕÍLÈ`Ò«×�Ê�Ù^È`ÌJ×�Ü,Ó,Ò«ïLÝ,Ì.Å.á¸ñ,ÆNË¥Ì�ÚyÊjÎ�Ð,ÙrÌNÛ
É^Ì�×.Ê�Ó�Ê�Ù«Å`Æ�Ê�Ð,Ð,ÙÕÍ¯ÎEÆyÖyÌ.Ù2×�Ü,ÌJ×�ÏfÒrÓ,Ñ'Æ=ÞNÌ�ËÁÈ4Ü,Ì�Ý,ÓWÖyÌ�Ë4ÙrÍfÒÕÓ,Ñ
ë�Ê�Ë4ÏjÆ=Þ�×�Ü�ÊjÒrÓ
ÆjÇ�ÊjÓ³ð
 � È4Æ�ÞjÌ.Ë`ÒrÇÍ�Ð�Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅ�Å�Ð�Ì.×�ÒpüWÌ.Ö
ÒrÓÿ�ÁùqûAå ç �Jê)áöõ�Æ=ÉqÌ�ÞjÌ.Ë.ÛÁÈ4Ü,Ì�Ë4Ì´ÖyÆHÌ�ÚfÒ«Å�È¯Å`ÆjÎ�Ì³ÒÕÓ�ÖyÒ«×�ÌJÅ
Æ�ÇAÐWÌ.Ë�ÇÆNË`Î'ÊjÓ�×�Ì�ÊjÓ�Ö´ÖyÌ�Ð�Ì�Ó�Ö�Ê�ß,ÒÕÙrÒrÈ�ÍSÈ`Ü�Ê�È¥×�ÊjÓ,Ó,ÆjÈ�ßWÌ�Ì�ÚfØ
Ð,Ë`ÌJÅ`Å`Ì.Ö¯ÒÕÓh�qùqûAåláWñ�ÆjË¨Ì�Ú,Ê�Î�Ð,ÙÕÌjÛ5�qùqûAå¸×.Ê�Ó,Ó,ÆjÈ¨Ì�ÚyÐ,Ë4Ì.Å4Å
È`Ü,Ì�ÊUÞNÌ�Ë�Ê�ÑjÌ�È`ÒÕÎ�Ì�ÒrÈ�È4ÊjÏjÌ.ÅqÈ4Æ�ü�Ó,Ò«Å�Ü�Ê'Å`Ì�Ë4ÞfÒÕ×�Ìjálñ�ÆjËAÈ4Ü,ÆNÅ`Ì
Ð,Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅTÈ4Ü�Ê=È�×�Ê�Ó�Ó,Æ�È�ßWÌqÌ�ÚyÐ,Ë4Ì.Å4Å�ÌJÖDßfÍó�ÁùqûAå¤ÛJÉ^ÌqÅ�Ð�Ì.×�Ø
ÒpÇÍ�È`Ü,Ì.Î ÒÕÓyÇÆjË4Î'Ê�ÙÕÙrÍ�ÒÕÓ¯Ó�Ê=È4Ý,Ë4ÊjÙTÙÕÊjÓ,ÑjÝWÊ�ÑjÌNá
TqÍ¯ÊjÅ4Å�Ý,Î�ÒÕÓ,ÑEÈ`Ü�Ê�È�Ì.ÊN×�Ü"Ì.ÙrÌ.ÎEÌ.ÓLÈ�Æ�Ç�È`Ü,Ì�Å4Ê�Î�ÌPÈ�ÍfÐWÌâÒÕÓ

È`Ü,Ì"Î�Ý,ÙrÈ`ÒÕÐ,Ë4Æf×�Ì.Å4Å�ÆNË�Å`ÍfÅ�È`Ì.Î�ÇZÊ�ÒÕÙÕÅEÊ=È�È4Ü,Ì�Å`ÊjÎEÌ�Ë4Ê�È`ÌjÛ�È4Ü,Ì
×�ÆjÓWÅ�È4Ë4ÊjÒrÓLÈìÎ'Ê�Ð,Ð�ÒrÓ,Ñ�Æ�ÇfÈ`Ü�Ì^ß�Ì�Ü�ÊUÞfÒÕÆjËìÎ�ÆyÖyÌ.ÙNÒÕÓ�ñ�ÒrÑNÝ,Ë4Ì^óAÒ«Å
ÎEÆyÖyÒrü�ÌJÖEÊNÅ�ÇÆjÙÕÙrÆ=É¸È`ÆâË4Ì$#�ÌJ×�È�È`Ü,Ì�Å�È`Æy×�Ü�ÊNÅ�È4ÒÕ×qÒÕÓyÇÆjË4Î'Ê=È4ÒrÆNÓìá
OEã,F ö æSA ã,O6ª F¬æA�® ö æ
OEã,F�ý�þ�æ�A ã,O6ª-F²¬ A9®�ý7þ¯æ
OEã,F �/þ�æSA ã,O6ª F¬æA�®@�/þ�æ
OEã,F � æSA ã,O6ª F¬æA�® � æ
OEã,F � æ�A ãDO6ª-F¬æA�® � æ
OEã,F c æ�AqO�ã,F ! æ�A÷O�ã,F " æ�A ãDO6ª-F¬ AàéLæ
OEã,F $ æ�A ãDO6ª-F¬æA éÌ.Sã&%�'§(+*hd

'óA ù-� ;31&�-��ú�èóp=� p P`üÍ.Î*217A�*<4='Eæ�æ
OEã,F�7.æ�A ãDO6ª-F¬æA éÌ.Sã&%�'§(+*hd

ú '_ú±A#8Ï.½*21�A�*Ð4Ñ'Ò.:��AÐ�<=
	��V6Kg*4@���-�Læ�æ
ñ�ÆjËVÈ4Ü,Ì�Ë4Ì�ÙÕÒÕÊjß,ÒÕÙrÒrÈ�Í�Ë4Ì.ïLÝ,ÒÕË`Ì.Î�Ì�ÓLÈ¤Æ�Ç@È`Ü�Ì�Î�Ý,ÙrÈ`ÒÕÐ,Ë4Æy×�Ì.Å4Å`ÆjË

Å�ÍyÅ�È`Ì�Î�ÛVÉqÌ"ÊNÅ`Å`Ý,Î�Ì�È4Ü�Ê=ÈEÈ`Ü,Ì.Ë`Ì¯Ò«Å¥Ê�ÈEÙÕÌ.ÊNÅ�È�þ«	/À�Ð,Ë4ÆjßWÊ=Ø

ß,ÒÕÙrÒrÈ�ÍEÈ`Ü�Ê�È^È4Ü,Ì�Å`ÍyÅ�È4Ì�Î ÒÕÅ^ÉqÆjË4ÏLÒÕÓ,Ñ�×�ÆjÓLÈ`ÒÕÓfÝ,ÆjÝWÅ�ÙÕÍ�ÇÆNËS�LéjéNé
Ü,ÆjÝ�Ë4Å.áAûÁÜ,ÒÕÅ¨Ë`Ì.ÙrÒ«Ê�ß�ÒrÙÕÒpÈ�Í¯Ë4Ì.ïLÝ,ÒÕË`Ì.ÎEÌ.ÓLÈ¨×�Ê�Ó
ß�Ì¥Å`Ð�Ì.×�Òrü�ÌJÖ�ÒrÓ
�qùqûAå
ÊNÅ+ªÂ'ç H Ä 7 Q<QIQÆ Q�Ç È " P ãDC � øLæ�A�Ó�ê)ÛNÉAÜ�Ì�Ë4Ì P ã,C � øLæ�A¶Ó
ÖyÌ�Ó�Æ�È`ÌJÅ"È`Ü�Ê�È�Ð�ÙÕÊN×�ÌRC � ø:ÒÕÓ¹ñ�ÒÕÑjÝ,Ë4Ì´ó_Ü,ÆNÙÕÖ�Å"Ó�ÆHÈ4ÆjÏjÌ.ÓìÛ
ÉAÜ,Ò«×�Ü"Î�Ì.ÊjÓ�ÅÁÈ4Ü,Ì�Å�ÍyÅ�È`Ì.Î ÒÕÅÁÉqÆjË4ÏfÒrÓ�Ñ�á

ÔÁ¼6Õ x�z ¾ v©�4¿lx��cz2w,Ã�¿ ¾ �4x�¿�� ¦ sqY wy¿ ¦×Ö#Ø

ÿ�Ó ÆjË�ÖyÌ�Ë'È4Æ¸Ê�Ó�ÊjÙrÍfÔ.Ì
Ó,ÆjÓyØQÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙ�Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å.ÛlÈ4Ü,Ì
ßWÌ.Ü�ÊUÞfÒrÆNË2Î�ÆyÖyÌ.ÙyÒrÓ'ðyÄ¨ë�Ò«Å>È4Ë4ÊjÓ�Å�ÇÆjË4ÎEÌJÖâÈ4ÆPÊjÓEð
 ��ájûÁÜ,Ì
Ð,Ë4Æf×�Ì.ÖyÝ�Ë`ÌPÆ�Ç�È`Ü,ÌDÈ4Ë4ÊjÓ�Å�ÇÆjË4Î�Ê�È`ÒÕÆjÓ"ÒÕÅAÊNÅqÇÆjÙÕÙrÆ=É�Å.á
èjáAûÁÜ,Ì��¤Ë�û Ó�Ì�È�Î�ÆyÖyÌ�ÙAÒÕÓàðyÄ¨ë Ò«Å�ü�Ë�Å�È'Ý,ÓyÇÆNÙÕÖ,Ì.Ö_È`Æ
Ê'ÙÕÆ=É ÙrÌ.ÞjÌ�Ùm��Ì�È4Ë`Ò2Ó,Ì�ÈJá¨Ä �¤Ë�û Ó,Ì�ÈD×.Ê�Ó
ß�Ì�Ý,Ó,ÇÆjÙ«ÖyÌ.Ö
Ý�Å`ÒrÓ�Ñ�È`Ü�Ì^Î�Ì�È4Ü,ÆyÖ�Ð,Ë4ÆjÐ�ÆNÅ`Ì.Ö�ÒrÓ¯ç �Uê)á�ñ2ÒÕË�Å�ÈJÛ=Ì.Êj×�ÜDÈ4Ë4ÊjÓyØ
Å`ÒpÈ4ÒrÆNÓ�ÒÕÅ¨Ý,ÓyÇÆNÙÕÖyÌJÖ
ÒÕÓNÈ4Æ"Ê�Å`Ì�ÈPÆ�ÇVÈ4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓWÅ�Êj×.×�ÆjË�ÖfØ
ÒÕÓ,Ñ
È`Æ�È`Ü,Ì�Å`Ì�È¥Æ�Ç�×�ÆNÓ�Å�È�Ê�ÓLÈ¥Å`Ý,ß�Å�È`ÒrÈ`ÝyÈ4ÒrÆNÓ�ÅâÈ4Ü�Ê=ÈEÅ`Ê�È�Ø
Ò«Å�ÇÍ:×�ÆjÓWÅ�È4Ë4ÊjÒrÓLÈ�Æ�ÇPÈ`Ü�Ì
È`Ë�Ê�Ó�Å`ÒrÈ`ÒÕÆjÓìá0ðyÌ.×�ÆNÓ�ÖTÛÁÐ,Ù«Êj×�Ì.Å
Ê�Ë4Ì�×�ÆjÓ�Ó,Ì.×�È`Ì.Ö�È`Æ¯È`Ü�Ì�È`Ë�Ê�Ó�Å`ÒpÈ4ÒrÆNÓ�ÅPÊj×�×�ÆjË�ÖyÒÕÓ,Ñ�È4Æ�È4Ü,Ì
Å`Ý,ß�Å�È`ÒrÈ`ÝyÈ4ÒrÆNÓ�Å�á�ñ�ÒrÓ�ÊjÙrÙÕÍjÛ=Ë4Ì�Î�Æ=ÞNÌ�È`Ü,ÌqÖyÌ.ÊNÖDÈ`Ë�Ê�Ó�Å`ÒrÈ`ÒÕÆjÓ�Å
Ê�ÓWÖ�×�ÆNÎ�ß,ÒÕÓ,ÌEÌ.ïLÝ,ÒÕÞUÊjÙrÌ.ÓLÈ�Ì�ÙÕÌ�Î�Ì.ÓNÈ�ÅPÒpÇ^ÊjÓfÍjáPÿ)ÈPÒ«ÅPÓ,Æ�È
Ó,ÌJ×�Ì.Å4Å4Ê�Ë4Í³È4Æ³Ý,ÓyÇÆNÙÕÖ¸È`Ü,Ì"ÉAÜ,ÆjÙÕÌ��lË4û Ó�Ì�È�ÒpÇ¨ÉqÌ"ÊjË`Ì
ÆjÓ�ÙrÍ�ÒÕÓLÈ`Ì.Ë`ÌJÅ�È4Ì.Ö"ÒrÓ�Ð�ÊjË�ÈAÆ�Ç�È`Ü�Ì��¤Ë�û Ó,Ì�È�Î�ÆyÖyÌ.ÙMá

óyáAûÁÜ,Ì�ð
 �uÎ�ÆyÖyÌ.ÙyÒÕÅVÖyÌ.Ë`ÒÕÞjÌJÖ�ÇË4ÆjÎ È4Ü,ÌAÝ,ÓyÇÆNÙÕÖ,Ì.Ö(��Ì�È4Ë`Ò
Ó,Ì�È¤ß�ÊjÅ`Ì.ÖEÆjÓEÈ4Ü,Ì¨Å�È`Æy×�Ü�ÊjÅ�È`Ò«×qÒrÓ,ÇÆjË4Î�Ê�È`ÒÕÆjÓìá�ÄAÇ�È4Ì�ËVÈ4Ü,Ì
�¤Ë�û Ó,Ì�È�Î�ÆfÖ,Ì�ÙìÒ«ÅÁÝ,ÓyÇÆNÙÕÖyÌJÖTÛ,ÌJÊj×�Ü�È4Ë4ÊjÓ�Å`ÒpÈ4ÒrÆNÓ"Ò«ÅAÖyÌ.Å�Ø
ÒÕÑjÓ�Ê�È`Ì.Ö�Ì�ÒrÈ`Ü,Ì.ËDÊNÅ�ÊjÓ�ÒÕÎEÎ�ÌJÖyÒÕÊ�È`Ì¥È`Ë�Ê�Ó�Å`ÒrÈ`ÒÕÆjÓ�ÆNËPÊNÅ�Ê
È`ÒÕÎ�Ì.Ö:È4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓ:ÉAÒrÈ`ÜàÊSÐ,Ë4ÆjÐ�Ì�Ë�ü�Ë4ÒrÓ�ÑºË4Ê�È`Ì�ß�ÊjÅ`Ì.Ö
ÆjÓ�È`Ü�Ì�Å�È4Æf×�ÜWÊjÅ�È`Ò«×¥ÒÕÓyÇÆNË`Î'Ê=È4ÒrÆNÓìá TqÍ�Î'Ê�ÏfÒrÓ�Ñ¯ÝWÅ�Ì'ÆjÇ
È`Ü�Ì�ÇÌ.Ê�È`Ý,Ë4Ì.Å�Æ�Ç�ð
 ��Å"Å`Ý�×�ÜàÊjÅ�Ì�Ó�Êjß,ÙrÒÕÓ,ÑºÇÝ�Ó�×�È4ÒrÆNÓìÛ
Î'Ê�Ë4ÏfÒrÓ,Ñ_ÖyÌ�Ð�Ì�Ó�Ö,Ì�ÓLÈ�ÊjË4×³×�Ê�Ë�ÖyÒÕÓ�Ê�ÙÕÒrÈ�Í:ÊjÓ�Ö Î'Ê�Ë4ÏfÒrÓ,Ñ
ÖyÌ.ÐWÌ.Ó�ÖyÌ�ÓLÈVü�Ë4ÒÕÓ,Ñ�Ë�Ê=È4ÌjÛ=È4Ü,Ì¨ð
 �uÎ�ÆyÖyÌ.Ù,×�Ê�ÓEß�ÌqÎ�ÆNË`Ì
×�ÆNÓ�×�Ò«Å`ÌDÊjÓ�Ö"Ë`ÌJÊjÖ,Êjß,ÙrÌNá

ú,áAÄAÇ�È4Ì�Ë¨È`Ü,Ì¥ð
 � Î�ÆyÖyÌ�Ù2ÒÕÅ�ÖyÌ�Ë4ÒrÞNÌ.ÖTÛ�Ì�ÚyÒÕÅ�È`ÒÕÓ,Ñ�Å`ÆjÙÕÝyÈ`ÒÕÆjÓ
È`ÌJ×�Ü,Ó,Ò«ïLÝ,Ì.Å�ÊjÓ�Ö�È`ÆfÆjÙ«Å�×�ÊjÓ"ß�Ì�ÊjÐ,Ð,ÙÕÒrÌJÖ�È4Æ'ÆjßyÈ�Ê�ÒÕÓ�È4Ü,Ì
Ó,ÆNÓyØMÇÝ�Ó�×�È4ÒrÆNÓ�Ê�ÙPÐ,Ë4ÆjÐ�Ì�Ë`È�Í_Î�Ì.ÊNÅ�Ý�Ë`ÌJÅ�Û�ÊjÓ�ÖuÈ`Ü�Ì�ÓàÈ4Ü,Ì
ÓfÝ,Î�Ì�Ë4ÒÕ×.Ê�ÙyË4Ì.Å`Ý,ÙrÈ4Å¤ÊjË`ÌA×�Ü,ÌJ×�ÏjÌ.ÖEÊ�ÑLÊ�ÒÕÓ�Å�È�È4Ü,Ì�Ð,Ë4ÆjÐ�Ì�Ë`È�Í
Å`ÐWÌJ×�ÒrüW×�Ê�È`ÒÕÆjÓ�ÅPÒÕÓ �ÁùqûAå¸È4Æ¯Å`Ì�ÌEÉAÜ,Ì�È4Ü,Ì�ËDÈ4Ü,Ì�Î�ÆfÖ,Ì�Ù
Å4Ê=È`Ò«Å�ü�Ì.ÅDÈ4Ü,Ì�Å`ÐWÌJ×�ÒrüW×�Ê�È`ÒÕÆjÓ�Å.á"ûÁÜ�Ì"ð
 � ÎEÆyÖyÌ.Ù¤Î'ÊUÍ
Ó,Ì.Ì.Ö´È4Æ³ß�Ì"Ë4Ì�ÞfÒ«Å�ÌJÖSÇÆjË¥È`Ü,Ì�Ê�Ó�ÊjÙrÍyÅ`ÒÕÅ�Æ�Ç�Å`ÆjÎ�Ì�Ó,ÆNÓyØ
ÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙ,Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å.á�ñ�ÆjË¤Ì�Ú,Ê�Î�Ð,ÙÕÌjÛ�È4Æ�Ê�Ó�ÊjÙrÍfÔ.Ì^È4Ü,Ì
Î�Ì.ÊjÓ�È4ÒrÎ�ÌDÈ`Æ�ÇZÊjÒrÙÕÝ,Ë4Ì'ãZë�ûAûAñVæqÆ�ÇVÊ�Å�ÍyÅ�È`Ì.Î¯Û,ÊjÙrÙ@È4Ü,Ì
ÇZÊ�ÒÕÙÕÝ,Ë`ÌPÅ�È�Ê=È4Ì.ÅqÅ�Ü,ÆNÝ,Ù«Ö�ß�Ì¨Î'ÊjÖyÌDÊ�ßWÅ�ÆNË`ß,ÒÕÓ,Ñ�ãZÆjÝyÈ4ÑjÆNÒrÓ,Ñ
Ê�Ë�×�Å^ÇË4ÆjÎöÈ4Ü,ÆNÅ`Ì�Å�È4Ê=È4Ì.ÅAÊjË`ÌPË`Ì.Î�Æ=ÞjÌ.ÖWæ�çrè9�JêQá

ñ,ÆjÙÕÙÕÆ=ÉAÒrÓ,Ñ�È4Ü,Ì�Ð�Ë`Æy×�ÌJÖyÝ,Ë4Ì�Ê�ß�Æ=ÞjÌNÛyÈ`Ü,Ì�ßWÌ.Ü�ÊUÞfÒrÆNË�Î�ÆfÖ,Ì�Ù
ÒrÓ¸ñ�ÒÕÑjÝ,Ë4Ì�ó¯Ò«ÅâÈ`Ë�Ê�ÓWÅ�ÇÆNË`Î�Ì.Ö³È`Æ�È`Ü,Ì"ð
 �öÎ�ÆyÖyÌ�Ù^ÒrÓ¸ñ�ÒÕÑ�Ø
Ý,Ë4Ìqú�Û=ßLÍâÊNÅ`Å`Ý,Î�ÒrÓ�Ñ�È`ÜWÊ=È!=�Aàú,Û:g A0óyÛ�ÊjÓ�Ö*o A óyá�ûÁÜ�Ê=È
ÒÕÅ�ÉqÌ
ÊjÅ4Å�Ý�ÎEÌ¯È4Ü�Ê=È�È`Ü�Ì�Ë4Ì�ÊjË`Ì¯È4Ü,Ë`Ì.Ì
Å�Ý,ßWÅ�ÍyÅ�È`Ì�Î'Å�ÒÕÓHÈ4Ü,Ì
Î�Ý,ÙrÈ`ÒÕÐ,Ë4Æy×�Ì.Å4Å`ÆjË�Å`ÍyÅ�È4Ì�Î�Û�Ì.Êj×�Ü¸Å`Ý,ß�Å`ÍyÅ�È4Ì�Î Ü�ÊNÅâÈ�ÉqÆ³ÖyÒ«Å�ÏyÅ
Ê�Ó�Ö³È`Ü�Ì�ÉAÜ,ÆjÙÕÌ'Å�ÍyÅ�È`Ì.Î ÇZÊ�ÒÕÙÕÅ�ÒpÇAÊ=È�ÙÕÌ.ÊNÅ�ÈDÈ�ÉqÆ�Å`Ý,ß�Å`ÍyÅ�È4Ì�Î'Å
ÇZÊ�ÒÕÙMá"ÿ�ÓSÈ`Ü,Ì"ð
 �öÎ�ÆyÖyÌ�ÙQÛ2Ê�ß�ÊjË�Ë4Ì�Ð,Ë4Ì.Å`Ì�ÓLÈ4ÅDÊjÓSÒÕÎ�Î�Ì.ÖyÒrØ
Ê=È4Ì¨È4Ë4ÊjÓ�Å�ÒrÈ`ÒÕÆjÓ¯Ê�Ó�Ö¯Ê¥ßWÆUÚ�Ë4Ì�Ð,Ë4Ì.Å`Ì�ÓLÈ�Å^Ê�È`ÒÕÎ�Ì.Ö�È`Ë�Ê�Ó�Å`ÒpÈ4ÒrÆNÓìá
ñ�ÒrÑNÝ,Ë`ÌâúWãZÊNæ^Ò«ÅÁÈ`Ü�Ì�ð
 � Î�ÆyÖyÌ�ÙTÇÆNË¨Ê�Å�Ý�ß�Å�ÍyÅ�È`Ì.Î 2�f`Û�Ê�Ó�Ö

Ù Ú Û

Ü Ý Þ

ß à á â

ã ä å

æ ç è

é ê ë ì

í î ï ð

ñ ò ó ô õ

ö ÷ ø

ù ú û ü ý þ ÿ �
� � � � �

� � � 	

� �
� � �

� � �
� �

� �

� �
� �� � � � !

" #

$&%(')&*,+

- . /

0 1 2

3 4 5 6
7 8 9 : ; < = >

? @

A B
C D E

λ F

λ G H

λ I J
λ K λ L

λ M

Figure 3. (a) The SRN model for subsystem
C f

. (b) The SRN model for the example system.

ñ2ÒÕÑjÝ�Ë`Ì¯ú�ãß�æ�ÒÕÙrÙÕÝ�Å�È`Ë�Ê=È4Ì.Å¥È`Ü,Ì
ð
 ��Î�ÆyÖyÌ�ÙqÇÆjËEÈ4Ü,Ì"Î¥Ý,ÙrÈ`ÒrØ
Ð,Ë`Æy×�Ì.Å4Å�ÆNË�Å`ÍyÅ�È4Ì�Î ÉAÒpÈ4Ü_È4Ü,Ì³ÖyÌ�È4ÊjÒrÙÕÌ.ÖuÅ�È`Ë4Ý�×�È4Ý,Ë`Ì
ÆjÇPÌJÊj×�Ü
Å�Ý,ßWÅ�ÍyÅ�È`Ì�Î¡ßWÌ.ÒrÓ�Ñ�Ü,Ò«Ö,ÖyÌ.Óìá!T^Í�×�ÊjÙÕ×�Ý,Ù«Ê=È`ÒÕÓ,ÑDÈ4Ü,Ì¨ÓfÝ,Î¥ßWÌ.Ë¤Æ�Ç
Ì�ÚyÐWÌJ×�È4Ì.Ö�È4ÆjÏjÌ.Ó�Å¤ÒÕÓ�Ð,Ù«Êj×�Ì C�� ø Ê�È¤È`ÒÕÎ�Ì²��ÛNÈ`Ü,Ì�Ð,Ë4Æjß�Êjß,ÒrÙÕÒrÈ�Í
È`Ü�Ê�È�È4Ü,ÌÁÎ�Ý,ÙrÈ`ÒÕÐ,Ë4Æy×�Ì.Å4Å�Å�ÍyÅ�È`Ì.Î ÇZÊ�ÒÕÙÕÅVÊ�È�È4ÒrÎ�Ì×�>Ò«Å�Æjß,È4Ê�ÒÕÓ,ÌJÖTá
ÿ�Ó Ë`ÌJ×�Ì�ÓLÈ¯Ë`ÌJÅ�ÌJÊ�Ë�×�Ü:ÉqÆjË4Ï@Û¨ð
 ��Å�Ü�ÊUÞNÌ�ß�Ì�Ì�Ó0Ê�Ð,Ð,ÙÕÒÕÌ.Ö

È`Æ�Ì�Þ=Ê�ÙÕÝ�Ê�È`Ì�Ê¯Þ=Ê�Ë4ÒrÌ�È�Í�Æ�ÇÁÓ,ÆjÓ,ØMÇÝ,ÓW×�È`ÒÕÆjÓWÊ�Ù¤Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.ÅDÙÕÒÕÏjÌ
ÐWÌ.Ë�ÇÆNË`Î'Ê�ÓW×�ÌjÛìÖ,Ì�Ð�Ì�Ó�Ö,Êjß,ÒÕÙrÒrÈ�Í�ÊjÓ�Ö³Ð�Ì�Ë`ÇÆjË4Î'Ê�ß,ÒÕÙÕÒpÈ�ÍNá�Ä�Ç�È`Ì.Ë
Ì�ÚfÈ`Ì.Ó�ÖyÒÕÓ,Ñ¯ðyÄ�ë ÊNÅ¨Î�Ì.ÓNÈ4ÒrÆNÓ,Ì.Ö�Ê�ß�Æ=ÞjÌNÛ�È4Ü,Ì�ðyÄ¨ëíÇË4ÊjÎEÌ�Ø
É^ÆNË`Ï¥ÒÕÅq×�ÊjÐ�Ê�ß,ÙÕÌ¨ÆjÇìÎ�ÆfÖ,Ì�ÙÕÒrÓ,ÑEÊ�Ó�Ö�Ê�Ó�ÊjÙrÍfÔ�ÒÕÓ,Ñ�ÊjÙrÙ�È`Ü,ÌPÓ,ÆNÓyØ
ÇÝ,Ó�×�È4ÒrÆNÓ�Ê�Ù^Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.ÅâÈ4Ü�Ê=È�×�ÊjÓ¸ßWÌ"Ì�Þ=Ê�ÙÕÝ�Ê�È`Ì.Ö´ÒÕÓ_ð
 �¨Å.á
õ�Æ=ÉqÌ�ÞjÌ.Ë.Û�È`Ü,Ò«Å�Î�Ì�È`Ü�ÆfÖ,ÆjÙÕÆjÑjÍDÊ�Ù«Å`Æ¨ÒÕÓ,Ü,Ì�Ë4ÒrÈ4Å>È`Ü,Ì^ÙrÒÕÎ�ÒpÈ�Ê=È`ÒÕÆjÓWÅ
Æ�ÇDð
 � Î�ÆfÖ,Ì�Ù«Å�áàûÁÜ,Ì.Ë`Ì
ÊjË`Ì¯È`Ü�Ë`Ì.Ì¯Î'ÊjÒrÓ ÖyÒ ¹�×�Ý,ÙrÈ`ÒÕÌ.Å'ÒÕÓ
ð
 � Î�ÆyÖyÌ.ÙON �r�=�Q�N��������� Û ���Q� PA������� Û�ÊjÓ�ÖSÈ`Ü�Ì"ÊjÅ4Å`Ý,Î�ÐyÈ`ÒÕÆjÓ
Æ�Ç�Ì�ÚyÐWÆNÓ,Ì�ÓLÈ4ÒÕÊjÙrÙÕÍ"ÖyÒ«Å�È`Ë4Òrß,Ý,È`Ì.Ö¯üWË`ÒÕÓ,Ñ'Ë�Ê=È`ÌJÅAÆ�Ç�È`ÒÕÎ�Ì.Ö¯È4Ë4ÊjÓyØ
Å�ÒrÈ`ÒÕÆjÓ�Å¥çpèK�Uê)á�å>ÊjË`ÑNÌ�Ó,ÌJÅ`Å�ÎEÌJÊ�Ó�Å�È`Ü,Ì¥ÙÕÊjË`ÑNÌ�Å`ÒrÔ.Ì�Æ�ÇVÈ4Ü,Ì�Ý,Ó,Ø
ÖyÌ�Ë4ÙrÍfÒÕÓ,Ñ'ë�Ê�Ë4ÏjÆ=Þ'Î�ÆyÖyÌ.ÙìÆ�Ç¤Ê�Ó�ð
 � Ê�Ó�Ö�Å�È`Òrî�Ó,ÌJÅ`Å¨Ë`Ì.Ð,Ë4Ì�Ø
Å�Ì.ÓNÈ�ÅqÈ`Ü,Ì�ÙÕÊjË`ÑNÌPÖyÒ«Å`Ð�Ê�Ë4ÒpÈ�Í�ßWÌ�È�É^Ì.Ì�Ó¯È`Ü,ÌDüWË`ÒÕÓ,Ñ'Ë�Ê=È`ÌJÅÁÆ�ÇVÊ�Ó
ð
 ��á�å>ÊjË`ÑNÌ�Ó,ÌJÅ`ÅAÊjÓ�Ö
Å�È4Òpî@Ó,ÌJÅ`Å�×�Ê�ÝWÅ�Ì�ÖyÒ ¹�×�Ý,ÙrÈ`ÒÕÌ.Å¨ÒrÓ�Å�ÆNÙrÞLØ
ÒrÓ,Ñ³È`Ü,Ì�Ý,ÓWÖyÌ�Ë4ÙrÍfÒÕÓ,Ñ�ë³Ê�Ë4ÏjÆ=ÞSÎEÆyÖyÌ.ÙÁÆ�Ç�ÊjÓ:ð
 ��á¤ñ,ÆNË�È4ÝyØ
Ó�Ê=È4Ì�ÙÕÍjÛyÊEÓLÝ�Î�ß�Ì�ËÁÆ�Ç�Ê�Ð,Ð,Ë4ÆNÊN×�Ü,Ì.ÅlÜ�ÊUÞjÌPß�Ì�Ì�Ó¯Ð,Ë4ÆjÐ�ÆNÅ`Ì.Ö�È`Æ
ÊUÞjÆjÒ«Ö¯Ê�Ó�ÖRQ=ÆjËÁÈ4ÆjÙÕÌ�Ë�Ê=È`ÌâÙ«Ê�Ë4ÑjÌ.Ó,Ì.Å4ÅÁÊ�Ó�Ö
Å�È`Òrî@Ó,Ì.Å4Å�çrè��Uê)áÁûÁÜ,Ì
��Ì�ÚyÐ�ÆjÓ,Ì.ÓLÈ`Ò«Ê�Ù�ÊjÅ4Å`Ý,Î�ÐyÈ`ÒÕÆjÓ�´ÙÕÒÕÎEÒrÈ4Å�È`Ü,Ì³ÎEÆyÖyÌ.ÙrÒÕÓ,Ñ¸Ð�Æ=ÉqÌ�Ë
Ê�Ó�ÖPÐ,Ë4Ì.×�ÒÕÅ`ÒrÆNÓDÆ�Ç,ð
 �¨Å.á�ò Ü,ÒrÙÕÌ¤Ì�ÚfÐ�ÆjÓ�Ì�ÓLÈ`Ò«Ê�ÙÕÙrÍPÖyÒ«Å�È4Ë`ÒÕß,ÝyÈ4Ì.Ö
Ë4Ê�È`Ì.Å�Ê�Ë4ÌâË`ÌJÊjÅ`ÆjÓ�Êjß,ÙÕÌâÒrÓ³Å`ÆjÎ�ÌEÅ�ÒrÈ`Ý�Ê�È`ÒÕÆjÓ�Å�Å�ÝW×�Ü³ÊjÅ�ÇZÊ�ÒÕÙrÝ,Ë4Ì
Ë4Ê�È`Ì.ÅPÆjÇqÊ�Å�ÍyÅ�È`Ì.Î¯Û>È`Ü,Ì.Í�ÊjË`ÌEÒrÓfÞ=Ê�ÙÕÒ«Ö³ÒÕÓ´Æ�È`Ü�Ì�Ë�Å`ÒpÈ4Ý�Ê=È4ÒrÆNÓ�Å
ÙrÒÕÏjÌ¨Ö,Ì.ÊjÖ,ÙrÒÕÓ,Ì.Å^Æ�Ç>Ê¥Å�ÍyÅ�È`Ì.Î¯áVûÁÜ,Ò«Å^Ð,Ë`ÆNß,ÙÕÌ�Î�ÛNÜ�Æ=É^Ì.ÞjÌ�ËJÛN×.Ê�Ó
ßWÌ
Ë4Ì.ÖyÝW×�Ì.Ö:Ì.ÒpÈ4Ü,Ì�Ë�ßfÍ_Ð,Ü�ÊjÅ`Ì
Ê�Ð,Ð�Ë`ÆUÚyÒÕÎ�Ê�È`ÒÕÆjÓ�Å�çrè��Uê�ãZÊjÐyØ
Ð,Ë`ÆUÚyÒÕÎ'Ê=È`ÒÕÓ,ÑEÊ�Ó,ÆNÓyØ)Ì�ÚyÐWÆNÓ,Ì�ÓLÈ4ÒÕÊjÙ@Ö,ÒÕÅ�È`Ë4Òrß�ÝyÈ`ÒÕÆjÓ"ßLÍ"Ê¥Å`Ì�ÈÁÆ�Ç
Å�È�Ê=È`ÌJÅ�ÊjÓ�Ö:È`Ë�Ê�Ó�Å`ÒrÈ`ÒÕÆjÓ�Å"Å�Ý�×�ÜuÈ4Ü�Ê=È"È`Ü,Ì�Ü,ÆjÙ«ÖyÒÕÓ,ÑºÈ4ÒrÎ�Ì³ÒÕÓ
Ì.Êj×�Ü
Å�È4Ê�È`Ì�Ò«Å�Ì�ÚfÐ�ÆjÓ�Ì�ÓLÈ`Ò«Ê�ÙÕÙrÍ�ÖyÒ«Å�È4Ë`ÒÕß,ÝyÈ4Ì.Ö�æ�ÆjË�ßfÍ�Ê�ÙÕÙrÆ=ÉAÒÕÓ,Ñ
Ó,ÆjÓyØ)Ì�ÚyÐ�ÆjÓ,Ì.ÓLÈ`Ò«Ê�ÙTÖyÒ«Å�È4Ë`ÒÕß,ÝyÈ4ÒrÆNÓ�ÅAÒÕÓ�ð
 �¨Å.á

SÁ¼ s ¾ z! UT�vfÃ�v Ö � vfÂ �w,v

ñ�ÆjË�È4Ü,ÌÁË`Ì.ÙrÒ«Ê�ß,ÒÕÙÕÒpÈ�Í�ÊjÓ�Ê�ÙÕÍyÅ�Ò«Å2Æ�Ç�È4Ü,ÌAÎ�Ý�ÙpÈ4ÒrÐ,Ë4Æy×�ÌJÅ`Å`ÆjË�Å�ÍyÅ�Ø
È`Ì�Î�Û�ÉqÌ�ÊNÅ`Å`ÒÕÑjÓ:È`Ü,Ì�ÇZÊ�ÒÕÙÕÝ,Ë`Ì³Ë4Ê�È`Ì.Å�Æ�Ç�ÌJÊj×�Ü Ì�ÙÕÌ�Î�Ì.ÓNÈ�Å"ÊNÅ

V W X Y
Z [\]
^ _ ` a
b c d e
f g h i
j k l m
n o p q
r s t u
v w x y

z { | } ~ ���� ����� � ��� �¢¡¢£ ¤¦¥

§ ¨©ª «
¬ ®¯ ° ±
²³ ´ µ
¶· ¸¹
º » ¼
½

Figure 4. Reliability of the example system.

ÙrÒ«Å�È`Ì.ÖHÒrÓ_û2Êjß,ÙrÌ�ó c á TÁÊjÅ`Ì.Ö¸ÆjÓºÈ4Ü,Ì�ð
 � Î�ÆyÖyÌ.Ù^ÒÕÓ_ñ�ÒÕÑ�Ø
Ý,Ë4Ì¨ú,ÛfÉqÌ�Ì�Þ=Ê�ÙÕÝ�Ê�È`Ì�È4Ü,Ì¨Ð�Ë`ÆNß�Ê�ß,ÒÕÙÕÒpÈ�ÍEÆ�ÇTÈ4Ü,Ì�Å`ÍyÅ�È4Ì�ÎcÇZÊ�ÒÕÙrÝ�Ë`Ì
Ê=È¥Ê
ÇÝ,Ó�×�È4ÒrÆNÓHÆjÇqÈ4Ü,Ì�È4ÒrÎ�ÌNá³ûÁÜ,Ì�Ð�Ë`ÆNß�Ê�ß,ÒÕÙÕÒpÈ�Í�Æ�Ç¨Å`ÍfÅ�È`Ì.Î
ÇZÊ�ÒÕÙrÝ�Ë`Ì�Ò«Å^ÆjßyÈ�Ê�ÒÕÓ,Ì.Ö�ßfÍ�Ý�Å`ÒrÓ,Ñ�È`Ü,Ì¨È`ÆfÆjÙTðyë�Ä
 û ç ��ê�È`Æ¥×�Ê�ÙrØ
×�Ý,Ù«Ê=È4ÌAÈ`Ü�Ì�Ð,Ë4Æjß�Êjß,ÒrÙÕÒrÈ�Í�È`ÜWÊ=È^Ð�ÙÕÊN×�Ì C � øâÒÕÓ�ñ2ÒÕÑjÝ�Ë`Ì¨ú�ÒÕÅlÓ,Æ�È
Ì�Î�ÐyÈ�ÍHÊ�È�È`ÒÕÎEÌ±��áuñ�ÒrÑNÝ,Ë`Ì_�ºÅ�Ü�Æ=É�Å�È4Ü,Ì�ÖyÒ«Å�È4Ë`ÒÕß,ÝyÈ4ÒrÆNÓ_ÆjÇ
È`Ü,ÌDÐ,Ë4ÆjßWÊ�ß,ÒÕÙrÒrÈ�Í�Æ�Ç2Å`ÍyÅ�È4Ì�Î ÖyÆ=ÉAÓ>á�ûÁÜ�ÌPÓfÝ,Î�Ì.Ë`Ò«×�ÊjÙWË4Ì.Å`Ý,ÙrÈ4Å
Å�Ü�Æ=É È4Ü�Ê=ÈâÈ4Ü,Ì�Ë4Ì�Ò«Å�þ±��d þ-À Ð,Ë4Æjß�Êjß,ÒÕÙrÒrÈ�Í
È`ÜWÊ=È�È4Ü,Ì�Å`ÍfÅ�È`Ì.Î
ÏjÌ.Ì�Ð�Å�É^ÆNË`ÏfÒÕÓ,Ñ
Ê=È�È4Ü,Ì��Léjéjé �¿¾´Ü,ÆNÝ,Ë.Û�ÉAÜ,Ò«×�ÜºÎ�Ì.Ê�ÓWÅâÈ`ÜWÊ=È
È`Ü,ÌDË4Ì�ÙÕÒÕÊjß,ÒÕÙrÒrÈ�Í'Ë`ÌJïLÝ,ÒrË4Ì�Î�Ì.ÓNÈAÅ`ÐWÌJ×�Òrü�Ì.Ö"ÒrÓ
Å`Ì.×�È`ÒÕÆjÓ_	¥Ò«ÅÁÅ`Ê�È�Ø
ÒÕÅ�ü�ÌJÖ�ÒÕÓ¯È`Ü,ÌâÎ�ÆyÖyÌ�ÙÕÌ.Ö�Å`ÍyÅ�È4Ì�Î�á

À ¼ÂÁ ¿ ¾ {� `Â¨vfÃ�¿ ¾ v

Ä Î�Ì�È4Ü,ÆyÖ�È`Æ"Ì�ÚfÈ`Ì.Ó�Ö³ðyÄ�ë ÇÆNË¨Ð�Ì�Ë`ÇÆjË4Î�ÊjÓ�×�Ì¥Ê�Ó�Ö�Ö,Ì�Ø
ÐWÌ.Ó�Ö,Êjß,ÒrÙÕÒrÈ�ÍSÊjÓ�Ê�ÙÕÍyÅ�Ò«ÅDÜ�ÊjÅ�ßWÌ.Ì�ÓºÐ,Ë4Ì.Å`Ì�ÓLÈ`ÌJÖTá"Ä�Ç�È`Ì.Ë�ÒÕÓ�×�ÆNË�Ø
ÐWÆNË4Ê�È`ÒÕÓ,Ñ¥Å�È`Æy×�Ü�ÊNÅ�È4ÒÕ×�ÒÕÓyÇÆjË4Î'Ê=È`ÒÕÆjÓ"ÒrÓLÈ4Æ�Ê�ðyÄ�ë�Î�ÆyÖyÌ�ÙQÛ,Ê�Ó
ð
 � Î�ÆyÖyÌ.Ù2Ò«Å�ÖyÌ.Ë`ÒÕÞjÌJÖTáWT^Í¯Å�ÆNÙrÞfÒÕÓ,Ñ�È`Ü�Ì¥ð
 � ÎEÆyÖyÌ.Ù>Ý�Å�Ø
ÒrÓ�Ñ�Ì�ÚyÒ«Å�È4ÒrÓ,Ñ¨È`ÆfÆjÙ«Å.ÛUÊ�ÞUÊjË`ÒÕÌ�È�ÍPÆ�ÇyÓ,ÆNÓyØQÇÝ,Ó�×�È4ÒrÆNÓ�Ê�ÙLÐ,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å
Å�ÝW×�Ü�ÊjÅVÐ�Ì�Ë`ÇÆjË4Î'Ê�Ó�×�ÌjÛNÖ,Ì�Ð�Ì�Ó�Ö,Êjß,ÒÕÙrÒrÈ�Í'Ê�Ó�Ö�Ð�Ì�Ë`ÇÆjË4Î'Ê�ß,ÒÕÙrÒrÈ�Í
ïÄÃÆÅÈÇÊÉ ËÍÌÏÎÏÐ(Ñ�ÇÊÑ�ËÓÒ�ÇÄÔÕËÍÑ�ÇÖËÍ×ÈØ�ÙÚÒ�ÇÄ×ÛÉ&Ñ�Ø�ÜÞÝ ßÓà

Table 2. Failure rates for the example system.áãâåäçæèäçéëê(ì íïîñðòâòóÕôõäöôõî÷êÚäøìúùÄûüîýóþâ¢êõÿ���� óïô��
Ð,Ë`Æy×�Ì.Å4Å�ÆNË ® ö Aÿ	���èJé	��

ÖyÒÕÅ`Ï ® � Aà÷���èJé	� "
Å�Ü�ÊjË`ÌJÖ�Î�Ì.ÎEÆNË`Í ®@�/þ Aàú���èJé	� É
ÙrÆy×�ÊjÙTÎ�Ì�Î�ÆjË4Í ®7ý�þ Aàú���èJé	� É
ß,Ý�Å ® � A ó��Sè.é�� È

×�Ê�Ó³ßWÌEÌ�Þ=Ê�ÙÕÝ�Ê�È`Ì.ÖìáDÄ�Ç�È`Ì.Ë�È4Ü,ÌEÌ�ÚfÈ`Ì.Ó�Å�ÒÕÆjÓ³ÉAÒpÈ4Ü�Å�È`Æy×�Ü�ÊjÅ�È`Ò«×
×�ÆjÓWÅ�È4Ë`Ý�×�È.ÛjÈ`Ü,Ì�ð,Ä¨ë ÇË�Ê�Î�Ì�ÉqÆjË4Ï�Ò«Ål×.Ê�Ð�Êjß,ÙrÌAÆjÇ@È`Ü,ÌPÊ�Ó�ÊjÙrÍLØ
Å�Ò«ÅlÆjÇìßWÆjÈ`Ü�ÇÝ,Ó�×�È4ÒrÆNÓ�Ê�Ù@Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.ÅqÊ�ÓWÖ�È`Ü,ÌD×�ÆNÎ�ÎEÆNÓ�Ó,ÆNÓyØ
ÇÝ,Ó�×�È4ÒrÆNÓ�Ê�Ù�Ð,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å.á û>Æ_ÒrÙÕÙrÝWÅ�È4Ë4Ê�È`Ì
È4Ü,Ì³Î�Ì�È4Ü,ÆyÖTÛAÈ4Ü,Ì
Î�Ý,ÙrÈ`ÒÕÐ,Ë4Æf×�Ì.Å4Å�ÆNË^Å`ÍyÅ�È4Ì�ÎöÉÁÊjÅ¤ÝWÅ�ÌJÖ�ÊjÅÁÊ�Ë`Ý,Ó�Ó,ÒrÓ�Ñ¥Ì�ÚyÊjÎ�Ð,ÙrÌNÛ
Ê�Ó�Ö�ÒpÈ�ÅDË`Ì.ÙrÒ«Ê�ß�ÒrÙÕÒpÈ�Í³ÉqÊNÅDÌ�Þ=Ê�ÙÕÝ�Ê=È4Ì.ÖTá'ûÁÜ,Ì�Ð,Ë4Ì.Å`Ì�ÓLÈ�Ê=È`ÒÕÆjÓ�Æ�Ç
È`Ü,ÌEÌ�Ú,Ê�Î�Ð,ÙÕÌ�Ê�Ó�Ö³ÒpÈ�ÅDÓLÝ�ÎEÌ.Ë`Ò«×�ÊjÙ2Ë4Ì.Å`Ý,ÙrÈ4ÅPÐ,Ë4Æ=ÞjÌJÖ�È`Ü,ÌEÞfÒÕÊ�Ø
ß,ÒrÙÕÒrÈ�Í"ÆjÇ�È4Ü,Ì�Ð�Ë`ÆNÐWÆLÅ�ÌJÖ"Î�Ì�È`Ü,ÆyÖTÛ@Ê�Ó�Ö
ÊjÙrÙÕÆ=ÉqÌ.Ö�Å�ÒÕÑjÓ�ÒpüW×.Ê�ÓLÈ
ÒrÓ�Å`ÒÕÑjÜLÈÁÈ`ÆEÈ`Ü,Ì�Å`ÍyÅ�È4Ì�Î©ïNÝWÊ�ÙÕÒpÈ4ÒrÌJÅqÈ`Æ�ßWÌâÑLÊ�ÒÕÓ,Ì.Öìá
ûÁÜ�Ì�Ê�Ó�ÊjÙrÍyÅ`ÒÕÅPÆ�ÇqÐWÌ.Ë�ÇÆNË`Î'ÊjÓ�×�Ì'Ê�ÓWÖ�ÖyÌ.ÐWÌ.Ó�Ö,Êjß,ÒrÙÕÒrÈ�Í³Ý�Å�Ø

ÒrÓ,Ñ�ð
 ��Å^Ò«ÅqÓ,Æ�ÈÁÓ,Ì.Éâá��Ý�Ëq×�ÆjÓLÈ`Ë4Òrß�ÝyÈ`ÒÕÆjÓ�ÙÕÒÕÌ.ÅqÒrÓ"ÒrÓW×�ÆjË4Ð�Æ�Ø
Ë4Ê�È`ÒÕÓ,Ñ¯Å�È`Æy×�Ü�ÊNÅ�È4ÒÕ×¥È4Ì.×�Ü,Ó,Ò«ïLÝ,Ì.ÅDÒÕÓLÈ`Æ¯È`Ü�Ì�ðyÄ¨ë ÇË�Ê�Î�Ì�ÉqÆjË4Ï
Å�Æ"È`Ü�Ê�ÈâßWÆjÈ`Ü�ÇÝ,Ó�×�È4ÒrÆNÓ�Ê�ÙVÐ�Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅPÊjÓ�Ö�Ó,ÆjÓyØQÇÝ,Ó�×�È`ÒÕÆjÓ�ÊjÙ
Ð,Ë`ÆNÐWÌ.Ë�È4ÒrÌJÅ@ÙrÒÕÏjÌ^ÖyÌ�Ð�Ì�Ó�Ö�Ê�ß,ÒÕÙrÒrÈ�ÍD×�Ê�ÓDß�ÌlÊ�ÓWÊ�ÙÕÍLÔ.Ì.ÖPÝ,Ó�Ö,Ì�Ë>ÆNÓ,Ì
Ý,Ó,Òrü�Ì.ÖEÇË�Ê�Î�Ì�ÉqÆjË4Ï@á�ù^Ý,Ë4Ë`Ì.ÓLÈ`ÙÕÍjÛ�È4Ü,ÌAÈ4Ë4ÊjÓ�Å�ÇÆNË`Î'Ê�È`ÒÕÆjÓ¥ÇË`ÆNÎ
ðyÄ¨ë È4Æ:ð
 �$Î�ÆyÖyÌ�ÙPÒÕÅ¯ÖyÆNÓ,Ì³ßfÍuÜ�Ê�ÓWÖTÛ�ÉqÌ³Ê�Ë4Ì�ÒÕÓNÈ4Ì�Ë`Ø
Ì.Å�È`Ì.Ö�ÒÕÓ�ÖyÌ.ÞjÌ�ÙÕÆjÐ�ÒrÓ,Ñ�È4ÆfÆjÙ«ÅAÈ`Æ"Ê�ÝyÈ4ÆjÎ'Ê=È4ÌâÈ`Ü,Ì�È`Ë�Ê�Ó�Å�ÇÆjË4Î'Ê=Ø
È`ÒÕÆjÓìá�ò�ÌAÊjÙÕÅ`Æ�Ð�ÙÕÊjÓ�È4ÆDÖ,Æ�È4Ü,ÌÁÈ`Ë�ÊjÖ,Ì�Æ�î�ÊjÓ�Ê�ÙÕÍyÅ�Ò«Å�Æ�Ç�×�Ì�Ë`È4ÊjÒrÓ
×�ÆjÓ#�ÒÕ×�È`ÒÕÓ,Ñ�Ó,ÆjÓ,ØMÇÝ,ÓW×�È`ÒÕÆjÓWÊ�ÙTÐ,Ë4ÆjÐ�Ì�Ë`È`ÒÕÌ.Å.á

Öû� � � x �>¾ { � v

������� Ì��bÌ�� Æ:Ô ÄÈë í Ä���Ì��)Ç ËVß«ÁbÁ�� é ÀIË é Ç í é ð©ð«¾V¿�� Ä Ó é ËVÁ»ËVß«¾V¿�Ú É ß�
ð«Ú«Ë é Ç é ë Ô±Â Ä Âu¿ è À ë ¿�Â�Á¯í"!:Ú©Á3Ú ÄkÇ©É�Ç ÁIËDÅm¿�¾VÆÝÂóÅ Ä ËVßRä ë ¿:ÀGÆ#
ÄkÇ«É«Ì%$'&(&)&+*-,/.�0-12.43�57698�0�1:8�0<;	8'=>57?�.�,A@B&C0ED�6F0�@A@2,26F0ED#G�H
��I-J'��K2L MON�PEQ�R H �TSOU�U Ì

� NV��W ÌV��ëÈë Á Ç é Ç íEÎ Ì�X é ¾ ë é Ç7Ì4� ¿�¾VÓ é ëkÄ��IÄÈÇ«É é ¾VÀ<ß Ä ËVÁ3ÀIËVÚ«¾ é ë À3¿ Ç
Ç Á3ÀIË Ä ¿ Ç�Ì � ÇZYC,/8�3VG)5F[-@\;-6^]�5_@>@20�5F[`$>0-5_@2,>0	.�57698�0	.Oa�b(8�0�=T@2,�c
@20d3>@\8�0`;	8'=>57?�.�,A@e&C0ED�6F0�@A@2,26F0ED�H ð é É Á3Â Q#�2P#UOR H ��SOS�I Ì

� f�� �-Ì Ùb¿�ä©ä Ä ¿ H�X.Ì	� ¾ é Ç À3Á3Â�ÀGß ÄkÇ©Ä Â H W Ì	X é ÁIË é H é Ç í î Ì ½5¿�¾�Ë Ä
Ç é ë Á Ì ½ é ¾ é Ó'ÁIË�¾ Ä À èêé Ú ë Ë/Ë�¾VÁ3Á è ¿�¾bËVß«Á)í±Á3ð�Á Ç í é ä ÄkëÈÄ ËDÔ é Ç é ë
Ô±Â Ä Â)¿ è ¾VÁ¯í«Ú Ç í é Ç ËSÂ Ô±Â ËVÁ3Ó'Â é Ç í Ä ËVÂ)ß ÄkÉ ß� ë ÁTg9Á ë ð�ÁIË�¾ Ä5Ç Á<Ë
Â�ÁIÓ é Ç Ë Ä À3Â Ìh$'&(&)&i*�,/.�0�1�.O3�57698�0-1j8�0`;d8'=257?).�,A@k&C0ED�6F0�@A@2,�c
6F0ED�H N�S�J9fOK2L NOQ�R�P�N�U4Q H N�ROROf Ì

� I�� X.ÌmlbÄ é ¾Gí«¿ H W Ì î Ì�n ¿ Ç Á3Â H W Ì�o�Ìmo é ¾VÓ'¿�¾VÂ ËVÁ ÄkÇpHk� Ì�ãÌ
oÄkÇ ÁI¾ H é Ç í W Ìã±Ä Ó ÄkÇ©Ä À3Á é Ç Ú Ì ã-o�� W Þ L ã ËV¿:ÀGß é Â Ë Ä À
Ó'¿Ýí±Á ë ,À<ß«Á3À<Æ ÄkÇ©É é Ç é ë Ô � ÁI¾ è ¿�¾�¾VÁ ëÈÄ é ä ÄkëkÄ ËDÔ é Ç íuË Ä Ó ÄkÇ©É±Ì � Ç
YC,/8�3VG�$>0-5_@2,>0	.�57698�0	.Oa�b(8�0T=�@2,A@20d3>@"8�0rqs@_t�@20	u4.OvTa�@:;-w�12c
5_@2xj1C.�0	u�yz@257?)8�,A{�1h|}qk;Ey�~ �V����H�� é Â�ß ÄÈÇ«É ËV¿ Ç�H Î Ì lSÌ^H�n Ú Ç Á
�TSOSON Ì

� �V� X.Ì�lbÄ é ¾Gí«¿ H�n«Ìpo Ú«ð©ð é ë é H é Ç í�� Ì"ãÌ Þ�¾ Ä gKÁ¯í ÄìÌ���Ç é ë Ô �3ÄkÇ©É
ÀI¿ Ç ÀIÚ«¾�¾VÁ Ç Ë é Ç í èìé Ú ë Ë/ ËV¿ ë ÁI¾ é Ç Ë Â�¿ è Ë>Å é ¾VÁuÚ©Â ÄkÇ©É Â ËV¿:À<ß é Â'
Ë Ä Àu¾VÁIÅ é ¾Gí Ç ÁIËVÂ Ì��E8��E,>0	.Oah8'=\Yh.�,'.Oa}a�@�a�.�0	u�qk6F1>57,>69v��E5_@/u
b(8�xetd�E576}0#D�H �V�EJ9f4K2L NO����PEN�MOS H ��SOSON Ì

� MV��� Ì�n«ÌsX Á Ç ¾ Ä À<ß Ì ½»¾VÁ¯í Ä À é ËVÁ Ê Ë�¾ é Ç Â Ä Ë Ä ¿ Ç Ç ÁIËVÂ Ì%��@/3�57�E,A@
yk8�5_@21�6}0�b(8�xmtd�E5_@2,z;	3�6�@20d32@2H NO�VI�L NO����P�N�MOS H �TSOUOQ Ì

� Q���� Ì � é Ç Â�Â�¿ Ç é Ç í�Ù Ìhn ¿ Ç Â�Â�¿ Ç�Ì�� ë ¿ É�Ä À è ¿�¾(¾VÁ é Â�¿ Ç©ÄkÇ©É
é ä�¿�Ú«Ë.Ë Ä Ó'Á é Ç í�¾VÁ ëÈÄ é ä ÄkëkÄ ËDÔ Ì:��8�,>x�.Oa��e19t�@A3�571�8'=�b(8�x�c
td�E576}0#D�H M�J7I#K2L �E��N�P���f4� H �TSOS�I Ì

� UV��� Ì � Á é Ç í�� Ì ÎEÁ Ç©É«ÌC� è ¾ é Ó'ÁIÅm¿�¾VÆ è ¿�¾Eí±ÁTg9Á ë ¿�ð ÄkÇ©É é Ç í
é Ç é ë Ô �3ÄkÇ©É Â�¿ è Ë>Å é ¾VÁ é ¾VÀGß Ä ËVÁ3ÀIËVÚ±¾VÁ�Â�ð�Á3À Ä�� À é Ë Ä ¿ Ç Â ÄkÇuã��eo�Ì
*�[-@�b(8�xet-��5_@2,s�E8��E,>0	.Oa H I#�EJ'�VK2L^�O���2Pd��N�U H N�RORON Ì

� SV� � Ì W Ì�o À ã ð é í©í«Á Ç é Ç í�� Ì î ¿Kð�Á � DÙbÁ Ç©Ä ËVÁ ��Ì�ã ËV¿:ÀGß é Â Ë Ä À
ð�ÁIË�¾ ÄSÇ ÁIËVÂ é ð©ð ëkÄ Á3í�ËV¿�ËVß«Á�ð�Á<¾ è ¿�¾VÓ é Ç À3Á�ÁTg é ë Ú é Ë Ä ¿ Ç ¿ è
Â Ë é Ë Ä À!Ë é Â�Æ é ëkë ¿:À é Ë Ä ¿ Ç Â ÄkÇ ß«ÁIËVÁI¾V¿ É Á Ç Á3¿KÚ«ÂbÀ3¿�Ó'ð©Ú«Ë ÄkÇ«É Á Ç
g Ä ¾V¿ Ç Ó'Á Ç ËVÂ Ì � Ç�YC,/8�3VGs��5F[:�s@25_@2,'8AD#@20�@/8��E1:b(8�xetd�E576}0#D
��8�,A{�1'[�8>t:|}��Ykbz~ #¡>��H ð é É Á3Â �TU4��P-��S�I H ��S�S4Q Ì

����RV� � Ì�o Á¯í�g Ä í«¿Vg Ä À é Ç í W Ì Þ é Ô ë ¿�¾ Ìj� è ¾ é Ó'ÁIÅm¿�¾VÆ è ¿�¾-À ë é Â'
Â Ä è Ô ÄkÇ©É é Ç í À3¿KÓ'ð é ¾ ÄkÇ©É é ¾VÀ<ß Ä ËVÁ3ÀIËVÚ«¾VÁ&í«ÁIÂ�ÀI¾ Ä ð«Ë Ä ¿ Ç÷ë é Ç
É Ú é É Á3Â Ì � Ç¢YC,/8�3VGj5F[-@£��5F["&C�E,/82t�@/.�0¤3A8�0T=�@2,A@20d3>@B[-@�a^u
¥ 8�6F0-59a w<?¦6}5F[�5F[�@¢§�5F[¨�sb�©ª;E$�«C;�¬¦�e*6}0�5_@2,20d.�57698�0d.Oa
1Aw�xmt�8�1A6}�Ex®8�0���8��E0	u4.�57678�0-1�8'=B128'=257?).�,A@¯@20ED�6F0�@A@2,26F0ED�H
ð é É Á3Â M�RVP�Q�M H �TSOSOQ Ì

���O�2� � Ì W Á Ç é Ç í n±Ì Ù Ì ÎEÚ É é Ç7Ì Î)Á3Â ÄkÉKÇ ¿ è ¾VÁ ëÈÄ é ä ë Á!Â Ô±Â ËVÁ3Ó'ÂJÚ«Â'
ÄkÇ©É Â Ë é Ë Ä À é Ç íóíÝÔ Ç é Ó Ä À èìé Ú ë Ë/Ë�¾VÁ3ÁIÂ Ìp$'&(&)&°*-,'.�0-12.43�57678�0-1
8�0�±�@�a 69.4v�67a 6F57w�H I#QEJ9f4K2L N�f�I�P�NVIOI H�o é Ô ��S�SOU Ì

���VN�� Þ Ì�X.Ì W ¿Kä�Á<¾�Ë é �T�3ÄìÌ b(8�xmtd�E5_@2,²yz@257?�8�,A{�1¢.�0	u³;�w�1>c
5_@2x\1�´BµC�-@2�E6}0ED£*�[-@/8�,>w�.�0du�Yh@2,}=�8�,2x�.�0	3>@�&C¶�.Oa ��.�57698�0©Ì
ã ð±¾ ÄkÇ©É Á<¾/ _·@ÁI¾ ë é É�H Â�Á3À3¿ Ç íÁ¯í Ä Ë Ä ¿ Ç�H �TSOS�I Ì

����fV� o�Ì7ã ß é Å H W Ì ÎEÁ î ÄkÇ Á H Î Ì · Ì � ë Á ÄkÇ�H Þ Ì î Ì W ¿�Â�Â H Î Ì�o�Ì
�/¿KÚ Ç«É�H é Ç í X.Ìd¸ Á ë Á3Â Ç«Ä Æ Ì�� ä©Â Ë�¾ é ÀIË Ä ¿ Ç Â è ¿�¾�Â�¿ è ËDÅ é ¾VÁ é ¾/
ÀGß Ä ËVÁ3ÀIËVÚ±¾VÁ é Ç íuËV¿:¿ ë Â�ËV¿aÂ�Ú«ð©ð�¿�¾�Ë!ËVß©Á3Ó Ì¦$'&)&(&³*-,'.�0-12.43Tc
57698�0�1z8�0�;d8'=257?).�,A@e&�0#D�6}0�@A@2,>6}0ED�H NE�4J7I4K2L f��TIVPEfO�O� H �TSOS4� Ì

���TI�� Þ Ì5ã ß Ä é Ç í � Ì � Á Ì¹o ¿Ýí±Á ëkÄÈÇ«É é Ç í é Ç é ë Ô �3ÄkÇ©É ËVß«ÁóÂ�¿ è Ë/
Å é ¾VÁ é ¾VÀGß Ä ËVÁ3ÀIËVÚ±¾VÁó¿ è�é À3¿KÓ'Ó.Ú Ç«Ä À é Ë Ä ¿ Ç ð«¾V¿�ËV¿:ÀI¿ ë Ú©Â ÄkÇ©É
ã��eo�Ì � ÇºY�,'8�3VG	$'�¦$'Y�»#¡V5F[���8�,2a^u¼b(8�xetd�E5_@2,sb(8�0ED�,/@21>1mc
*Cb��k;-57,/@/.�x�½�¾O,/um$'&(&)&�½�$'�¦$'Y¿b(8�0�=�@2,/@20	3>@m8�0\;	8'=257?).�,/@
�h,/3>[#6}5_@/3�57��,/@¹|V�º$�b�;E��~ �V����H ð é É ÁIÂ M�fVPEQOQ H N�RORON Ì

���V��� � Ì©ãÌ Þ7¾ Ä g9Á¯í ÄìÌ�;EY)yhYÁÀp1�@2,-~ 1h©Z.�0-�-@�a Â¦¶�@2,>1>678�0B�4G}��Ì ÎEÁ2
ð é ¾�ËVÓ'Á Ç Ë ¿ è¼Ã ë Á3ÀIË�¾V¿ Ç«Ä À é Ç í l ¿�Ó'ð©Ú«ËVÁ<¾ Ã Ç©É�ÄkÇ Á3ÁI¾ ÄkÇ«É�H
ÎEÚ«Æ9ÁeÄ Ç©Ä g9ÁI¾VÂ Ä Ë>Ô H �TSOSOS Ì

����MV� � ÌSãÌ Þ�¾ Ä gKÁ¯í Ä7HsX.ÌmlbÄ é ¾Gí±¿ H\o�Ìmo é ë ß«¿�Ë�¾ é H é Ç í W Ìh�-Ì
ã é ß Ç ÁI¾ Ì ÎEÁ3ð�Á Ç í é ä ÄkëkÄ Ë>Ô é Ç í�ð�ÁI¾ è ¿�¾VÓ é ä ÄÈëkÄ Ë>Ô é Ç é ë Ô±Â Ä Â Ì
Yh@2,}=T8�,2x�.�0	3>@k&C¶�.Oa ��.�57698�0�8'=ºb(8�xetd�E5_@2,\.�0	uZb(8�x\x\�E0�67c
3A.�57698�0:;-w�1A5_@2x\1AÂk��@A3�57�E,/@�yk8�5_@21�6F0²b(8�xmtd�E5_@2,�;d3�6�@20	3>@2H
QON�S�L ��UOQ�P#M��VN H ��SOS�f Ì

���VQ�� � ÌÝã�Ì Þ7¾ Ä g9Á3í Ä7H�o�ÌEo é ë ß©¿�Ë�¾ é H é Ç í W Ì4o�ÌE� ¾ Ä À<ÆÝÂ Ì�o é ¾VÆ9¿Vg
¾VÁIÅ é ¾Gí é ð«ð«¾V¿ é À<ßWËV¿�ð�ÁI¾ è ¿�¾VÓ é ä ÄkëÈÄ ËDÔ é Ç íW¾VÁ ëÈÄ é ä ÄkëkÄ ËDÔ é Ç é ë
Ô±Â Ä Â Ì � Ç�YC,/8�3VG�5F[-@�;�@/3A8�0du�$>0�5_@2,20d.�57698�0d.Oaz��8�,/{�1'[�82t:8�0
©Z8�u#@�a 6F0ED�Âd�h0	.Oa w�1A6}1AÂ�.�0	uk;-6}xj��a^.�57698�0�¬C0�b(8�xmtd�E5_@2,h.�0	u
�@�a�@/3A8�x\xj�E0-693A.�57698�0¨;-w�1A5_@2x\1�|7©���;�b�¬k�;C~ �ÅO��H ð é É ÁIÂ
Q�P-�O� H ��S�S�I Ì

����UV� ãÌ ·@Á3Â Ë é ë Ì¦o ÁIË é � ð«¾V¿ É ¾ é Ó'Ó'ÁI¾�Æ ÂmÓ é Ç Ú é ë7H g9ÁI¾VÂ Ä ¿ Ç � Ì R�S Ì
ÞJÁ3ÀGß Ç«Ä À é ë ¾VÁ3ð�¿�¾�Ë H � ¿ Ç Á<Ô±ÅbÁ ëkë ÞJÁ3ÀGß Ç ¿ ë ¿ É Ô l Á Ç ËVÁI¾ H �TSOS�M Ì

����SV� n«Ì�� é Ç©É�H � Ì � Á H é Ç í�� Ì ÎEÁ Ç©É±Ì � Ç Ë�¾V¿Ýí±Ú©À ÄkÇ©É Â�¿ è Ë>Å é ¾VÁ é ¾/
ÀGß Ä ËVÁ3ÀIËVÚ±¾VÁ.Â�ð�Á3À Ä^� À é Ë Ä ¿ Ç é Ç í é Ç é ë Ô±Â Ä Â ÄÈÇ�ã���o ËVß±¾V¿KÚ É ß
é Ç Á�� é Ó'ð ë Á Ì�$>0�=T8�,>x�.�57698�0°.�0	u£;	8'=257?).�,/@"*�@/3>[E0	8Oa^8AD�w�H
I��OJ�QOK2L I#�#�2P4I4M4Q H ��S�SOS Ì

� N�RV��� Ì �/Ú H � Ì � Á H � Ì ÎEÁ Ç©É�H é Ç í î Ìdo ¿ Ì)� è ¿�¾VÓ é ë Ó'ÁIËVß«¿Ýí
è ¿�¾ é Ç é ë Ô �3ÄkÇ«É Â�¿ è ËDÅ é ¾VÁ é ¾VÀ<ß Ä ËVÁIÀIËVÚ«¾VÁ!Ó'¿Ýí±Á ë Â ÄkÇ�ã���o�Ì � Ç
YC,/8�3VGh5F[-@�����5F[��h0�0-��.Oa�$>0-5_@2,>0	.�57698�0	.�azb(8�xetd�E5_@2,�;d8'=259c
?).�,A@£.�0du"��t4t	a 693A.�57678�0-1"b(8�0�=�@2,/@20	3>@¿|Ab�¬)©�YC;��sbz~ ������H
ð é É Á3Â M�I#��P#M4��N H N�R�R4N Ì

Formalizing Dependability Mechanisms in B:
From Specification to Development Support

F. Tartanoglu, V. Issarny
INRIA Rocquencourt

France
Galip-Ferda.Tartanoglu@inria.fr

Valerie.Issarny@inria.fr

N. Levy
Laboratoire PRISM

Université de Versailles
Saint-Quentin, France
Nicole.Levy@prism.uvsq.fr

A. Romanovsky
School of Computing Science

University of Newcastle upon Tyne
UK

Alexander.Romanovsky@newcastle.ac.uk

Abstract

The CA action concept has been proven successful for
building dependable distributed systems due to its support
for error recovery for both competitive and cooperative
concurrent actions. This paper introduces the formal speci-
fication of dependability mechanisms offered by CA actions
using the B formal method, from which an XML-based lan-
guage is derived. The resulting language then allows devel-
oping dependable systems, where the B formal specification
is refined to obtain an implementation of the associated run-
time support.

1. Introduction

Dependability of systems is defined by the reliance that
can be put on the service they deliver. Developing dis-
tributed systems that are dependable is recognized as a com-
plex task, requiring adequate mechanisms for dealing with
the occurrence of failures. Coordinated Atomic Actions
(CA actions) [8] provide a general structuring mechanism
for developing dependable systems through the exploitation
of atomic actions and transactions. The composition of CA
actions [6] further extends the base CA action model for
developing open distributed systems.

Several applications have proven that CA actions are ef-
fective for building dependable concurrent systems [9, 2].
Formalization of applications based on CA actions, us-
ing Petri nets and temporal logic, further enables to prove
the applications’ dependability properties through model-
checking [7, 5]. However, dependability properties are
proved with respect to a specific application.

Our approach aims at providing a language for devel-
oping distributed systems using dependability mechanisms
that are formally specified and implemented. Towards that

goal, we provide a formal specification of the dependability
mechanisms associated with the CA action concept using
the B formal method, from which we derive an XML-based
language to be used to develop dependable applications.

The paper is structured as follows. Section 2 briefly
presents CA actions and their composition. Sections 3 and 4
then introduce the B formal specification of CA actions,
discussing in particular the specification of dependability
mechanisms offered by CA actions. Definition of the result-
ing XML-based development support follows in Section 5.
Finally, Section 6 concludes, summarizing our contribution
and discussing areas for future work.

2. Architecting Dependable Systems with Co-
ordinated Atomic Actions

CA Actions
The CA actions [8] are a structuring mechanism for de-

veloping dependable concurrent systems through the gen-
eralization of the concepts of atomic actions [3] and trans-
actions [4]. Atomic actions are used for controlling coop-
erative concurrency among a set of participating processes
and for realizing coordinated forward error recovery using
exception handling; transactions are used for maintaining
the coherency of shared external resources that are compet-
itively accessed by concurrent actions. Each CA action is
designed as a multi-entry unit with roles activated by action
participants, which cooperate within the action. A transac-
tion is started upon each first access to a given external ob-
ject by a CA action participant and it terminates at the end
of the CA action. A CA action terminates with a normal
outcome if no exception has been raised or if an exception
has been raised and handled successfully; all transactions on
external objects are then committed. If a participant raises
an exception inside an action and if the exception cannot be
handled locally by the participant, the exception is propa-

gated to all the other participants of the CA action for co-
ordinated error recovery1. If coordinated recovery fails, the
CA action terminates with an exceptional outcome. An ex-
ception is then signalled by the CA action and transactions
on external objects are aborted.

CA actions can be designed in a recursive way using ac-
tion nesting. Several participants of a CA action can enter
into a nested CA action, which defines an atomic opera-
tion inside the embedding CA action. Accesses to exter-
nal objects within a nested action are performed as nested
transactions so that if the embedding CA action terminates
exceptionally, all sub-transactions that were committed by
nested actions are aborted as well. A CA action participant
can only enter one nested action at a time. Furthermore, a
CA action terminates only when all its nested actions have
completed. Note that if the nested action terminates excep-
tionally, an exception is signalled to the containing CA ac-
tion.

As an illustration, Figure 1 depicts a CA action A1 that
is entered by participants P1-P3 and that comprises two
nested CA actions, A11 and A12; transaction are further ex-
ecuted on external objects. An exception raised by partici-
pant P2 causes the CA action to enter an exceptional state,
as showned by the greyed box, where the participants coop-
erate for handling the exception.

P1

P2

P3

A11

A12

Transactions

Coordinated Exception
Handling

A1

exception

Figure 1. Coordinated atomic actions

CA actions mainly focus on structuring concurrent
systems and on providing their fault tolerance by exception
handling. One of the main intentions behind CA actions is
to employ them as the mechanism for structuring complex
distributed applications: they promote recursive view on
system execution with abstracting away both normal and
abnormal behaviour of the low level software.

CA Actions Composition
Composing CA actions allows the design of open dis-

tributed systems built out of several CA actions. Unlike
classical action nesting where a subset of action participants

1If several exceptions have been raised concurrently they are resolved
using a resolution tree imposing a partial order on all action exceptions,
and the participants handle the resolved exception [3].

enters into a nested action, composed CA actions are au-
tonomous entities with their own participants and external
objects. In this model, a participant of a CA action can dy-
namically initiate the creation of a composed CA action (or
dynamically nested action).

The internal structure of a composed CA action (i.e., set
of participants, accessed external objects and participants’
behavior) is hidden from the calling CA action, which only
has an access to the composed CA action’s interface. A par-
ticipant that calls a composed CA action enters a waiting
state in a way similar to a synchronous RPC. The partici-
pant then resumes its execution according to the outcome
of the composed CA action. If the composed CA action
terminates exceptionally, its calling participant raises an in-
ternal exception which is possibly locally handled. If local
handling is not possible, the exception is propagated to all
the peer participants for coordinated error recovery. Note
that unlike static nesting, when a composed CA action has
terminated with a normal outcome, an abort operation of
the containing CA action does not automatically compen-
sate effects of the composed one; specific handling must be
performed at a higher level, e.g., a composed action can be
initiated to abort/compensate actions on external objects if
needed.

Figure 2 illustrates the use of nested and composed CA
actions, considering a travel agency system. The top-level
CA action comprises the User and the Travel participants;
the former interacts with the user while the latter achieves
joint booking according to the user’s request. The CA ac-
tion has further access to the Banking System. In a first step,
the User participant requests the Travel participant to search
for a trip. This leads the participants to enter the nested
action SearchTrip in which the Travel participant invokes a
composed action comprising the Hotel and the Flight partic-
ipants. The external objects accessed by those participants
are the hotel and flight booking system. The SearchTrip ac-
tion, if successful, returns a list of possible trips. Then, ac-
cording to the User’s selection, the BookTrip nested action
is executed, where another composed CA action is initiated
to book the given trip. If an exception is raised within the
composed CA action (e.g., no flight available for a given
destination) and if it cannot be handled internally, the com-
posed action terminates exceptionally by aborting all trans-
actions on external objects and signals a failure exception
to the higher level.

3 Specifying CA Actions in B

The B method
B is a complete formal method [1] that supports a large

part of the development life cycle, from abstract specifica-
tion to implementation. The B formal method is a model-
based method, which is based on set theory and predicate

SearchTrip

Flight Booking
System

System
Hotel Booking

BookTrip

exceptional

waiting

normal
participants:

recovery
coordinated

Banking
System

TravelAgency

User

Travel

Hotel

Flight

Hotel

Flight

exception

Figure 2. CA actions composition

logic and extended by generalized substitutions. B specifi-
cations are represented by abstract machines encapsulating
operations and states. Generally speaking, the B method al-
lows us to define abstract machines and refinements over
them. During the refinement nondeterminism is reduced
and preconditions are relaxed, but the interfaces of the op-
erations remain the same. At the end of the refinement pro-
cess, an implementation can be written, which corresponds
to an executable code.

Proofs are an essential part of the model: it should be
proven that all operations preserve the invariants of the
machine, and that the implementations and refinements
preserve the invariants and the behaviour of the initial
abstract machine. There are various tools that help writing
and proving B specifications. The main of them are
B-Tool2 and Atelier B3. Both tools include a type checker,
an animator, a proof obligation generator, theorem provers,
code translators and documentation facilities. Atelier B has
been used in our investigation, however the notation we
used is compatible with B-Tool.

Modelling CA Actions
Our goal in providing the B specification of CA actions

is to offer a general framework that can be instantiated to
describe the implementation of a specific system that is de-
veloped using CA actions. The framework thus defines the
dependability properties associated with CA actions, which
will be enforced for any system based on them.

The B formal specification of CA actions is given by the
CAACTIONS abstract machine. The machine extends ma-
chines OBJECTS and PARTICIPANTS, which respectively
describe external objects that can be accessed or modified
by a CA action, and the participants of a CA action (see
Figure 3). The CONST machine further contains global
declarations and is seen by all the other machines. In the

2http://www.b-core.com/btool.html
3http://www.atelierb.societe.com

remainder, we introduce the main elements of the B specifi-
cation, focusing on dependability properties associated with
CA actions; the interested reader may find the overall speci-
fication at http://www-rocq.inria.fr/˜tartanog/dsos/.

CONST

OBJECTS PARTICIPANTS

CAACTIONS SEES
EXTENDS

Figure 3. Structure of the B specification

The state of the PARTICIPANTS abstract machine char-
acterizes the participants of a CA action as follows:

� The PARTICIPANT set is declared in the CONST ma-
chine and represents all possible participants that can
be involved in a CA action.

� A participant that is activated by entering in a CA ac-
tion is included in the subset participant of PARTICI-
PANT and removed at the end of the action:

participant
�

PARTICIPANT

� Each participant enters in a sequence of modes (re-
ferred to as state), which can be normal, exceptional
when an exception has been raised, or waiting if
the participant invokes a composed CA action and is
blocked until the action’s termination:

participant state � PARTICIPANT �� seq(PARTICIPANT STATE)

� Each participant has a value (local variables) that is
logged for later use in case of backward recovery:

participant value � PARTICIPANT �� VALUE �
initial values � PARTICIPANT �� seq(VALUE)

The CAACTIONS abstract machine defines operations
associated with the execution of CA actions: creation,
termination, nesting and composition of CA actions,
message exchange between participants, and exception
handling. An abstract set CAACTION of all possible CA
actions is introduced together with subset caaction of the
CA actions that are running at a given state of the system.
Three types of CA actions are distinguished: the top-level,
nested and composed CA actions; two variables are used to
memorize the nested and the composed CA actions:

is nested � caaction � caaction �
is composed � participant �� caaction

The state of the CAACTIONS abstract machine is defined
by the following attributes:

� CA actions have a mode (referred to as state) that can
be normal (if all the participants are in normal mode)
or exceptional (if all the participants are in exceptional
mode).

CAACTION STATE = � caa normal, caa exceptional �
caaction state � caaction � CAACTION STATE

� Each CA action has a set of participants and each of
them participates to a sequence of nested CA actions:

participant of caaction � caaction �
	 (participant)
caaction of participant � participant � seq(caaction)

� CA actions access several external objects:

caaction ext objects � caaction � objects

Several invariant properties of the CA actions have been
identified and specified. They are written as constraints on
the variables of the abstract machines. The state transforma-
tions associated with the execution of CA actions are further
defined by the following preconditioned operations4:

� create � main,nested,composed � caaction: initiates a CA ac-
tion, either top-level, nested or composed;

� � send,recv � message(participant,participant,message): sends or
receives a message from one participant to a peer par-
ticipant;

� � read,write � object(participant,object, � function �): reads,
writes the value of an external object;

� raise exception(participant,exception),
propagate exception(participant): raises, propagates an ex-
ception;

� abort � main,nested,composed � : aborts a CA action, sending
an abort message to all its external objects;

� terminate � main,nested,composed � � normal,exceptional �
(caaction): terminates a CA action, either in a normal or
in an exceptional state.

Invariant properties and operations are specified in such
a way that properties of the dependability mechanisms as-
sociated with CA actions are enforced.

4Braces are used to denote multiple distinct operations.

4 Dependability Properties

The dependability mechanisms embedded within CA
actions fall into three categories: (i) transactional access
to external objects, (ii) atomicity of CA actions, and (iii)
coordinated exception handling.

Transactions on External Objects
Access to external objects within CA actions are per-

formed according to classical nested transaction rules. The
operation that creates a top-level CA action initiates the
transaction on external objects associated to the CA action:

add objects(obj) =
PRE

obj
�

OBJECT � obj � object = �
THEN

values := values � � obj ��� begin �����
object := object � obj

END;

Participants setpar of nested CA action caa1 can
only access subset setobj of external objects associ-
ated to containing CA action caa2. This constraint
is ensured with the following precondition of the
create nested caaction(caa1,caa2,setpar,setobj) operation:

�
obj.(obj � setobj � obj � caaction ext objects[� caa2 �])

Then, the operation initiates a nested transaction on the
external object (add nested object(setobj)). When a (possibly
nested) CA action terminates its execution normally
(terminate caaction(caaction)), it commits transactions on
external objects:

terminate transaction(caaction ext objects[� caaction �],commit)

On the other hand, if the CA action terminates excep-
tionally or aborts, all the transactions that it initiated on
external objects are aborted as well:

terminate transaction(caaction ext objects[� caaction �],abort)

Note that nested transactions are aborted recursively by
the underlying transactional support of external objects.

Atomicity of CA Actions
Cooperation of participants is encapsulated inside

atomic computation units using nested or composed CA ac-
tions.

The following invariant property states that participants
of nested CA action caa1 are also participants of containing
action caa2:

�
(caa1, caa2).((caa1 � caaction � caa2 � caaction �

(caa1,caa2) � is nested)
� participants of caaction(caa1)�

participants of caaction(caa2))

In the case when a participant invokes a composed CA
action, participants setpar of the composed CA action must
not be involved in any other CA action:

setpar � participant = �

Communication between participants p1 and p2 within a
CA action is realized by message exchanges. Preconditions
of the send message operation set the rules of message
exchange that is only allowed between participants of the
same (possibly nested) CA action. The participants must
be in the same state (normal or exceptional). Finally, a
participant that is in a waiting state (i.e., waiting for a
composed CA action to terminate) cannot send or receive a
message:

caaction of participant(p1) = caaction of participant(p2) �
last(participant state(p1)) �� waiting �
last(participant state(p1)) = last(participant state(p2)) �

Rules of nesting and composition are further specified
with the following preconditions of the CA action ter-
mination operation stating, that a CA action terminates
when all embedded nested and composed CA actions have
terminated:

caaction �� ran(is nested) � caaction �� ran(is composed)

Furthermore, a participant can only enter one sibling
nested CA action at a time, which means that all partici-
pants in setpar willing to enter a nested CA action are in
the same containing CA action:

card(ran(� p, c � p � setpar � c � CAACTION �
c= last(caaction of participant(p)) �)) = 1

Finally, the participants willing to enter a nested CA
action must all be in the same state, normal or exceptional:

card(ran(� p, state � p � setpar �
state � PARTICIPANT STATE �
state= last(participant state(p)) �)) = 1 ��

(p).(p � setpar � last(participant state(p)) �� waiting)

Coordinated Exception Handling
The following invariant ensures that a CA action is set

to an exceptional state if all of its participants are in the
exceptional state. Note that the participant can be in a

waiting state following a call to a composed CA action, in
which case case the test is performed on the last state of the
participant before the call:

�
(caa). (caa � caaction � caaction state(caa)= caa exceptional

� � (p).(p � participant of caaction(caa)
� ((last(participant state(p)) � EXCEPTIONAL STATE) �
((last(participant state(pa)) = waiting �
last(front(participant state(p))) � EXCEPTIONAL STATE)))))

Exception raising and propagation (to other participants)
is realized by two operations defined in the CAACTIONS
machine. The raise exception operation requires that the
participant and the CA action are in the normal state, and
sets the participant’s state to exceptional:

raise exception (p, exception) =
PRE

p � participant �
exception � EXCEPTIONAL STATE �
last(participant state(p)) = normal �
caaction state(last(caaction of participant(p))) = caa normal

THEN
set participants state(� p � , exception)

END;

The propagate exception operation is then called to
propagate the exception to all participants of the CA action.

If a CA action terminates in an exceptional state, all
transactions on external objects are aborted. If this CA ac-
tion is a nested or composed one, then the participant in
the containing CA action raises an exception by calling the
raise exception operation (i.e., the exception is signalled to
a higher level).

5. From the B Specification to the Development
Support

In order to have an implementation of the CA action’s
run-time support, the abstract machines are refined. At the
end of the refinement process, we have a set of executable
codes that correspond to the implementation of the opera-
tions defining the B machines, offered as a programming li-
brary. Note that, when implementing the CA actions, some
existing libraries such as drivers for running transactions are
used. For all these libraries, what is usually known is the in-
terfaces of the offered methods. In order to be able to prove
the correctness of the implementation it would be neces-
sary: (i) to have in addition the formal specification of the
behavior of these methods and (ii), to prove that the refine-
ments of the machines that use these methods are correct (in
the B sense). During the refinement, the nondeterminism
will be reduced (e.g., by introducing of message queues).

The preconditions have to be relaxed in order to take into
account all the possible cases.

We introduce an XML-based language derived from the
B specification in order to provide to the developer, which
may not necessarily have a B knowledge, a convenient
declarative language for building CA action-based systems.

Each XML document defines a main CA action which
contains composed and nested CA actions, where composed
CA actions are defined in a distinct document. The external
objects are also declared.

<caaction name="nmtoken"? >
<composedActions> ?

<action name="qname" /> *
</composedActions>
<nestedActions> ?

<nested name="nmtoken" /> *
</nestedActions>
<external> ?

<object name="nmtoken" /> *
</external>

Each participant is then declared within the CA action,
defining its local variables, which correspond to values used
in the B specification (participant value), and its behaviour
composed of a normal and an exceptional parts. A partici-
pant executes this exceptional part when the CA action is in
an exceptional state, which means that the exception raised
by a participant has been automatically propagated to all of
them.

<participants>
<participant name="nmtoken"> +

<var>
<element name="nmtoken" type="qname" /> *

</var>
<behavior>

<normal>
Statements *

</normal>
<exceptional handle="qname"> *

Statements *
</exceptional>

</behavior>
</participant>

</participants>

The statements declared in the behaviour part of the par-
ticipant’s definition describe a sequence of operations to be
executed. Each operation corresponds to the implementa-
tion of an operation of the CAACTIONS machine

Statements:
<invoke action="qname" input="qname"?

output="qname"? />�
create composed

<send rcpt="qname" input="qname" />�
send message

<recv from="qname" output="qname" />�
recv message

<call rcpt="qname" input="qname"?
output="qname"? />���

read,write � object
<assign element="qname" value="XPATH" />

�
set value

<raise exception="qname" message="qname"? />�
raise exception

<nest nestedaction="qname">
<behavior>
<normal>

Statements *
</normal>
<exceptional handle="qname"> *

Statements *
</exceptional>

</behavior>
</nest>�

create nested

The above language enables the development of systems
using CA actions. It hides the details of the dependability
mechanisms such as automatic exception propagation, and
more generally the behavior of the operations described in
the B specification and that will be executed during runtime.
Furthermore, it enables static analysis to be performed in
order to verify the structural properties of a given system
described in the invariant of the specification.

6. Conclusion

This paper has presented both how to specify depend-
ability mechanisms using the B formal method and a devel-
opment support relying on an XML-based language and on
the refinement process of B.

We have considered the use of CA actions that have been
proved useful for building dependable systems. We have
defined a generic formal specification using the B method,
defining systems composed of several CA actions that make
concurrent accesses to external objects. B was chosen be-
cause of its powerful theorem proving ability and because
of availability of a number of mature tools. We have shown
how to specify the following dependability mechanisms of
CA actions: (i) constraints related to the atomic access to
external transactional objects, (ii) encapsulation of compu-
tations inside atomic action units ensured through action
nesting and composition and (iii), properties related to the
behaviour of the system in case of exception occurrences.

The XML-based language is to be used for describing
a specific system instance such as a travel agency system,
by giving the behavior of each participant. Refinement of
the B specification is exploited for offering a correct imple-
mentation of the language. This includes static analysis and
run-time support, whose correct implementation further de-
pends on the one of third-party libraries.

Up to now several implementations of CA actions have
been proposed and experimented with, but mainly on closed
systems [9, 2]. We are working on an implementation of
CA action-based systems to be defined as a composition
of Web services such as the travel agency. This kind of
systems clearly needs new dependability properties (e.g.,

relaxed atomicity properties for accessing external objects).
We intend to use this initial B specification to study such
properties.

Acknowledgments
This research was partially supported by the European IST
DSoS (Dependable Systems of Systems) project (IST-1999-
11585)5.

References

[1] J.-R. Abrial. The B-book: assigning programs to meanings.
Cambridge University Press, 1996.

[2] D. Beder, A. Romanovsky, B. Randell, C. Snow, and
R. Stroud. An Application of Fault Tolerance Patterns and Co-
ordinated Atomic Actions to a Problem in Railway Schedul-
ing. ACM, Operating Systems Review, 34(4):21–31, October
2000.

[3] R. H. Campbell and B. Randell. Error recovery in asyn-
chronous systems. IEEE Transactions on Software Engineer-
ing, SE-12(8), 1986.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[5] D. Schwier, F. von Henke, J. Xu, R. Stroud, A. Romanovsky,
and B. Randell. Formalization of the CA Action Concept
Based on Temporal Logic. Design for validation (deva) ba-
sic esprit project. second year report. part 2, LAAS, France,
1997.

[6] F. Tartanoglu, V. Issarny, N. Levy, and A. Romanovsky. De-
pendability in the Web Service Architecture. In Proceedings
of the ICSE Workshop on Architecting Dependable Systems,
Orlando, USA, May 2002.

[7] J. Vachon, N. Guelfi, and A. Romanovsky. Using COALA
to Develop a Distributed Object-Based Application. In In the
2nd Int. Symposium on Distributed Objects and applications
(DAO’00), P. Drew, R. Meersman, Z. Tari, R. Zicari (Eds.),
pages 195–208, Antverp, Belgium, 2000.

[8] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J.
Stroud, and Z. Wu. Fault tolerance in concurrent object-
oriented software through coordinated error recovery. In Pro-
ceedings of the Twenty-Fifth IEEE International Symposium
on Fault-Tolerant Computing, 1995.

[9] J. Xu, B. Randell, A. B. Romanovsky, R. J. Stroud, A. F.
Zorzo, E. Canver, and F. W. von Henke. Rigorous Devel-
opment of a Safety-Critical System Based on Coordinated
Atomic Actions. In Symposium on Fault-Tolerant Comput-
ing, pages 68–75, 1999.

5http://www.newcastle.research.ec.org/dsos/

Layered Dependability Modeling of an Air Traffic Control System

Olivia Das, C. Murray Woodside
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

email: odas@sce.carleton.ca, cmw@sce.carleton.ca
Abstract

Quality attributes, such as performance and depend-
ability of a software-intensive system are constrained
by its software architecture. The combined performance
and dependability (called performability) effects of an
architecture can be evaluated by constructing a per-
formability model that considers the failure/repair
behavior and performance attributes of its components,
interactions among the components and the fault toler-
ant approaches adopted. This paper constructs and
analyzes a Dependable Layered Queueing Network
(Dependable-LQN) performability model for a large-
scale Air Traffic Control system. It demonstrates the
capability of the appraoch, for evaluating the perform-
ability of a large-scale software architecture.

1. Introduction

The Dependable Layered Queueing Network
(Dependable-LQN) model is a performability model
for fault-tolerant distributed applications with a layered
software architecture and a separate architecture for
failure detection and reconfiguration. It considers the
failures (repairs) of its application and management
components, management connections and the
application’s layered failure dependencies together
with the application performance. It combines Fault-
Tolerant Layered Queueing Networks (FTLQN) and
the Model for Availability Management Architecture
(MAMA) [1]. FTLQN in turn extends the Layered
Queueing Network model [2] (a pure performance
model) with dependability related components and
attributes. This paper describes its application to an Air
Traffic Control (ATC) system.

An ATC system [3, 4, 5] is a large-scale complex
distributed system which demands high availability and
high performance. Its software architecture plays a key
role in achieving its high quality requirements; we

consider the architecture described in [3]. This is an en
route system which controls aircraft from soon after
takeoff until shortly before landing. Its end users are
the air traffic controllers. It has a layered software
architecture with one subsystem depending on another
for services and it uses a separate management
architecture for automatic failure detection and
recovery. It is an important case study for us because
Dependable-LQN model perfectly fits the choice for
modeling such a complicated and large system.

The goal of this paper is to demonstrate the use of
the Dependable-LQN model on a substantial system
with strong requirements for performance and
dependability. It also describes the use and scalability
of a tool [6] that takes the layered software description
and the management component interactions as input
and solves the model analytically to generate results.

2. The Dependable-LQN Model

2.1. First part: FTLQN Model

Figure 1 illustrates an example of an FTLQN model
with an example of a layered console application.
There are seven tasks (concurrent operating system
processes, represented as rectangles), “Console”,
“Application Server”, “Console Server”, “Log Server”,
“Database-A”, “Database-B” (backup of “Database-
A”) and “Data Server”. Each task runs on a processor
represented by an ellipse. The task “Application
Server” creates a report which involves reading from
the database, requesting some kind of application data
from the “Data Server” and then logging the report to
the “Log Server”. Tasks have one or more entries
which are service handlers embedded in them (“Data
Server” has “Get Application Data” and “Get Console
Data”). A service request (represented by a rounded
rectangle) has a single target server if there is no server
redundancy, or it may have a set of redundant target

servers with a policy on how to use them.

The different redundancy policies supported for a
service request are:

• Primary-Standby Redundancy (PSR) with load
sent only to the primary target

• Active Redundancy (AR) with load replicated and
sent to all working targets

• Primary-Standby Active Redundancy (PSAR) with
load replicated and sent to all the working targets
where a designated primary does exist. This redun-
dancy policy has been introduced in this paper. It is
useful in cases where a client sends a service
request to all the redundant servers (in Layer i) for
close synchronization, however only the primary
server of Layer i would send the service request to
Layer i+1 in order to decrease the number of repli-
cated requests to Layer i+1.

• Load-Balanced Redundancy (LBR) with load
equally divided among all working targets

In Figure 1, “dbService” is a service requested by
the entry “Create Report” for reading from the
database. It has PSR policy where the priority of the
target servers are labelled “#n” on the arcs going out
from the service to the server(s). In this model, all the

service requests are synchronous where the sender is
blocked until the receiver replies. The model is
restricted to being acyclic in order to avoid cycles of
mutual waiting that may lead to deadlock.

Asynchronous service requests can also be
accommodated where a client does not block after
sending a request to the server. In Figure 1, “serv5”
represents an asynchronous service request. In contrast
to a synchronous service request where the failure of a
client directly depends on the failure of the servers, an
asynchronous service request does not add any failure
dependencies. In order to add additional failure
dependencies that cannot be represented by service-
based dependencies, another abstraction called depends
relationship (of types “AND” or “OR”) can exist
between any two entries (illustrated in Section 3).

The performance parameters for the FTLQN model
are the mean total demand for execution on the
processor by each entry and the mean number of
requests for each interaction. The availability related
parameters for this model are the probabilities of being
in failed state for each component (either a task or a
processor) of the application. The performance
measures are usually associated with the tasks that only
originate requests (e.g. “Console” task), also called
reference tasks.

The FTLQN model shows the policy for redundant
servers but the decision about where to forward the
request is made by the fault management sub-system
(not visible in this model) based on its knowledge of
the state of the application components. This resolution
of requests gives different operational configurations of
the application. The probabilities of the operational
configurations now depend on the fault management
architecture, management subsystem failures, and as
well as on the application.

The FTLQN model can be solved to compute
steady-state measures, e.g. mean throughput of the
system in presence of failures. The general strategy of
the analysis is to compute the performance for each
reachable configuration that has different choices of
alternative targets for requests and combine it with the
probability of each configuration occurring, to find the
measures. For example, in Figure 1 if all the tasks are
operational, then the configuration is the system as
shown, but with Database-B, and its service requests
(labelled #2) removed as they are not used. This
configuration is a pure Layered Queueing Network

ConsoleUI

serv1 serv2

CreateReport Fetch
Console
Server

Application
Server

Processor1

Read-B Database-B Read-A Database-A

LogReport

serv5 dbService serv3 serv4

G etA pp lic -
a tio n D ata

G etC on so le
D ata

Data
Server

Processor4P S R

Processor3
Processor2

Figure 1. An FTLQN model

Log
Server

#1
#2

(LQN) performance model [2]. Each LQN model can
be solved for different performance measures by the
LQNS tool[2], based on extended queueing
approximations. This strategy is similar to the Dynamic
Queueing Network approach given in [7, 8] for
queueing network models.

The next section describes the management
components, their connections and how they are related
to the application components.

2.2. Second part: MAMA Model

MAMA model has four classes of components:
application tasks, agent tasks, manager tasks and the
processors hosting them. They are connected using
three different classes of connector:

• Alive-watch connector: This connector is used
between two components in cases where the desti-
nation component would like to be able to detect
whether the source component is alive or not. This
may be achieved by periodic polls or “i-am-alive”
messages. Usually, the source of this connector are
the manageable application components.

• Status-watch connector: In cases where a destina-
tion component would like to know about the live-
ness of the source component and also wants to
collect failure data about other components in the
system that has been gathered by the source com-
ponent, this connector is used. An example would
be a connector from an agent task to a manager
task.

• Notify connector: This connector is used for cases
where the source component would like to send or
forward reconfiguration commands to its sub-ordi-
nate destination component (for example, a man-
ager sending commands to an agent or an agent
forwarding a command to an application task) or
conveying management information to its peer (for
example, a manager sending information about the
domain it manages to another manager).

Cycles may occur in a MAMA model; we assume
that the flow of information is managed in a way so as
not to cycle or ping-pong. It is also assumed that if a
task watches a remote task, then it also watches the
processor executing the remote task in order to
differentiate between a task failure and a processor
failure.

Figure 2 shows the graphical notation used in this

work for MAMA components and connectors.

For this model, the failure probabilities can be
provided for all management components and the
connectors between them.

3. Dependable-LQN Model of an ATC En
Route System

An airspace controlled by a single ATC facility is
administratively divided into sectors. For example, US
airspace is serviced by 20 facilities each with a
maximum of 118 sectors per facility. Each facility
receives aircraft surveillance and weather data from
radars and communicates with other external
subsystems such as other en route facilities. Inside each
facility, air traffic services are divided among four
subsystems: Surveillance Processing Service (that
receives radar data and correlates it with individual
aircraft tracks) is provided by Radar subsystem directly
connected to radars, Flight Plan processing and
Conflict Alert services is provided by Central
subsystem, Display service (which displays aircraft
position information obtained from radars and allows
inputs from air traffic controllers to modify flight plan
data or change display format) is hosted by the Console
subsystem, Monitoring service (which provides the
monitoring and control service for other ATC services
ensuring their availability policies) is hosted by the
Monitor and Control subsystem. There are up to four

type

name

A task with name and its type,
where type = {MT, AT |
MT = Manager Task,
AT = Application Task,
AGT = Agent Task}

Status_watch connector

Notify connector

name

Alive_watch connector

 A processor with name

Figure 2 Notation used here for the MAMA model

consoles allocated for handling each sector. Fault-
tolerance is achieved by software server groups. For
example, there are up to four Display Management
primary/standby active redundant servers per sector,
three primary/standby active redundant Surveillance
Processing servers, two primary/standby Flight Plan
Management servers.

All the three redundant Surveillance Processing
servers receive the raw radar data from the radars in
parallel, however, only the primary would send the
processed radar data to the Display Management
servers running in the consoles. A PSAR redundancy
policy have to be used to model this case.

Figure 3 shows some parts of a Dependable-LQN

model based loosely on the description in [3]. Each
bubble represents a process group with replication; the
service nodes and redundant servers are not shown.
The communications with replicas is made transparent
by a process-to-process session manager (P2PSM) in
each host (not shown here).

Some failure dependencies are implicit in the server
request-reply dependencies. Others can be made
explicit with a depends relationship, for instance that
“display radar data” depends on “process radar data”,
even though the communications is asynchronous. This
would be an OR depends relationship on the three radar
processing replicas, since any one is sufficient.

The fault management architecture depends on a
group availability management server (gSAM) on each
processor which monitors all the software servers in its
own processor and also monitors the other processors
in its software server group. In MAMA terms, the
gSAM servers maintain an alive-watch. This is
supported by three redundant name servers which
maintain a list of primary host processors for each

server group. When a failure of a software server
occurs in its processor, a gSAM server notifies other
gSAM servers in its own group. Similarly, the failure
of a processor is detected by the other gSAM servers in
a group. Whenever a failure is detected, the gSAM
server notifies the name servers which in turn notify
the relevant P2PSM’s so that they can retarget their
service requests.

Controller

UI

Display
Management modify

Display
modify
FlightPlan

display
Flight Plan

user
Interface

display
Radar data

conflict
Alert

Console
subsystem

modify
flightPlan

get flight
Plan

detect and resolve
conflicts

Conflict
Resolution

Flight Plan
Management

modify
trajectory

get traje-
ctory

Trajectory
Management

read
Flight
Plan

update
Flight
Plan

Flight Plan
Database

Central
subsystem

process
radar
data

Surveillance
Processing

Radar
subsystem

(four active replicas)

(two primary-standby
replicas)

(three active
replicas)

(four
controllers)

Radars
(two
radars)

Figure 3 A Dependable-LQN model for an ATC en route system. Redundant server groups are not shown here.

Figure 4 shows a portion of the MAMA model for
Figure 3, including one replica of the Monitor and
Control subsystem. The redundant servers and the

interactions among the gSAM servers in a group are
not shown here.

A model for a sector has around 13 processors and
41 tasks (including the P2PSM and gSAM tasks). This
is comparable to the other models that have been
solved with the Dependable-LQNS tool [6]. The
analysis results will be described at the workshop.

4. Conclusion

This paper described a Dependable-LQN model for
evaluating performability of a large-scale Air Traffic
Control system. The value of the work lies in showing
how the Dependable-LQN model can be used to
evaluate whether an architecture meets its
performability goals or not and also to demonstrate the
scalability of the model solving tool. Our future
research includes considering the detection and
recovery delays in addition to the management
architectural limitations and its failures into the
analysis.

5. References

[1] O. Das and C. M. Woodside, “Modeling the coverage and
effectiveness of fault-management architectures in layered
distributed systems”, IEEE International Conference on
Dependable Systems and Networks (DSN'2002), June 2002,
pp. 745-754.
[2] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia,
and M. Woodside, “Performance Analysis of Distributed
Server Systems”, in the Sixth International Conference on
Software Quality (6ICSQ), Ottawa, Ontario, 1996, pp. 15-26.
[3] F. Cristian, B. Dancey and J. Dehn, “Fault-Tolerance in
Air Traffic Control Systems”, ACM Transactions on
Computer Systems, 14(3), August 1996, pp.265-286.
[4] L. Bass, P. Clements and R. Kazman, Software
Architecture in Practice, Addison-Wesley, 1998.
[5] A. S. Debelack, J. D. Dehn, L. L. Muchinsky and D. M.
Smith, “Next generation air traffic control automation”, IBM
Systems Journal, 34(1), 1995, pp. 63-77.
[6] O. Das and C. M. Woodside, “Dependable LQNS: A

gSAM

UI

Console
Processor

AT

AT

MT

Name
Server

MT

Display
Mgmt

AT

P2PSM

gSAM

UI Central
ProcessorAT

AT

MT

Display
Mgmt

AT

P2PSM

gSAM

Radar
Processor

AT

MT

AT

P2PSM

Surveillance
Processing

Monitor
and Control
subsystem

Name
Server
Processor

Alive_watch connector
Notify connector

Figure 4. Portion of MAMA model for Figure 3. Redundant server groups and interactions among the
gSAM servers in a group are not shown here.

performability modeling tool for layered systems”, submitted
for IEEE International Conference on Dependable Systems
and Networks (DSN’2003).
[7] B. R. Haverkort, I. G. Niemegeers and P. Veldhuyzen van
Zanten, “DYQNTOOL: A performability modelling tool
based on the Dynamic Queueing Network concept”, in Proc.
of the 5th Int. Conf. on Computer Perf. Eval.: Modelling

Techniques and Tools, G. Balbo, G. Serazzi, editors, North-
Holland, 1992, pp. 181-195.
[8] B. R. Haverkort, “Performability modelling using
DYQNTOOL+”, International Journal of Reliability, Quality
and Safety Engineering., 1995, pp. 383-404.

De s ig n f o r V e r if ic a t io n : E n a b lin g V e r if ic a t io n o f

H ig h De p e n d a b ilit y S o f t w a r e - I n t e n s iv e S y s t e m s 1

P e te r C . M e h litz
C o m p u te r S c ie n c e s C o r p o ra tio n
p c m e h litz @ e m a il.a r c .n a s a .g o v

J o h n P e n ix

N A S A A m e s R e s e a r c h C e n te r
J o h n .J .P e n ix @ n a s a .g o v

L a w re n c e Z . M a r k o s ia n

Q S S G ro u p , In c .
lz m a r k o s ia n @ e m a il.a rc .n a s a .g o v

1

 T h e re s e a rc h d e s c r ib e d in th is r e p o rt w a s p e rf o r m e d a t N A S A A m e s R e s e a rc h C e n te r ’s A u to m a te d S o ftw a r e E n g in e e rin g g r o u p a n d is fu n d e d b y
N A S A ’ s E n g in e e rin g fo r C o m p le x S y s te m s p r o g ra m .

A b s t r a c t

S tr a te g ie s to a c h ie v e c o n fid e n c e th a t h ig h -
d e p e n d a b ility a p p lic a tio n s a r e c o r r e c tly im p le m e n te d
in c lu d e te s tin g a n d a u to m a te d v e r ific a tio n . T e s tin g d e a ls
m a in ly w ith a lim ite d n u m b e r o f e x p e c te d e x e c u tio n p a th s .
V e r ific a tio n u s u a lly a tte m p ts to d e a l w ith a la r g e r n u m b e r
o f p o s s ib le e x e c u tio n p a th s . W h ile th e im p a c t o f
a r c h ite c tu r e d e s ig n o n te s tin g is w e ll k n o w n , its im p a c t o n
m o s t v e r ific a tio n m e th o d s is n o t a s w e ll u n d e r s to o d . T h e
D e s ig n fo r V e r ific a tio n a p p r o a c h c o n s id e r s v e r ific a tio n
fr o m th e a p p lic a tio n d e v e lo p m e n t p e r s p e c tiv e , in w h ic h
s y s te m a r c h ite c tu r e is d e s ig n e d e x p lic itly a c c o r d in g to th e
a p p lic a tio n ’ s k e y p r o p e r tie s .

T h e D 4 V h y p o th e s is is th a t th e s a m e g e n e r a l
a r c h ite c tu r e a n d d e s ig n p r in c ip le s th a t le a d to g o o d
m o d u la r ity , e x te n s ib ility a n d c o m p le x ity /fu n c tio n a lity
r a tio c a n b e a d a p te d to o v e r c o m e s o m e o f th e c o n s tr a in ts
o n v e r ific a tio n to o ls , s u c h a s th e p r o d u c tio n o f h a n d -
c r a fte d m o d e ls a n d th e lim its o n d y n a m ic a n d s ta tic
a n a ly s is c a u s e d b y s ta te s p a c e e x p lo s io n .

1 . I n tr o d u c t io n

H ig h d e p e n d a b ility s y s te m s c a n b e c h a r a c te r iz e d b y
th e n e e d to s a tis fy a s e t o f k e y p r o p e r tie s a t a ll tim e s . T h is
in c lu d e s s ta n d a r d p r o p e r tie s lik e a b s e n c e o f d e a d lo c k s ,

a n d a p p lic a tio n s p e c ific p r o p e r tie s s u c h a s g u a r a n te e d
r e s p o n s e s o r “ c o r r e c t” r e s u lts .

T e s tin g a t v a r io u s “ s c o p e le v e ls ” is u s u a lly th e
p r e fe r r e d w a y to c h e c k d e te r m in is tic c o m p u ta tio n r e s u lts ,
b u t th is a p p r o a c h is o f lim ite d v a lu e f o r c h e c k in g
p r o p e r tie s o f c o n c u r r e n t p r o g r a m s . S in c e th e s c h e d u lin g
b e h a v io r ty p ic a lly c a n n o t b e c o n tr o lle d fr o m th e te s tin g
e n v ir o n m e n t, s ta n d a r d d e fe c ts lik e r a c e c o n d itio n s a n d
d e a d lo c k s c a n e a s ily b e m is s e d b y te s tin g . T h is is a n
im p o r ta n t c a s e in w h ic h a u to m a te d s y s te m v e r ific a tio n
c o m e s in to p la y .

I f v e r if ic a tio n is le ft u n til s y s te m in te g r a tio n , th e ta r g e t
s y s te m o fte n is a lr e a d y to o b ig a n d c o m p le x fo r
v e r ific a tio n to o ls to h a n d le it d ir e c tly , w h ic h is e s p e c ia lly
tr u e fo r s ta tic a n a ly s is a n d m o d e l c h e c k in g o f c o n c u r r e n t
p r o g r a m s . A s a r e s u lt, ta r g e t s y s te m s n e e d to b e m o d e le d
in o r d e r to a p p ly th e to o ls , a n e x p e n s iv e p r o c e s s th a t a ls o
h a s th e p o te n tia l fo r in tr o d u c in g f id e lity p r o b le m s .
B e c a u s e o f th e a s s o c ia te d c o s ts , m o d e l- a s s is te d
v e r ific a tio n c a n e a s ily d e g e n e r a te in to a o n e - tim e -e ffo r t,
w h ic h s im p ly d o e s n o t m a tc h th e e v o lu tio n a r y lif e c y c le o f
la r g e s y s te m s . L a c k o f s u p p o r t f o r e f fic ie n tly c h e c k in g
f o r m a l p r o p e r tie s in tu r n le a d s to m in im a l in c lu s io n o f
s u c h p r o p e r tie s in th e s p e c ific a tio n a n d d e s ig n p h a s e s ,
w h ic h fu r th e r d e c r e a s e s th e e ff e c tiv e n e s s a n d v a lu e o f
a u to m a te d v e r if ic a tio n .

T h e D e s ig n fo r V e r ific a tio n (D 4 V) h y p o th e s is is th a t
th e s a m e g e n e r a l a r c h ite c tu r e a n d d e s ig n p r in c ip le s th a t
le a d to g o o d m o d u la r ity , e x te n s ib ility a n d c o m p le x ity /-

fu n c tio n a lity r a tio c a n b e a d a p te d to o v e r c o m e s o m e o f
th e c o n s tr a in ts o n v e r ific a tio n to o ls .

T h e c o n te x t o f o u r D 4 V w o r k is th e d e v e lo p m e n t o f
p r a c tic a l to o ls a n d m e th o d o lo g ie s b a s e d o n s o u r c e c o d e
m o d e l c h e c k in g te c h n o lo g ie s 2 s u c h a s J a v a P a th F in d e r [1] ,
b u t th e D 4 V c o n c e p ts a r e in te n d e d to b e a p p lic a b le w ith a
b r o a d r a n g e o f v e r ific a tio n a p p r o a c h e s .

2 . T r a d itio n a l A p p r o a c h e s

O n e v e r ific a tio n a p p r o a c h is b a s e d o n a r c h ite c tu r e

d e s ig n d o c u m e n ta tio n (e .g . U M L /O C L) , w ith th e in te n t o f
p r o d u c in g c o r r e c t a r c h ite c tu r e s , f r o m w h ic h c o d e is m o r e
lik e ly to c o r r e c tly im p le m e n te d .

A n o th e r a p p r o a c h to o v e r c o m in g th e s c a la b ility
p r o b le m fo r v e r if ic a tio n to o ls is to im p r o v e th e to o ls . I n
th e c a s e o f m o d e l c h e c k in g , th is in v o lv e s te c h n iq u e s lik e
a b s tr a c tio n , s lic in g a n d p a r tia l o r d e r r e d u c tio n . T h e s e a r e
n e c e s s a r y te c h n iq u e s f o r h a n d lin g r e a l a p p lic a tio n s .

E v e n w ith th e s e s o p h is tic a te d a p p r o a c h e s , it s till is to o
e a s y to d e s ig n a p p lic a tio n s s o th a t th e y c a n n o t b e a p p lie d .
T h is is p a r tic u la r ly d u e to th e fa c t th a t in c o n te m p o r a r y
p r o g r a m m in g e n v ir o n m e n ts , a n in c r e a s in g a m o u n t o f
fu n c tio n a lity is s h if te d fr o m s ta n d -a lo n e a p p lic a tio n s in to
lib r a r ie s a n d f r a m e w o r k s , w h ic h e ith e r e x c e e d th e s iz e
c o n s tr a in ts o f th e v e r if ic a tio n to o ls , a r e o r u n a v a ila b le in a
s u ita b le fo r m a t to a p p ly th e s e to o ls .

3 . T h e De s ig n f o r V e r if ia b ility A p p r o a c h

O u r a p p r o a c h c o m p le m e n ts tr a d itio n a l a p p r o a c h e s in
th a t w e e x p lic itly a d d v e r if ic a tio n - a n d te s tin g -s p e c if ic
c o n s id e r a tio n s to th e a r c h ite c tu r e d e s ig n p h a s e . T h e
g e n e r a l id e a is to m a p k e y r e q u ir e m e n ts o f th e
s p e c ific a tio n d ir e c tly to d e d ic a te d , m o s tly in v a r ia n t d e s ig n
c o m p o n e n ts , w h ic h c a n b e v e r ifie d s e p a r a te ly . T h e g o a l is
to tu r n s y s te m v e r if ic a tio n in to a d e v e lo p m e n t c o - p r o c e s s
lik e r e g r e s s io n te s tin g .

W e tr y to a c h ie v e th is g o a l b y u s in g d o m a in s p e c if ic
d e s ig n p a tte r n c o lle c tio n s . E a c h p a tte r n in s ta n c e c o m e s
w ith a s e t o f fo r m a l u s a g e r u le s a n d g u a r a n te e s . U s a g e
r u le s a r e s u b je c t to a u to m a te d c h e c k s , m o s tly u s in g
c o n tr a c ts (p r e c o n d itio n s , p o s t- c o n d itio n s , a n d in v a r ia n ts)
a n d s ta tic a n a ly s is . T h e p a tte r n s e le c tio n p r o c e s s its e lf is
d r iv e n b y e v a lu a tio n o f th e g u a r a n te e d p r o p e r tie s a g a in s t
th e k e y s p e c if ic a tio n r e q u ir e m e n ts . W h ile th is d o e s n o t
e n s u r e a r b itr a r y , a p p lic a tio n - s p e c ific p r o p e r tie s , it g iv e s a
m u c h b e tte r u n d e r s ta n d in g o f th e fo r m a l c o r r e c tn e s s
m o d e l e a r ly in th e d e v e lo p m e n t p h a s e .

2 S o u r c e c o d e m o d e l c h e c k e r s ta k e th e s o u rc e c o d e o f a n a p p lic a tio n (o r

s o m e tra n s f o r m a tio n o f it) a s th e m o d e l. E x a m p le s in c lu d e S P IN
a n d S L A M f o r C , a n d J a v a P a th F in d e r f o r J a v a

S in c e th e s e k e y p a tte r n s c o n s titu te d e s ig n e le m e n ts
th a t a r e m o s tly in v a r ia n t d u r in g th e im p le m e n ta tio n a n d
e v o lu tio n o f th e s y s te m , th e v e r if ic a tio n r e s u lts a r e n o t
lo s t, a n d th e to o ls c a n b e r e -a p p lie d a t la te r s ta g e s o f th e
s y s te m life c y c le w ith o u t m o d e lin g e f fo r ts .

T h e p r o g r a m d e s ig n is c e n te r e d a r o u n d th r e e c o n c e p ts :

e x te n s io n p o in ts , c o n c e p tu a l b r a n c h p o in ts , a n d c h e c k
p o in ts .

E x te n s io n p o in ts id e n tify th e c o m p o n e n ts th a t c a n b e
u s e d to e x te n d th e fu n c tio n a lity o f th e a p p lic a tio n w ith o u t
b r e a k in g its d e s ig n o r c a u s in g fe a tu r e b lo a t. E x te n s io n
p o in ts in c lu d e p o te n tia l b a s e c la s s e s w ith th e ir o v e r r id a b le
m e th o d s , a n d m a jo r d e le g a tio n o b je c ts w ith th e ir
a s s o c ia te d in te r fa c e s , b o th w ith th e ir c o r r e s p o n d in g
im p le m e n ta tio n c o n s tr a in ts . E x te n s io n p o in ts a llo w
p r o p e r ty v e r if ic a tio n d u r in g la te r s ta g e s o f th e lif e c y c le ,
w h e n s y s te m f u n c tio n a lity is o f te n e x te n d e d w ith o u t
h a v in g a s u ita b le d e s ig n in f r a s tr u c tu r e f o r th e s e
e x te n s io n s .

C o n c e p tu a l b r a n c h p o in ts a r e th e lo c a tio n s th a t a r e
r e le v a n t fo r b o th te s tin g a n d m o d e l c h e c k in g . T h is
in c lu d e s n o n - d e te r m in is tic o p e r a tio n s , in p a r tic u la r
p o te n tia lly b lo c k in g o r c o n te x t s w itc h in g in s tr u c tio n s in
m u lti-th r e a d e d p r o g r a m s , w h ic h a r e p r e f e r r e d ta r g e ts fo r
b a c k tr a c k in g . W e a r e in v e s tig a tin g p r o g r a m d e s ig n s th a t
tu r n th e s e b r a n c h p o in ts in to c h o ic e g e n e r a to r c a lls ,
e n a b lin g s y s te m a tic te s tin g a n d m o d e l c h e c k in g in th e r e a l
e x e c u tio n e n v ir o n m e n t. T h is is a c h ie v e d b y tu r n in g
im p lic it, e x e c u tio n e n v ir o n m e n t s p e c ific b e h a v io r (lik e
th r e a d s c h e d u lin g) in to e x p lic it d e le g a tio n o b je c ts (th e
g e n e r a to r s) . T o v e r ify m u lti-th r e a d e d p r o g r a m s , th is c a n
b e u s e d to e f fe c tiv e ly tu r n th r e a d s in to c o - r o u tin e s , w h ic h
a r e s y s te m a tic a lly s w itc h e d in s id e o f th e g e n e r a to r
o b je c ts . T h is a p p r o a c h is b a s e d o n th e a s s u m p tio n th a t (a)
c o n c u r r e n t s y s te m s s h o u ld b e d e s ig n e d a r o u n d th e ir
s y n c h r o n iz a tio n /c o m m u n ic a tio n p o in ts , a n d (b) th e s e
o p e r a tio n s a r e u s u a lly e n c a p s u la te d in to A P I s o r s p e c ific
la n g u a g e c o n s tr u c ts a n y w a y (i.e . c a n b e e a s ily
in te r c e p te d) .

C h e c k p o in ts d e s c r ib e th e a p p lic a tio n - s p e c ific
c o r r e c tn e s s m o d e l, a n d m a p to f r e e ly -p la c e a b le a s s e r tio n s .
T h e y c a n b e th o u g h t o f a s r e q u ir e d -to - b e c o n s is te n t,
u s u a lly g lo b a l s ta te s , a n d s h o u ld b e m a p p a b le f r o m /to th e
s y s te m s p e c if ic a tio n . A ty p ic a l e x a m p le is a c h e c k fo r
m e m o r y le a k s a f te r a c e r ta in o p e r a tio n h a s b e e n
c o m p le te d , to v e r if y c o n s ta n t-s p a c e e x e c u tio n p r o p e r tie s .
W h ile e v a lu a tio n o f c h e c k p o in ts is s tr a ig h tfo r w a r d
(p r o v id e d th e p r o g r a m m in g e n v ir o n m e n t h a s a a s s e r tio n
m e c h a n is m) , r e a c h a b ility a n a ly s is a n d s id e - e ff e c t
d e te c tio n o f c h e c k p o in ts is a g a in s u b je c t to to o l s u p p o r t.

I t is im p o r ta n t to n o te th a t D 4 V d o e s n o t a tte m p t to

in tr o d u c e a r a d ic a lly n e w d e s ig n a p p r o a c h , b u t in s te a d

e x te n d s e x is tin g “ b e s t d e s ig n p r a c tic e s ” to w a r d s
v e r ifia b ility a n d te s ta b ility . T h is c o m e s w ith tw o
in te n tio n a l s id e e f fe c ts .

F ir s t, d e lib e r a te u s e o f d e s ig n p a tte r n s te n d s to
im p r o v e m o d u la r ity a n d r e d u c e “ a c c id e n ta l c o m p le x ity ” .
T h is in g e n e r a l m a k e s th e s y s te m m o r e u n d e r s ta n d a b le
a n d u n it-te s ta b le , a n d r e d u c e s th e r e le v a n t s ta te s p a c e f o r
v e r ific a tio n to o ls .

T o q u a n tif y th is a s p e c t, w e h a v e ta k e n a s m a ll.
m o d e r a te ly o b je c t- o r ie n te d . a u to n o m o u s r o b o t a p p lic a tio n
a n d r e -d e s ig n e d it u s in g d e s ig n p a tte r n s .

 o ld v e r s io n n e w v e r s io n

c la s s e s 82 37
in te r f a c e s 1 10
N C L O C 5926 1745
m a x W M C 397 56
s u m W M C 1426 389
th r e a d s 6 2

B o th s y s te m s w e r e w r itte n in J a v a . W M C s ta n d s f o r
“ W e ig h te d M e th o d s p e r C la s s ” a n d r e p r e s e n ts th e s u m o f
th e c y c lo m a tic c o m p le x itie s o f its m e th o d s .

T h e p a tte r n o r ie n te d r e -d e s ig n n o t o n ly r e s u lte d in th e
a n tic ip a te d e x te n s ib ility a n d te s t-s u ita b ility (e s p . fo r u n it
te s ts) , b u t a ls o s h o w e d a s ig n if ic a n t r e d u c tio n in o v e r - a ll
s iz e , a n d a e lim in a tio n o f th e c o m p le x ity “ h o t s p o ts ” (m a x
W M C) . J u s t th e d e c r e a s e in th r e a d s m a k e s th e s y s te m
m o r e u n d e r s ta n d a b le , le s s e r r o r - p r o n e (d e a d lo c k s) , a n d
m o r e v e r if ia b le (s ta te s p a c e) .

S e c o n d , D 4 V a tte m p ts to o v e r c o m e th e tr a d itio n a l g a p
b e tw e e n d e s ig n /d e v e lo p m e n t a n d te s tin g /v e r if ic a tio n .
B e c a u s e d e s ig n e r s g a in m o r e s c a la b le to o ls a n d te s ts , th e y
a r e e n c o u r a g e d to th in k m o r e a b o u t a p p lic a tio n
c o r r e c tn e s s .

4 . P r o j e c t s ta t u s

T h e D 4 V p r o je c t is in a n e a r ly s ta g e . T h e c u r r e n t f o c u s
is o n th e d e v e lo p m e n t o f a s u ita b le d e s ig n p a tte r n s y s te m .
O u r fir s t ta r g e t d o m a in is e v e n t d r iv e n , o b s e r v a b le , s ta te -
m o d e l b a s e d s y s te m s .

 [1] W . V is s e r , K . H a v e lu n d , G . B r a t, S . P a r k . “ M o d e l
C h e c k in g P r o g r a m s ” , P r o c e e d in g s o f th e 1 5 th

I n te r n a tio n a l C o n fe r e n c e o n A u to m a te d S o ftw a r e
E n g in e e r in g (A S E) , G r e n o b le , F r a n c e , S e p te m b e r 2 0 0 0 .

Abstract

Distributed, decentralized, and mobile systems are
highly dependent on the underlying network. Due to net-
work connectivity failures, these systems must address the
problem of disconnected operation, i.e., continued func-
tioning in the absence or near-absence of network accessi-
bility. A number of existing approaches provide support for
disconnected operation by employing different techniques.
What is currently missing, however, is a general under-
standing of the applicability of these techniques to different
kinds of software systems, and the manner in which they
affect the overall system dependability. This paper strives
to improve that understanding. We present a framework for
classifying disconnected operation solutions and assess
several representative approaches according to the pro-
posed classification. This study highlights several pertinent
areas that are currently not supported, helping to motivate
our future work.

1. Introduction

The emergence of mobile devices such as portable note-
book computers, hand-held personal digital assistants
(PDAs), and mobile phones, and the advent of the Internet
and various wireless networking solutions make the com-
putation possible anywhere. However, new challenges
arise for software systems executing in such environments:
they are becoming highly distributed, decentralized, and
mobile, and therefore highly dependent on the underlying
network. Unfortunately, network connectivity failures are
not rare: mobile devices face frequent and unpredictable
(involuntary) connectivity losses due to their constant loca-
tion change and lack of wireless network coverage; the
costs of wireless connectivity often induce user-initiated
(voluntary) disconnection; and even the highly reliable
WAN and LAN connectivity is unavailable between 1.5%
and 3.3% of the time [25].

For this reason, network-dependent systems are chal-
lenged by the problem of disconnected operation, where
the system must continue functioning in the (near-)absence
of the network. Disconnected operation forces systems
executing on each individual host to operate independently
from other network hosts. This presents a major challenge
for the software systems that are highly dependent on net-
work connectivity, because each local subsystem is usually
dependent on the availability of non-local resources. Lack
of access to a remote resource can halt a particular sub-
system or even make the entire system unusable.

There are several possible solutions to increasing the

dependability of highly distributed and decentralized soft-
ware systems in face of the connectivity losses:
• make remote data available locally,
• make remote code available locally,
• make remote dynamic system state available locally,
• reroute the communication in cases of partial disconnec-

tion from the network, and
• delay remote interactions until the connection is reestab-

lished.
The goal behind each of these solutions is to tempo-

rarily mask the absence of connection by mimicking the
system’s continuous connectivity. The inconsistencies that
may result from applying these solutions need to be
resolved once the connection is re-established. Each of
these solutions can be provided in a number of different
ways, depending on the nature of the target application and
on those aspects of the application’s dependability that are
of primary concern (e.g., availability, performance, scal-
ability, security).

Most commonly used techniques for supporting discon-
nected operation are:
• Caching – locally storing remote data once it has been

accessed in anticipation that it will be needed again [12],
• Hoarding – prefetching the likely needed remote data

prior to disconnection [13],
• Queueing remote procedure calls – buffering remote,

non-blocking requests and responses during disconnec-
tion and exchanging them upon reconnection [11],

• Deployment and redeployment – installing, updating, or
relocating a distributed software system [1],

• Replica reconciliation – synchronizing the changes made
during disconnection to different local copies of the same
component [12],

• Code mobility – dynamic change of the bindings between
code fragments and locations where they are executed [8].
What is currently missing, however, is a general under-

standing of the applicability of these techniques to different
kinds of software systems, how and under what conditions
they may be used (possibly in concert), how they affect the
overall system dependability, and so forth. Also unclear is
the applicability of these techniques in the growing class of
architecture-centric, component-based software systems
[18,19]. We believe that an understanding of these issues
can help both to streamline existing and to develop future
techniques in support of this area. This paper strives to
improve that understanding. We present a framework for
classifying disconnected operation solutions. We have per-
formed an extensive study of existing techniques and iden-
tified a common set of criteria for their classification. In

Toward a Framework for Classifying Disconnected Operation Techniques

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{marija, neno}@usc.edu

Marija Mikic-Rakic Nenad Medvidovic

turn, we have assessed several representative solutions
according to the proposed classification. While this is still a
work in progress, it has already clearly identified areas not
addressed by current solutions. These areas, coupled with a
study of the compatibility of different techniques, will
frame our future research agenda.

The rest of the paper is organized as follows. Section 2
presents an overview of existing disconnected operation
techniques. Section 3 describes our classification frame-
work and assesses several representative solutions based on
the identified criteria. The paper concludes with a discus-
sion of open issues that will frame our future work.

2. Background

In this section we present an overview of existing dis-
connected operation solutions. They are organized accord-
ing to the general approach they adopt.

2.1. Availability of data

2.1.1. Distributed file systems. Most of the early work on
disconnected operation has been in the area of distributed
file systems. Coda [12], Ficus [9], and D-NFS [6] have
included extensive support for distributed file replication
during disconnection and synchronization of replicas upon
reconnection. These approaches use techniques such as
caching and hoarding for file replication, and logging and
version vectors for replica reconciliation. D-NFS and Coda
also introduced the notion of an agent, which represents an
intermediary between client and server components that
handles their interaction during disconnection. An agent
operates in two modes: connected and disconnected. In the
connected state the agent forwards all of the client requests
to the real server. This allows the agent to monitor client
operations and prepare the application for disconnected
operation. In the disconnected mode, the agent performs the
necessary tasks (such as logging the client operations)
needed to synchronize the replicas upon reconnection.
While Coda and D-NFS focus on client-server applications,
Ficus provides support for more general, peer-to-peer appli-
cations.

PFS [4] provides support for partially connected opera-
tion using a three-tier model, where an intermediary PFS
host is inserted between a file server and a mobile client.
PFS is a pseudo server for the mobile client and a pseudo
client for the file server. This extra level of indirection
enabled an efficient solution for partial disconnection, with
a tolerable overhead during full connection. PFS provides a
generic interface for application-directed adaptation to
varying network quality of service requirements.

2.1.2. Distributed databases. In the area of distributed
databases, disconnected operation has been addressed by
approaches such as Thor [2], and Bayou [22].

In Thor, a relevant subset of database objects is cached
prior to disconnection. Each transaction is logged during
disconnection, but the clients can only perform “weak”
transactions while disconnected. These transactions are
committed only if they do not conflict with the transactions
performed on the server.

Bayou is a platform of replicated, highly available, vari-
able-consistency, mobile databases on which collaborative
applications are built. Bayou focuses on providing applica-

tion-specific conflict detection and resolution.
The main focus of both distributed file system and data-

base approaches has been on supporting continuous avail-
ability of (passive) data only. Hence, they do not provide
support for applications whose mode of operation during
disconnection depends also on the availability of remote
code and/or remote system state.

2.2. Availability of code

Providing continuous availability during disconnection
by employing code mobility techniques has been the focus
of approaches such as Rover [11], Jamp [23], Mobile
extensions (ME) [3], Odyssey [17], and FarGo-DA [24].

The Rover toolkit provides two major programming
abstractions: relocatable dynamic objects (RDOs) and
queued remote procedure calls (QRPC). RDOs represent
mobile code that can be dynamically loaded from a remote
server and cached locally, while QRPC queues remote
requests during disconnection and dispatches them upon
reconnection. Rover uses version vectors to detect conflicts
between different instances of a given RDO.

Jamp provides abstractions that support the migration of
groups of objects and classes between nodes of the net-
work. However, Jamp does not support object replication
and, since mobile objects can only be in one location at a
time, does not provide facilities for conflict resolution.

Mobile extensions (ME) provides location-independent,
extensible facilities for deploying Web-based services. ME
makes use of caching, hoarding, asynchronous messaging,
and application-level adaptation to cope with network fail-
ures. This approach provides flexible and automatic
resource management, since its employed techniques such
as caching and hoarding can dramatically increase resource
demands.

Odyssey is a set of extensions to the NetBSD operating
system to support adaptation for a broad range of mobile
information access applications. Odyssey provides moni-
toring of various system resources, notifies running appli-
cations of relevant changes, and enforces resource
adaptation decisions. However, each application indepen-
dently decides how to adapt to the notified change.

FarGo-DA is a programming model and a runtime infra-
structure for automatic reconfiguration of an application
during disconnection. FarGo-DA advocates disconnected
operation awareness at system’s design time. Additionally,
since FarGo-DA is targeted at resource-constrained plat-
forms, its main consideration is limited memory on such
platforms. For this reason, FarGo-DA proposes the use of
multi-modal components in which the developer specifies
separate subcomponents to be used during connection and
disconnection. Usually the subcomponent used during dis-
connection provides a subset of connected-mode function-
ality. Additionally, FarGo-DA assumes that the application
developer provides the conflict resolution code as part of
the multi-modal component.

It should be noted that none of the described code mobil-
ity techniques support automated selection of components
that should be migrated, nor do they perform any analysis
of the effects of code mobility on the running system.

2.3. Ad-hoc networking

In the area of ad-hoc networking, several approaches

have been proposed, including packet rerouting protocols
(FORP [21]), predictive connection management with user
input (PCP [14]), and adaptive wireless and mobile net-
working (Monarch [10]). These approaches are focusing on
the mobility of the (human) user and are providing differ-
ent techniques for rerouting when a mobile host changes
location. However, they do not focus explicitly on discon-
nected operation, and therefore do not provide any support
for the operation of a mobile client if it is completely dis-
connected from the network.

2.4. Other techniques

Some techniques have taken a more general approach to
disconnected operation in which network disconnection
represents only one point of failure in a given system. Fail-
ures of individual components are also examined and
treated in a manner comparable to network failures. The
goal of these techniques is to ensure that the system’s oper-
ation will degrade gracefully in the face of failures. Repli-
cation is primarily used for increasing the reliability of
individual components. An example such approach is
RoSES [20], which provides a scalable framework for the
analysis and design of system-wide graceful degradation.

3. Classification framework

3.1. Description

The overall structure of our proposed classification
framework for disconnected operation approaches is orga-
nized around eight categories, as shown in Figure 1. Each
category may have multiple dimensions, subdimensions,
and values. The values are not necessarily mutually exclu-
sive, meaning that a single approach may have zero, one, or
multiple values corresponding to a given category, dimen-
sion, or subdimension. It should be noted that it was not
our goal to identify all possible values in Figure 1 but
rather to extract representative values from the existing
approaches. We expect that the list of values will grow as
we refine our classification framework. Missing
approaches corresponding to values in Figure 1 indicate
that no existing approach supports the corresponding prop-
erty. Various other techniques exist that may be effectively
applied in the context of disconnected operation (e.g.,
dynamic software architectures [5]). However, we feel that
including such techniques in our framework at this time
would be speculative as their effectiveness in this setting
has not been demonstrated. In the remainder of the section
we discuss each of the proposed classification categories in
more detail.

3.1.1. Connectivity. Connectivity encompasses informa-
tion about the nature of disconnection that a given
approach supports (type) as well as how the detection of
disconnection is achieved.

Connectivity type is further divided into two subdimen-
sions: predictability and degree of connectivity. Predict-
ability can have two values: anticipated and sudden. In
cases of anticipated disconnection the system is aware that
disconnection is going to occur, and usually can predict
when it will happen [14]. In cases of sudden disconnection,
the system is unaware of the disconnection beforehand.

We have identified the following values for the degree
of connectivity: total, partial, and low-bandwidth. In cases

of total disconnection, a given host is completely discon-
nected from the network. In cases of partial disconnection,
the host is disconnected from the remote host with which it
communicates, but there may be other hosts in the system
to which this host is still connected, or can be connected. In
cases of low-bandwidth connection, the host is connected,
but through a low throughput connection. Low throughput
connections necessitate the use of special techniques (e.g.,
compression) that would minimize the use of bandwidth.

Connectivity detection is further divided into two subdi-
mensions: accuracy and source. Accuracy denotes whether
disconnection is detected with no loss of data, by losing a
single remote invocation (event), after which the sub-
system recognizes that it has been disconnected and
adjusts, or by losing multiple remote invocations. There are
three possible sources of disconnection detection: (1) exter-
nal agent, denoting a source (e.g., OS service) that is not a
part of a given disconnected operation approach; (2) per
host, denoting detection if an entire given host gets discon-
nected; and (3) per component, denoting detection of dis-
connection of individual software components.

3.1.2. Component types. The component types category
includes information about the kinds of software compo-
nents whose availability in the face of disconnection is sup-
ported by a given approach. This category is further
divided into active and passive components. Active com-
ponents can be computation, communication, coordination,
or interface components, while passive components can be
files or dynamic data structures.

3.1.3. Architecture. The approaches described in
Section 2 use techniques such as component replication,
migration, or network rerouting to increase the dependabil-
ity of software systems during disconnection. However,
these changes to a software system’s architecture may have
unforeseen effects on the running system. It is thus impor-
tant to analyze the effects of the proposed changes prior to
enacting them.

Static analysis may use (partial) architectural models to
assess the validity of proposed run-time architectural
changes prior to their deployment, possibly disallowing the
changes. Dynamic analysis refers to the analysis performed
after the deployment, of the effects of the performed modifi-
cations on the running target system. These techniques are
described in more detail in [15].

In addition to the need for analyses, most of the
approaches described in Section 2 impose certain architec-
tural topology restrictions on the supported applications,
such as client-server or peer-to peer. An important decision
factor in determining the most suitable approach for a
given system would be whether the system’s topology is
supported by the given approach.

3.1.4. Use of bandwidth. As outlined in the Introduction,
partial or low bandwidth network connectivity is often
present in highly mobile systems. In such cases, there is a
critical need for efficient access mechanisms over networks
with variable qualities of service. In our taxonomy, use of
bandwidth is divided into two dimensions: intelligence and
efficiency. Intelligence indicates whether a given approach
uses an adaptive algorithm to optimize the use of band-
width, while efficiency indicates whether the approach
minimizes the use of bandwidth in cases of low bandwidth
connection.

Type

Predictability

Degree

Criteria Dimension Subdimension Value

Figure 1. Classification Framework for Disconnected Operation Techniques.

Anticipated disconnection

Sudden disconnection

Total disconnection

Partial disconnection

Low bandwidth connection

Detection

Accuracy

Source

No loss of data

Single event lost

Multiple events lost

External agent

Per host

Per component

Component

Active

Computation

Coordination

Interface

Files

Dynamic data structures

Communication

Passive

types

Use of

Intelligence

Efficiency

Adjustable

Constant

Inefficient

Efficient

bandwidth

Consideration
of system
resources

Software

Hardware

Shared resources

Memory

CPU

Battery

Display

Permanent storage

Technique

Application-level

System-level

Replication

Messaging

Fixed granularity caching
Variable granularity

Hoarding

Asynchronous

Deferred synchronous

Multi-mode components

Intelligent agents

caching

Re-routing
Network topology based

Arch. topology based

Manual (just reporting)

Semi-automatic

Fully automatic

Instant

Scheduled

Upon reconnection

Firm

Delayed Type

Management

Occurrence

Consistency

Availability

Scalability
Security

Performance

Non-functional
properties
considered

Application-level

System-level
Threads

(e.g., database,
GUI builder)

Processing components

Data components

Architecture

Static

Dynamic

Approaches

Coda, Ficus, D-NFS, PFS, Thor, Bayou, Rover, Jamp, FarGo-DA, ME, Forp

Coda, Ficus, D-NFS, PFS, Rover, ME

Coda, Ficus, D-NFS, PFS, Thor, Rover, Jamp, FarGo-DA, ME

Coda, PFS, Rover, ME, Odyssey

Coda, Ficus, D-NFS, PFS, Thor, Bayou, Rover, Jamp, FarGo-DA, ME

D-NFS, Thor, Rover, Jamp, ME

Coda, Ficus, D-NFS, PFS, Bayou, Odyssey

Coda, PFS, Odyssey

Coda, PFS, Odyssey

Coda, Ficus, D-NFS, Bayou

Coda, Ficus, PFS, Thor, ME, RoSES

Coda, Ficus, D-NFS, Bayou

Coda, Ficus, D-NFS, ME

Coda, Ficus, D-NFS, Thor, FarGo-DA

Application specific

Coda, Ficus, RoSES
Coda

PFS, Rover, ME

Application-directed PFS, Rover, FarGo-DA, ME, RoSES

PFS, Thor, Bayou

PFS

PFS, Thor, Rover, ME, Odyssey

Thor, Bayou

D-NFS, Ficus, Thor, Bayou, Rover, Jamp, FarGo-DA, ME

D-NFS, Ficus, Thor, Bayou, Rover, Jamp, FarGo-DA. ME

Thor

Rover, Jamp, FarGo-DA, ME, Odyssey

Rover, ME, RoSES

Rover, ME, RoSES

Rover, Jamp, FarGo-DA, ME, Odyssey

Rover, Jamp, FarGo-DA, ME, Odyssey

Rover, Jamp, FarGo-DA, ME, Odyssey

FarGo-DA, ME, Odyssey

FarGo-DA, RoSES

FarGo-DA

Forp, Bayou, PCP, Monarch

Forp, Odyssey, PCP, Monarch

Coda, Ficus, PFS, Forp, Odyssey

Forp, PCP, Monarch

Connectivity

Coda, Ficus, D-NFS, Thor, Bayou, Rover, FarGo-DA, ME, Forp, PCP, Monarch

Analysis

Topology
Client-server

Peer-to-peer

Coda, D-NFS, PFS, Bayou, FarGo-DA, ME, Odyssey

Ficus, Jamp

Bayou

ME, Odyssey

ME, Odyssey

ME, Odyssey, RoSES

Odyssey

Odyssey

3.1.5. Consideration of system resources. Dependability
of a destabilized system is influenced by many factors.
When selecting an approach that supports disconnected
operation, it is important to know whether the approach
considers the effects of the proposed changes on the system
resources, and whether the available system resources on a
set of affected hosts impose any restrictions on the pro-
posed changes. If component migration is proposed by a
given approach, it is important to assess whether the target
device provides hardware resources (e.g., memory, CPU,
display size) that the migrant component requires for nor-
mal operation. It is also important to assess the effects of
software resources available on the target host (e.g.,
threads, existing processing components and their loads)
on the migrant component. In our taxonomy, software
resources are classified into system-level resources and
application-level resources.

3.1.6. Technique. As outlined in the Introduction, there are
a number of commonly used techniques for increasing sys-
tem dependability during disconnection. We have classified
these techniques into system-level and application-level.

System-level techniques are provided either at kernel-
or middleware-level, and are further divided into replica-
tion, messaging, and rerouting. Replication subsumes tech-
niques such as caching and hoarding, while messaging uses
either asynchronous or deferred synchronous communica-
tion to delay remote interactions during disconnection.
Synchronous messaging is not a feasible technique for sup-
porting disconnected operation, since involved components
would block for unpredictable periods of time.

Re-routing is a technique used to discover alternate
paths of communication between mobile hosts. This subdi-
mension can have two values: network topology, or archi-
tecture topology based rerouting. Network topology uses
the information about the physical location of a given host
and the network coverage of a given area. On the other
hand, architecture topology uses additional information
about the allowed communication paths among software
components on each host to determine possible rerouting
strategies. Both of these techniques can only support dis-
connected operation in cases of partial disconnection.

In the contrast to the above system-level techniques,
several approaches [16,24] have proposed the use of appli-
cation-level adaptation to increase system dependability
during disconnection. For example, multi-modal compo-
nents are designed with the a-priori knowledge that they
may be executing in a disconnected mode. These compo-
nents thus encapsulate two modes of operation: discon-
nected and connected. It is the responsibility of the
application developer to design and implement a compo-
nent’s functionality such that it can be used during discon-
nection. The disconnected mode usually involves a subset
of connected mode functionality, as well as methods for
automated runtime conflict resolution.

Intelligent agents are special-purpose components
whose role is to perform a set of activities which would
translate a running application from a connected mode to a
disconnected mode and vice versa.

3.1.7. Consistency. Several of the techniques described in
Section 2 perform data, code, or system state replication to
handle disconnected operation. Replication may require
that changes made to different copies of a given component
be synchronized upon reconnection. We have identified

three dimensions of consistency: type, management, and
occurrence.

Type denotes the extent to which the states of different
replicas may diverge before they are synchronized. In firm
consistency, the states of all replicas are always the same.
This is achieved by either disallowing the updates to differ-
ent replicas or by performing simultaneous, blocking
updates to all replicas. In delayed consistency, replicas can
be in different states, and consistency management (i.e.,
replica reconciliation) is performed upon reconnection.
Some approaches also allow application-directed type of
consistency, i.e., specification of (possibly different) con-
sistency types for each application-specific operation.

Consistency management denotes the manner in which
the reconciliation is performed. Some approaches just
report inconsistencies, which are then resolved by the
application user. In semi-automatic management, some
conflicts are resolved automatically, while others are
reported to the user for (manual) resolution. Finally, in fully
automatic management all conflicts are resolved automati-
cally, without the user’s involvement.

Occurrence denotes the time at which the reconciliation
is performed. In cases of instant reconciliation, each update
will result in an immediate attempt to reconcile all replicas.
In cases of scheduled updates, updates are planned and per-
formed according to some, usually component-specific
algorithm. Most of the existing approaches perform recon-
ciliation upon reconnection. Finally, some approaches pro-
vide application-directed scheduling of reconciliation.

3.1.8. Non-functional properties. Existing disconnected
operation approaches have considered different non-func-
tional properties in the interest of increasing system
dependability. Most commonly considered non-functional
properties are availability, performance, security, and scal-
ability. There are other relevant non-functional properties
such as safety, reliability, utility, and so on. However, no
existing disconnected operation approaches have focused
on these properties.

3.2. Assessment of existing approaches

We have classified a number of representative
approaches using our framework. The results of this classi-
fication are shown in the right-most column in Figure 1. In
the remainder of this section we discuss these results.

Most of the existing approaches focus on anticipated
disconnection, and on maximizing the system’s availability
during disconnection. Coda, PFS, ME, and Rover support
both anticipated and sudden disconnection and provide
support for low-bandwidth connection. With the exception
of Bayou, partial disconnection is supported only by ad-
hoc networking approaches (recall Section 2.3).

Coda, PFS, and Odyssey make intelligent and efficient
use of the network bandwidth. However, none of the
remaining approaches adjust their operation for a low-
bandwidth connection. Instead, they assume either fully
connected or disconnected mode of operation.

With the exception of Fargo-DA (for memory), only
ME and Odyssey take into consideration system resources
(CPU, disk space, battery, and so on). These approaches
recognize that a given mobile host will not have unlimited
resources to fully support techniques such as hoarding, and
that certain trade-offs have to be made (e.g., providing con-
tinuous availability of only the most frequently used com-

ponents).
Fargo-DA, ME, and Odyssey use application-level dis-

connected operation techniques, while the remaining
approaches leverage different combinations of system-
level techniques. The most commonly used system-level
technique is (some form of) replication, while the
approaches that employ delayed communication via mes-
saging only use asynchronous messaging.

Finally, none of the studied approaches perform any
kind of analysis of the effects of the changes on the running
system. They also fail to take into consideration other soft-
ware resources (e.g., number of threads), or perform archi-
tecture-based re-routing (recall Section 3.1).

4. Conclusion

In this paper we have presented an attempt at classifying
the existing disconnected operation approaches. A general
understanding of these approaches and the techniques they
employ is needed to effectively support system dependabil-
ity in the face of disconnection. The existing approaches
attack the problem of disconnected operation from four
general perspectives: data housed in (1) static files and (2)
dynamic data structures, and functionality implemented in
both (3) inactive and (4) active software components. Typi-
cally, an approach will focus on a specific subset of these
four categories (e.g., support for off-line access to static
files only). Our classification framework is a step in the
direction of understanding the (in)compatibilities among
the existing techniques and suggesting the best possible
approach or combination of approaches (e.g., coupling a
passive file-based approach and an active component-
based approach) for the problem at hand.

This work is preliminary and much remains to be done.
A natural next step is to gain further experience by evaluat-
ing additional known disconnected operation approaches
using the framework outlined in this paper. Such an evalua-
tion will, in turn, be used to fine-tune the framework itself.
In addition, we plan to study the compatibilities of the dif-
ferent criteria, dimensions, subdimensions, and values,
which would help with identifying techniques that can be
used in concert. Finally, further study of existing discon-
nected operation techniques will highlight additional areas
that are currently not supported, which would motivate and
help to streamline our future work.

5. References
[1] A. Carzaniga et. al. A Characterization Framework for Soft-

ware Deployment Technologies. Technical Report, Dept. of
Computer Science, University of Colorado, 1998.

[2] S. Chang and D. Curtis. An Approach to Disconnected Oper-
ation in an Object-Oriented Database. 3rd International Con-
ference on Mobile Data Management, January 2002,
Singapore.

[3] M. Dahlin, B. Chandra, L. Gao, A. Khoja, A. Nayate, A.
Razzaq, A. Sewani. Using Mobile Extensions to Support
Disconnected Services. University of Texas Department of
Computer Sciences Tech Report TR-2000-20, June 2000.

[4] D. Dwyer and V. Bharghavan. A Mobility-Aware File Sys-
tem for Partially Connected Operation. In ACM Operating
Systems Review, Vol. 31, No. 1, Jan. 1997, pp. 24-30.

[5] Dynamic Software Architectures Resources.
http://www.ics.uci.edu/~peymano/dynamic-arch/

[6] M. E. Fiuczynski and D. Grove. A Programming Methodol-
ogy for Disconnected Operation. Technical Report, Univer-

sity of Washington, March 1994.
[7] K. Froese and R. Bunt. Scheduling Write Backs for Weakly

Connected Mobile Clients. In Proc. of the 10th International
Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation, Palma de Mallorca, Sept.
1998.

[8] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Trans. on Software Engineering, May 1998.

[9] J. S. Heidemann et al., Primarily Disconnected Operation:
Experiences with Ficus. Second Workshop on Management
of Replicated Data. IEEE, November 1992.

[10] D. B. Johnson and D. A. Maltz. Protocols for adaptive wire-
less and mobile networking. IEEE Personal Communica-
tions, 3(1), February 1996.

[11] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K. Gif-
ford, M. F. Kaashoek, Rover: a toolkit for mobile informa-
tion access, Proceedings of the fifteenth ACM symposium on
Operating systems principles, December 1995, Colorado.

[12] J. J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Transactions on Computer
Systems, vol. 10, no. 1, February 1992.

[13] G. H. Kuenning and G. J. Popek. Automated Hoarding for
Mobile Computers. Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles, (SOSP-16) St. Malo,
France, October 5-8, 1997.

[14] M. Madi, P. Graham, and K. Barker. Mobile Computing:
Predictive Connection Management With User Input. Tech-
nical Report. Dept. of Computer Science, Univ. of Manitoba,
1997.

[15] M. Mikic-Rakic and N. Medvidovic. Architecture-Level
Support for Software Component Deployment in Resource
Constrained Environments. First International IFIP/ACM
Working Conference on Component Deployment. Berlin,
June 2002.

[16] W. Nace and P. Koopman. A Product Family Approach to
Graceful Degradation. In Proceedings of International Work-
shop on Distributed and Parallel Embedded Systems, Ger-
many, October 2000.

[17] B. Noble, et. al. Agile Application-Aware Adaptation for
Mobility. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, St. Malo, France, October
1997.

[18] D.E. Perry, and A.L. Wolf. Foundations for the Study of
Software Architectures. Software Engineering Notes, Oct.
1992.

[19] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[20] C. Shelton, et al. A Framework for Scalable Analysis and
Design of System-Wide Graceful Degradation in Distributed
Embedded Systems. WORDS 2003, January 2003.

[21] W. Su and M. Gerla. IpV6 Flow Handoff in Ad-Hoc Wireless
Networks Using Mobility Prediction. Proceedings of IEEE
Global Communications Conference, pp 271-275, Rio de
Janeiro, Brazil, December 1999.

[22] D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. The-
imer.The Case for Non-transparent Replication: Examples
from Bayou. IEEE Data Engineering, December 1998.

[23] M. T. Valente, R. Bigonha, M. Bigonha and A. Loureiro.
Disconnected Operation in a Mobile Computation System.
Workshop on Software Engineering and Mobility, Toronto,
Canada, May 2001.

[24] Y. Weinsberg, I. Ben-Shaul. A Programming Model and Sys-
tem Support for Disconnected-Aware Applications on
Resource-Constrained Devices. International Conference on
Software Engineering 2002, Orlando, Florida, May 2002.

[25] Y. Zhang, V. Paxon, and S. Shenkar. The Stationarity of
Internet Path Properties: Routing, Loss, and Throughput.
Technical Report, AT&T Center for Internet Research at
ICSI, May 2000.

An Architecture for Configurable Dependability of Application Services

Matthias Tichy1 and Holger Giese1

Software Engineering Group
Department of computer science

University of Paderborn
Warburger Str. 100, 33098 Paderborn, Germany

E-mail: [mtt|hg]@uni-paderborn.de

Abstract

Many human activities today depend critically on sys-
tems where substantial functionality has been realized using
complex software. Therefore, appropriate means to achieve
a sufficient degree for dependability are required, which use
the available information about the software components
and the system architecture. For the special case of service-
based architectures – an architecture proposed to cope with
the complexity and dynamics of today’s systems – we iden-
tify in this paper a set of architectural principles which can
be used to improve dependability. A service-based archi-
tecture which extends Jini and employs the identified archi-
tectural principles is further proposed and realized. The
dependable operation of the infrastructure services of the
architecture further enables to systematically control and
configure some dependability attributes of application ser-
vices.

1. Introduction

The dependability of today’s complex systems often re-
lies on the employed computers and their software compo-
nents. Availability, reliability, safety and security (cf. [10])
are the attributes of dependability that are used to describe
the required system characteristics. These four attributes in
practice often depend on each other. Availability and relia-
bility can in principle be systematically studied at the level
of components and their composition in form of specific ar-
chitectures. The ever increasing system complexity and the
increasingly ubiquitous character of computing, however,
render such an analysis a difficult task.

For complex systems the required prediction models
for availability and reliability become quite complex when

1This work was developed in the course of the Special Research Ini-
tiative 614 – Self-optimizing Concepts and Structures in Mechanical En-
gineering – University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft.

maintenance activities and component modifications are
also taken into account. When further considering dynamic
systems where no statica priori known system configura-
tion exists, the analysis and prediction of the reliability or
availability is thus usually not possible. We therefore pro-
pose to build dynamic and dependable complex systems not
by relying on design-based quantitative analysis of its static
architecture. Instead the observed obstacles should be ad-
dressed by a dynamic reconfiguration of the architecture to
prevent system reliability and availability to decrease be-
low the required level. Such a software tries to compen-
sate failures (originated from defects of its hardware and
software components) by means of adaption. In accordance
with [12], which definesself-adaptive softwareas software
that modifies its own behavior in response to changes in its
operating environment, we thus classify it asself-healing
software.

We further restrict our considerations for dependability
on reliability and availability and study how the dynamic
management of redundant component instances with iden-
tical implementation can contribute to improvements for
these two dependability attributes. The questionable im-
pact of using multiple diverse implementations (cf. [7]) is
not considered. The application services are further treated
as black-boxes with given dependability characteristics. We
make the strong simplification that hardware and software
component failures simply result in the inability of the af-
fected services to fulfill the regular behavior. Thus, failures
can be detected externally by monitoring the services.

A number of architectural principles which permit to en-
hance the dependability of service-based architectures are
presented in Section 2 and their benefits are motivated re-
ferring to the Jini architecture. Then, we propose in Section
3 to enhance the Jini architecture by a number of infras-
tructure services that systematically employ the identified
principles. We then discuss the benefits achieved for appli-
cation specific services concerning availability and reliabil-

ity in Section 4 and demonstrate the systematic application
of the identified architectural principles within the enhanced
architecture. For a special class of services the possible de-
sign alternatives are studied by means of the detailed design
of two infrastructure services in Section 5. Related work is
discussed in Section 6 and we close the paper with a final
conclusion and some comments on future work.

2. Architectural Principles for Dependability

Software systems typically consist of different parts.
Since dependencies between these parts exist, problems oc-
cur if a part fails. Service-based architectures handle the
increasing complexity of today’s systems by means of on-
line lookup and binding of services. The integral part of a
service-based architecture is aservice registry. The use of
such a service registry is a key factor for availability, since
service instance connections are not hard-wired. Instead
they can spontaneously connect to recover from failures.
One example of a self-healing service-based architecture is
the Jini architecture [1, 13]. It has been designed (cf. [19])
to support the development of dependable distributed sys-
tems. One of its features is alookup servicethat remains
operational even when single nodes in the network have
crashed.

The leasingprinciple extends the allocation of resources
with time [18]. The lease represents a period of time during
which the resource is offered. Therefore this lease needs
to be extended (renewed) if the resource remains to be of-
fered after the timeout of the lease. If the owner of the
resource fails to renew the lease, a client can assume that
the resource is no longer available. Leasing is the principle
which provides the self-healing behavior of the Jini lookup
service. Every service registration on the lookup service is
accompanied by a lease. If this lease expires, the lookup
service removes the accompanied service registration from
its lookup tables. Thus no service gets this apparently failed
service instance in response to a search request. If this ser-
vice is restarted or the communication system is repaired,
the service can re-register on the lookup service.

A proxyprovides a surrogate or placeholder for another
object [4]. In distributed systems a proxy typically acts as
a local placeholder for a remote object encapsulating the
forwarding of requests via network communication (e.g. as
the stub in Java Remote Method Invocation (RMI) [15]).
In the Jini architecture the proxy pattern is an integral part
of every service. A service is divided into a proxy and an
optional backend. The proxy instance is registered in the
lookup service. If a service is to be used by a client, the
proxy instance is downloaded as mobile code to the client
and executed there.

Redundancyof service instances is a key factor to
achieve a required degree of availability. A non redundant
service is a single-point-of-failure. Thus in case of a fail-

ure of this service or a communication subsystem failure,
which results in a network partition, all dependent clients
of that service cease to work. In the Jini architecture more
than one lookup service can be used. Thus a failed lookup
service does not compromise the dependability of the com-
plete system.

This leads us to the concept of asmart proxy[9, 11].
A smart proxy is not restricted to forwarding but can be
used much more flexible. Thus in the context of availabil-
ity the proxy may communicate with multiple backends at
once to recover from or mask failures. Hence a smart proxy
can be used to encapsulate and hide the complexity of self-
adapting code and therefore the use of complex concepts
becomes transparent to the user of the service. For example
the service registration in the Jini architecture is sent to all
available lookup services by the proxy at once using multi-
cast messages.

Analogue to the redundancy of services a key point for
dependability is the availability of data in a distributed sys-
tem. This can be achieved by the use ofreplication. Repli-
cating is the process of maintaining multiple copies of the
same entity at different locations. In the Jini architecture
the service registrations are replicated in multiple lookup
services.

The maintenance of these distributed copies depends on
the required consistency for the entity. There exist differ-
ent consistency models (for an overview see [16]). A con-
sistency model provides stronger or weaker consistency in
the sense that it affects the values, a read-operation on a
data item returns. There is a trade-off between consistency
and availability and no general solution can be given. The
weaker the consistency model the easier availability can
be achieved. The possibility to use different consistency
models for different data aids in the development of a self-
healing architecture as we will show in the next section.

3. Architecture

In this section we will show the application of the intro-
duced architectural principles. We give a short introduction
of the proposed architecture and the requirements of the dif-
ferent infrastructure services. More details and the descrip-
tion of the implementation can be found in [17].

The Jini architecture supports ubiquitous computing in
ad-hoc networks and provides a dependable infrastructure
for service lookup and operation. However, the basic infra-
structure only avoids to provide any element that can com-
promise the dependability of application components. But
to achieve the required dependability for any specific ser-
vice or application remains to be realized by the application
developer. Our proposed architecture provides availability
for application services.

A key to the improved availability of the infrastructure
services is the idea to have redundant instances of every

service type running concurrently in the system to prevent a
single-point-of-failure as proposed in the last section. Keep
this idea in mind while we describe the specific infrastruc-
ture services next.

Four different services are building the overall architec-
ture on top of Jini. Ideally on every computation node of
the system one instance of each infrastructure service is ex-
ecuted and will be restarted automatically during each re-
boot (see Figure 1).

Data access

b: Check

Register
a.3:

a.1: Start a.2: Create

Responsibility

: Monitor
: Service

Storage
: Node

: Application Service: Jini Lookup

: Monitor

Description
Storage

Figure 1. Architecture

Basically on every node of the distributed system an in-
stance of thenodeservice is running. Using this node ser-
vice, new application service instances can be created (and
old ones stopped).

A service description storagecontains service descrip-
tions (like name of the service, package-path, used and pro-
vided interfaces, deployment constraints, etc.) for all ser-
vices which have to be executed. Each instance of the ser-
vice description storage contains one replica of the service
descriptions. A strong consistency model for these data is
required since a weaker consistency model would result in
a possible loss of service descriptions in case of failures.
This in turn would cause the unavailability of the affected
application services.

Monitorssupervise that the services contained in the ser-
vice description storage are indeed executed in the system.
The availability of the services will be checked periodically.
The detection speed of service failures can be configured
by changing this period. If more than one instance of one
specific application service has to be executed in the sys-
tem, each instance is monitored by a different monitor. To
control which monitor is supervising which service, every
monitor needs to acquire a responsibility for a service (i.e.
to assure a new instance is started, if a service instance is
not available).

These responsibilities are stored in amonitor responsi-
bility storage. Responsibilities are accompanied by a con-

figurable lease, which is used to detect failed monitors (i.e.
the lease times out). Each instance of the monitor respon-
sibility storage contains a copy of these monitor responsi-
bilities. Inconsistencies between these copies only result
in changed responsible monitors and potentially additional
started service instances. Therefore we trade reliability
for overhead and weaken the consistency requirements for
these copies. Additionally after a repaired network partition
failure merging the responsibilities in the former partitions
must be possible. The monitors whose behavior depends on
these responsibilities must be able to cope with a weaker
consistency model.

4. Evaluation

After this short introduction to the different infrastruc-
ture services we show how the architecture achieves avail-
ability for application services in case of node failures and
network partition failures. Afterwards we show how to
achieve a required degree of reliability for different cate-
gories of application services based on the availability pro-
vided by the architecture.

4.1. Availability

In case of a node failure different scenarios, w.r.t. fail-
ures of a responsible monitor and monitored services, are
possible. The case that neither a responsible monitor nor
a monitor service is affected by the node failure is trivial.
If a node is affected by the failure which does host only
application services, the monitors responsible for these ap-
plication services will detect the services’ failures because
they do not renew their leases with the lookup service. The
monitors will choose new nodes for the application services
and start new instances there. Figure 2 shows this scenario.
Note the displayed monitor and lease periods, which influ-
ence the achievable degree of availability.

:ApplX

:Lookup :Node:Monitor:ApplX

unavailable

ok

renew lease

m
on

ito
r p

er
io

d

le
as

e
pe

ri
odlookup(ApplX)

lookup(ApplX)

start

create

lease timeout

Figure 2. Node Failure

In the case of a failed responsible monitor and failed
monitored services the responsibility lease of this moni-
tor times out and another monitor steps in. This monitor
replaces the failed monitor, and starts supervising the cur-
rently unmonitored services which includes starting new in-

stances when needed. Figure 3 shows the leases and the
events in a condensed form.

responsibility lease

t

service lease

new resp. monitornode failure service restarted

s. lease

Figure 3. Monitor Failure

During a network partition failure, communication is
only possible inside the different partitions and no commu-
nication can cross the borders between the different parti-
tions.

A monitor, which has been responsible for services in
the complete network, is in one part of the system during
the partition. In this part the monitor recognizes the absence
of some monitored services and restarts them. In the other
parts the monitor’s responsibility times out, other monitors
step in, and create all needed service instances. Thus in each
partition a responsible monitor and all service instances are
available after a certain amount of time (cf. Figure 3).

After reuniting the different partitions, the responsibility
storages are merged to determine a new unified responsible
monitor. This new monitor takes over the service instances
started by the other responsible monitors in the other par-
titions. Additionally it can consolidate the number of ser-
vice instances in the reunited network. The monitors for-
merly responsible in the other partitions stop monitoring
their started service instances.

As seen the availability of application services (and the
Mean Time to Repair (MTTR)) can be configured by chang-
ing the lease given by the Jini lookup service, the monitor-
ing period and the responsibility lease. Therefore the pro-
posed architecture can be customized for a high degree of
availability.

4.2. Reliability

The presented architecture ensures the availability of the
application services in the system. Nevertheless for each
application service there must exist a concept to achieve the
required degree of reliability based on the availability pro-
vided by the architecture. Different categories of services
require different approaches to achieve reliability.

According to [3] services can be categorized in terms
of modeling anentity or containing an activity (session).
A session service may either be stateless or stateful. The
state of a session is the history of relevant actions executed
throughout this session. If an action is independent of the
previous actions, the service is stateless, if not it is stateful.
An entity service always has a state (its local data).

For stateless session services it is irrelevant which ser-
vice instance is used for a given action, since the actions are

independent of each other. Thus the availability provided
by the architecture is sufficient. If a service instance fails,
another instance can be used.

If a used stateful session service instance fails, just using
another service instance from thereon does not work. Es-
sentially the last state of the failed service instance must be
recreated on the newly used service instance. Thus the his-
tory (relevant actions) until the point of failure needs to be
replayed.

To achieve reliability for entity services it is necessary to
replicate copies of the entity over a number of nodes to be
able to mask failures. Additionally the consistency of these
entities according to a suitable consistency model must be
assured. This replication is highly application-specific and
thus no general solution can be given. For example in our
architecture we have data with two very different require-
ments (service descriptions and monitor responsibilities)
which can be provided by appropriate consistency models
(see section 5).

The implementation of the above mentioned concepts
leads to a reliable system, but unfortunately the maintain-
ability of the resulting system deteriorates. We propose the
usage of the smart proxy pattern to encapsulate the com-
plexities of achieving reliability. Since the proxy does not
fail independently of the using application, the client does
not need to handle a failed proxy. Thus a service client only
needs to know the interface to the service and nothing about
the different means of accomplishing reliability. It uses the
smart proxy via an interface and all additional processing
for reliability is done internally in the smart proxy (see Fig-
ure 4).

:Backend :Client:Smartproxy

Figure 4. Smart proxy

5. Design of Infrastructure Services

In the following we further describe in detail the design
of two infrastructure services. These services serve as ex-
amples how to achieve the required degree of reliability for
entity services according to the last section.

Service Description Storage This storage contains the
descriptions of the services which must be available in the
system. These descriptions are replicated in the system on
a number of service backends. A strong consistency model
is required for this replication. Write operations are only
executed by an administrator whereas read operations are
regularly executed by the infrastructure services.

Since changes in the service descriptions happen rarely,
the number of read operations on these descriptions sur-
passes the number of write operations. For a certain degree
of the system’s reliability, it is necessary that the read opera-
tions of the infrastructure services succeed with a very high
probability in case of failures whereas the write operations
are unimportant. To exploit this bias for read operations we
have chosen to implement theweighted votingapproach [5]
which provides sequential consistency.

This approach offers the possibility to configure the reli-
ability, based on the assumed distribution of read and write
operations. Each node has a number of votes to weight its
data. Additionally this number of votes can be changed to
match the reliability of that node. The weighted voting ap-
proach uses a voting where the needed read (nr) and write
quorums (nw) can be adjusted as long as read-write quo-
rums (nw + nr > n) and write-write quorums (2nw > n)
overlap to prevent inconsistencies (n : number of votes).
For our scenario we choose a highnw and a lownr to
achieve a high probability for a successful read operation.

Multiple node failures can be masked as long as the re-
quired number of votes is available to reach the required
quorum. In case of a network partition read operations are
possible in every partition containing more thannr votes.
Write operations are only possible in the rare case that one
partition contains more thannw votes.

The weighted voting approach is implemented in a smart
proxy. Thus a client does not need to know about the spe-
cific implementation; it just calls read and write operations
on the proxy and all replication and consistency manage-
ment is done internally.

Monitor Responsibility Storage Storing the monitor re-
sponsibilities is a problem similar to storing the service de-
scriptions. In contrast write and read operations are equally
important. In case of failures it is necessary that another
monitor can take over the responsibility of a broken monitor
and needs to write that information back into the responsi-
bility storage.

Therefore we can weaken the consistency requirements
for the responsibility storage to be able to read and write
to it anytime especially in the failure case. An appropri-
ate weaker consistency model iseventual consistency[16].
Eventual consistency demands that in absence of write op-
erations the storages eventually stabilize in a globally con-
sistent state after a certain amount of time.

Our approach to achieve eventual consistency is based on
multicast messages and a decentral majority voting on every
responsibility storage in the network. Because of the multi-
cast messages, every message is received by every storage.
Thus, in case of a read operation, all available storages re-
ceive the read request and respond by returning their local
data as a multicast message. Therefore every storage and

the requester get the responsibilities stored in every storage.
Since the number of storages is unknown in case of fail-
ures a timeout is used to finish waiting for responses. After
that, all storages and the requester do a decentral majority
voting on the received data. In case of parity each partici-
pant chooses the data with the highest hashcode to achieve
a consistent result. A write operation simply sends a write
multicast message which is processed by all storages, which
receive the message.

Before a globally consistent state is reached there may
exist local inconsistencies. For example, during a network
partition failure the local data in the storages in the different
partitions diverge because updates are only visible within
one partition. After the failure is repaired the conflicts be-
tween all partitions are resolved by the next read operation.
After the decentral majority voting the data of only one par-
tition holds, the others are discarded. Therefore only one
monitor is responsible for a specific service description. All
other, former responsible monitors notice their responsibil-
ity loss on their next responsibility check.

From a user point of view this complex dealing with mul-
ticast messages and the voting is completely encapsulated
within a smart proxy.

6. Related Work

In the Jini-context the problem of availability is some-
what supported by use of the RMI-Daemon [15]. This dae-
mon supports the on demand creation of remote objects.
Additionally if the node fails, after a reboot and a restart of
the daemon all remote objects are recreated. Nevertheless
this daemon only restarts the remote objects on the same
node. Therefore this is not a solution if a node fails perma-
nently or if the remote objects should be available during
the repair of the node.

The RIO-Project [14] uses a somewhat similar approach
compared to ours. One single monitor is loaded with the
service descriptions and ensures the availability of the con-
tained services in the system. The fact that the service de-
scriptions are only available inside of the monitor makes the
monitor a single-point-of-failure in the system. If the moni-
tor process fails, the service descriptions are lost since they
are not replicated. No other monitor can use those service
descriptions and replace the existing monitor without man-
ual intervention. Thus the reliability of the RIO approach
depends heavily on the reliability of one monitor instance.
Additionally during a network partition failure the approach
does not work since the monitor instance cannot be in more
than one partition of the network. Hence this approach is
not applicable for dependable systems.

The Master-Slave pattern [2] can be applied when ser-
vices are replicated and a result must be selected which is
returned to the client. This is similar to our smart proxy
approach. The slaves are the different service instances

whereas the smart proxy is the master in our approach. The
Master-Slave pattern is aimed at stateless session services
whereas our approach can also be used for the consistent
management of entity services.

The Willow-Architecture by Knight et al. [8] provides
survivability for critical distributed systems. As a response
to faults reconfiguration is used to ensure the survivabil-
ity of the system. The response to failures is based on a
monitor/analyze/respond-control loop which is similar to
our behavior of the monitor.

Gustavsson and Andler describe in [6] a distributed real-
time database which uses eventual consistency. Similar to
our approach they use this consistency model to improve
the availability and efficiency and to avoid blocking for un-
predictable periods of time.

7. Conclusions and Future Work
For the proposed architecture implemented on top of

Jini, we have shown that the infrastructure services itself
build a dependable system. This includes that in contrast to
related proposals no single-point-of-failure for node crashes
or network partition failures is possible. The number of
parallel running service instances and lease times for reg-
istry and monitoring can be chosen. Thus for any architec-
ture conform application specific service availability can be
configured. For different kinds of application services we
presented appropriate concepts to also realize a higher re-
liability. The required additional efforts are systematically
hidden to the service clients using the smart proxy concept
of Jini. The smart proxy concept itself can be used in ev-
ery service-based architecture. But the reliability provided
by the presented architecture highly depends on the robust-
ness of the underlying service-based architecture. To adapt
it to other architectures than Jini, the leasing concept of Jini
needs to be reimplemented in the different application ser-
vices to offer a Jini-like robustness.

In addition to the implementation of the presented de-
pendable architecture and its run-time system, tool support
by means of UML component and deployment diagrams
has been realized [17]. This includes code generation for
the services, generation of XML deployment descriptions,
and the visualization of the current configuration by means
of UML deployment diagrams. We further plan to evaluate
the architecture in the context of complex embedded and
real-time systems. For small examples a formal analysis
using Markov models will be performed. Additionally, we
will look how run-time measurements of node, network and
component dependability characteristics can be employed
to adjust the system parameters such as monitor supervision
periods accordingly. In a next step, we want to employ clas-
sical approaches for learning and adaption to automatically
use this feedback to improve the system’s dependability.

Acknowledgments
The authors wish to thank Sven Burmester, Matthias Gehrke,

and Matthias Meyer for comments on earlier versions of the posi-
tion paper.

References
[1] K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo, A. Woll-

rath, and B. O’Sullivan. The Jini(TM) Specification. The
Jini(TM) Technology Series. Addison-Wesley, June 1999.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern Oriented Software Architecture. John Wiley
and Sons, Inc., 1996.

[3] L. G. DeMichiel, L. Ü. Yalcinalp, and S. Krishnan.Enter-
prise JavaBeansTM Specification. Sun Microsystems, Au-
gust 2001. Version 2.0.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[5] D. K. Gifford. Weighted Voting for Replicated Data. In
Proceedings of the seventh symposium on Operating systems
principles, volume 7 ofACM Symposium on Operating Sys-
tems Principles, pages 150–162. ACM press, 1979.

[6] S. Gustavsson and S. F. Andler. Self-stabilization and even-
tual consistency in replicated real-time databases. InPro-
ceedings of the first workshop on Self-healing systems, pages
105–107. ACM Press, 2002.

[7] J. Knight and N. Leveson. A reply to the criticisms of the
Knight & Leveson experiment.ACM SIGSOFT Software En-
gineering Notes, 15(1):25–35, January 1990.

[8] J. C. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill,
P. Devanbu, and M. Gertz. The Willow Architecture: Com-
prehensive Survivability for Large-Scale Distributed Appli-
cations. InThe International Conference on Dependable Sys-
tems and Networks (DSN-2002), Washington DC, June 2002.

[9] R. Koster and T. Kramp. Structuring QoS-Supporting Ser-
vices with Smart Proxies. InProceedings of Middleware’00.
Springer Verlag, April 2000.

[10] J. C. Laprie, editor.Dependability: basic concepts and ter-
minology in English, French, German, Italian and Japanese,
volume 5 ofDependable computing and fault tolerant sys-
tems. Springer Verlag, Wien, 1992.

[11] P. Ledru. Smart proxies for jini services.ACM SIGPLAN
Notices, 37(4):57–61, Apr. 2002.

[12] P. Oreizy et al. An Architecture-Based Approach to Self-
Adaptive Software.IEEE Intelligent Systems, 14(3):54–62,
May/June 2002.

[13] Sun Microsystems.Jini Specification, October 2000. Revi-
sion 1.1.

[14] Sun Microsystems. RIO - Architecture Overview, 2001.
2001/03/15.

[15] Sun Microsystems. JavaTM Remote Method Invocation
Specification, 2002. Revision 1.8, JDK 1.4.

[16] A. Tanenbaum and M. van Steen.Distributed Systems, Prin-
ciples and Paradigms. Prentice Hall, 2002.

[17] M. Tichy. Durchg̈angige Untersẗutzung f̈ur Entwurf, Imple-
mentierung und Betrieb von Komponenten in offenen Soft-
warearchitekturen mittels UML. Master’s thesis, University
of Paderborn, Department of Mathematics and Computer Sci-
ence, Paderborn, Germany, July 2002.

[18] J. Waldo. The jini architecture for network-centric comput-
ing. Communications of the ACM, 42(7):76–82, 1999.

[19] J. Waldo, G. Wyant, A. Wollrath, and S. Kendal. A Note on
Distributed Computing. Technical report, Sun Microsystems
Laboratories, November 1994. TR-94-29.

An Approach to Manage Reconfiguration in Fault–Tolerant Distributed Systems

Stefano Porcarelli1, Marco Castaldi2, Felicita Di Giandomenico1, Andrea Bondavalli3, Paola Inverardi2

1Italian National Research Council, ISTI Dept., via Moruzzi 1, I-56134, Italy
stefano.porcarelli@guest.cnuce.cnr.it, digiandomenico@iei.pi.cnr.it

2University of L’Aquila, Dip. Informatica, via Vetoio 1, I-67100, Italy
{castaldi, inverard}@di.univaq.it

3University of Florence, Dip. Sistemi e Informatica, via Lombroso 67/A, I-50134, Italy
a.bondavalli@dsi.unifi.it

Abstract

This paper deals with dynamic resource management for
real–time dependability–critical distributed systems. Re-
quirements for such kind of systems span many domains
such as time, survivability, and scalability and point out
formidable challenges in terms of their fulfillment. An ar-
chitecture is proposed, based on the agent distributed in-
frastructure Lira, and enriched with statistical models for
decision-making capabilities. The aim of the proposed ar-
chitecture is to provide adaptive system reconfiguration, re-
sorting to a hierarchy of resource managers to cope with
fault tolerance and scalability issues.

1 Introduction

Dependability has become a crucial requirement of cur-
rent computer and information systems, and it is foresee-
able that its importance will increase in the future at a fast
pace. We are witnessing the construction of complex dis-
tributed systems, which are the result of the integration of a
large number of low–cost, relatively unstable COTS (Com-
mercial Off–The–Shelf) components, as well as previously
isolated legacy systems. The resulting systems are being
used to provide services, which have become critical in our
everyday life. Since COTS and legacy components are not
designed to achieve high dependability by themselves, their
behavior with respect to faults can be the most disparate.
Thus, it is paramount for these kinds of system to be able to
survive failures of individual components, as well as attacks
and intrusions, although with degraded functionalities. This
paper contributes to fault tolerance in such framework, by
focusing on fault handling strategies [1], particularly on sys-
tem’s reconfiguration.

The aim of system reconfiguration is to provide control
capabilities over unanticipated events in order to maintain
the system in a certain desirable state. An effective recon-
figuration policy highly depends on an accurate diagnosis
of the nature of the unanticipated event, namely if a hard,
physical fault is affecting the system, or environmental ad-
verse conditions are causing a soft fault which will naturally
disappear in some time. It is out of the scope of this paper to
address diagnosis issues; we concentrate on reconfiguration
only, which is triggered on the basis of information on the
healthy status of system components, assumed accessible to
our management architecture.

The rest of the paper is organized as follows. Section 2
describes our architectural approach towards a fault tolerant
resource management policy. Section 3 details the overall
system management architecture and Section 4 introduces
a simple case study to illustrate our approach. Section 5
briefly concludes the paper and points out some future re-
search directions.

2 Our Approach for Adaptive Resource
Management

A basic characteristic of our resource management archi-
tecture is its ability to adapt to dynamic system conditions.
Different degrees of adaptivity may be (theoretically) pos-
sible, ranging from picking up the reconfiguration policy
from a look-up table where policies have been pre-stored
on the basis of off-line analysis, to completely dynamic
definition of the best reconfiguration to perform. An in-
termediate solution is that where a number of strategies are
pre-planned, but the choice of which one is the most appro-
priate given certain run-time system conditions is decided
dynamically. The degree of dynamic decision making has
to be carefully harmonised with other possible system con-

straints. In fact, the design of a resource management in-
frastructure for distributed systems is influenced by several
factors, among which the nature of the event that triggers a
reconfiguration action, the size of the computational effort
for decision making, and timeliness requirements.

Adaptive resource management is very demanding
nowadays; the approach we propose is mainly character-
ized by two aspects. Firstly, we introduce a model-based
activity, which provides on-line quantitative evaluation of
the impact of different reconfiguration strategies and thus
helps in the selection of the most appropriate one. Secondly,
the decision making process is decomposed in a hierarchi-
cal fashion, each level differing in the visibility of, and the
ability to act on, the portion of the system under its control.
Resorting to a hierarchical approach brings benefits under
several aspects, among which: i) favoring fault tolerance by
distribution of control; ii) avoiding heavy computation and
coordination activities whenever faults can be managed at
local level; iii) facilitating the construction and on-line so-
lution of analytical models; iv) favoring scalability.

In our framework, the Light–weight Infrastructure for
Reconfiguring Applications (Lira) [2] is used to perform
remote control and dynamic reconfigurations over single
components or applications. Lira does not formally de-
scribe the procedure of decision making, it only assumes
that a proper subsystem is in place, in charge of deciding
when and in which way the system needs to be reconfig-
ured. In this paper, we are enriching the Lira framework
with a hierarchical Decision Maker (DM) in charge of on-
line selection of the reconfiguration policy to apply. The
DM exploits a model-based support to guide its decision.
Lira monitors system and environment conditions passing
the state of components and applications to the DM as input
for taking decisions.

Upon receiving inputs requiring a reconfiguration, the
DM activates the model-based evaluator to devise the most
appropriate configuration and behavior to face the current
situation [4]. For example, it permits to evaluate the de-
pendability of a new architecture of the system achieved re-
arranging resources due to faults, or to carry out cost-benefit
tradeoff choices. The output provided by the decision maker
is a new system configuration; such output is then managed
by Lira, to put into action the selected reconfiguration.

3 The Lira Management Infrastructure and
the Decision Maker

Lira is inspired to the Network Management [9] in terms
of reconfiguration model and basic architecture. The re-
configuration model of the Network Management is quite
simple: a network device, such as a router or a switch, ex-
ports some reconfiguration variables and functions through
an Agent, which is implemented by the device’s producer.

These variables and functions exported by the agent are
defined in the MIB (Management Information Base) and
can be modified using the set and get messages of SNMP
(Simple Network Management Protocol) [9]. For software
components, a reconfiguration is any allowed change in the
component behavior, while an application reconfiguration is
any change in the application’s topology in terms of number
and location of components [6][5][11].

In the next sections we will first provide an overview of
the Lira infrastructure, and then integrate in it the Decision
Maker.

3.1 The Lira Infrastructure

The Lira architecture specifies three elements: (i) the
Agent, which acts on the managed components, imple-
ments the reconfiguration logic and communicates with
other Agents, (ii) the MIB which contains the list of vari-
ables and functions exported by the agent, and (iii) the
Management Protocol, which allows the communication
among the agents.

A Lira Agent is a program that runs on its own thread
of control and communicates with other Agents in an asyn-
chronous way, using the Management Protocol. There are
four kinds of agents organized in a hierarchical way [10]
(see Figure 1) and specialized in different tasks: (i) Com-
ponent Agents (CompAgents), associated to software com-
ponents, (ii) Host Agents, associated to the host where the
components are deployed, (iii) Application Agents (AppA-
gent), which control part of the system (different compo-
nents and hosts), (iv) and the Manager Agent (Manager),
on the top of the hierarchy, that controls the whole system.
Accordingly to the hierarchical structure, an agent has man-
ager capabilities on the portion of the system under its own
control (helped in the decisions by the Decision Maker),
while it is a simple actuator with respect to the higher level
agents. In this paper we are discussing a logical architec-
ture without addressing the deployment of the agents on the
hosts. Of course, it is a delicate issue for fault tolerance,
since it is necessary to have separate containment regions
for the monitoring units and the monitored ones.

The Component Agent (CompAgent) directly controls
and manages the component. Lira does not specify how the
component is attached to the agent, but it only assumes that
the agent is able to act on the component. The logical model
of communication between CompAgent and component is
through shared memory; in fact, the Component shares a
part of its state with the Agent and explicitly allows the re-
configuration. To avoid synchronization problems, the com-
ponent has to provide atomic access to the shared state. The
CompAgent manages the component’s life-cycle by export-
ing the functions start, stop, suspend, resume and shutdown.
The function shutdown stops the component and kills the

agent. For monitoring purpose, the CompAgent exports a
predefined read-only variable STATUS, which maintains the
current state of the component (starting, started, stopping,
stopped, suspending, suspended, resuming). Each agent is
able to notify the value of a variable to its manager, ad-
dressed by the variable NOTIFYTO also defined in the MIB.

Comp

 Agent
Component

MIB

Agent
Host

MIBDecision
Maker

Decision
Maker

Application
Agent

MIB

Manager

Decision
Maker

MIB

Management
Protocol

Host

Figure 1. Lira general architecture

The Host Agent runs on the host where components and
agents must be deployed. It dynamically installs and ac-
tivates components and agents by exporting the functions
install, uninstall, activate, deactivate. Moreover, this agent
maintains the lists of both installed and activated compo-
nents on the host: these lists are exported in the variables
ACTIVEAGENTS and INSTALLEDAGENTS. Note that the
Host Agent does not manage components, but it monitors
and controls host’s resources and parameters. All the vari-
ables and functions are specified in the MIB.

The Application Agent (AppAgent) is a higher level
agent which controls a set of components through the as-
sociated CompAgents. These agents manage a subsystem
as an atomic component, hiding the reconfiguration’s com-
plexity and increasing infrastructure scalability.

The Manager is the highest level agent which has the
global knowledge to control the whole system. AppA-
gents communicate with the controlled components through
the Management Protocol, so they are independent from
the specific components and can be programmed by means
of an interpreted language: the Lira Reconfiguration Lan-
guage. By means of this language, the agent’s developer
defines a reconfiguration as a function: the function is in-
voked internally when the agent is acting in a manager role,
or it is exported in the MIB and called by a manager when
the agent acts in the actuator role.

The Management Protocol is inspired to SNMP, with
some modifications and extensions. Each message is either
a request or a response, as shown in the following table:

request response
SET(var name, var value) ACK(msg text)
GET(var name) REPLY(var name, var val)
CALL(func name, par list) RETURN(ret value)

Requests are sent by higher level agents to lower level ones

and responses are sent backwards. There is one additional
message, which is sent from agents to communicate an alert
at upper level (even if in the absence of any request):

NOTIFY(variable name, variable value, agent name)

As in the Network Management, the MIB represents the
agreement among agents that allows them to communicate
in a consistent way. The MIB provides the list of variables
and functions exported by the agent which can be remotely
managed. A function is usually a reconfiguration process
that the agent makes available for its manager. Note that
also the predefined variables and functions that characterize
the different agents (for example, the variable STATUS or
the function stop in the CompAgent) are defined in the MIB.
In [3] the MIB is presented in detail.

The Lira infrastructure described here was not created
with dependability requirements, so we are investigating
how to modify the infrastructure providing new features
which guarantee continuous monitoring and distributed
management of components and hosts, making Lira de-
pendable itself.

3.2 Decision Maker

The decision maker takes decisions about system’s re-
configuration. Decisions can be taken at any level of the
agents hierarchy as proposed by Lira (four levels) and, con-
sequently, the power of the reconfiguration is different.

The first, bottom level is that of a Component Agent. At
this level, the Decision Maker can only autonomously de-
cide to perform preventive maintenance on the controlled
component. At the second level, that of the Host Agent,
the DM can decide about installation and de-installation of
such components. The third level concerns the Application
Agent; at this level, the DM’s reconfiguration capabilities
span all software and hardware resources under its respon-
sibility. At the highest level there is the Manager agent,
which has a “global” vision of the system; therefore the DM
at this level can perform an overall reconfiguration. After
taking the decision on reconfiguration at a certain level, it is
sent to the lower level agents which act as actuators on the
controlled portion of the system.

For the sake of simplicity, the status of each monitored
system unit may assume three values: Up indicating that
the component is well working; Degraded indicating that
the component is working in a degraded manner (e.g., in the
case the component is hit by a transient fault which reduces
its functionalities); and Down indicating that the component
is definitely wrongly working (e.g., it is hit by a permanent
fault). At each level of the decision making hierarchy, the
DM perceives the behavior of each system unit visible at
the one-step lower level in terms of up, degraded or down.
To make an example, at the manager agent level, the DM

has knowledge of the behavior of each application running
in the system, each one seen as single system unit; in turn,
at application agent level, the DM has knowledge of the be-
havior of each host involved in that application, again each
one seen as a single system unit, and so on.

According to the depicted hierarchical reconfiguration
process, when an event triggering a reconfiguration action
at a certain level occurs, the DM at that level attempts the
reconfiguration, if possible. In case it cannot manage the
reconfiguration, it notifies the upper level DM about both
detected problem and its healthy status. In turn, the upper
level DM receiving such request to trigger a reconfiguration,
uses such heathy status information, together with those of
the other system units under its control.

As introduced in Section 2, the way to make decisions
may be different. If it is possible to assume stochastic in-
dependence among failure and repair processes of various
components, the new reconfiguration scheme can be simply
retrieved from a look-up table where pre–evaluated policies
(e.g. by means of combinatorial models, like fault tree) have
been stored. If some environmental parameters may change
at the moment of the reconfiguration, combinatorial models
must be solved each time. In case the failure of a compo-
nent may affect other related components, space–state mod-
els are necessary. These are solved by the DM on the basis
of the information collected from the subordinated agents.
In this case, each unit component is modeled with a simple
Petri net which describes its forecasted behavior given its
initial state. It is in charge of the Decision Maker to solve
such overall composed model as quickly as possible to take
appropriate decisions online identifying the most rewarding
reconfiguration action among a pool of pre–defined options.

Therefore, the status of any controlled component (pro-
vided by Lira) is used as input for the appropriate deci-
sion maker, that reasons, decides and gives back as output
(to Lira) the optimal reconfiguration action. Decisions are
taken resolving analytical models (not shown for brevity),
essentially based on Deterministic and Stochastic Petri Nets
(DSPN) [7], and solved by means of the tool DEEM [8].

Obviously, the correctness of the decisions depends both
on the accuracy of the models and on its input parameters.

4 A Simple Example: Path Availability of a
Communication Network

To better motivate our methodology a possible scenario
is presented. A simple, but meaningful scenario, is the case
of distributed computing where two peer–to–peer clients on
the network are communicating. To prevent service’s in-
terruption, we need to provide an adequate level of paths
redundancy among the clients involved in the communica-
tion. We suppose to have a network topology where six
hosts are physically (wired) connected as shown in Figure

2. For management purpose, we consider the network di-
vided in two subnetworks Net1 and Net2, which contain
the hosts H1, H2 and H3, H4 respectively. The hosts H5

and H6, where the clients are deployed, are not included in
the managed network.

H1

H2

H3 H4

H6H5

Net 2

Net 1

Figure 2. Hosts physical connection

A logical communication network composed by logical
nodes connected through logical channels is installed on
the managed hosts. The nodes N1, N2, N3, N4 connected
through the channels a, b, c, d, e, f, g are deployed on the
subnetwork Net1, as shown in Figure 3. These channels
provide different choices for establishing the communica-
tion among the clients, as listed in Table 1.

H 1

H 2

client
Client

H 65H

N1

N3

N4
N2

1
Net

a

c

d

eb

g

f

Figure 3. Logical infrastructure topology

Path Route
1 a–N1–c–N3–f
2 a–N1–c–N3–d–N2–e–N4–g
3 b–N2–e–N4–g
4 b–N2–d–N3–f

Table 1. Available paths

These path options can be used to improve the overall
availability of the logical network by providing redundancy.
The goal of the management infrastructure is to keep at
least two paths available between the clients involved in the

Manager

AA1

HA 2

HA 1

H 1

H 2

N1
A1

N2
A2

A3
N3

N4
A4

client
Client

H 65H

AA2

Net 1

Net 2

Figure 4. Lira infrastructure for the controlled
network

communication. When a hardware or software fault causes
paths failure, a reconfiguration is triggered to re-establish
path’s redundancy. In this example, we consider that mani-
festation of both a hardware fault (such as a wired connec-
tion’s interruption or a damage in the physical machine) and
a software fault (at operating system, application and logi-
cal communication level) have a fail-stop semantics, that is
the component stops working.

We are interested in monitoring paths availability, so for
a path to be available, all the nodes and links in the corre-
sponding route must be available. Note that failures of a
particular link or node may result in unavailability of more
than one path. For example, if node N3 fails, path 1, 2, and
4 become unavailable.

4.1 Lira infrastructure

In this section we describe how the Lira infrastructure
is instantiated to manage the network previously described
(see Figure 4). Each host Hi is controlled by a Host Agent
HAi, each subnetwork Neti is controlled by an Applica-
tion Agent AAi, while the whole network is controlled by
the Manager. The hosts H5 and H6 are considered outside
the network, so they are not controlled by host agents.

The logical network is also controlled by the Lira agents.
The Component Agents Ai control the logical nodes Ni,
and they are managed by AA1. AA1 may decide to perform
a reconfiguration (following the policies specified by the
Decision Maker) if it has the necessary information, while
it has to ask the general Manager when a global reconfig-
uration is needed and the local information is not enough.
Figure 4 details the Lira management infrastructure.

Each CompAgent associated to a logical node exports the
enumerated variable HEALTH STATE, which can assume

the values Up, Degraded, and Down. In addition to the de-
fined variables and functions, each CompAgent Ai exports
the variable CONNECTED NODES, i.e. the address list of
connected nodes, and the function connectTo(Node nextN-
ode), able to connect the local node with the (remote) node
specified as parameter. The CompAgent manages also the
life cycle of the logical node, by exporting the functions
start, stop, suspend, resume, shutdown, as defined in Sec-
tion 3.

Each Host Agent exports the functions install, uninstall,
activate, deactivate and the enumerated variable HEAL-
TH STATE, whose possible values are Up, Degraded or
Down. The result of diagnosis over each component is
accessible by the agent, and it is notified through a Lira
NOTIFY message before a complete crash of the machine.
Moreover, the host agent exports the read-only variable
CONNECTED HOSTS, which contains the hosts physically
connected with the variable’s owner. For the host H2, this
variable contains the list H1, H3. Note that a host agent can
install and activate new logical nodes, creating new routing
paths, increasing redundancy and repairing software faults.

The Application Agent monitors the subsystem’s state
and makes it available by exporting the read-only vari-
ables AVAILABLE PATHS, ACTIVE NODES and WOR-
KING HOSTS. The first one contains the number of avail-
able paths between the clients: for the subsystem controlled
by AA1, the value is 4 (see Table 1). The second one main-
tains the list of active nodes in the controlled network: in
the situation depicted in Figure 4, this variable for AA1 is
{N1, N2, N3, N4}. The third one contains the list of still
working hosts in controlled network: when HAi notifies
that Hi is down, this variable is modified by the applica-
tion agent. To change the network topology, the applica-
tion agent exports the function connect(Node source, Node
dest), which is able to connect a source node to a destination
node.

The Manager Agent controls the subnetworks Net1
and Net2 by checking the WORKING HOSTS variable ex-
ported by the AppAgents. Thus, it can arrange reconfigura-
tions on the two networks.

4.2 Performing reconfigurations

Reconfigurations can be triggered both at AppAgent and
Manager Agent levels by their associate Decision Makers.
Decisions are taken when a lower level agent notifies that its
controlled component is faulty. Moreover, to prevent faults
of the agent itself, higher level agents proactively ask to the
controlled agents for the value HEALTH STATE with a fre-
quency T .

As an example of reconfiguration at the ApplAgent level,
let’s suppose that the node N3 is starting to work in a de-
graded manner: the associated agent A3 notifies the variable

HEALTH STATE with the value Degraded. AA1 receives
the NOTIFY message, and it checks the path availability on
the controlled network. There are still more than 2 paths
between the clients (see Figure 3) even if one is degraded.
In this case three different solutions can be pursued. The
first is continuing in the same degraded configuration. An-
other is to temporarily bypass the node N3 creating a new
logical channel between N1 and N4 and waiting for restart-
ing N3. In this case, the redundancy in terms of paths is
reduced because only the first link of the paths is replicated.
The third can be to activate a new node N5 on the host H2,
and to connect it to the client and to the nodes N1 and N2,
creating new paths. Obviously the different solutions have
different costs in terms of time, CPU consuming and paths
redundancy. It is responsibility of the DM to select the best
one.

We suppose to be in a case where there are not fail-
ure/repair dependencies among components and transient
phenomena tied to reconfiguration are negligible; then, sim-
ple combinatorial models can be evaluated to take the ap-
propriate decision. Assuming that, at given time, the failure
probability of a link or component is 10

−3 when in the Up

state, and 10
−2 when in the Degraded state; for a com-

ponent which undergoes restart the failure probability be-
comes 5 ∗ 10

−3 and links and components belonging to the
new path have probability 5∗10

−3, then the three configura-
tions options can be compared in terms of failure probability
PF . Table 2 summarizes the results of a fault tree analysis,
and points out that the best choice is to restart the node N3.

Policy options PF

Working in degraded manner 1.73848 ∗ 10
−8

Restart node N3 5.19695 ∗ 10
−9

Set–up a new path 4.77510 ∗ 10
−8

Table 2. Policy comparison

In this simple example, the decision can be based on
combinatorial models computed a priori. Relaxing the
above assumptions makes the analysis more complex by re-
quiring dynamic resolution of state–based models.

5 Conclusions

This work presents an architecture for dependability pro-
visioning which integrates Lira, a light-weight infrastruc-
ture for reconfiguring applications, with a model–based De-
cision Maker. In particular, our goal is to provide a dis-
tributed real–time systems with fault–tolerance capabilities.
We concentrate only on system reconfiguration as conse-
quence of both faults of software components and host com-
puters that can affect the system.

The work presented in this paper is still ongoing activ-
ity and several extensions are currently under investigation
to improve and validate our approach. Firstly, Lira infras-
tructure has to be fault–tolerant itself and different solutions
are currently under investigation in this direction. Secondly,
for validation purposes a prototype of the case study and
a performability evaluation campaign have been planned.
Another possible research direction is to improve error di-
agnosis capabilities of each agent, to better calibrate system
reconfiguration.

Acknowledgements This work has been partially
supported by the Italian MIUR in the framework of the
project “High Quality Software Architectures for Global
Computing on Cooperative Wide Area Networks”.

References

[1] J. C. Laprie A. Avizienis and B. Randell. Fundamental con-
cepts of dependability. Technical Report 01-145, LAAS,
April 2001.

[2] M. Castaldi, A. Carzaniga, P. Inverardi, and A.L. Wolf. A
light-weight infrastructure for reconfiguring applications. In
Proceedings of 11th Software Configuration Management
Workshop (to appear), Portland, Oregon (USA), May 2003.

[3] M. Castaldi and N. D. Ryan. Supporting Component-based
Development by Enriching the Traditional API. In Proc.
of Workshop on Generative and Component-based Software
Engineering, Erfurt, Germany, October 2002.

[4] S. Porcarelli F. Di Giandomenico A. Chohra and A. Bon-
davalli. Tuning of database audits to improve scheduled
maintenance in communication systems. In Proc. of 20th
SAFECOMP, Budapest, Hungary, 2001.

[5] J. Kramer and J. Magee. Analysing dynamic change in soft-
ware architectures: A case study. Proc. 4th Int. Conf. on
Configurable Distributed Architecture, pages 91–100, 1998.

[6] J. Magee. Configuration of Distributed Systems. In M. Slo-
man, editor, Network and Distributed Systems Management.
Addison-Wesley, 1994.

[7] M. A. Marsan and G. Chiola. On petri nets with deterministic
and exponentially distribuited firing times. In LNCS, volume
266, pages 132–145. Springer Verlang, 1987.

[8] A. Bondavalli I. Mura S. Chiaradonna R. Filippini S. Poli
and F. Sandrini. DEEM: a tool for the dependability model-
ing and evaluation of multiple phased systems. In Proc. of
Dependable Systems and Networks, New York, USA, 2000.

[9] Marshall T. Rose. The Simple Book: An Introduction to Net-
working Management. Prentice Hall, April 1996.

[10] Michel Wermelinger. A Hierarchic Architecture Model for
Dynamic Reconfiguration. In 2nd Int. Workshop on Software
Engineering for Parallel and Distributed Systems, 1997.

[11] A. J. Young and J. N. Magee. A flexible approach to evolu-
tion of reconfigurable systems. Proc. of IEE/IFIP Int. Work-
shop on Configurable Distributed Systems, March 1992.

Dependability in Software Families

Frank van der Linden
Philips Medical Systems, Veenpluis 4-6, 5684 PC Best, NL

Frank.van.der.linden@philips.com

abstract
The paper gives an overview on dependability is-
sues in software families. Most of these issues
and the corresponding approach was originating
from a series of industrial and research co-
operation projects. Many of the results can only
be regarded as being preliminary.

1. Introduction
The organisation of software in families is a means to
plan and manage reuse. Moreover by building systems in
families the quality of the resulting products is expected
to improve, because a large part of the software is (re-)
used within many products, and therefore it is tested in
many real-life situations. Initial involvement of the au-
thor with family development, incorporating dependabil-
ity issues, [12][13] resulted in a series of projects, on the
topic of system family development, ARES [9], ESAPS
[15] and CAFÉ [16]. Within these projects we have
identified the interdependence of 4 software develop-
ment concerns, BAPO [1]:
• Business, how to make profit from your products
• Architecture, technical means to build the software
• Process, roles, responsibilities and relationships

within software development
• Organisation, actual mapping of roles and responsi-

bilities to organisational structures.

2. Families, BAPO and dependability
A set of products is forming a software family if it is
based upon the same technological basis (architecture),
and there is a clear management of the variation between
them. The main reason to set up a family is to save cost
and labour, by not making the same functionality twice.
Family assets are built independently from the products

that use these assets. This means that in order to main-
tain a dependable family, the dependability issues have
to be managed both for the family assets and for the re-
sulting products. In the next sections we discuss the de-
pendability considerations for the different BAPO as-
pects.

Business
An important business decision is the definition of the
scope of the family [21]. The scope determines which
systems will be part of the family. Dependability issues
play a role in the scoping decisions in several ways:
• What is commercial value of a certain quality,
• What are the costs of the introduction of, or main-

taining, a specific quality level in (a part of) the
family,

• Which parts of the family should exhibit which
quality level,

• How to assess the quality levels of the resulting
products

In order to relate business originated quality goals to ar-
chitecture decisions in a family development context, a
divide and conquer approach is often useful. For instance,
in [19] an investigation is made on the quality goals a
business may have, and how these goals relate to archi-
tecture attributes. It results in a set of separate quality re-
lated taxonomies, each with different characteristics.
These taxonomies are related to business originated qual-
ity goals. It considers, for example, performance, cost,
and variability taxonomy. Such taxonomy is used to de-
termine what are the business originated quality goals,
and how to solve them. Part of the taxonomy concerns ar-
chitecture parameters to support the decision how to sat-
isfy the quality goals.
In [3] a scenario-based method, Attribute Driven Design
(ADD), is introduced that support architecture decisions
based upon business generated quality goals. Instead of
quantifying quality attributes, generic scenarios are intro-
duced dealing with stimuli, the responses, and the archi-
tecture elements related to them. An example stimulus is
the desire of the user to cancel the previous operation(s),
for instance during editing.

Architecture
The Architecture has to be set up in such a way that the
family can be built in a technical sense. We see a distinc-
tion between common software and variant parts, where
there is an aim to reduce the variant parts to a minimum.
This way the reuse is increased. Moreover, variation will
be allowed only in a regulated way, e.g., variants should
carry the same interface. This simplifies reasoning about
properties of the products in the family, also for depend-
ability aspects. Explicit variation points in the architec-
ture [8],[20] help to determine and manage where and
how variation is allowed. Family architectures are often
based upon frameworks [22],[24],[25], and/or software
busses [12],[13],[17]. Both approaches allow de-
coupling to a large extend of independent variant parts.
Dependability is related to:
• The selection of variation mechanisms to be used,

based upon their dependable properties
• The global mechanisms used within the family to

secure dependability levels.
• The use of design decision models [9],[11] to be

able to determine the right dependability level for
the systems to be built.

• The use of Architecture assessment [7] to evaluate
(qualitatively) the dependability properties of the
family architecture.

Several case studies have reported the dependability
analysis at the system family architecture level. Of course
not all causes of failures can be determined at the family
architecture level, but at least part of them can be miti-
gated at the family architecture. In [18] the main topic of
investigation is the flexibility (an important family related
property) in the case that real-time performance is crucial.
In [12],[13] the notion of aspect is introduced. Each as-
pect relates to a technical solution of a set of related re-
quirements. Often these requirements are dependability
related. It is shown that independent design decisions
may be made for each of the aspects, resulting in a de-
sired dependability level. Only at a late moment, e.g. sys-
tem building time, the chosen designs for the different
aspects are combined into a working system. This ap-
proach allows the developers to focus on a single concern
at a time, but still take dependability into account. The
case study in [2] reports determines a set of reliability
patterns, which may be used in family architecture. Such
a pattern can be seen as a solution for a single aspect. As
an example a general redundancy pattern is presented.
Qualitative analyses of the used parameters, that may in-
fluence the redundancy, are classified into distinct
groups, each influencing the redundancy in a different
way.
The papers [6] and [20] propose a notation for explicit
variation points in the architecture. Related to the varia-
tion points a decision model is introduced that help the

system builder to select the right system in certain cir-
cumstances. One of the concerns is to distinguish be-
tween functional and non-functional (dependability)
properties that may be supported by the architecture. An
important observation is to derive from the requirements
both capabilities of the system (functional) and forces
(non-functional) which both influence the resulting archi-
tecture choices.

Process
The Process has to secure the relationship between the
stakeholders and the developers of systems in the family
based upon the given architecture. It determines the
work products to be used during the development of sys-
tems in the family. In many cases a family is started with
a set of already existing systems, which will become part
of the family, and which have to deliver legacy software
to be reused within the family [10]. The process around
the integration has to deal with ensuring the properties of
the constituent systems will be migrated into the family.
Dependability aspects related to the process are:
• The presence of feedback loops which inform the

family asset developers whether and how their as-
sets in product development are used satisfactorily.

• The use of a quality process (change control board)
to ensure the quality of the product.

• The use of a testing process to test the produced as-
sets and systems.

• Qualitative & quantitative analysis of the system
during early development phases [2]

Several processes are proposed to support the transition
of dependability requirements towards the architecture.
In [2] the process supports the prediction of reliability of
alternatives failure cause analysis and the relationship of
this to the domain analysis process. In [3] the Attribute
Driven Design (ADD) process takes scenarios analysis
as the basis of the process. In [7] the Architecture Trade-
off Analysis Method (ATAM) is applied within a system
family development process. This was useful, however,
the investment was high, and not all risks could be dis-
covered by the method.
In [6] and [20] describes a complete family development
process, Split. Within this process there are specific ac-
tivities related to decisions on dependability issues.
The validation and testing in family context is the sub-
ject of [23]. It proposes additions to v-model to be able
to test efficiently family assets.

Organisation
The Organisation groups and separates the people that
execute the process. Several forms of organisation will
result in different responsibilities between people, which
will have an effect in how well the process will be exe-
cuted [4]. Specific dependability aspects related to the
organisation are:

• Separation and co-operation between family and
product dependability issues.

• The relationship between testers and other develop-
ers.

• The maturity of the organisation [5] reflects itself in
the quality of products.

In [5] the maturity of the organisation is related to the
variability aspects of the products delivered and how the
organisation reflects the family architecture. In [14] it is
shown how to obtain dependability of the family in a
given organisation structure which, on purpose, does not
mirror the process structure exactly. Because the respon-
sibilities of the different developments are spread over
many departments, the concern for the quality is shared.
As a consequence the quality level is increased.

3. Summary and conclusions
This paper presents a short overview of work on depend-
ability in system family development. It is not claimed to
be a complete overview.
Although architectural issues are important in a family
development also the business, process and organisation
concerns in relation to dependability have to be taken into
account. Each of these concerns has reflections on the
chosen architecture. The business sets the scope to the
family, which has as direct consequence to the architec-
ture itself. In particular it influences the variability avail-
able within the family. The process introduces assessment
of the dependability issues of the system, often through
consideration of architectural properties. The maturity of
the organisation relates to architectural issues like the
variability of the products delivered and thus into
deependability of the family.
Many of the contributions are only preliminary.

4. Literature
[1] Pierre America, Henk Obbink, Rob van Ommering, Frank

van der Linden, “CoPAM: A Component-Oriented Plat-
form Architecting Method Family for Product family En-
gineering”, Proceeding SPLC-1, Kluwer, Denver, August
2000, pp. 167-180

[2] Marko Auerswald, Martin Herrmann ,Stefan Kowalewski,
Vincent Schulte-Coerne, “Reliability-Oriented Product
Line Engineering of Embedded Systems”, Proceedings
PFE4, Springer LNCS 2290, Bilbao, October 2001, pp. 83-
100

[3] Len Bass, Mark Klein, Felix Bachmann, “Quality Attribute
Design Primitives and the Attribute Driven Design
Method”, Proceedings PFE4, Springer LNCS 2290, Bil-
bao, October 2001, pp. 169-186

[4] Jan Bosch, “Organizing for Software Product Lines”, Pro-
ceedings IW-SAPF-3, Springer LNCS 1951, Las Palmas de
Gran Canaria, March 2000, pp. 117-134

[5] Jan Bosch, “Maturity and Evolution in Software Product
Lines”, Proceedings SPLC2, Springer LNCS 2379, San
Diego, August 2002, pp. 257-271

[6] Michel Coriat, Jean Jourdan, Fabien Boisboudin, “The
SPLIT Method”, Proceeding SPLC-1, Kluwer, Denver,
August 2000, pp.147-166

[7] Stefan Ferber, Peter Heidl, Peter Lutz, “Reviewing Product
Line Architectures: Experience Report of ATAM in an
Automotive Context”, Proceedings PFE4, Springer LNCS
2290, Bilbao, October 2001, pp. 364-382

[8] Ivar Jacobson, Martin Griss, Patrik Jonsson, Software Re-
use, Addison Wesley, 1997

[9] Mehdi Jazayeri, Alexander Ran, Frank van der Linden,
Software Architecture for Product Families, Addison
Wesley, 2000

[10] Isabel John “Integrating Legacy Documentation Assets
into a Product Line”, Proceedings PFE4, Springer LNCS
2290, Bilbao, October 2001, pp. 113-124

[11] A. Karhinen, J. Kuusela, “Structuring Design Decisions for
Evolution”, Development and Evolution of Software Archi-
tectures for Product families-2, Springer LNCS 1429, Las
Palmas de Gran Canaria, February 1998, pp. 223-234

[12] Frank van der Linden, Jürgen Müller, “Composing Product
Families From Reusable Components”, Proceedings 1995
International Symposium and Workshop on Systems Engi-
neering of Computer Based Systems, 1995, pp. 35-40

[13] Frank J. van der Linden, Jurgen K. Muller, “Creating Ar-
chitectures with Building Blocks”, IEEE Software 12 no. 6,
Nov. 1995 pp. 51-60,

[14] Frank van der Linden, Jan Gerben Wijnstra, “Platform En-
gineering for the Medical Domain”, Proceedings PFE4,
Springer LNCS 2290, Bilbao, October 2001, pp. 224-237

[15] Frank van der Linden, “Engineering Software Architec-
tures, Processes and Platforms for System Families”, Pro-
ceedings SPLC2, Springer LNCS 2379, San Diego, August
2002, pp. 383-397

[16] Frank van der Linden, “Software Product Families in
Europe: The ESAPS and CAFÉ projects”, IEEE Software,
July/August 2002, pp. 41-49

[17] E. Niemelä, H. Perunka, T. Korpipää, “A Software Bus as
a Platform for a Family of Distributed Embedded System
Products”, Proceedings Development and Evolution of
Software Architectures for Product families-2, Springer
LNCS 1429, Las Palmas de Gran Canaria, February 1998,
pp. 14-23

[18] Robert L. Nord, “Meeting the Product Line Goals for an
Embedded Real-Time System”, Proceedings IW-SAPF-3,
Springer LNCS 1951, Gran Canaria, March 2000, pp. 19-
29

[19] Anu Purhonen, “Quality Attribute Taxonomies for DSP
Software Architecture Design”, Proceedings PFE4,
Springer LNCS 2290, Bilbao, October 2001, pp. 238-247

[20] Serge Salicki, Nicolas Farcet, “Expression and Usage of
the Variability in the Software Product Lines”, Proceed-
ings PFE4, Springer LNCS 2290, Bilbao, October 2001,
pp. 304-318

[21] Klaus Schmid, “Scoping Software Product Lines”, Pro-
ceeding SPLC-1, Kluwer, Denver, August 2000, pp. 513-
532

[22] Clemens Szyperski, Component Software, Addison
Wesley, 1997

[23] Josef Weingärtner, “Product family engineering and testing
in the medical domain - validation aspects”, Proceedings

PFE4, Springer LNCS 2290, Bilbao, October 2001, pp.
383-387

[24] Jan Gerben Wijnstra, “Critical Factors for a Successful
Platform-Based Product Family Approach”, Proceedings
IW-SAPF-3, Springer LNCS 1951, Las Palmas de Gran
Canaria, March 2000, pp. 4-18

[25] Jan Gerben Wijnstra, “Component Frameworks for a
Medical Imaging Product Family”, Proceedings SPLC2,
Springer LNCS 2379, San Diego, August 2002, pp. 68-89

	rodrigues.pdf
	. Introduction
	. Related Work
	. A Profile for Reliability
	. A Scenario of Reliability Support in MDA
	. Conclusions And Future Work

	das.pdf
	Layered Dependability Modeling of an Air Traffic Control System
	Olivia Das, C. Murray Woodside
	Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
	email: odas@sce.carleton.ca, cmw@sce.carleton.ca
	1. Introduction
	2. The Dependable-LQN Model
	2.1. First part: FTLQN Model

	Figure 1. An FTLQN model
	2.2. Second part: MAMA Model

	A task with name and its type,
	where type = {MT, AT |
	MT = Manager Task,
	AT = Application Task,
	AGT = Agent Task}
	3. Dependable-LQN Model of an ATC En Route System

	Figure 3 A Dependable-LQN model for an ATC en route system. Redundant server groups are not shown...
	Figure 4. Portion of MAMA model for Figure 3. Redundant server groups and interactions among the ...
	4. Conclusion
	5. References

	Numbx:
	C:
	L:
	R:

	P1:
	Numb:
	Numbx:
	C: 1
	L:
	R:

	P2:
	Numb:
	Numbx:
	C: 2
	L:
	R:

	P3:
	Numb:
	Numbx:
	C: 3
	L:
	R:

	P4:
	Numb:
	Numbx:
	C: 4
	L:
	R:

	P5:
	Numb:
	Numbx:
	C: 5
	L:
	R:

	P6:
	Numb:
	Numbx:
	C: 6
	L:
	R:

	P7:
	Numb:
	Numbx:
	C: 7
	L:
	R:

	P8:
	Numb:
	Numbx:
	C: 8
	L:
	R:

	P9:
	Numb:
	Numbx:
	C: 9
	L:
	R:

	P10:
	Numb:
	Numbx:
	C: 10
	L:
	R:

	P11:
	Numb:
	Numbx:
	C: 11
	L:
	R:

	P12:
	Numb:
	Numbx:
	C: 12
	L:
	R:

	P13:
	Numb:
	Numbx:
	C: 13
	L:
	R:

	P14:
	Numb:
	Numbx:
	C: 14
	L:
	R:

	P15:
	Numb:
	Numbx:
	C: 15
	L:
	R:

	P16:
	Numb:
	Numbx:
	C: 16
	L:
	R:

	P17:
	Numb:
	Numbx:
	C: 17
	L:
	R:

	P18:
	Numb:
	Numbx:
	C: 18
	L:
	R:

	P19:
	Numb:
	Numbx:
	C: 19
	L:
	R:

	P20:
	Numb:
	Numbx:
	C: 20
	L:
	R:

	P21:
	Numb:
	Numbx:
	C: 21
	L:
	R:

	P22:
	Numb:
	Numbx:
	C: 22
	L:
	R:

	P23:
	Numb:
	Numbx:
	C: 23
	L:
	R:

	P24:
	Numb:
	Numbx:
	C: 24
	L:
	R:

	P25:
	Numb:
	Numbx:
	C: 25
	L:
	R:

	P26:
	Numb:
	Numbx:
	C: 26
	L:
	R:

	P27:
	Numb:
	Numbx:
	C: 27
	L:
	R:

	P28:
	Numb:
	Numbx:
	C: 28
	L:
	R:

	P29:
	Numb:
	Numbx:
	C: 29
	L:
	R:

	P30:
	Numb:
	Numbx:
	C: 30
	L:
	R:

	P31:
	Numb:
	Numbx:
	C: 31
	L:
	R:

	P32:
	Numb:
	Numbx:
	C: 32
	L:
	R:

	P33:
	Numb:
	Numbx:
	C: 33
	L:
	R:

	P34:
	Numb:
	Numbx:
	C: 34
	L:
	R:

	P35:
	Numb:
	Numbx:
	C: 35
	L:
	R:

	P36:
	Numb:
	Numbx:
	C: 36
	L:
	R:

	P37:
	Numb:
	Numbx:
	C: 37
	L:
	R:

	P38:
	Numb:
	Numbx:
	C: 38
	L:
	R:

	P39:
	Numb:
	Numbx:
	C: 39
	L:
	R:

	P40:
	Numb:
	Numbx:
	C: 40
	L:
	R:

	P41:
	Numb:
	Numbx:
	C: 41
	L:
	R:

	P42:
	Numb:
	Numbx:
	C: 42
	L:
	R:

	P43:
	Numb:
	Numbx:
	C: 43
	L:
	R:

	P44:
	Numb:
	Numbx:
	C: 44
	L:
	R:

	P45:
	Numb:
	Numbx:
	C: 45
	L:
	R:

	P46:
	Numb:
	Numbx:
	C: 46
	L:
	R:

	P47:
	Numb:
	Numbx:
	C: 47
	L:
	R:

	P48:
	Numb:
	Numbx:
	C: 48
	L:
	R:

	P49:
	Numb:
	Numbx:
	C: 49
	L:
	R:

	P50:
	Numb:
	Numbx:
	C: 50
	L:
	R:

	P51:
	Numb:
	Numbx:
	C: 51
	L:
	R:

	P52:
	Numb:
	Numbx:
	C: 52
	L:
	R:

	P53:
	Numb:
	Numbx:
	C: 53
	L:
	R:

	P54:
	Numb:
	Numbx:
	C: 54
	L:
	R:

	P55:
	Numb:
	Numbx:
	C: 55
	L:
	R:

	P56:
	Numb:
	Numbx:
	C: 56
	L:
	R:

	P57:
	Numb:
	Numbx:
	C: 57
	L:
	R:

	P58:
	Numb:
	Numbx:
	C: 58
	L:
	R:

	P59:
	Numb:
	Numbx:
	C: 59
	L:
	R:

	P60:
	Numb:
	Numbx:
	C: 60
	L:
	R:

	P61:
	Numb:
	Numbx:
	C: 61
	L:
	R:

	P62:
	Numb:
	Numbx:
	C: 62
	L:
	R:

	P63:
	Numb:
	Numbx:
	C: 63
	L:
	R:

	P64:
	Numb:
	Numbx:
	C: 64
	L:
	R:

	P65:
	Numb:
	Numbx:
	C: 65
	L:
	R:

	P66:
	Numb:
	Numbx:
	C: 66
	L:
	R:

	P67:
	Numb:
	Numbx:
	C: 67
	L:
	R:

	P68:
	Numb:
	Numbx:
	C: 68
	L:
	R:

	P69:
	Numb:
	Numbx:
	C: 69
	L:
	R:

	P70:
	Numb:
	Numbx:
	C: 70
	L:
	R:

	P77:
	Numb:
	Numbx:
	C: 70
	L:
	R:

	P78:
	Numb:
	Numbx:
	C: 71
	L:
	R:

	P79:
	Numb:
	Numbx:
	C: 72
	L:
	R:

	P80:
	Numb:
	Numbx:
	C: 73
	L:
	R:

	P81:
	Numb:
	Numbx:
	C: 74
	L:
	R:

	P82:
	Numb:
	Numbx:
	C: 75
	L:
	R:

	P83:
	Numb:
	Numbx:
	C: 76
	L:
	R:

	P84:
	Numb:
	Numbx:
	C: 77
	L:
	R:

	P85:
	Numb:
	Numbx:
	C: 78
	L:
	R:

	P86:
	Numb:
	Numbx:
	C: 79
	L:
	R:

	P87:
	Numb:
	Numbx:
	C: 80
	L:
	R:

	Create:

