
Applying Design Diversity to Aspects of System Architectures and Deployment
Configurations to Enhance System Dependability

Matthew J. Hawthorne and Dewayne E. Perry
Department of Electrical and Computer Engineering

The University of Texas at Austin
mhawthorne@ece.utexas.edu, perry@ece.utexas.edu

Abstract
Design diversity has been proposed as a strategy

for reducing the number of co-occurring faults in
multiple redundant versions of a given application.
While much research has focused on methods for
enhancing the multiversion diversity of applications
or estimating system dependability, relatively less
work has been done to incorporate supporting system
and infrastructure elements into design diversity
frameworks, even though these aspects of system
design can negatively impact dependability. We
propose general diversity-enhancing properties that
can be used to extend design diversity “downward”
through layered software subsystems, operating
systems, and hardware platforms, and “outward”
through networks, power supplies, and other external
infrastructures. We identify three key properties of
diverse systems: modal diversity, geographical
diversity, and ecological diversity, and develop a
conceptual framework for applying these properties to
all aspects of a software-based system to increase the
effective independence of diverse application versions
by using integrated hardware-software “channels” to
reduce system-induced common failure modes.

1. Introduction
Software-automated systems, including safety-

critical control systems [4, 8, 24], have become
commonplace, making dependability a paramount
architectural [18] concern. Much research on software
dependability has focused on enhancing system
dependability by using N-version programming and
similar methods that use redundancy to enhance fault
tolerance [3, 5, 16], as well as to improve software
quality [15].

This paper extends design diversity to the entire
deployable system, including hardware (processing
units, storage units, and related physical components),
communication networks, supporting infrastructure

(power supply, etc.), and the operating system and
layered software subsystems, all of which are potential
sources of errors and failures that can reduce the
overall dependability of software-based systems [14].
This paper examines some of the ways software
redundancy and design diversity are being used to
increase the dependability of software systems, and
explores ways to apply design diversity principles to
supporting elements to enhance overall system
dependability.

As defined by [1], “dependability” describes related
system properties including availability, reliability,
safety, confidentiality, integrity, and maintainability.
This paper is primarily concerned with system
reliability and availability, along with certain aspects
of integrity, and possibly, safety.

The remainder of the paper is organized as follows.
Section 2 gives a brief introduction to software
redundancy and design diversity research. Section 3
discusses limitations of applying design diversity only
to the application being developed. Section 4 proposes
some general cross-cutting properties that can be used
to extend design diversity beyond the application
being developed. Section 5 presents a conceptual
model for modeling redundant systems as sets of
diverse hardware-software processing “channels”.
Section 6 discusses influences and limitations of the
approaches presented in this paper. Section 7
summarizes the conclusions of the paper, and
discusses our ongoing and planned research.

2. Redundancy and Design Diversity
The use of redundancy to enhance system

dependability is based on the assumption that if one
version of the application fails, the remaining versions
are likely to give the correct response, making the
system resistant to faults. To be effective, redundancy
requires that different versions fail independently (i.e.,
have non-overlapping failure patterns [14]).

N-version programming [16], in which two or
more versions of a system are developed
independently by different teams of developers, as well
as related approaches using multiple versions of off-
the-shelf (OTS) and open source software (OSS)
components [7, 11, 19] have been used to build
diverse redundant systems. Connector-based
architectures [22] have been developed to support
multiple versions of OTS components in diverse
systems. While achieving failure pattern diversity [6,
12, 15], and making valid estimates of reliability [20,
21] remain areas of active research, design diversity
has increased the overall dependability of software
systems where it has been employed [2, 4, 9, 10, 15,
17, 25].

3. Limitations of Application Design
Diversity

When applied only to software development
processes, design diversity-based approaches are
largely limited in scope to influencing the diversity of
the application being developed, although design
diversity may induce a kind of data diversity in
surrounding non-diverse subsystems by introducing
variation in application-level interactions with those
subsystems [14]. However, if the supporting elements
of a system, such as hardware, operating systems, and
layered subsystems, contain errors or vulnerabilities,
system dependability may be degraded no matter how
dependable the application software itself is. Since
complex software systems nearly always contain
residual errors [23], some supporting system errors are
a virtual certainty. Viruses, Trojan horses, worms,
and other deliberate attacks may also impact
dependability, as may surrounding infrastructure such
as the network and power supply. Many modern
software systems depend on local network or Internet
access, making them vulnerable to connectivity
disruptions; and since all computer systems need
power to operate, the dependability of the local and
regional power grids can also impact effective system
dependability. Many additional examples could be
listed, but an exhaustive list is not practical, nor is
such a list necessary to demonstrate the need to
include external system and infrastructure elements
when designing and deploying dependable software
systems.

4. System Design Diversity
Since the dependability of a given software system

depends on a diverse set of external factors that is
impossible to fully characterize a priori without
knowing the details of the system, we next describe
three general properties that may be used to enhance

the diversity of virtually any aspect of a given system:
modal diversity, geographical diversity, and
ecological diversity.

4.1. Modal diversity

“Modality” is the extent to which any system
function is limited with regard to available modes of
operation. Any function that can be done only one
way exhibits high modality, and could potentially
become a single point of failure. Modal diversity is
the extent to which any system function is designed to
utilize multiple modes of operation. For example, a
system that can utilize a direct broadband connection,
a telephone modem connection, or a satellite link to
communicate with other systems exhibits modal
diversity in networking. A system that can contact a
plant operator by telephone or digital pager (e.g., if
the operator fails to respond to a screen warning)
demonstrates modal diversity in its human interface.,
as does a system with multiple power sources (e.g.,
main power grid and backup generator).

4.2. Geographical diversity

“Locality” refers to the “localness” of a software
system. A system that exhibits a high degree of
locality (e.g., by being deployed on a single processor
or only a few processors in close physical proximity) is
intrinsically less dependable in certain respects than a
system that is distributed over a larger area, because a
high-locality system is more likely to be subject to
local effects, such as network or power outages,
random incidents (e.g., system accidentally
unplugged), etc. Geographical diversity is the extent
to which the physical and software elements of a
system are widely distributed geographically, making
them less subject to common local effects.

4.3. Ecological diversity

“Ecology” refers to the system environment in
which an application runs, including hardware,
operating systems, and other software. Homogeneous
system ecologies do not contribute to system-level
diversity, nor can they enhance application-level
diversity [14]. In addition, homogeneous systems are
more vulnerable to common-mode failures caused by
viruses and worms, which often affect only closely
related operating systems or components. Ecological
diversity is the extent to which an application operates
in a heterogeneous system environment. For example,
a system deployed on a single operating system is not
ecologically diverse with respect to its operating
system.

4.4. Other system diversity properties

Other system properties enhance or characterize
aspects of system diversity. Among the more
interesting are temporal diversity, control diversity,
and combinational diversity.

Temporal diversity is the ability of a system to
adapt to temporal variability (variable timing of
events). Examples include the ability to handle widely
varying network delays, or variable data-induced
delays between the start and the end of transactions.

Control diversity refers to the diversity of the
automatic and human interface control of a system.
For example, a system that utilizes a distributed
control algorithm exhibits greater control diversity
than one that depends on a single server system to
control all remote nodes.

Combinational diversity is diversity induced by
different nodes in a system running on unique sets of
hardware, system software, and application software,
the combination of which varies across the system.

5. A Conceptual Model for Diverse Systems
Design diversity can be used to model systems as

sets of diverse hardware-software “channels”, or
parallel hardware-software execution paths [14].
These channels enhance the independence of
redundant application versions by allocating each
version to a distinct set of supporting hardware and
software. Hardware, software and infrastructure
functions are generically modeled as different
“aspects” of the system, and for each modeled aspect,
a corresponding set of available implementation
options and dependencies is built. These options are
used to design a distinct integrated channel for each
version of the application software. A conceptual
model of such a system is depicted in Figure 5.1.

Diversity
Property

Hardware

Power

Modal Network

Ecological Geo-
graphical

 Diversity
Enhanced by

Operating
System

Layered
Software

Channel System

System
Aspect

App Software
 Version

 Defined as

Composed of
 Redundant

 Set of

 1 1..N

 N

Application version
independence is
enhanced by
modeling each
version as part of
a separate diverse
hardware-software
channel

Overall dependability is
enhanced by applying diversity-
enhancing properties to the
system architecture and
deployment configurations

Figure 5.1. Conceptual system model

Designing the core channel model for this kind of

diverse multi-channel system involves four basic steps.
The first step is to build an aspect model defining
which aspects of the system will be modeled. The
aspect model may include all aspects of the system and
its supporting infrastructure, or the system designer
may choose to focus on the aspects of the system for
which diversity is feasible (i.e., those aspects for
which multiple diverse options are available). Next,
an implementation model is built that defines one or
more implementation options for each modeled aspect
of the system. The final steps are to build a channel
model defining a set of two or more execution
channels for the system, and to assign implementation
options for each modeled aspect to each channel.

For example, let A = {application version,
application framework, operating system, and
hardware platform} represent the set of system aspects
being modeled for a new system. The system architect
has available two independently developed versions of
the application software (V1 and V2), which were built
using two different application frameworks (.NET and
EJB). Configurations have been tested using two
hardware platforms (x86 and Macintosh), running a
total of three operating systems (Windows XP, Linux,
and Mac OSX). A channel model is built defining the
four-channel system represented in Figure 5.2.

Note that the system has two channels, C1 and C3,
that are mutually diverse with respect to A (i.e.,
diverse with respect to the set of system aspects being
modeled), while the remaining channels, C2 and C4,
are not mutually diverse with respect to the other
channels. C2 and C4 are examples of combinatorially
diverse channels, where not all of the modeled system
aspects are unique relative to the other channels, but
the combination of aspect implementations is unique.
This may still provide some measure of inter-channel
independence.

Channels (diverse nodes)

Aspects
 (A)

 C1 C2 C3 C4
App. Version

App.Framework

Operating System

Hardware Platform

 V1 V2 V2 V1

.NET EJB EJB EJB

 XP Linux Linux OSX

 x86 x86 Mac Mac

C1, C3: mutual diversity with respect to all aspects
 of A (*diverse channels with respect to A)
C2, C4: partial diversity, some shared aspect
 implementations (*combinational diversity only)

Figure 5.2. Example of aspect-diverse channels

The hybrid deployment/component architecture
model of a channel-based system presented in this
section is included to illustrate how design diversity
can be applied to enhance the inter-version
independence of diverse multiversion software
systems. As such, the model is missing many details
that are necessary to fully specify an actual system
architecture. These include implementation
component interdependencies; inter-layer and inter-
component connection frameworks, if employed [22];
system startup, control and synchronization protocols
and algorithms; and an adjudication mechanism to
evaluate the output from the parallel execution
channels, among many other details omitted for clarity
and brevity.

6. Discussion
The extended design diversity approach presented

in this paper, including the notion of multiple diverse
software computation “channels”, builds on previous
research, most notably [13] and [14], as well as earlier
hardware channel research. A kind of partial diversity
somewhat similar to the combinational diversity in
this paper is suggested in [13], although the scope
(“lower levels” in the system architecture), and
purpose (protection against failures of particularly
important functions) are quite different, as is the
implied granularity. Timing diversity similar to the
temporal diversity in this paper is also described in
[14].

The rationale for believing that extending design
diversity to additional aspects of system architecture
and infrastructure design will result in increased
system dependability is based, in a general intuitive
sense, on results from the extensive body of research
in the area of software design diversity and
multiversion programming, as well as the equally
extensive body of research on hardware fault
tolerance. Redundancy is the most common approach
used to make all kinds of digital systems more fault-
tolerant.

More specific support is based on probabilistic
models for the reliability of diverse systems [6, 12].
The Littlewood and Miller (LM) model described in
[12] and [13] computes the probability that two
diverse versions of a program, developed using two
different methodologies, A and B, will fail under the
same conditions (input), as the product of the
probabilities that each program will fail given the
same input, plus the covariance of the probability
functions of A and B over the range of possible inputs:

Ex(ΘA(X)ΘB(X)) =
Ex[ΘA(X)]Ex[ΘB(X)] + Cov(ΘA(X)ΘB(X)), (6.1)

where Cov(A,B) denotes the covariance of A and B.

Combining the LM model assumption that forced
diversity results in different error probability
distributions over the population of programs, with the
observation that diverse hardware platforms, operating
systems, and OTS and OSS components developed on
those systems typically share many characteristics of
forced diversity methodologies (e.g., mutual isolation;
different design objectives, directives, and constraints;
different development languages and implementation
environments; etc.), the LM model can be extended in
a straightforward manner to include system
components used to implement aspects of a system
design:

Ex(ΘAC(X)ΘAD(X)) =
Ex[ΘAC(X)]Ex[ΘAD(X)] + Cov(ΘAC(X)ΘAD(X)), (6.2)

where AC and AD represent a pair of system
components, C and D, used to implement a given
system aspect A.

Practical limitations to the extended design
diversity approach proposed in this paper are mainly
the result of increased system complexity and its
attendant costs and risks, as well as the limited
number of implementations available for many system
and infrastructure components. Potential reliability
gains must be measured against real and potential
costs, including increased system administration
overhead, the risk of errors or inadvertent security
breaches caused by unfamiliarity with diverse systems
or components, and increased development,
deployment and maintenance costs, among others.

7. Conclusions and Further Research
In this paper, we build on the observation that

system and infrastructure components that lie outside
the scope of the application being developed can fail,
introducing common failure modes into the system
that can reduce the independence of diverse
application versions and degrade the dependability of
the system as a whole. We propose general diversity-
enhancing properties that can be applied to the full
range of application, system and infrastructure
elements. We also present a conceptual model for
increasing the effective independence of diverse
application versions by designing diverse, vertically
integrated processing channels in which versions can
execute.

Current research includes exploring the effects of
system diversity on dependability, as well as
developing comprehensive architectures to model and
implement diverse systems including system and
infrastructure elements. Ongoing work includes

developing tools that utilize aspect-oriented
programming (AOP) techniques to generate diverse
system architectures and deployment configurations
statically based on compile-time configuration
directives, dynamically based on current application
and system state, or both. Future plans include
extending the configuration system to support self-
healing runtime behavior, such as automatically
switching to a different implementation if a
component fails or becomes compromised.

7. References
[1] A. Avizienis, J.-C. Laprie, and B. Randell,
“Fundamental Concepts of Dependability”, Technical
Report 739, Department of Computer Science, University of
Newcastle upon Tyne, 2001.

[2] G. Bishop, “Software Fault Tolerance by Design
Diversity”, in M. Lyu (Ed.), “Software Fault Tolerance”,
John Wiley & Sons, 1995, pp. 211-229.

[3] S. Brilliant, J. Knight, and N. Leveson, “Analysis of
Faults in an N-Version Software Experiment”, IEEE Trans.
on Software Engineering, vol. 16, no. 2, 1990, pp. 238-247.

[4] D. Briere and P. Traverse, “Airbus A320/A330/A340
Electrical Flight Controls – A Family of Fault-Tolerant
Systems”, in Proc. 23rd Intl. Symposium on Fault-Tolerant
Computing (FTCS-23), Toulouse, France, 22-24, 1993, pp.
616-623.

[5] L. Chen and A. Avizienis, “N-Version Programming: A
Fault-Tolerance Approach to Reliability of Software
Operation”, Digest of 8th Annual Intl. Symposium on Fault-
Tolerant Computing, Toulouse, France, June 1978, pp. 3-9.

[6] D. Eckhardt and L. Lee, “A Theoretical Basis for the
Analysis of Multiversion Software Subject to Coincident
Errors”, IEEE Trans. on Software Engineering, SE-11,
1985, pp. 1511-1517.

[7] C. Gacek, T. Lawrie and B. Arief, “Interdisciplinary
Insights on Open Source”, In Proc. of the Open Source
Software Development Workshop, University of Newcastle,
Newcastle upon Tyne, UK, Feb. 25-26, 2002, pp. 68-82.

[8] G. Hagelin, “ERICSSON Safety System for Railway
Control”, in Software Diversity in Computerized Control
Systems, U. Voges (ed.), Springer-Verlag, New York, 1987,
pp. 11-21.

[9] L. Hatton, “N-Version Design Versus One Good
Version”, IEEE Software, vol. 14, 1997, pp. 71-76.

[10] H. Kantz and C. Koza, “The ELEKTRA Railway
Signalling-System: Field Experience with an Actively
Replicated System with Diversity”, in Proc. 25th IEEE
Annual Intl. Symposium on Fault-Tolerant Computing
(FTCS-25), Pasadena, CA, 1995, pp. 453-458.

[11] T. Lawrie and C. Gacek, “Issues of dependability in
open source software development”, ACM SIGSOFT

Software Engineering Notes, vol. 27, no. 3, ACM Press,
New York, 2002, pp. 34-37.

[12] B. Littlewood and D. Miller, “Conceptual Modeling of
Coincident Failures in Multi-Version Software”, IEEE
Trans. on Software Engineering, SE-15, 1989, pp. 1596-
1614.

[13] B. Littlewood, P. Popov and L. Strigini, “Modelling
software design diversity – a review”, ACM Computing
Surveys, vol. 33, no. 2, 2000, pp. 177-208.

[14] B. Littlewood, Lorenzo Strigini, “A discussion of
practices for enhancing diversity in software designs”,
DISPRO Project Draft Technical Report LS_DI_TR-04,
version 1.1d, 23 Nov., 2000.

[15] J. Knight and N. Leveson, “An Experimental
Evaluation of the Assumption of Independence in
Multiversion Programming”, IEEE Trans. on Software
Engineering, vol. SE-11, Jan., 1986, pp. 1511-1517.

[16] J. Knight, N. Leveson, and L. St. Jean, “A Large Scale
Experiment in N-Version Programming”, In Dig. FTCS-15:
15th Annual Intl. Symposium on Fault-Tolerant Computing,
Ann Arbor, MI, June, 1985, pp. 135-139.

[17] M. Lyu (Ed.), Software Fault Tolerance, John Wiley &
Sons, 1995.

[18] D. Perry and A. Wolf, “Foundations for the Study of
Software Architecture”, ACM Software Engineering Notes,
17(4), Oct. 1992, pp. 40-52.

[19] P. Popov, "Reliability Assessment of Legacy Safety-
Critical Upgraded with Off-the-Shelf Components", in Proc.
SAFECOMP 2002, Catalina, Italy, Springer, 2002, pp. 10-
13.

[20] P. Popov, A. Romanovsky and L. Strigini, “Choosing
effective methods for design diversity – how to progress
from intuition to science”, in Proc. SAFECOMP '99, 18th

Intl. Conf. on Computer Safety, Reliability and Security,
Toulouse, France, Springer, 1999, pp. 272-285.

[21] P. Popov, L. Strigini, J. May and S. Kuball,
“Estimating Bounds on the Reliability of Diverse Systems”,
IEEE Trans. on Software Engineering, vol. 29, no. 4, 2003,
pp. 345-359.

[22] M. Rakic and N. Medvidovic, “Increasing the
Confidence in Off-the-Shelf Components: A Software
Connector-Based Approach”, in Proc. of the 2001
Symposium on Software Reusability, 2001.

[23] B. Randell, “Turing Memorial Lecture: Facing up to
Faults”, The Computer Journal, vol. 43, no. 2, 2000, pp. 95-
106.

[24] J. Roquet and P. Traverse, “Safe and Reliable
Computing on Board the Airbus and ATR Aircraft”,
SAFECOMP 1986, Sarlat, France, Oct. 1986, pp. 93-97.

[25] U. Voges (Ed.), “Software Diversity in Computerized
Control Systems”, Springer-Verlag, Wien, 1988.

