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Introduction
We formalize the notion of Coordinated 
Atomic Actions using the B method

Validate dependability mechanisms 
Transactional access to external objects
Coordinated Exception Handling
Atomicity

Provide an XML-based declarative language  for 
building dependable systems

The B formal specification is refined to obtain an 
implementation of the associated runtime support
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Architecting Dependable 
Systems with Coordinated 
Atomic Actions
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Coordinated Atomic Actions
Coordinated Atomic Actions (J. Xu, B. Randell, A. 
Romanovsky et al., 1995)

Structuring mechanism for developing dependable 
concurrent systems
Atomic actions : for controlling cooperative concurrency

Coordinated error recovery using exception handling
Transactions : coherency of shared external resources
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CA Actions Composition
Allows the design of distributed systems built out of several CA
actions [Tartanoglu et al., ICSE-WADS 2002]
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Specifying CA Actions in B

Offer a general framework that can be 
instantiated to describe the implementation of a 
specific system that is developed using CA 
actions

Dependability properties associated with CA 
actions will be enforced for any system based on 
them
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The B Method
A model-based (state-based) method built 
on set theory and predicate logic and 
extended by generalized substitutions

Specifications are represented by abstract 
machines

A machine encapsulates operations and 
states

Set of variables
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Refinement in B

Machine

Refinement
1

Refinement
2

Implemen-
tation

Refinement step 1

Refinement step 2

Refinement step 3

Abstract specification

Implementation
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Proofs

In B, we prove that 
All operations preserve the invariants of 
the machine
Implementations and refinements
preserve the invariant and the behavior
of the initial abstract machine
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B Tools
Atelier B (ClearSy, France)
B-Toolkit (B-Core, UK)
Both tools include 

type checker
animator
proof obligation generator
theorem prover
code translators
documentation facilities
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Modelling CA Actions

Structure of the B specification

CONSTANTS

OBJECTS PARTICIPANTS

CAACTIONS
with

composition

SEES

EXTENDS

http://www-rocq.inria.fr/~tartanog/dsos/
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States and Operations
CAACTIONS abstract machine attributes

CAACTION_STATE={caa_normal,caa_exceptional}
caaction_state ∈ caaction → CAACTION_STATE
participant_of_caaction ∈ caaction → P(participant)
caaction_of_participant ∈ participant → seq(caaction)
caaction_ext_objects ∈ caaction ↔ objects

Pre-conditioned operations
create_{main,nested,composed}_caaction 
{send,recv}_message
{read,write}_object(participant,participant,message)
raise_exception(participant,exception)
propagate_exception(participant)
abort_{main,nested,composed} (caaction)
terminate_{main,nested,composed} (caaction)
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Formalizing Dependability 
Mechanisms

Transactions on external objects
Atomicity of CA Actions
Coordinated exception handling
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Transactions on External 
Objects

Participants setpar of nested CA action 
caa1 can only access subset setobj of 
external objects associated to 
containing CA action caa2

∀obj.(obj ∈ setobj ⇒ obj ∈ caaction_ext_objects[{caa2}])
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Atomicity of CA Actions
Participants of nested CA action caa1 are also participants of 
containing action caa2

∀ (caa1,caa2).((caa1 ∈ caaction Λ caa2 ∈ caaction Λ
(caa1,caa2) ∈ is_nested )
⇒ participants_of_caaction(caa1) ⊆
participants_of_caaaction(caa2)) 

A participant can only enter one sibling nested CA action at a 
time

card(ran({p,c | p ∈ setpar Λ c ∈ CAACTION Λ
c=last(caaction_of_participants(p))})) = 1
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Coordinated Exception 
Handling

A CA action is set to an exceptional state if all of its 
participants are in the exceptional state

∀ (caa). (caa ∈ caaction Λ
caaction_state(caa)=caa_exceptional
⇒ ∀ (p).(p ∈ participant_of_caaction(caa)
⇒ (last(participant_state(p)) ∈ EXCEPTIONAL_STATE)))
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From the B Specification to 
the Development Support
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Refinement
In order to have an implementation of the CA 
action’s runtime support, the abstract 
machines are refined

B operations offered as a programming library
Existing libraries are used
To be able to prove the correctness of the 
implementation

Formal specification of the behavior of these 
methods
Prove that the refinement of the machines that 
use these methods are correct
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Declarative Language
XML-based declarative language for building CA 
action-based systems

<caaction name=“nmtoken”? >
<composedActions> ?

<action name=“qname” /> *
</composedActions>
<nestedActions> ?

<nested name=“nmtoken” /> *
</nestedActions>
<external> ?

<object name=“nmtoken” /> *
</external>
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Participant Behavior
<participants>

<participant name=“nmtoken”> +
<var>

<element name=“nmtoken” type=“qname”/> *
</var>
<behavior>

<normal>
statements …

</normal>
<exceptional handle=“qname”> *

statements …
</exceptional>

</behavior>
</participant>

</participants>
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Statements
<invoke action=“qname” input=“qname”? output=“qname”?/>

create_composed
<send rcpt=“qname” input=“qname”/>

send_message
<recv from=“qname” output=“qname”/>

recv_message
<call rcpt=“qname” input=“qname” output=“qname” />

{read,write}_object
<assign element=“qname” value=“xpath”/>

set_value
<raise exception=“qname” message=“qname”? />

raise_exception
<nest nestedaction=“qname”? > behavior … </nest>

create_nested
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Future Work

Development  support
Implementation of a compiler/code 
generator for the declarative language

Extend the base CA Action model using 
the formal model

Already used to introduce CA Action 
composition
Relax atomicity properties
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Web Services Composition 
Actions
Relaxes the transactional requirements over external 
interactions

Relaxed atomicity
Compensations when available : semantic atomicity


