A Dependable Real-Time Platform for Industrial Robotics

Goran Mustapic
Industrial PhD Student
ABB Robotics, Sweden
Mälardalen University, Sweden
goran.mustapic@se.abb.com

johan.x.andersson@se.abb.com
christer.norstrom@se.abb.com
Outline of the presentation

- A quick look at some industrial robots
- Dependability attributes relevance for Industrial Robots
- System architecture
- ABB Robot Controller architecture

- What do we mean by an open architecture?
- What are challenges in defining an open architecture?
- Initial work on open architecture
- Summary
A quick look at some industrial robots.
Dependability attributes relevance for Industrial Robots

- Requirements
 - 60,000 hours MTBF

- Dependability attributes
 - Availability
 - Reliability
 - Safety
 - Maintainability
 - Integrity
 - Confidentiality
System architecture

- Web Access (optional)
- TCP/IP
- Robot Studio (optional - offline programming)
- GTPU (Graphical Teach Pendant Unit)
- Main computer
 - Axis computer
 - Drive Module
- IO units or PLC
- fieldbusses
- Robot Controller
ABB Robot Controller Architecture

- Initial design in the beginning of 1990-ties; first release 1994
- OO design, C language implementation
- Product line architecture
- 2 500 KLOC ~ 500 components in 15 subsystems
- Portable: VxWorks, UNIX, W2K, win9x, WindowsCE
- RAPID – a language for robot programming

- More than 50 000 units on the market
- Users >10000
- Developers >150
- Used in a variety of application fields such as those for car manufacturing, foundry, painting and food packaging.
What do we mean by “open architecture”?

- V. Issarny: “In an open systems, components do not depend on a single administrative domain and are not known at design time.”

- Goal of our work is a domain specific open dependable platform

- Example
What are challenges in defining an open architecture?

1. **Business model**
 - How to work with subcontractors, platform, integrators and end customers in an open system?

2. **Organizational**
 - What is an optimal organization to work with 3rd party?

3. **Functionality**
 - What kind of functionality add-ons will the open system allow?

4. **Technical**
 - ...
Technical challenges

- **Dependable Platform Architecture**
 - What platform interfaces shall we create?
 - Assuring platform dependability.
 - Define (component) model for adding 3rd party SW.

- **Support for the Development of Extensions**
 - SDK and tools for development of extensions.

- **Certification of platform extensions**
 - Defining criteria for certification.
 - Implementing tools for certification.

- **Predictable Assembly of the platform and extensions**
 - How will properties of extensions be measured and described?
 - Verifying the assembly properties.
Initial work on open dependable architecture

- Related research areas
 - Dependability
 - Software Architecture and CBSE
 - Software Testing

- Open architecture of GTPU (Graphical Teach Pendant Unit)
 - Based on .Net Compact Framework and Windows CE

- Probabilistic simulation-based analysis
 - Enable early reasoning about architectural properties
 - Model the platform
 - Add models of components/extensions to the platform model

- Facilitating fault removal
 - “Black-box” functionality for real-time systems
Summary

- Technical issues to be solved:
 - Dependable Platform Architecture
 - Support for the Development of Extensions
 - Certification of platform extensions
 - Predictable Assembly of the platform and extensions

- We need to combine research experiences and results from multiple research areas

- We can still benefit from the technical aspects without ever implementing other aspects
Probabilistic simulation-based analysis

1. Structural modeling
2. Measure the system
3. Populate the model
4. Tune the model
5. Sensitivity analysis

Results

Temporal behavior data

Validation data (e.g. Response times)