Dependability Analysis Using SAM

Tianjun Shi, Xudong He
School of Computer Science
Florida International University
{tshi01, hex}@cs.fiu.edu
Goal & Method

- **Goal**
 - Enable the Software Architecture Model (SAM) to model and analyze both functional properties and common non-functional properties

- **Method**
 - Extend SAM with stochastic constructs
 - Transform SAM model to SRN model
The SAM Model

- A SAM model: \(\{C, h\} \)
 - A set of compositions \(C = \{C_1, C_2, ..., C_k\} \)
 - A hierarchical mapping \(h \) relating compositions.

- A composition: \(C_i = \{C_{mi}, C_{ni}, C_{si}\} \)
 - \(C_{mi} \): a set of components
 - \(C_{ni} \): a set of connectors
 - \(C_{si} \): a set of composition constraints

- Components / Connectors: \(C_{ij} = \{B_{ij}, S_{ij}\} \)
 - \(B_{ij} \): behavior model (a Petri net)
 - \(S_{ij} \): property specification (a temporal logic formula)
The SAM model (Cont’d)

A graphic view of a SAM architecture model
A PrT net is a class of high level Petri net, and is defined as a tuple \((N, Spec, ins)\), where

- \(N = (P, T, F)\), the net structure
- \(Spec = (S, OP, Eq)\), the underlying specification
- \(ins = (\phi, L, R, M_0)\), the net inscription associating a net element in \(N\) with its denotation in \(Spec\).
Stochastic Reward Net (SRN)

- SRN is an extension to Stochastic Petri Net
 - A firing rate for each transition, which could be marking dependent
 - Enabling Function for each transition
 - Priority for each transition

- Tools for SRNs
 - SPNP
 - SMART
Extension on SAM

- Add a stochastic construct into the behavior model expressed in a PrT net
 - A special variable $RATE$ is used in the constraint of a transition to specify the firing rate.
 - Firing rate is not necessarily constant
- Formally specify non-functional property requirements using *Probabilistic real time Computation Tree Logic* (PCTL)
Transformation from SAM to SRN

- Unfold the behavior model to a low level Petri net.
 - Unfold each transition T into a set of transitions based on the set of constant substitution that satisfy the constraint of T.
 - Places are connected to the unfolded transitions according to the substitution.
 - Remove the dead transitions and combine equivalent elements if any.
- Assign the firing rate to each transition based on the stochastic construct.
- Solve the transformed SRN to evaluate dependability.
An example: the multiprocessor system
The behavior model of the example system
The SRN model of the example system
Analysis Results
Conclusion

- The analysis of dependability using SRNs is not new.
- Our contribution lies in incorporating stochastic information into the SAM so that both functional properties and common non-functional properties like dependability can be analyzed under a unified framework.
- Developing tools to automate the transformation is being considered in our future work.