
Classification of quality attributes for predictability in component-based
systems

Ivica Crnkovic1, Magnus Larsson2

1Mälardalen University, Department of Computer Science and Engineering
Box 883, 721 23 Västerås, Sweden, ivica.crnkovic@mdh.se, http://www.idt.mdh.se/~icc

2ABB Corporate Research, Västerås, Sweden, magnus.larsson@mdh.se

Abstract
One of the main objectives of developing

component-based software systems is to enable
integration of components which are perceived as
black boxes. While the construction part of the
integration using component interfaces is a standard
part of all component models, the prediction of the
quality attributes of the component compositions is
not fully developed. This decreases significantly the
value of the component-based approach to building
dependable systems. This paper classifies different
types of relations between the quality attributes of
components and those of their compositions. The types
of relations are classified according to the possibility
of predicting the attributes of compositions from the
attributes of the components and according to the
impacts of other factors such as system environment or
software architecture. Such a classification can
indicate the efforts which would be required to predict
the system attributes that are essential for system
dependability and in this way, the feasibility of the
component-based approach in developing dependable
systems.

1. Introduction

Component-based development (CBD) is of great
interest to the software engineering community and has
achieved considerable success in many engineering
domains. CBD, has been extensively used for several
years in desktop environments, office applications, e-
business and in general in Internet- and web-based
distributed applications. In many other domains, for
example dependable systems, CBD is utilized to a lesser
degree for a number of different reasons. An important
reason is the inability of component-based
technologies to deal with quality attributes as required
in these domains.

In CBD one requirement is that comp onents should
be selected and integrated in an automatic and efficient
way. This goal is achieved for the functional part;
components are selected and integrated through their

interfaces. The question is if a similar approach can be
applied to quality attributes. For component-based
systems crucial questions in relation to quality
attributes are the following:
- Given the system attributes , which attributes are

required of the components concerned?
- Given a set of component attributes, which system

attributes are predictable?
- How can the quality attributes of a system be

accurately predicted from the attributes of
components which are determined with certain
accuracy.

- To which extent, and under which constraints are
the emerging system attributes (i.e. the system
attributes non-existent on the component level)
determined by the component attributes ?

These and similar questions have been addressed at
a series of CBSE workshops [3], and particular models
of certain attributes have been analyzed [5,9], but so far
very little work has been done in the systematization
and classification of quality attributes in accordance
with the questions above.

In this paper, our intention is to analyze the different
methodologies which can be used for predicting system
behavior from the attributes of the components
involved. These attributes can be classified according
to the ability of component-based technologies to
specify them and provide methods for expressing their
compositions, i.e. the ability to predict the attributes of
component assemblies. Such a classification indicates
the feasibility of the component-based approach for
building dependable systems.

2. A Classification Framework

The quality model defined in ISO/EIC 9126-1
“Software engineering - product quality” standard
classifies quality attributes as external, visible on the
system level, and internal, properties of subsystems
and components. Relation between internal and external
quality attributes is not unambiguous; an internal
quality attribute may have impact on different external

quality attributes and of course an external quality
attribute is a result of combination of internal attributes.

The classification we consider here is related to
composability, i.e. propagation and impact of internal
quality attributes to the external. We classify attributes
according to the principles applied in deriving the
system attributes from the attributes of the components
involved. Instead of the term “system”, we use a
generic term Assembly (A) which simply denotes a set
of interacting components. Such an assembly can be a
part of a software system (for example a functional unit,
or a subsystem), or the entire system. The only
characteristic we want to relate to an assembly is a set
of integrated components. Some attributes , however,
cannot be related only to an assembly, but are explicitly
related to the entire system and its interaction with the
environment. In such cases we refer to a System (S).

According to composition principles we can
distinguish the following types of attributes:
a. Directly composable attributes. An attribute of an

assembly which is a function of, and only of the
same attribute of the components involved.

b. Architecture-related attributes. An attribute of an
assembly which is a function of the same attribute
of the components and of the software
architecture.

c. Derived attributes. An attribute of an assembly
which depends on several different attributes of
the components.

d. Usage-depended attributes. An attribute of an
assembly which is determined by its usage profile.

e. System environment context attributes. An
attribute which is determined by other attributes
and by the state of the system environment.

Let us discuss these cases and give examples in the
following subsections.

a. Directly composable attributes

Definition: A directly composable attribute of an
assembly is a function of, and only of the same
attribute of the components.

))(,),2(),1(()(

}1{

component assembly, attribute,

ncPcPcPfAP

niicA

cAP

K=

≤≤=

===

 (1)

Note that the attribute of the assembly is the same
as the component attribute. Further, the component
technology is not explicitly specified in the relation (1).
However it is obvious that the function f itself is
dependent on the technology since the mechanisms to
assemble components is provided by the component
technology.

An example of an attribute of this type is the static
memory size of a component or an assembly, this is also
known as the memory footprint. The simplest
composition model is the calculation of the static
memory of an assembly as the sum of the memories
used by each component. A more complicated model
can be found in the Koala component model [10], in
which additional parameters, such as size of glue code,
interface parameterization and diversity are taken into
account (i.e. the parameters determined by the
component technology used).

The attributes of this type can be calculated directly
from the component attributes and the particular
technology. There are no other assumptions and
therefore these attributes are the easiest to specify and
calculate. This does not mean that the composition
functions are easy or even possible to express formally.
However the fact that the attribute is visible on
component and assembly level, and that the assembly
attribute is dependent only on the component
attributes simplifies the prediction procedure.

b. Architecture-related Attributes

Definition: An architecture-related attribute of an
assembly is a function of the same attribute of the
components and of the software architecture.

 rearchitectu software
)),(,),2(),1(()(

}1{

=
=

≤≤=

SA
SAncPcPcPfAP

niicA

K (2)

In this case the assembly attributes depend not only
on the component attributes but on the architectural
structure. The software architecture is often used as a
means for improving particular attributes without
changing the component attributes. These types of
attributes can be tuned by different architectural
solutions or variations.

An example of such an attribute is a performance
predictability model for J2EE (Java 2 Platform,
Enterprise Edition) application [11]. A typical
application implemented in this technology is a
distributed web-based application in which the
variability in scalability is achieved by it being possible
to add new clients and new computational components
to the server. To achieve concurrency the components
are executed in different threads. A possible extension
variation of this architecture is the possibility to include
several nodes with web servers and business
applications. The performance of the system is related
to the number of clients and the number of server
components. A typical requirement for such
applications is the performance and scalability, i.e. the

dependencies between the performance and number of
clients and active business components. The form of
the relation in [11] shows that it is possible to calculate
the optimal number of threads in relation to the number
of clients to achieve a minimum respond time per
transaction.

c. Derived Attributes

Definition: A derived attribute of an assembly is an
attribute that depends on several different attributes of
the components.

attributescomponent...1

attributeassembly

)(,),2(),1(

),(2,),2(2),1(2

),(1,),2(1),1(1

)(

}1{

=

=



















=

≤≤=

kPP

P
nckPckPckP

ncPcPcP
ncPcPcP

fAP

niicA

L

M
L

L

(3)

In the same way that a function of an assembly is
more than the sum of the component functions, there
are attributes that are the result of the composition of
different component attributes.

An example of such an attribute in a real-time system
is the end-to-end deadline (a maximal response time)
that is a function of different component attributes,
such as worst case execution time (WCET) and
execution period

Emerging attributes, i.e. attributes that are pertinent
on a system (or an assembly) level but are not visible
on the component level are of special interest in this
category. For such attributes the major challenge is to
identify the attributes of the components that have
impact on them.

d. Usage-dependent Attributes

Definition: A Usage-dependent attribute of an
assembly is an attribute which is determined by its
usage profile.

The behavior of an assembly and consequently of a
system depends not only on the internal attributes of
the components and their composition but also on the
particular use of the system. A usage profile Uk which
determines a particular attribute Pk must be transformed
to the usage profile U´i,k to determine the attributes of
the components.

Attributes of this type introduce particular problems
as they depend on the use of the system. This means
that the component developers must predict as far as
possible the use of the component in different systems
– which may not yet exist. A second problem is the
transfer of the usage profile from the assembly (or from
the system) to the component. Even if the usage profile
on the assembly level is specified, the usage profile for
the components is not easily determined especially
when the assembly is not known.

A particular problem with this type of attribute is the
limited possibility of reusing measured and derived
attributes. If the usage profile is changed, the attributes
must be re-calculated or re-measured. An example of
such an attribute is reliability which is based on a usage
profile. The question arising here is the possibility of
reusing previous specifications of the attribute [2].

e. System Environment Context Attributes

Definition: A system environment context attribute
is an attribute which is determined by other attributes
and by the state of the system environment.

profileusagecomponent,'

profileusageassembly
profileusageparticularafora

,:)),',((),(

=

=
=

∈=

kiU
kU

ttributeP

NkikiUicPfkUAP

 (5)

The attribute depends not only on the system
attribute determined by the usage profile, but also the
environment in which the system is used. An example
of such an attribute is safety. As the safety attribute is
related to the potential catastrophe, it is obvious that in
different circumstances, the same attribute may have
different degrees of safety even for the same usage
profile. We can argue that these attributes are out of
the scope of the predictable assembly, but as such
attributes are also dependent on component attributes,
this relation is important. The analysis approach for
such attributes is opposite to the composition; the
system environment and the system attributes define
the requirements for component attributes.

3. Predictability of dependability attributes

We use the definition of dependability from [1] in
which it is defined as the ability of a system to deliver
service that can be trusted and the ability of a system
to avoid failures that are more severe and frequent than
are acceptable to the users. We discuss the
dependability attributes [1], namely reliability,
availability, safety, confidentiality, integrity and
maintainability.

 profileusagecomponent,'

profileusageassembly
profileusageparticularaforattribute

,:)),',((),(

=

=
=

∈=

kiU
kU

P

NkikiUicPfkUAP

 (4)

Reliability
The definition of reliability originates from the

probability that a system will fail within a given period
of time. The probability of failure is directly dependent
on the usage profile and context of the module under
consideration. One possible approach to the calculation
of the reliability of an assembly is to use the following
elements [7,8]:
• Reliability of the components – Information that

has been obtained by testing and analysis of the
component given a context and usage profile

• Usage paths – Information that includes usage
profile and the assembly structure. Combined, it
can give a probability of execution of each
component, for example by using Markov chains.

A model based on these assumptions needs the
means for calculating or measuring component
reliability and an architecture which permits analysis of
the execution path. Component models that specify
provided and required interface, or implement a port-
based interface make it possible to develop a model for
specifying the usage paths. This is an example in which
the definition of the component model facilitates the
procedure of dealing with the quality attribute. The
system reliability can be analyzed by (re)using the
reliability information of the assemblies and
components (which can be derived or measured).

Availability

Availability is defined as the probability of a module
being available when needed.

 In the same way as reliability, availability can be
obtained by measurements through the usage profiles.

The difference between reliability and availability is
that availability is not only dependent of the system
but on the repair process, which implies that the
availability of an assembly cannot be derived from the
availability of the components in the way that its
reliability can be derived from the reliability of its
components. If availability is treated in a larger context,
non run-time attributes must be taken into a
consideration. Availability is related to the maintenance
and support of the components constituting the
assembly.

Safety

Safety is an attribute involving the interaction of a
system with the environment and the possible
consequences of the system failure. It is a system
attribute, neither a component nor an assembly
attribute. Its safety depends on where and how the
system is deployed. Since safety is a system attribute

that is dependent on the system’s environment, a
means for analyzing safety is a top-down approach, a
decomposition rather than composition. In the analysis
process, the components’ attributes are used as
selection criteria or are identified as demands that
should be met. For this reason a component-based
approach might not have the apparent advantage – on
the contrary, if the starting idea is a reuse of existing
components, the components’ attributes cause new
constraints and in this way might decrease the system
safety. However, when the constraints are identified
and unambiguously related to the constraints on the
system level, the system safety can increase. Also,
some attributes, such as reliability, might improve the
accuracy of the system safety prediction, especially if
known or measured when used in other applications.

Confidentiality and Integrity

Security aspects, confidentiality and integrity,
defined as follows apply to dependable systems.
• Confidentiality is defined as a measure of the

absence of unauthorized disclosure of information;
• Integrity is defined as the absence of improper

system state alterations.
From the definitions it is apparent that these attributes
are not directly measurable and composable, and this is
the main obstacle to the development of a theory for
their prediction.

Confidentiality and integrity are emerging system
attributes that can be tested and analyzed on the
system and architectural level but not on the
component level. Usage profiles can be used for testing
and analysis, but it is impossible to automatically derive
these attributes from the component attributes.

Maintainability

Maintainability is related to the activities of people
and not of the system itself. Component technologies
might provide support for dynamic
upgrading/deployment of components which can
improve the maintainability of a system. In this case the
maintainability is much a matter of component
technology, and not of the component itself. The
system architecture thus has an impact on maintenance.
There are many parameters that can be measured and
then used to estimate the maintainability of a code (for
example McCabe Metrics for complexity [19]). These
parameters can be identified for each component. It is
however not clear how these parameters can be defined
on the assembly level. One possibility is to define a
mean value of all components normalized per lines of
code.

4. Current State of the Work

To demonstrate the classifications we have provided
an extensive list of quality attributes and evaluated the
classification by performing a survey on twelve
researchers [4]. In 67% of the answers we have the
same classification as the researchers. Our
classification is performed under careful consideration
with the classification definitions in mind. The
researchers did not have the same background
information. They were not overly confident in their
answers; around 60% answers they have confidence on
the low side, mainly because of vague definitions of
quality attributes.

We have also demonstrated procedures for certain
attributes (latency and configuration consistency) [4].

For dependable systems the questions are focused
on which attributes should be part of components
specifications that can be used for compositional
reasoning and also for a top-down analysis . In
particular we focus on automotive domain in which we
build predictable enabled component model [6]. In the
current phase the model is being developed, in which
the safety and reliability quality attributes are being
concerned. The purpose of the research is to examine
the ability of component-based approach to be used for
safety-critical systems in the automotive domain.

5. Conclusion and Future Work

A full advantage of component-based approach will
be achieved when not only the functional parts are
reused, but also when this approach leads to easier and
more accurate predictability of the system behavior. In
component-based approach, many system attributes
can be derived from the component attributes, this
being more accurate if a support for defining and
measurements of the attributes are built in the
component technologies and if there are well defined
restriction rules n using these technologies.

The quality attributes can be classified with respect
to types of composition, in which each type is
characterized by the required input for obtaining
predictability on the system level. Some types show
clear composable characteristics, while others are not
directly related to compositions.

In spite of diversity of attributes, technologies, and
theories, it should be possible to create reference
frameworks that by identifying type of composability of
attributes can help in estimation of accuracy and efforts
required for building component-based systems in a
predictable way.

6. References
 [1] Avižienis A., Laprie J.-C., and Randell B.,

"Fundamental Concepts of Computer System
Dependability", In Proceedings of IARP/IEEE-
RAS Workshop on Robot Dependability:
Technological Challenge of Dependable,
Robots in Human Environments, 2001.

 [2] Crnkovic I. and Larsson M., Building Reliable
Component-Based Software Systems, ISBN 1-
58053-327-2, Artech House, 2002.

 [3] Crnkovic I., Schmidt H., Stafford J., and Wallnau
K. C., "5th Workshop on Component-Based
Software Engineering: Benchmarks for
Predictable Assembly", In Software Engineering
Notes, volume 27, issue 5, 2002.

 [4] Magnus Larsson, Predicting Quality Attributes
in Component-based Software Systems,
Mälardalen University, 2003.

 [5] Moreno G. A., Hissam S. A., and Wallnau K. C.,
"Statistical Models for Empirical Component
Properties and Assembly-Level Property
Predictions: Toward Standard Labeling", In
Proceedings of 5th Workshop on component
based software engineering, 2002.

 [6] SAVE, SAVE, Component-based design for
Safety-critical vehicular systems, 2004.,
http://www.mrtc.mdh.se/SAVE/

 [7] Schmidt H., "Trustworthy components:
compositionality and prediction", Journal of
Systems & Software, volume 65, issue 3, pp. 215-
225, 2003.

 [8] Schmidt H. and Reussner R. H., " Parametrized
Comtracts and Adapter Synthesis", In
Proceedings of 5th ICSE workshop on CBSE,
2001.

 [9] Stafford J. and mcGregor J., "Issues in Predicting
the Reliability of Composed Components", In
Proceedings of 5th workshop on component
based software engineering, 2002.

 [10] van Ommering R., "The Koala Component
Model", in Crnkovic I. and Larsson M. (editors):
Building Reliable Component-Based Software
Systems , ISBN 1-58053-327-2, Artech House,
2002.

 [11] Yan L., Gorton I., Liu A., and Chen S.,
"Evaluating the scalability of enterprise
javabeans technology", In Proceedings of 9th
Asia-Pacific Software Engineering Conference,
pp. 74-83, IEEE, 2002.

