
An Architecture for Versatile Dependability

Tudor Dumitraş and Priya Narasimhan∗

Carnegie Mellon University
Pittsburgh, PA 15213

USA
tdumitra@ece.cmu.edu priya@cs.cmu.edu

Abstract

Versatile dependability is a software architecture that aims
to quantify the trade-offs among a system’s fault-tolerance,
performance and resource requirements, and that provides
system-level “knobs” for tuning these trade-offs. We pro-
pose a visual representation of the trade-off space of de-
pendable systems, and discuss design principles that al-
low the tuning of such trade-offs along multiple dimen-
sions. Through a case study on tuning system scalability
under latency, bandwidth and fault-tolerance constraints,
we demonstrate how our approach covers an extended re-
gion of the dependability design space.

1. Introduction
Oftentimes, the requirements of a dependable system are
conflicting in many ways. For example, optimizations for
high performance usually come at the expense of using
additional resources and/or weakening the fault-tolerance
guarantees. It is our belief that these conflicts must be
viewed astrade-offsin the design space of dependable sys-
tems and that only a good understanding of these trade-offs
can lead to the development of useful and reliable systems.
Unfortunately, existing approaches offer only point solu-
tions to this problem because they hard-code the trade-offs
in their design choices, rendering them difficult to adapt to
changing working conditions and to support evolving re-
quirements over the system’s lifetime.

As an alternative, we proposeversatile dependability,
a novel design paradigm for dependable distributed sys-
tems that focuses on the three-way trade-off between fault-
tolerance, quality of service (QoS) – in terms of perfor-
mance or real-time guarantees – and resource usage. This
framework offers a better coverage of the dependability
design-space, by focusing on an operating region (rather
than an operating point) within this space, and by provid-

∗This work has been partially supported by the NSF CAREER grant
CCR-0238381 and also in part by the General Motors Collaborative Re-
search Laboratory at Carnegie Mellon University.

ing a set of “knobs” for tuning the trade-offs and properties
of the system. This paper makes three main contributions:
• A new concept, versatile dependability, directed at

achieving tunable, resource and QoS aware fault-
tolerance in distributed systems (Section 2);

• A software architecture for versatile dependability
with four design goals: tunability, quantifiability,
transparency and ease of use (Section 3);

• A case study on using our architecture to tune an im-
portant system-level property, scalability (Section 4).

2. Versatile Dependability
We visualize the development of dependable systems

through a three-dimensionaldependability design-space, as
shown in Figure 1, with the following axes: (i) thefault-
tolerance“levels” that the system can provide, (ii) thehigh
performanceguarantees it can offer, and (iii) the amount
of resourcesit needs for each pairwise{fault-tolerance,
performance} choice. In contrast to existing dependable
systems, we aim to span larger regions of this space be-
cause the behavior of the application can be tuned by ad-
justing the appropriate settings. We evaluate the wide va-
riety of choices for implementing dependable systems, and
we quantify the effect of these choices on the three axes
of our {Fault-Tolerance× Performance× Resources} de-
sign space. From this data, we can extract the interdepen-
dencies among the three conflicting properties, and we can

Performance

R
es

ou
rc

es

Fault−Tolerance

Existing Dependable Systems

Versatile Dependability

Figure 1. Design space of dependable systems.

Table 1. From high-level to low-level knobs
High-level
Knobs

Scalability Availability Real-Time Guar-
antees

Low-level
Knobs

Replication
Style, #Repli-
cas

Replication
Style, Check-
pointing
Frequency

Replication
Style, #Replicas,
Checkpointing
Frequency

Application
Parameters

Frequency of
Requests, Size
of Requests
and Responses,
Resources

Size of State,
Resources

Frequency of Re-
quests, Size of
Requests and Re-
sponses, Size of
State, Resources

learn how to tune, appropriately, the trade-offs among fault-
tolerance, performance and resource usage. The general
versatile dependability framework consists of:

1. Monitoring various system metrics (e.g., latency, jitter,
CPU load) in order to evaluate the conditions in the
working environment [9];

2. Defining contracts for the specified behavior of the
overall system;

3. Specifying policies to implement the desired behavior
under different working conditions;

4. Developing algorithms for automatic adaptation to the
changing conditions (e.g., resource exhaustion, intro-
duction of new nodes) in the working environment.

Versatile dependability was developed to provide a set of
control knobs to tune the multiple trade-offs. There are two
types of knobs in our architecture: high-level knobs, which
control the abstract properties from the requirements space
(e.g., scalability, availability), and low-level knobs, which
tune the fault-tolerant mechanisms that our system incorpo-
rates (e.g., replication style, number of replicas). The high-
level knobs, which are the most useful ones for the system
operators, are influenced by both the settings of the the low-
level knobs that we can adjust directly (e.g., the replication
style, the number of replicas, the checkpointing style and
frequency), and the parameters of the application that are
not under our control (e.g., the frequency of requests, the
size of the application state, the sizes of the requests and
replies). Through an empirical evaluation of the system, we
determine in which ways the low-level knobs can be used to
implement high-level knobs under the specified constraints
(see Table 1), and we define adaptation policies that effec-
tively map the high-level settings to the actual variables of
our tunable mechanisms.

3. The System Architecture
Our versatile dependability framework is an enhancement
to current middleware systems such as CORBA or Java
(which lack support for tunable fault-tolerance). The tun-
ing and adaptation to changing environments are done in a
distributed manner, by a group of software components that
work independently and that cooperate to agree and execute
the preferred course of action.

These efforts are part of the MEAD (Middleware for
Embedded Adaptive Dependability) project [9] which is
currently under development at Carnegie Mellon Univer-
sity. While we currently focus on CORBA systems, which
seemed the ideal starting point for this investigation given
our previous experiences,1 our approach is intrinsically in-
dependent of the middleware platform and can be applied
to other systems as well.

3.1. A Tunable, Distributed Infrastructure
To ensure that our overall system architecture enables both
the continuous monitoring and the simultaneous tuning of
various fault-tolerance parameters, we have four distinct de-
sign goals for our software architecture:

• Tunability and homogeneity:having one infrastruc-
ture that supports multiple knobs and a range of differ-
ent fault-tolerant techniques;

• Quantifiability: using precise metrics to evaluate the
trade-offs among various properties of the system and
to develop benchmarks for evaluating these metrics;

• Transparency: enabling support for replication-
unaware and legacy applications;

• Ease of use: providing simple knobs that are intu-
itively easy to adjust.

We assume a distributed asynchronous system, subject
to hardware and software crash faults, transient communi-
cation faults, performance and timing faults. The architec-
ture of our system is illustrated in Figure 2. At the core of
our approach is thereplicator, a software module that can
be used to provide fault-tolerance transparently to an appli-
cation. The replicator module is implemented as a stack of
sub-modules with three layers. The top layer is the interface
to the CORBA application; it intercepts the system calls in
order to understand the operations of the application. The
middle layer contains all the mechanisms for transparently
replicating processes and managing the groups of replicas.
The bottom layer is the interface to the group communica-
tion package and is an abstraction layer to render the repli-
cator portable to various communication platforms.

The unique feature of the replicator is that its behavior is
tunable and that it can adapt dynamically to changing con-
ditions in the environment. Given all the design choices for
building dependable systems, the middle layer of the repli-
cator can choose, from among different implementations,
those that are best suited to meet the system’s requirements.

Library Interposition This allows the replicator to per-
form tasks transparently to the application [7]. The replica-
tor is a shared library that intercepts and redefines the stan-
dard system calls to convey the application’s messages over
a reliable group communication system. As the replicator

1MEAD was born out of the lessons learned in developing the fault-
tolerant Eternal system [8]: real-time, resources and adaptation were not
considered in Eternal’s design.

Group Communication

Client

CORBA

Replicator

Server

CORBA

Replicator

Host OS Host OS

Host
OS

R

C
R

C

R

C

Cli

Srv

Srv

Networking

N
et

w
or

ki
ng

R
ep

lic
at

ed
C
lie

nt

R
ep

lic
at

ed
Ser

ve
r

Replicated

state

Tunable mechanisms
Replication

style

#replicas

Interface to application / CORBA
(modified system calls)

Tunability

Interface to Group Communication

Figure 2. System Architecture.

mimics the TCP/IP semantics, the application continues to
believe that it is using regular CORBA TCP/IP connections.

Group Membership and Communication We are cur-
rently using the Spread toolkit [1] for group communica-
tion. This package provides an API for joining/leaving
groups, detecting failures and reliable multicasting.

Tunable Fault-Tolerant Mechanisms We provide fault-
tolerant services to both CORBA client and server applica-
tions by replicating them in various ways, and by coordi-
nating the client interactions with the server replicas. We
implement replication at the process level rather than at the
object level because a CORBA process may contain sev-
eral objects (that share “in-process” state), all of which have
to be recovered, as a unit, in the event of a process crash.
Maintaining consistent replicas of the entire CORBA ap-
plication is, therefore, the best way to protect our system
against software (process-level) and hardware (node-level)
crash faults.

We implement tunability by providing a set of low-level
knobs that can adjust the behavior of the replicator, such as
the replication style, the number of replicas and the check-
pointing style and frequency (see Table 1). We currently
support active and passive replication, with the intention
of extending our infrastructure to handle other replication
styles (e.g., semi-active). Note that versatile dependability
does not impose a “one-style-fits-all” strategy; instead, it al-
lows the maximum possible freedom in selecting a different
replication style for each CORBA process and in changing
it at run-time, should that be necessary.

Replicated State As the replicator is itself a distributed
entity, it maintains (using the group communication layer)
within itself an identically replicated object with informa-
tion about the entire system (e.g., group membership, re-
source availability at all the hosts, performance metrics, en-
vironmental conditions). All of the decisions to re-tune the
system parameters in order to adapt to changing working
conditions are made in a distributed manner by a determin-
istic algorithm that takes this replicated state as its input.

This has the advantage that the decisions are based on data
that is already available and agreed upon, and, thus, the dis-
tributed adaptation process is very swift. This is accom-
plished through MEAD’s decentralized resource monitor-
ing infrastructure [9].

Adaptation Policies The replicator monitors various sys-
tem metrics and generates warnings when the operating
conditions are about to change. If the contracts for the
desired behavior can no longer be honored, the replicator
adapts the fault-tolerance to the new working conditions (in-
cluding modes within the application, if they happen to ex-
ist). This adaptation is performed automatically, according
to a set of policies that can be either pre-defined or intro-
duced at run time; these policies correspond to the high-
level knobs described in Section 2. For example, if the re-
enforcement of a previous contract is not feasible, versatile
dependability can offer alternative (possibly degraded) be-
havioral contracts that the application might still wish to
have; manual intervention might be warranted in some ex-
treme cases. As soon as all of the instances of the replicator
have agreed to follow the new policy, they can start adapting
their behavior accordingly.

3.2. Test Bed and Performance
We have deployed a prototype of our system on a test-bed
of seven Intel x86 machines. Each machine is a Pentium
III running at 900 megahertz with 512MB RAM of mem-
ory and running RedHat Linux 9.0. We employ the Spread
(v3.17.01) group communication system [1] and the TAO
real-time ORB [3] (v 1.4). In our experiments, we use a

Application
15 µs

ORB
398 µs

Replicator
154 µs

Group
Communication

620 µs

Figure 3. Break-down of the average latency.

1

2

3

4

5 0

1

2

0

1000

2000

3000

4000

5000

6000

7000

8000

Fault−Tolerance
[#faults tolerated]

Round−Trip Latency

Scalability
[#clients]

A
ve

ra
ge

 L
at

en
cy

 [µ
s]

Warm Passive
Replication

Active
Replication

(a)

1
2

3
4

5 0

1

2
0

1

2

3

4

5

6

Fault−Tolerance
[#faults tolerated]

Bandwidth

Scalability
[#clients]

B
an

dw
id

th

[M
by

te
s/

s]

Active Replication

Warm Passive
Replication

(b)
0

1
2

3
4

5
6

0

2000

4000

6000

8000
0

1

2

3

4

5

Bandwidth
[Mbytes/s]

Scalability Tuning

Latency [µs]

S
ca

la
bi

lit
y

[#
cl

ie
nt

s]

(c)

Figure 4. Tuning the scalability of the system under fault-tolerance, latency and bandwidth constraints.

CORBA client-server test application that processes a cycle
of 10,000 requests.

Figure 3 shows a break-down of the average round-
trip time of a request transmitted through MEAD, as mea-
sured at the client (in a configuration with one client and
one server replica). We notice that the transmission de-
lay through the group communication layer is the domi-
nant contributor to the overall latency. The application pro-
cessing time is very small because we are using a micro-
benchmark; for a real application, the time to process the
request would be significantly higher. The replicator intro-
duces only 154µs overhead on average, a fairly small figure
compared to the latencies of the group communication sys-
tem and the ORB.

4. Case Study: Tuning Scalability
The first step in tuning the scalability is to gather enough
data about the system’s behavior in order to construct a pol-
icy for implementing a high-level knob (see Section 3.1).
We examine the average round-trip latency of requests, un-
der different system loads and redundancy levels (because
we were limited to eight computers, we ran experiments
with up to five clients and three server replicas). In Fig-
ure 4-(a), we can see that the active replication incurs a
much lower latency than warm passive replication, which
makes the round-trip delays increase almost linearly with
the number of clients. With five clients, passive replication
is roughly three times slower than active replication.

The roles are reversed in terms of resource usage. In Fig-
ure 4-(b), we notice that, although in both styles the band-
width consumption increases with the number of clients, the
growth is steeper for active replication. Indeed, for five
clients, active replication requires about twice the band-
width of passive replication. Thus, when considering the
scalability of the system, we must pay attention to the trade-
off between latency and bandwidth usage. While this is not
intuitively surprising, our quantitative data will let us deter-
mine the best settings for a given number of clients.

Implementing a “Scalability” Knob We would like to
implement a knob that tunes the scalability of the system

Table 2. Policy for Scalability Tuning.
Ncli 1 2 3 4 5

Configurationa A (3) A (3) P (3) P (3) P (2)
Latency [µs] 1245.8 1457.2 4966 6141.1 6006.2

Bandwidth [MB/s] 1.074 2.032 1.887 2.315 2.799
Faults Tolerated 2 2 2 2 1

Cost 0.268 0.443 0.669 0.825 0.895

aActive/Passive (number of replicas); e.g., A(3) = 3 active replicas.

under bandwidth, latency, and fault-tolerance constraints.
In other words, given a number of clientsNcli, we want to
decide the best possible configuration for the servers (e.g.,
the replication style and the number of replicas). Let us
consider a system with the following requirements:

1. The average latency shall not exceed 7000µs;
2. The bandwidth usage shall not exceed 3MB/s;
3. The configuration should have the best fault-tolerance

possible (given requirements 1–2);
4. Among all the configurationsi that satisfy the previous

requirements, the one with the lowest:

Costi = p
Latencyi
7000µs

+ (1− p)Bandwidthi
3MB/s

should be chosen, whereLatencyi is the measured la-
tency ofi,Bandwidthi is the measured bandwidth and
p is the weight assigned to each of these metrics.2

This situation is illustrated in Figure 4-(c). The hard lim-
its imposed by requirements 1 and 2 are represented by the
vertical planes that set the useful configurations apart from
the other ones. For each number of clientsNcli, we select
from this set those configurations that have the highest num-
ber of server replicas to satisfy the third requirement. If, at
this point, we still have more than one candidate configu-
ration, we compute the cost to choose the replication style
(the number of replicas has been decided during the previ-
ous steps). The resulting policy is represented by the thick

2The cost function is a heuristic rule of thumb (not derived from a rig-
orous analysis), that we use to break the ties after satisfying the first 3 re-
quirements; we anticipate that other developers could define different cost
functions. Here, we usep = 0.5 to weight latency and bandwidth equally.

Figure 5. Versatile dependability of the system.

line from Figure 4-(c), and its characteristics are summa-
rized in Table 2.

Note that, while for up to four clients, the system is able
to tolerate two crash failures, for five clients only one fail-
ure is tolerated because no configuration with three replicas
could meet the requirements in this case. This emphasizes
the trade-off between fault-tolerance and scalability under
the requirements 1–4, which impose hard limits for the per-
formance and resource usage of the system. Furthermore,
since in both the active and passive replication styles, at
least one of the metrics considered (i.e., bandwidth and la-
tency) increases linearly, it is likely that, for a higher load,
we cannot satisfy the requirements. In this case, the system
notifies the operators that the tuning policy can no longer be
honored and that a new policy must be defined in order to
accept any more clients.

Dependability Space Coverage Scalability is only one
possible trade-off that versatile dependability can tune; we
could similarly implement other high-level knobs such as
availability, survivability, etc. In Figure 5 (which is the
concrete instance of the abstraction of Figure 1, based on
our experiments), we can see the fault-tolerance, perfor-
mance and resource usage of each configuration of our sys-
tem (normalized to their maximum values), as well as the
region covered in the dependability space.3 By moving in-
side this region, versatile dependability can quantify many
trade-offs and it can implement various tuning policies.

5. Related Work
Among the first attempts to reconcile soft real-time and
fault-tolerance, the Delta-4 XPA project [2] used semi-
active replication (the leader-follower model) where all the
replicas are active but only one designated copy (the leader)
transmits output responses. In some conditions, this ap-
proach can combine the low synchronization requirements
of passive replication with the low error-recovery delays of

3Figure 5 represents the same data set as Figure 4; these different visual
representations emphasize the effect of dynamic changes on the effective
fault-tolerance and QoS experienced by the system.

active replication. The ROAFTS project [4] implements a
number of traditional fault-tolerant schemes in their rugged
forms and operates them under the control of a centralized
network supervision and reconfiguration (NSR) manager.

An offline approach to provisioning fault-tolerance was
adopted by the MARS project [6] and its successor, the
Time-Triggered Architecture (TTA) [5], which employ a
static schedule (created at design time) with enough slack
for the system to be able to recover when faults occur. This
approach does not provide a generic solution because it del-
egates the responsibility for reconciling fault-tolerance and
real-time requirements to the application designer.

6. Conclusions
Tunable software architectures are becoming important
for distributed systems that must continue to run, despite
loss/addition of resources, faults and other dynamic condi-
tions. Versatile dependability is designed to facilitate the
resource-aware tuning of multiple trade-offs between an
application’s fault-tolerance and QoS requirements. This
architecture provides abstract high-level knobs for tuning
system-level properties such as scalability and low-level
knobs for selecting implementation choices. As a case
study, we detail the implementation of such a scalability
knob based on our empirical observations, and present the
expanded trade-off space covered by our current implemen-
tation of versatile dependability.

References
[1] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss toler-

ant architecture and protocol for wide area group communica-
tion. In International Conference on Dependable Systems and
Networks, 2000.

[2] P. A. Barrett, P. G. Bond, and A. M. Hilborne. The Delta-4 ex-
tra performance architecture (XPA). InFault-Tolerant Com-
puting Symposium, pages 481–488, Newcastle upon Tyne,
U.K., June 1990.

[3] Douglas C. Schmidt et al. The design of the TAO real-time
Object Request Broker.Computer Communications, 21(4),
1998.

[4] K. H. Kim. ROAFTS: A middleware architecture for real-time
objectoriented adaptive fault tolerance support. InProceed-
ings of IEEE High Assurance Systems Engineering (HASE)
Symposium, pages 50–57, 1998.

[5] H. Kopetz and G. Bauer. The time-triggered architecture.Pro-
ceedings of the IEEE, 2003.

[6] H. Kopetz and W. Merker. The architecture of MARS. In
Proceedings of FTCS, page 50, 1985.

[7] J. R. Levine. Linkers and Loaders. Morgan Kaufmann Pub-
lishers, San Francisco, CA, 2000.

[8] P. Narasimhan.Transparent Fault-Tolerance for CORBA. PhD
thesis, University of California, Santa Barbara, 1999.

[9] P. Narasimhan, T. Dumitraş, S. Pertet, C. Reverte, J. Slember,
and D. Srivastava. MEAD: Real-time, fault-tolerant CORBA.
Submitted to Concurrency and Computation: Practice and
Experience, 2003.

	. Introduction
	. Versatile Dependability
	. The System Architecture
	. A Tunable, Distributed Infrastructure
	. Test Bed and Performance

	. Case Study: Tuning Scalability
	. Related Work
	. Conclusions

