
Elements of the
Self-Healing System

Problem Space

&Electrical Computer
ENGINEERING

Phil Koopman
Carnegie Mellon University

WADS, May 2003

22

Overview
� “Self-Healing” – it’s getting attention, but what does it mean?

• This talk is based on observations from the most recent Workshop on Self-
Healing Systems (WOSS’02)

� Description of some general problem elements of Self Healing research
• Fault models – what is an “injury”?
• System responses – what is “healing”?
• System incompleteness – what’s unknown?
• Design context – what injuries are beyond healing?

� Two challenges:
1. Fault Tolerant Computing: broaden perspectives with SH ideas
2. Self Healing: don’t waste time reinventing existing FT ideas

33

Fault Model – “injury”

� First question in fault tolerant computing is:

“What is the fault model?”

� Reasons for a fault model
• Need to know expected faults to measure fault tolerance coverage
• Not all faults are equal in time, space, severity

� Some challenges:
• Is Injury == Fault ????
• Is a software defect an injury?

44

Self-Healing Fault Model Issues
� Fault duration:

• Permanent / intermittent / transient

� Fault manifestation:
• Fail silent / Byzantine / correlated faults
• Impaired: run-time, reserve capacity, brittleness, resource consumption

� Fault source:
• Wear-out / design defects / reqts. defects / environment change / malicious

� Granularity:
• One designer’s “system” is the next level designer’s “component”
• Transistor failure / … node failure … / system failure

� Fault profile expectations:
• No faults / historically known faults / foreseen faults / unforeseen faults
• Random+independent / random+correlated / expected / predicted

55

System Response – “healing”

� After an injury, what happens?

� Fault tolerant system responses include:
• Diagnosis / identification
• Isolation / containment
• System reconfiguration
• System reinitialization

� Does “healing” mean something additional?
• Or is it a difference at a different level?

66

Self Healing System Responses
� Fault Detection:

• Self-test / pairwise checking / peer checking / supervisor checking
• Self-injected faults to ensure detection is working?

� Degradation during & after healing:
• Fail-operational / degraded performance / fail-fast+ fail-safe

� Response:
• Fault masking / failover / reconfiguration
• Optimize for: safety / reliability / availability / …
• Preventative (periodic reboot) / Proactive (diagnosis-based) / Reactive

� Recovery of state:
• Hot swap / restore quiescent state / warm boot / cold boot
• Rollback / recovery block / control gain changes / rollforward / run-while-reconfiguring
• What about recovering component state?

� Time constants:
• Most faults are transient
• Important that system response time constant be faster than injury arrival rate

� System Assurance:
• After injury / during healing / after healing

77

System Completeness – What do we know and when?

� System self-knowledge
• How much self-knowledge is required for healing?
• How should healing knowledge be abstracted?
• How do we deal with not knowing how much the system doesn’t know?

� Designer knowledge
• Not all systems are complete when design is “done”
• Even if complete, we won’t know everything about all components
• How do we deal with not knowing how much we don’t know?

88

Self Healing System Completeness
� Architectural Completeness:

• Proprietary & known / open & regulated / extensible

� Designer Knowledge:
• Component knowledge (especially COTS components)
• Faulty behavior characterizations
• How do you heal after suffering a component behavior that is “unspecified”?

� System Self-Knowledge:
• How complete is system’s self-model? (idea of reflection)
• Is healing an intentional or emergent behavior?

� System Evolution
• Configuration changes & usage changes
• Are outages random / predictable / schedulable?

99

Design Context – What are the scope limits?

� The real world is a messy place – what assumptions are made?
• Homogeneous system?
• “Perfect” components (e.g., perfect healing management software?)
• …

� What is the size of the system?
• A single software module?
• A complex software system?
• A person plus a computer system?
• The North American power grid?
• The Internet?

• Does teaching users to press CTL-ALT-DEL achieve “self-healing”
of the user+computer “system”?

1010

Self Healing Design Context
� Abstraction Level:

• Implementation / design / architecture / …

� Component Homogeneity:
• Can any software component run in any node?
• Perfect configuration homogeneity / plug-compatible / heterogeneous

� Predetermination of system behavior:
• Specific design / rule-based system / service discovery / emergent behavior

� User Involvement in healing:
• User direction / user-provided hints / user ability to tune / invisible to user

� System Linearity:
• Linear+composable / monotonic / mildly discontinuous / arbitrary
• Single operating mode / mode changes

� System scope:
• Component / computer system / computer+person / enterprise / society

1111

Conclusions
� “Self-Healing” potentially encompasses a lot of ground

• Smaller than expected intersection of research assumptions at WOSS02
• Consensus will take a while

� Some of this has been done before!
• Fault models – well known in FT, don’t reinvent without good reason
• System responses – how different are they from FT?
• System incompleteness – FT usually assumes relative completeness
• Design context – plenty of room for novelty in both FT & SH

• But there is plenty of room for more good research

� A final thought:
1. Fault Tolerant Computing: broaden perspectives with SH ideas
2. Self Healing: don’t waste time reinventing existing FT ideas

even better: articulate the novelty of approaches

