
1

Formalizing Dependability
Mechanisms in B:
From Specification to
Development Support

G. Ferda Tartanoglu
ARLES Research Project, INRIA Rocquencourt

In collaboration with:
V. Issarny (ARLES, INRIA Rocquencourt)
N. Levy (PRISM, U. Versailles Saint-Quentin-en-Yvelines)
A. Romanovsky (U. Newcastle upon Tyne)

2

Introduction
We formalize the notion of Coordinated
Atomic Actions using the B method

Validate dependability mechanisms
Transactional access to external objects
Coordinated Exception Handling
Atomicity

Provide an XML-based declarative language for
building dependable systems

The B formal specification is refined to obtain an
implementation of the associated runtime support

3

Architecting Dependable
Systems with Coordinated
Atomic Actions

4

Coordinated Atomic Actions
Coordinated Atomic Actions (J. Xu, B. Randell, A.
Romanovsky et al., 1995)

Structuring mechanism for developing dependable
concurrent systems
Atomic actions : for controlling cooperative concurrency

Coordinated error recovery using exception handling
Transactions : coherency of shared external resources

5

CA Actions Composition
Allows the design of distributed systems built out of several CA
actions [Tartanoglu et al., ICSE-WADS 2002]

6

Specifying CA Actions in B

Offer a general framework that can be
instantiated to describe the implementation of a
specific system that is developed using CA
actions

Dependability properties associated with CA
actions will be enforced for any system based on
them

7

The B Method
A model-based (state-based) method built
on set theory and predicate logic and
extended by generalized substitutions

Specifications are represented by abstract
machines

A machine encapsulates operations and
states

Set of variables

8

Refinement in B

Machine

Refinement
1

Refinement
2

Implemen-
tation

Refinement step 1

Refinement step 2

Refinement step 3

Abstract specification

Implementation

9

Proofs

In B, we prove that
All operations preserve the invariants of
the machine
Implementations and refinements
preserve the invariant and the behavior
of the initial abstract machine

10

B Tools
Atelier B (ClearSy, France)
B-Toolkit (B-Core, UK)
Both tools include

type checker
animator
proof obligation generator
theorem prover
code translators
documentation facilities

11

Modelling CA Actions

Structure of the B specification

CONSTANTS

OBJECTS PARTICIPANTS

CAACTIONS
with

composition

SEES

EXTENDS

http://www-rocq.inria.fr/~tartanog/dsos/

12

States and Operations
CAACTIONS abstract machine attributes

CAACTION_STATE={caa_normal,caa_exceptional}
caaction_state ∈ caaction → CAACTION_STATE
participant_of_caaction ∈ caaction → P(participant)
caaction_of_participant ∈ participant → seq(caaction)
caaction_ext_objects ∈ caaction ↔ objects

Pre-conditioned operations
create_{main,nested,composed}_caaction
{send,recv}_message
{read,write}_object(participant,participant,message)
raise_exception(participant,exception)
propagate_exception(participant)
abort_{main,nested,composed} (caaction)
terminate_{main,nested,composed} (caaction)

13

Formalizing Dependability
Mechanisms

Transactions on external objects
Atomicity of CA Actions
Coordinated exception handling

14

Transactions on External
Objects

Participants setpar of nested CA action
caa1 can only access subset setobj of
external objects associated to
containing CA action caa2

∀obj.(obj ∈ setobj ⇒ obj ∈ caaction_ext_objects[{caa2}])

15

Atomicity of CA Actions
Participants of nested CA action caa1 are also participants of
containing action caa2

∀ (caa1,caa2).((caa1 ∈ caaction Λ caa2 ∈ caaction Λ
(caa1,caa2) ∈ is_nested)
⇒ participants_of_caaction(caa1) ⊆
participants_of_caaaction(caa2))

A participant can only enter one sibling nested CA action at a
time

card(ran({p,c | p ∈ setpar Λ c ∈ CAACTION Λ
c=last(caaction_of_participants(p))})) = 1

16

Coordinated Exception
Handling

A CA action is set to an exceptional state if all of its
participants are in the exceptional state

∀ (caa). (caa ∈ caaction Λ
caaction_state(caa)=caa_exceptional
⇒ ∀ (p).(p ∈ participant_of_caaction(caa)
⇒ (last(participant_state(p)) ∈ EXCEPTIONAL_STATE)))

17

From the B Specification to
the Development Support

18

Refinement
In order to have an implementation of the CA
action’s runtime support, the abstract
machines are refined

B operations offered as a programming library
Existing libraries are used
To be able to prove the correctness of the
implementation

Formal specification of the behavior of these
methods
Prove that the refinement of the machines that
use these methods are correct

19

Declarative Language
XML-based declarative language for building CA
action-based systems

<caaction name=“nmtoken”? >
<composedActions> ?

<action name=“qname” /> *
</composedActions>
<nestedActions> ?

<nested name=“nmtoken” /> *
</nestedActions>
<external> ?

<object name=“nmtoken” /> *
</external>

20

Participant Behavior
<participants>

<participant name=“nmtoken”> +
<var>

<element name=“nmtoken” type=“qname”/> *
</var>
<behavior>

<normal>
statements …

</normal>
<exceptional handle=“qname”> *

statements …
</exceptional>

</behavior>
</participant>

</participants>

21

Statements
<invoke action=“qname” input=“qname”? output=“qname”?/>

create_composed
<send rcpt=“qname” input=“qname”/>

send_message
<recv from=“qname” output=“qname”/>

recv_message
<call rcpt=“qname” input=“qname” output=“qname” />

{read,write}_object
<assign element=“qname” value=“xpath”/>

set_value
<raise exception=“qname” message=“qname”? />

raise_exception
<nest nestedaction=“qname”? > behavior … </nest>

create_nested

22

Future Work

Development support
Implementation of a compiler/code
generator for the declarative language

Extend the base CA Action model using
the formal model

Already used to introduce CA Action
composition
Relax atomicity properties

23

Web Services Composition
Actions
Relaxes the transactional requirements over external
interactions

Relaxed atomicity
Compensations when available : semantic atomicity

