Dependability Analysis Using SAM

Tianjun Shi, Xudong He

School of Computer Science
Florida International University
{tshi01, hex}@cs.fiu.edu

Goal & Method

• Goal

 Enable the Software Architecture Model (SAM) to model and analyze both functional properties and common non-functional properties

Method

- Extend SAM with stochastic constructs
- Transform SAM model to SRN model

The SAM Model

- ◆ A SAM model: {*C*, *h*}
 - A set of compositions $C = \{C_1, C_2, ..., C_k\}$
 - A hierarchical mapping h relating compositions.
- A composition: $C_i = \{C_{m_i}, C_{n_i}, C_{S_i}\}$
 - C_{m_i} : a set of components
 - C_{n_i} : a set of connectors
 - C_{S_i} : a set of composition constraints
- Components / Connectors: $C_{i_j} = \{B_{i_j}, S_{i_j}\}$
 - Bi_i : behavior model (a Petri net)
 - S_{i_j} : property specification (a temporal logic formula)

The SAM model (Cont'd)

A graphic view of a SAM architecture model

Predicate Transition Net (PrT net)

- ◆ A PrT net is a class of high level Petri net, and is defined as a tuple (*N*, *Spec*, *ins*), where
 - N = (P, T, F), the net structure
 - Spec = (S, OP, Eq), the underlying specification
 - ins = (φ, L, R, M_0) , the net inscription associating a net element in N with its denotation in Spec.

Stochastic Reward Net (SRN)

- SRN is an extension to Stochastic Petri Net
 - A firing rate for each transition, which could be marking dependent
 - Enabling Function for each transition
 - Priority for each transition
- Tools for SRNs
 - SPNP
 - SMART

Extension on SAM

- Add a stochastic construct into the behavior model expressed in a PrT net
 - A special variable *RATE* is used in the constraint of a transition to specify the firing rate.
 - Firing rate is not necessarily constant
- Formally specify non-functional property requirements using *Probabilistic real time Computation Tree Logic (PCTL)*

Transformation from SAM to SRN

- Unfold the behavior model to a low level Petri net.
 - Unfold each transition *T* into a set of transitions based on the set of constant substitution that satisfy the constraint of *T*.
 - Places are connected to the unfolded transitions according to the substitution.
 - Remove the dead transitions and combine equivalent elements if any.
- Assign the firing rate to each transition based on the stochastic construct.
- Solve the transformed SRN to evaluate dependability.

An example: the multiprocessor system

The behavior model of the example system

The SRN model of the example system

Analysis Results

Conclusion

- ◆ The analysis of dependability using SRNs is not new.
- Our contribution lies in incorporating stochastic information into the SAM so that both functional properties and common non-functional properties like dependability can be analyzed under a unified framework.
- Developing tools to automate the transformation is being considered in our future work.