
Architecture-based Dependability Prediction for Service-oriented Computing

Vincenzo Grassi
Università di Roma “Tor Vergata”, Italy

vgrassi@info.uniroma2.it

Abstract

In service-oriented computing, services are built as an
assembly of pre-existing, independently developed services.
Hence, predicting their dependability is important to
appropriately drive the selection and assembly of services, to
get some required dependability level. We present an
approach to the dependability prediction of such services,
exploiting ideas from the Software Architecture- and
component-based approaches to software design.

1. Introduction1

In the service-oriented computing (SOC) paradigm, an
application is built as composition of components and
services (including both basic services, e.g. computing,
storage, communication, and “advanced” services that
incorporate some complex business logic) provided by
several independent providers [4]. A basic requirement for
SOC is that support should be given to automatically
discover and select the services to be assembled. The “Web
services” and “Grid computing” frameworks represent
standardization efforts in this area.

An important issue for applications built in this way is
how to assess, as much as possible automatically to remain
compliant with the SOC requirements, their quality, for
instance their performance or dependability characteristics.
In this paper, we focus on dependability aspects, and provide
an approach that lends itself to automatization to predict the
service reliability, defined as a measure of its ability to
successfully carry out its own task. The main goal of this
approach is to define a compositional way for predicting the
service reliability, that reflects the underlying structure of a
service realized within the SOC framework. To this
purpose, we exploit ideas taken from Software Architecture-
and Component-based approaches to software design.

Approaches to the reliability analysis of component-based
systems have been already presented (e.g. [5, 6, 8]). What
distinguishes our approach is the exploitation of a “unified”
service model that helps in modeling and analyzing different
architectural alternatives, where the characteristics of both
“high level” services (typically offered by software
components) and “low level” services (typically offered by
physical devices) are explicitly taken into consideration.
This model allows us to explicitly deal also with the impact

1 Work partially supported by the PRIN project: “SAHARA: Software

Architectures for heterogeneous access network infrastructures” and
by the FIRB project “PERF: Performance evaluation of complex
systems: techniques, methodologies and tools”.

on the overall reliability of the infrastructure used to
assemble the components and make them interact.
Moreover, we point out the importance of considering the
impact on reliability of service sharing, that could typically
happen in a SOC framework, when we assemble originally
independent services in such a way that they exploit some
common service, so being no longer independent. Finally,
to better support compositional analysis, we also point out
the need of explicitly dealing with the dependency between
the input parameters for some service and the input
parameters of cascading service requests that the service
itself generates, as also pointed out in [2]. The paper is
organized as follows. In section 2 we discuss general issues
for an architecture-based approach to QoS prediction in a
SOC framework. In section 3 we focus on reliability, and
present ideas for its architecture-based prediction. In section
4 we outline a simple example, while section 5 concludes
the paper.

2. Architectural approach to predictive QoS
analysis

According to the Software Architecture approach [1], an
application is seen as consisting of a set of components that
offer and require services, connected through suitable
connectors. In particular, special emphasis is given to the
connector concept, that embodies all the issues concerning
the connection between offered and required services; hence,
a connector can also represent a complex architectural
element carrying out tasks that are not limited to the mere
transmission of some information, but could also include
middleware services such as security and fault-tolerance.
Using different types of connectors to assemble the same set
of services we can easily experiment the impact on the
overall system QoS of different ways of architecting the
service assembly.

For these reasons we adopt this vision, but extend it to
deal more thoroughly with services realized within the SOC
framework, where a service can also be a low level service
offered by a physical resource (e.g. a processing service). To
this purpose we adopt a broad concept of component and
connector; in this respect, we prefer to talk of resource
rather than component, since the latter term seems too
strictly tied to the idea of software resource. Hence, our
resource concept encompasses both software components,
devices (like printers and sensors), and physical resources
(like processors and communication links). Analogously,
our connector concept encompasses issues pertaining to
resource composition, where “resource” has the broad sense
just defined, thus including both assembly relationships

among “peer” resources (typically, software components)
and deployment relationships among software resources and
physical resources (e.g., processors, communication links,
batteries). Note that, since a connector can in general model
some complex “interaction service”, it can also require other
services/resources by itself; as a consequence, a connector
shares several characteristics with our general concept of
resource; we will exploit this similarity modeling in the
same way the resource requests associated with the services
they offer.

In a SOC framework (but, also, more generally, in
component-based approaches) a resource is expected to
publish a description not only of its set of offered services
(that includes their signature), but also a description of a
related set of required services, plus a set of attributes and
constraints that further specify conditions for a correct
matching between offered and provided services. To support
predictive analysis of some non-functional property of a
service composition, for example its reliability, it has been
argued that each resource should also publish some analytic
interface [3], that is a representation at a suitable abstraction
level of the actual resource behavior and requirements, that
lends itself to the application of some analysis
methodology.

We assume that this analytic interface is associated with
the offered services of both resources and connectors, and
includes: (i) an abstract description of the service, (ii) an
abstract description of the flow of requests that will be
addressed to other resources to carry out that service (abstract
usage profile). We now give some detail about how to
define these abstract descriptions.

With regard to point (i), the abstraction concerns both the
service itself and the domains where its formal parameters,
used to specify a particular service request, can take value;
for example, a processing service can be abstractly defined
as a service that executes a single kind of “average”
operation (at some constant speed) and whose formal
parameter is the number of such operations that must be
executed. In general, the abstraction with respect to the real
service parameter domains can be achieved by partitioning a
real domain into a (possibly finite) set of disjoint
subdomains, and then collapsing all the elements in each
subdomain into a single “representative” element [2]. The
processing service example is an extreme case, where the
entire set of operations is collapsed into a single average
operation.

With regard to point (ii), the abstraction consists in
giving a probabilistic description of the flow of requests.
For this purpose, we assume that the “abstract” flow of
requests is modeled by a discrete time Markov chain, where
each state models a set of actual (abstract) service requests,
with the underlying assumption that the requests in this set
must be fulfilled according to some completion models
before a transition to the next state can take place.
Moreover, a special Start state represents the entry point for
the modeled flow, while an End absorbing state represents
the successful completion of the service task.

Finally, we note that in general a dependence could exist
between the kind of request a particular service has to fulfil

and the cascading service requests that it addresses to other
resources; for example, the size of a list to be ordered sent
as input parameter to some sorting service has an impact on
the request of processing service addressed by the sorting
service itself to some processing resource. Hence, we argue
that modeling this dependency is necessary to achieve a real
compositional analysis. To model it, we suggest that both
the transition probabilities and the actual parameters of the
service requests in a flow are defined as parametric with
respect to the formal parameters of the offered service they
are associated with.

3. Architecture-based dependability
prediction

As stated before, the reliability of a service is a measure
of its ability of completing its task. Let us denote by
Pfail(S,ap*) the probability that a service S is unable of
completing its task when called with actual parameters ap*.
Hence, the reliability of S can be expressed as 1 -
Pfail(S,ap*). In the following, we show how to calculate
Pfail(S,ap*), exploiting information about how S has been
architected. We distinguish two possible cases for the
resource offering that service:
• basic resources that do not require the services of any other

resource to carry out their own service S (e.g., a “cpu”
resource); the reliability of such services depends only on
the resource internal characteristics/operations; we assume
that it is known, and is expressed by a failure rate
(failure/time-unit);

• complex resources, that do require the services of other
resources to carry out their own service S (typically,
software components);2 hence each of their services is
characterized by a flow modeling the usage profile of other
services; the reliability of these services depends on both
the resource internal characteristics/operations and on the
reliability of the services they require; moreover, it also
depends on the reliability of the connectors used to
connect required and offered services; we assume that a
complex resource can only provide information about its
“internal reliability”, expressed by some suitable
reliability measure (e.g., software failure rate in the
typical case of software components).
Finally, in the following discussion we assume a “fail-

stop” behavior (i.e. each failure causes a service
interruption), and that no repair occurs.

3.1 Reliability of services offered by basic
resources
We limit ourselves to consider processing and

communication services. Let us consider first a cpu-type
resource offering a processing service with speed s
(operation/time-unit) and failure rate l: assuming an
exponential failure rate, the probability of a failure during
the execution of N operations is:

Pfail(cpu,N) = 1 - e
-lN/s

 (1)

2 Note that in our framework even a software component that does not

call any other component is a complex resource, since it at least must
exploit a processing service.

Then, let us consider a network-type resource offering a
communication service with bandwidth b (byte/time-unit)
and failure rate b: analogously to (1), the probability of a
failure in transmitting B bytes is:

Pfail(net,B) = 1 - e
-bB/b

 (2)
Within this type of resources, we also include the case of

connectors that do not have any flow of service requests
associated with them; this is the case of connectors simply
modeling an association between resources, like a “local
processing” connector between a software component and
the cpu resource of the same node where the component is
located. Besides not making use of any resource, these
connectors do not correspond to any tangible artifact, and
hence we assume that their failure probability is zero.

3.2 Reliability of services offered by complex
resources
Under this case, we also include “interaction” services

offered by connectors that exploit other resources (typically
communication and, possibly, processing resources) to carry
out them; in the following we do not make any basic
distinction between such connectors and generic complex
resources, from the viewpoint of the reliability evaluation
of the service they offer. Given our flow model, we have:

Pfail(S,ap*) = 1 - p*(Start , End)
where p*(Start , End) denotes the probability of reaching in
any number of steps the End absorbing state for the flow
associated with S, starting from the Start state. To calculate
a non trivial value for such a probability, we must
specialize the flow model to the dependability domain,
taking into consideration the possibility that a failure may
occur at any flow stage. Under the fail-stop and no repair
assumptions, this corresponds to adding an additional
transition from each state i of the flow to a new Fail
absorbing state, with probability p(i, Fail), weighing with a
probability 1-p(i, Fail) the already existing transitions to
other states (except transitions from the Start state, since we
assume that it does not represent any real behavior).
Standard Markov methods can be exploited to evaluate
p*(Start , End) once the failure probabilities have been added
to the original flow model [8]. In the following, we focus
on issues related to the evaluation of p(i, Fail), exploiting
architectural information.

We recall that in our flow model we have assumed that
each state i models a set of activities A1, ..., An, where
each activity Aj consists of a request for a service Sj with
actual parameters apj* (i.e., Aj ≡ call(Sj,apj*)). Hence,
to evaluate p(i, Fail) we must take into account: (i) the
failure probability of each Aj; (ii) an overall completion
model for A1, … An, to determine when a successful
transition to the next flow stage is enabled, even if some Aj
has failed; (iii) the existence of possible dependencies
among the A1, ... An, that can affect their failure
probability.

Let us consider separately the above three points.

(i) Failure probability of each Aj: to evaluate the
probability of a failure of Aj, that we denote by

Pr{fail(Aj)}, we must take into account the following
failure probabilities:
• Pfail_int(Aj): probability of “internal” failure (i.e.

depending on the internal characteristics of the resource
requesting the service) related to the service request for
(Sj,apj*); we discuss at the end of this section issues
concerning the evaluation of this probability;

• Pfail_ext(Aj): probability of “external” failure related to
the service request (Sj,apj*); this probability depends in
its turn on the probability of failure of the service S j
itself, and on the probability of a failure in the connector
Cj that “transports” the request, that is on Pfail(Sj,apj*)
and Pfail(Cj,[Sj,apj*]) (where [Sj,apj*] is the parameter
for the connection service offered by Cj).3

(ii) Completion model for A1, ... An: we consider two
possible completion models for the activities in state i:
• AND model: all the activities A1, ... An must be

completed to enable a transition to the next state;
• OR model: at least one of A1, ... An must be completed

to enable a transition to the next state.

(iii) Dependency model for A1, ... An: with this model we
take into account the sharing of some common service, that
could typically occur in a SOC framework:
• no sharing: A1, ... An do not share any common service,

and hence are assumed independent of each other;
• sharing: A1, ... An do share a common service, and hence

their failure probabilities are not independent.
In particular, in the sharing model we consider the case

where all the A1, ... An are actually requests for the same
service offered by a single resource. This case should be
taken into account in particular in the OR completion
model that could be used, for example, to model some kind
of “retry” operation. For this reason, in the following we
will provide expressions for the sharing model under the OR
completion model only.

Note that the component reliability model presented in [5]
considers only a single activity in each flow state (hence,
for example, it does not consider fault-tolerance features),
while the model in [8] take into consideration the AND and
OR completion models for multiple activities in a flow
state, but does not consider the possible dependency caused
by service sharing; moreover, both models do not introduce
explicitly the service actual parameters in the reliability
evaluation, so that compositional analysis is not
completely supported.

Using the above defined probabilities, and completion and
dependency models, we can define expression for the
probability p(i, Fail) of a failure in state i of the flow. Let
us start with the calculation of p(i, Fail) under the two
completion models:

3 Note that Pfail(Sj,apj*) and Pr{fail(Aj)} denote the probability of two

different events, where the former corresponds to a failure in the
execution of service Sj, while the latter correspond to a failure in the
“call” of Sj, that includes a failure in the execution of Sj, or in other
related activities, like the transport of the request and result.

• AND model: the failure of any activity in state i causes a
failure of that state; hence we have:

p(i, Fail) = 1 - Pr{ Ÿ
j =1

n nofail(Aj)} (3)

• OR model: the failure of all the activities in state i causes
a failure of that state; hence we have:

p(i, Fail) = Pr{ Ÿ
j =1

n fail(Aj)} (4)

Now, let us see how we can calculate the two
probabilities in the right hand side of (3) and (4) under the
two defined dependency models.

• no sharing model: thanks to the independence assumption,
we can rewrite (3) and (4), respectively, as:

p(i, Fail) = 1 -
j =1

n

’ (1 - Pr{fail(Aj)}) (5)

p(i, Fail) =
j =1

n

’ Pr{fail(Aj)} (6)

where each Pr{fail(Aj)} can be calculated as follows:
Pr{fail(Aj)} = 1 - (1-Pfail_int(Aj))⋅(1-Pfail_ext(Aj))

 = 1 - (1-Pfail_int(Aj))⋅(1-Pfail(Sj,apj*))
⋅(1-Pfail(Cj,[Sj,apj*])) (7)

since Aj does not fail only if neither an internal nor an
external failure occurs, and, in its turn, the external failure
does not occur if neither the used connector nor the requested
service fail.

• sharing model: in this case A1, ... An are no longer
independent. Limiting ourselves to the OR case, as stated
above, we rewrite (4) as:
p(i, Fail) = Pr{ Ÿ

j =1

n fail(Aj) | noextfail}Pr{noextfail}

 + Pr{ Ÿ
j =1

n fail(Aj) | extfail}Pr{extfail} (8)

where extfail and noextfail denote the events “external
failure occurrence” and “no external failure occurrence” in
A1, ... An, respectively. Now, note that when no external
failure occurs, each Aj can only fail because of an internal
failure; in the opposite case, that is when an external failure
occurs for some Aj, it causes the failure of all the A1, ...
An with probability one, since they share the same external
service and we have assumed that no repair occurs. Hence,
reasonably assuming that the internal failures are
independent, we can refine equation (8) as follows:

p(i, Fail) =
j =1

n

’ Pfail_int(Aj) ⋅
j =1

n

’ (1 - Pfail_ext(Aj))

+ 1⋅(1 -
j =1

n

’ (1 - Pfail_ext(Aj))) (9)

If we compare equations (6) and (7) with equation (9), we
can see the different results obtained for the OR completion
model under the no sharing and sharing models; this
remarks the importance of considering service sharing.

To conclude this section, we give some suggestion about
how the internal failure probability Pfail_int(Aj) can be
evaluated. For this purpose, we distinguish two cases:
a) Aj is the request for a service offered by some complex

resource, and hence typically corresponds to an actual

method call; in this case, the internal operations related to
this request just consist of the “call” of such service,
while other operations connected to the request (e.g.,
parameters marshaling/unmarshaling) in our architectural
vision are captured under the connector concept; hence, we
must give some suitable value to Pfail_int(Aj) reflecting
the reliability of the call operation only; this value could
also be set equal to zero, if we assume that a method call
is a reliable operation that does not cause failure by itself;

b) Aj is the request made by a software component to a
processing service to execute N operations (i.e. Aj =
call(cpu,N)), then Pfail_int(Aj) must depend on N and
represents the probability that the software code for the N
operations causes a failure; assuming that the probability
of a software failure in an operation is j, we can write:
Pfail_int(Aj) = Pfail_int(call(cpu,N)) = 1-(1-j)

N
 (10)

Corresponding expressions can be written under different
software failure models.

Finally, considering automatization issues, we remark
that the reliability evaluation methodology presented above
basically defines an iterative procedure, where the reliability
of a service is calculated in terms of the reliability of the
services it requires (according to a given usage profile). The
bottom of this iteration is given by services offered by basic
resources, whose reliability can be directly calculated.

4. Example
We use a very simple example to illustrate the above

ideas. For this purpose, we consider a resource that offers a
search service for an item in a list; to carry out this service,
it requires in its turn a sorting service (to possibly sort the
list before performing the search) and a processing service
(for its internal operations). The search service has three
parameters, with the former two used to provide the item to
be searched and the list, respectively, while the third is used
to return the search result. In an abstract characterization of
this service, the abstract domain of the former two
parameters is the set of integer numbers, used to specify,
respectively, the size of the element to be searched and the
list size. Moreover, this service is characterized by a
software failure rate j1. The sort service has one parameter,
used to provide the list to be sorted. This service is
characterized by a software failure rate j2.

Figure 1 depicts the flows associated with these two
services, where beside each state it is shown the associated
service request with its parameters.

cpu(log(list))

Sort(list)

Start

End

Node1

Node2

1

1

q
1-q

 Search
 (in:elem, in:list, out:result) :

cpu(list·log(list))

Start

End

Node1

1

1

 Sort
 (in:elem, in-out:list) :

Figure 1. Flows of the search and sorting
services.

 cpu(ip*) // marshal ip*

Start

End

Node1

1

1

RPC(in:ip*, out:op*) :

Node2

1
 net(ip*) // transmit ip*
 cpu(ip*) // unmarshal ip*

 cpu(op*) // marshal op*
 net(op*) // transmit op*
 cpu(op*) // unmarshal op*

AND

AND

Figure 2. Flow of a RPC connector.

We assume that the components providing these two
services are allocated to two different processing nodes (cpu1
and cpu2), connected by a communication network (net1-2).
In an abstract characterization of these physical devices, they
can be modeled as basic resources, offering processing and
communication services, respectively, each with only one
abstract parameter used to provide the number of operations
to be processed, and the bytes to be transmitted. The two
processing resources (cpu1 and cpu2) are also characterized
by speed attributes s1 and s2, and by failure rates l1 and
l2. Analogously, the communication resource has a
bandwidth attribute b, and failure rate g.

The search and sorting services are connected through a
RPC connector. From a reliability viewpoint, this
connector plays a role similar to a complex resource, as it
requires other services (processing and communication) to
carry out its own interaction service. Figure 2 shows the
flow associated with this connector, where the input and
output parameters correspond to the data transmitted from
the client to the server and vice-versa, respectively.

search sort

process

search component

sort

process

sort component

process

cpu 1

RPC connector

process
transmit

“local
processing”
connectors

process

cpu 2

process transmit

net 1-2

offered service required service

Figure 3. Model of the search service on a
platform with two processing resources.

Finally, figure 3 shows how all these services are
assembled together. To evaluate the reliability of this
assembly, we must add failure information to the service
flows, as discussed in section 3. Then, we can apply the
methodology of section 3. Let us denote by n the size of the
list to be searched. For space limits, we only show the
evaluation of Pfail(sort,n). Using (1) and (10) in (7), and

assuming that a “local processing” connector does not cause
a failure, we have, from the sort service flow:

Pfail(sort,n) = Pr{fail(call(cpu2,nlog(n)))}
= 1 - (1-Pfail_int(call(cpu2,nlog(n)))
 ⋅(1-Pfail(cpu2,nlog(n))
= 1 - (1-j2)

nlog(n)
⋅ e

-l2⋅nlog(n)/s2
 (11)

5. Conclusions
We have presented an approach to the reliability prediction

of an assembly of services, that allows to take into account
in an explicit and compositional way the reliability
characteristics of both the resources and interaction
infrastructure used in the assembly. However, several points
require further investigation. They include, for example,
how to actually make automatic, as much as possible, the
reliability prediction of a service assembly, that is
important in a true SOC perspective. This point involves
the precise definition of reliability evaluation algorithms,
and the inclusion in a machine-processable language of
appropriate constructs to express the dependability-related
characteristics of resources and connectors. It should also be
noted that the iterative evaluation procedure outlined at the
end of section 3 does not work in the case of a service
assembly where some services recursively call each other. In
this case, the assembly reliability would be expressed by a
fixed point equation, for which appropriate evaluation
methods should be devised. Another point concerns the
dependency model, that should be extended to deal with
more complex dependencies, and the fail-stop assumption,
that should be released to deal also with failure propagation
aspects.

Finally, we would like to remark that, even if our focus is
on dependability issues, the presented ideas can also be
extended to other service quality aspects (e.g. performance).

References
[1] L. Bass, P. Clements, R. Kazman, Software Architectures in

Practice, Addison-Wesley, 1998.
[2] D. Hamlet, D. Mason, D. Woit “Properties of Software

Systems Synthesized from Components”, June 2003, on line
at: http://www.cs.pdx.edu/~hamlet/lau.pdf (to appear as a
book chapter).

[3] S. Hissam et al. “Enabling predictable assembly” Journal o f
Systems and Software, vol. 65, 2003, pp. 185-198.

[4] M.P. Papazoglou, D. Georgakopoulos “Service oriented
computing” ACM Communications, vol. 46, no. 10, Oct.
2003, pp. 24-28.

[5] R.H. Reussner, H.W. Schmidt, I.H. Poernomo “Reliability
prediction for component-based software architectures”
Journal of Systems and Software, vol. 66, 2003, pp. 241-
252.

[6] J. Stafford, J.D. McGregor “Issues in predicting the
reliability of composed components” 5th ICSE CBSE
Workshop, Orlando, Florida, May 2002.

[7] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison Wesley, 2002.

[8] W.-L. Wang, Y. Wu, M.-H. Chen “An architecture-based
software reliability model” IEEE Pacific Rim Int. Symp. on
Dependable Computing, Hong Kong, 1999.

