Formalizing Dependability
Mechanisms in B:
From Specification to

1 Development Support

G. Ferda Tartanoglu

ARLES Research Project, INRIA Rocquencourt

In collaboration with:
V. Issarny (ARLES, INRIA Rocquencourt)
N. Levy (PRISM, U. Versailles Saint-Quentin-en-Yvelines)
A. Romanovsky (U. Newcastle upon Tyne)

Introduction

= We formalize the notion of Coordinated
Atomic Actions using the B method

= Validate dependability mechanisms
= Transactional access to external objects
= Coordinated Exception Handling
= Atomicity

= Provide an XML-based declarative language for

building dependable systems

= The B formal specification is refined to obtain an
implementation of the associated runtime support

Architecting Dependable
Systems with Coordinated
1 Atomic Actions

Coordinated Atomic Actions

= Coordinated Atomic Actions (J. Xu, B. Randell, A.
Romanovsky et al., 1995)

= Structuring mechanism for developing dependable
concurrent systems
= Atomic actions : for controlling cooperative concurrency
= Coordinated error recovery using exception handling

= Transactions : coherency of shared external resources

Pl

R VNN
S T

Transaciians

¥] X
L _

-

1
L]
¥

N

CA Actions Composition

= Allows the design of distributed systems built out of several CA
actions [Tartanoglu et al., ICSE-WADS 2002]

Irrveldgency
SearchITip FaakTrip
Liser -
Trave! l/ _________ T l/ _________ B
g -1
L] ¥
D) exception
Aol Haie! coardinated
Fii ghi] Fiight) eavely
partici pants:
— normal
Hotel Booking
System i | | 3 — — — vrating
-) - I
Flight Booking] -
System C 3 E 3 —_— crceptional
Banking
Eystem__= ¥ L= -
- -))

!'_ Specifying CA Actions in B

= Offer a general framework that can be
instantiated to describe the implementation of a
specific system that is developed using CA
actions

= Dependability properties associated with CA
actions will be enforced for any system based on
them

i The B Method

= A model-based (state-based) method built
on set theory and predicate logic and
extended by generalized substitutions

= Specifications are represented by abstract
machines

= A machine encapsulates operations and
states

= Set of variables

Refinement in B

Abstract specification

Refinement step 1

1

Refinement step 2

Refinement
2

I Refinement step 3

Implemen- Implementation
tation

i Proofs

= In B, we prove that

= All operations preserve the invariants of
the machine

« Implementations and refinements
preserve the invariant and the behavior
of the initial abstract machine

i B Tools

= Atelier B (ClearSy, France)
= B-Toolkit (B-Core, UK)
= Both tools include

= type checker

= animator

= proof obligation generator

=« theorem prover

= code translators
= documentation facilities

i Modelling CA Actions

= Structure of the B specification

CONSTANTS |

\
\

\\
D\

OBJECTS

PARTICIPANTS

CAACTIONS

with
composition

http://www-rocq.inria.fr/~tartanog/dsos/

N

11

States and Operations

= CAACTIONS abstract machine attributes
= CAACTION_STATE={caa_normal,caa_exceptional}
= Caaction_state € caaction —» CAACTION_STATE
= participant_of_caaction e caaction — P(participant)
= Caaction_of_participant e participant — seq(caaction)
= Caaction_ext_objects e caaction <> objects

= Pre-conditioned operations
= Create_{main,nested,composed}_caaction
= {send,recv}_message
= {read,write}_object(participant,participant,message)
= raise_exception(participant,exception)
= propagate_exception(participant)
= abort_{main,nested,composed} (caaction)

= terminate_{main,nested,composed} (caaction) 1>

Formalizing Dependability
1 Mechanisms

= Transactions on external objects
= Atomicity of CA Actions
= Coordinated exception handling

13

Transactions on External

i Objects

= Participants setpar of nested CA action

caal can only

access subset setobj of
'S associated to

external objec
containing CA

action caa’?

= Vobj.(obj € setobj = obj e caaction_ext_objects[{caa2}])

ryirg

14

Atomicity of CA Actions

= Participants of nested CA action caal are also participants of
containing action caa?

= V (caal,caa?).((caal € caaction A caa2 < caaction A
(caal,caa?) < is_nhested)
— participants_of_caaction(caal) c
participants_of_caaaction(caa2))

= A participant can only enter one sibling nested CA action at a
time

« card(ran({p,c | p € setpar A c € CAACTION A

c=last(caaction_of_participants(p))})) = 1

15

Coordinated Exception

i Handling

= A CA action is set to an exceptional state if all of its
participants are in the exceptional state
= V (caa). (caa € caaction A

caaction_state(caa)=caa_exceptional

= V (p).(p € participant_of_caaction(caa)
= (last(participant_state(p)) € EXCEPTIONAL_STATE)))

Pl

Al

Coardineted Excoption
Handling

P2

All

7\

\

P3

/

exoapt fan

Tronsociions

11

16

From the B Specification to
 the Development Support

17

i Refinement

= In order to have an implementation of the CA
action’s runtime support, the abstract
machines are refined

= B operations offered as a programming library
x Existing libraries are used

= To be able to prove the correctness of the
implementation

« Formal specification of the behavior of these
methods

= Prove that the refinement of the machines that
use these methods are correct

18

i Declarative Language

= XML-based declarative language for building CA
action-based systems
<caaction name="“nmtoken”? >
<composedActions> °?
<action name=“gname” /> *
</composedActions>
<nestedActions> °?
<nested name=“‘nmtoken” /> *
</nestedActions>
<external> 7
<object name=“nmtoken” /> *
</external>

19

Participant Behavior

<participants>
<participant name=“nmtoken”> +
<var>
<element name=“nmtoken” type=“gname”/> *
</var>
<behavior>
<normal>
statements ..
</normal>
<exceptional handle=“gname”> *

Sstatements ..
</exceptional>
</behavior>
</participant>
</participants>

20

i Statements

<invoke action="“gname” input=“gname”? output=“gname”?/>
= create composed

<send rcpt=“gname” input=“gname” />

= send message

<recv from=“gname” output=“gname”/>

= recv message

<call rcpt=“gname” input=“gname” output=“gname” />
= {(read,write} object

<assign element=“gname” wvalue=“xpath”/>

= set value

<raise exception=“gname” message=“gname”? />

= raise exception

<nest nestedaction=“gname”? > behavior .. </nest>
= create nested

21

i Future Work

= Development support

=« Implementation of a compiler/code
generator for the declarative language

= Extend the base CA Action model using
the formal model

= Already used to introduce CA Action
composition

» Relax atomicity properties

22

Web Services Composition
Actions

= Relaxes the transactional requirements over external
interactions

= Relaxed atomicity
= Compensations when available : semantic atomicity

TraveldAgent WSCA coordinited e ey don
User Il ling Trvelidng the wser
-
bk
Treivel request 1.II1‘:|‘|":I.i|‘:Ib:
/ L
Joint Booking WSC.
cancell=d
Flighr i
-
unavailable
Honel
Herel f
L
| | ¥ Airline Web Service
reservation v I:n::n::nla.:III cancel Hetel Web Servics

reservation reservation

23

