
On Dependability of Composite Web Services with Components Upgraded Online

Vyacheslav Kharchenko Peter Popov Alexander Romanovsky
Department of Computer Systems and

Networks
National Aerospace University, Kharkiv

Ukraine

Centre for Software
Reliability

City University, London
UK

School of Computing Science
University of Newcastle
Newcastle upon Tyne

UK

Abstract
Ensuring dependability of composite Web services, dy-
namically composed of component Web services, is an
open issue. One of the main difficulties here is due to the
fact that component Web services can and will be up-
graded online. The challenge is then to ensure that the
overall dependability of the composite service is not un-
dermined. The solutions we propose in this position paper
make use of natural redundancy present in systems con-
taining a new and an old release of the component.

1. Introduction
The Web service architecture [1] is rapidly becoming

the de facto standard environment for achieving
interoperability between different software applications
running on a variety of platforms. This architecture sup-
ports development and deployment of open systems in
which component discovery and system integration can be
postponed until the systems are executed. The individual
components (i.e. Web Services - WSs) advertise their
services via a registry (typically developed using the
UDDI standard1) in which their descriptions, given in a
standard XML-based language called Web Service Defi-
nition Language (WSDL2), can be looked up. After a WS,
capable of delivering the required service, has been found
it can be used or even dynamically integrated into a com-
posite WS.
The WS architecture is in effect a further step in the evo-
lution of the well-known component-based system devel-
opment with off-the-shelves (OTS) components. The main
advances enabling this architecture have been made by the
standardisation of the integration process (cf a set of inter-
related standards such as SOAP, WSDL, UDDI, etc.).
WSs are the OTS components for which a standard way of
advertising their functionality has been widely adopted.

The WS architecture is now extensively used in devel-
oping various critical applications such as banking, auc-
tions, internet shopping, hotel/car/flight/train reservation
and booking, e-business, e-science, business account man-
agement. This is why ensuring dependability in this archi-
tecture is an emerging area of research and development

1 http://www.uddi.org/
2 http://www.w3.org/TR/wsdl

[1], [2]. The need for measures towards providing the us-
ers of WS with information about WS dependability is
discussed briefly in a recent report [3] in which the idea of
‘Service Management’ is outlined through a set of capa-
bilities such as ‘monitoring, controlling, and reporting of
service qualities and service usage’.

The problem of dealing with online system upgrades is
well known and a number of solutions have been proposed
(see, for example [4]). The main reasons for upgrading
systems are improving/adding functionality or correction
of bugs. The difficulties in dealing with upgrades of COTS
components in a dependable way are well recognised and a
number of solutions have been proposed. The WS archi-
tecture poses a new set of problems manly caused by its
openness and by the fact that the component WSs are exe-
cuted in different management domains and are outside of
the control of the composite WS. Moreover, switching
such systems off or inflicting any serious interruptions in
the service they provide is not acceptable, so all upgrades
have to be dealt with seamlessly and online.

One of the motivations for our work is that ensuring
and assessing dependability of complex WSs is compli-
cated when any component can be replaced online by a
new one with unknown dependability characteristics.
There is clearly a need to develop solutions making use of
the natural redundancy existing in such systems and guar-
anteeing that the overall dependability of the composite
system is improving rather than deteriorating. Note that the
idea of using the old and the new release of a program side
by side to improve its dependability is clearly not new, it
was first mentioned by B. Randell in his work on recovery
blocks in which the earlier releases of the primary alternate
are seen as a source of secondary alternates [5].

In this paper we discuss how a dependability measure –
the confidence in the correctness of a WS – can be inte-
grated in both – non-composite and composite WSs. In
detail, section 2 gives an informal overview of the confi-
dence in the correctness of a WS and how it can be pub-
lished alongside the WS functionality. In section 3 we
discuss the effect of WS upgrade on a composite service
which depends on other upgraded WSs and in section 4 we
discuss how the upgrade may affect the confidence in the
correctness of the component service.

2. Confidence in WS correctness
WS, as any other complex software may contain faults

which may manifest themselves in operation. In many
cases the users of the WSs may benefit from knowing how
confident they can be in the correctness of the information
processing provided by the WSs. This issue may seem new
in the context of WSs but is not new for some well-
established domains with high dependability needs such as
safety critical applications for which it is not unusual to
state dependability requirements in probabilistic terms,
e.g. as probability of software failure per demand. This fits
nicely in the context of WSs, which can be seen as succes-
sive invocations of the operations published by a WS. It
may be very difficult (or impossible) to guarantee that
software behind a WS is flawless, but the confidence of
the consumers will, no doubt, be affected by knowing for
how long the service has been in operation and by how
many failures have been observed. Informally, I will be
much more confident in the results I get from a piece of
software after I have seen it in operation for a long period
of time without a failure than if I have not seen it in opera-
tion at all. How long software has been used is no guaran-
tee that I will have high confidence in its correctness.
Clearly, if I have seen it fail many times in the past I will
take with doubts the next result that I get from this piece of
software.

Building confidence in the correctness of WS can be
formalised. Bayesian inference [6] is a mathematically
sound way of expressing the confidence combining the
knowledge about how good or poor the service is prior to
deployment with the empirical evidence which becomes
available after deployment. A priori knowledge can be
calculated by the WS provider using standard techniques
for reliability assessment, e.g. the quality of the develop-
ment process or other techniques such as [7].

2.1. ‘Publishing’ confidence in WS correctness
Here we omit the details about how the confidence can

be calculated and concentrate, instead, on practical ways
of ‘publishing’ this confidence (or indeed any other de-
pendability related measure) using the adopted standard
for WSs. For simplicity, consider, that the confidence is a
floating point number3 which gets recalculated every time
the service is called upon and which we would like to
make available on demand. To illustrate the idea let us
assume that the following is a fragment of the WSDL de-
scription of a WS:
<types>
<s:schema … >
<s:element name=”Operation1Request”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1”

3 Confidence is probability. When we say ‘I am 90% confident
that the result will be correct’ the confidence is 0.9.

name=”param1” type=”s:int”>
<s:element minOccurs=”0” maxOccurs=”1”

name=”param2” type=”s:string”>
</s:sequence>

</s:complexType>
</s:element>
<s:element name=”Operation1Response”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1”

name=”Op1Result” type=”s:string”>
</s:sequence>

</s:complexType>
</s:element>

…
</types>

In other words, the WS interface publishes an opera-
tion operation1 which requires two parameters when
invoked, param1 of type int and param2 of type
string, and returns a result Op1Result of type
string.4 Now assume that the WS provider wishes to
‘publish’ the calculated confidence in the correctness of
operation1. There are two ways of doing it:
- the response to a consumer invoking operation1

can be changed as follows:
<s:element name=”Operation1Response”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1”

name=”Op1Result” type=”s:string”>
<s:element minOccurs=”0” maxOccurs=”1”

name=”Op1Conf” type=”s:double”>
</s:sequence>

</s:complexType>
</s:element>

- a new operation is defined which takes as a parameter
the name of an operation (for which the consumer
seeks confidence) and returns the confidence in the
quality of the operation:
<s:element name=”OperationConfRequest”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1”

name=”operation” type=”s:string”>
</s:sequence>

</s:complexType>
</s:element>
<s:element name=”OperationConfResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1”

name=”Op1Conf” type=”s:double”>
</s:sequence>

</s:complexType>
</s:element>

The advantage of the first implementation is that the
confidence is associated with every execution of opera-
tion1. The obvious disadvantage is that the new WSDL
description is not backward compatible with the old one,
which is not acceptable for existing WS but may be OK
for newly deployed services.

The advantage of the second solution is that the new

4 For the sake of brevity the fragments of the WSDL description
related to messages, parts and the service are not shown.

WSDL is backward compatible with the old WSDL. The
disadvantage is that the confidence will have to be ex-
tracted in a separate invocation of a different operation
published by the service (OperationConf in the exam-
ple above), which may lead to complications.

Finally, a third option exists, which combines the ad-
vantages of both solutions given above. It consists of de-
fining a new operation, e.g. operation1Conf, in which
the response is extended by a number providing the confi-
dence in the correctness of the operation. This approach
allows the ‘confidence conscious’ consumers to switch to
using operation1Conf, while it does not break the
existing client applications which can continue to use op-
eration1, i.e. backward compatibility is achieved.

2.2. Confidence in the correctness of a composite WS
Now, suppose that a composite service has been de-

ployed, which depends on two other WSs, Web-Service 1
and Web-Service 2, as depicted in Fig. 1. The confidence
in the quality of the composite service will be affected by
the confidence in the quality of the two WSs it depends on
and by the confidence in the quality of the composition
(the design of the composition and its implementation, i.e.
the “glue” code held in the composite WS itself). The ap-
proach presented above for publishing the confidence in
the correctness of a WS is directly applicable to composite
services, too. The difference between a non-composite and
a composite service is merely in the way the confidence is
calculated. For a non-composite service a standard text-
book Bayesian inference can be used, while for a compos-
ite WS an approach presented in a recent paper, [8], can
be used.

3. WS Online Upgrading
The fact that the composite WS depends on third-party

services poses a problem, which is well-known for any
component-based software development with OTS com-
ponents. When a new release of an OTS component is
made available the system integrator has two options:
- change their ‘integrated’ solution5 to use the new re-

lease of the OTS component. This may cause prob-
lems for the integrated solution which may require
significant effort to rectify.

- stick to the old version of the OTS component and
take the risk to face the consequences if the vendor of
the OTS component ceases to support the old releases
of the OTS component.

The challenge here is to develop solutions supporting
these options in an open environment when the new re-
leases of WSs are becoming operational online. In this
work we assume that the old and new releases of the com-
ponent have the same functionality and there is backward

5 A term used by ECUA:
http://www.esi.es/en/Projects/ecua/ecua.htm

compatibility between the two releases, i.e. the interface of
the old release is a subset of the operations published by
the new interface, which is typical for the WS architecture.

The situation with a composite WS is very similar to
the one with any other OTS software component. Indeed
the Web-Service 1 and Web-service 2 in Fig. 1 are two
components integrated in the composite WS; conceptually
this is equivalent to integrating any other OTS software
component in an integrated solution. There may, however,
be a difference from the point of view of maintenance
between a composite WS and an integrated solution based
on OTS components. In the latter case, as indicated above,
the integrator has a choice whether to update the integrated
solution with every new release of the OTS components or
not. Such a choice may not exist in the former case of
composite WSs. The deployment of a composite WS as-
sumes that the WSs used by the composite service (Web-
Service 1 and Web-Service 2 in our example in Fig. 1)
have been deployed by their respective providers. If the
providers decide to bring down their services the compos-
ite service may become unavailable, too. What seems
more interesting is that when the provider of a service on
which the composite service depends decides to update
their service the provider of the composite service may not
be even notified about the update. The composite service
may be affected without its provider being able to do any-
thing to prevent this from happening. Thus the provider of
the composite WS is automatically locked-in by the very
decision to depend on another WS.

Are there ways out of the lock-in? If not, can the pro-
vider of the composite WS do something at least to make
the users of the composite WS aware of the potential
problems as a result of the update(s) beyond their control?
Below we discuss two plausible alternatives. These may be
used by a provider of a composite service in case that the
WSs used in the composite service do not publish confi-
dence in their correctness explicitly as we described in
section 2.

3.1. Several releases of the same WS are operational
This scenario is depicted in Fig. 2. The choice of

whether to switch to a new release of a WS used by the
composite service is with the provider of the composite
WS. The provider of the composite service may use what-
ever methods are available to them to assess the ‘quality’
of the new release before deciding whether or not to move
to the upgraded version(s) of the used WS.

The designer of the composite service may even make
provisions at design stage of the composite WS which
facilitates the assessment of the new releases of the serv-
ices the composite service depends on when these become
available. An example of such design would be making it
possible to run ‘back-to-back’ the old and the new releases
of the WS used in the composite service. During the tran-
sitional period (when the new release, WS 1.1 in Fig. 2,
becomes available) the old version will continue to be the

version used by the composite WS, but by comparing the
results coming from the old and the new release, WS 1.0
and WS 1.1 respectively, the provider of the composite
WS will gain empirical evidence about how good the new
release, WS 1.1, is. Once the composite service gains suf-
ficient confidence in WS 1.1 it may switch to using it and
cease using WS 1.0. Essentially, the composite service will
have to run on its own a ‘testing campaign’ against the
new release of the WS and may use the old release as an
‘oracle’ in judging if WS 1.1 returns correct results.

We have reported elsewhere in a different context how
Bayesian inference can be used to assess the confidence in
reliability of fault-tolerant software [9]. The same ap-
proach is directly applicable in the context of Fig 2 and the
confidence in the composite service can be published, as
described in section 2.

3.2. Only the latest release of a WS is operational
Under this scenario Fig. 1 remains applicable: the most

recent release of Web Service 1 will be deployed behind
the interface WS 1. The options left to the provider of the
composite service are very limited. If the new release is at
least distinguishable from the previous release, e.g. the
release carries the release number (in the example above
1.0 will be replaced by 1.1) the provider of the composite
service will be able to ‘adjust’ the confidence in the qual-
ity of the composite service, published to its consumers. A
conservative view would be to reduce the confidence in
the quality of the service every time a new release is made
available compared with the confidence achieved with the
old release of the WS 1 and recalculate the confidence in
the composite service accordingly. A discussion of how
the confidence can be ‘recalculated’ has been presented
elsewhere [8].

4. Architectural Solutions on the Component WS
Disciplined and systematic dealing with WS upgrades

starts with the way in which the WS providers internally
deal with this issue. This is crucial for the confidence in
the correctness of the composite service which uses these
WSs. In this section we discuss solutions for smooth and
dependable upgrades to be applied internally on the WS
side. Clearly in this developments the WS should not be
treated as a black box or as a COTS item. The WS man-
ager should decide when to employ a new release and how
to do this. Our solutions offer a systematic way of doing
this online.

The underlying assumption here is that the WS is ac-
cessed through the interface published in a registry and the
transition from the old release to the new one should be
transparent for the consumer of the service. Simple re-
placement of an old version with a new one is a risky ap-
proach because it is difficult to be sure that the new release
is no worse than the old one. We believe that all WS pro-
viders should always deploy their WSs in a special envi-
ronment which has features for transparent upgrade in-

cluding: interactive features for monitoring the depend-
ability of old and new versions (including typical adjudi-
cator functionality for comparing their results), a support
for several modes of operations (one version, old and new
versions in parallel, complete switch to a new version) and
a standard interface corresponding to the WSDL descrip-
tion of the WS.

The WS provider should be able to monitor the way
the new WS is operating and choose the best way of en-
suring the dependability of his/her service. The main dif-
ference between this approach and the approaches outlined
in sections 2-3 is that the old and the new versions are
developed in house and the provider has much more in-
formation available about their dependability characteris-
tics. Moreover it is possible to correct a new version and
use various sophisticated and specific means of error de-
tection. In addition to this it is possible to apply very
adaptive and flexible ways of employing diversity: recov-
ery blocks, warm and cold reservation, self-checked pair,
etc.

We are now working on a first prototype implementa-
tion of such an environment using our extensive work on
dependable WS composition within DSoS (Dependable
Systems of Systems) IST project [10]. To ensure depend-
ability of this implementation we use a number of local
computers to implement a WS. These nodes are connected
via RMI. Java server pages (JSPs) are used at the front-
end of the service which allows for an easy integration
using RMI with the rest of the Java infrastructure.

5. Discussion
In the context of solutions at the level of composite

WSs discussed in sections 2-3 one problem requires care-
ful consideration: the problem of dynamic notification of
the WS clients about releasing of a new version. We have
not discussed the ways in which the composite WSs are
informed about this or the ways in which they get a refer-
ence to a new release of a component WS. There are sev-
eral degrees of notification and various ways to implement
it. One possibility is to use existing registry mechanism
and extend the WSDL description of a WS to add a refer-
ence to a new release of a WS: this will allow a client to
detect this with both releases staying operational. Another
possibility is to use a WS notification service6 as a sepa-
rate mechanism to inform all the clients of a WS about a
new release. A similar approach would be to explicitly
notify the subscribers (clients) using some form of “call-
back” function to the composite WS. Note that in the con-
text of the “confidence” we have already assumed some
provision for making the composite service aware of the
change. Normally, the composite WS will see a “drop” in

6http://www-
106.ibm.com/developerworks/webservices/library/specification/
ws-notification/

the confidence as a result of the upgrade if the provider of
the WS used by the composite service publishes only the
version of the update. The updated confidence will be
calculated more accurately if the services used by the
composite service publish the confidence in the correct-
ness of the new releases.

We are at present pursuing this research in several di-
rections. First of all, we are developing a taxonomy of WS
faults that will take into consideration specific characteris-
tics of WSs and failures which can occur during their up-
grade, as well as a set of metrics for assessing dependabil-
ity of the old and new WS releases. Another strand of
work is modelling architectural solutions and adjusting
them online using a number of approaches to dependabil-
ity assessment [11].

Acknowledgments
V. Kharchenko has been partially supported by the Royal
Society grant (RS 16114). Popov and Romanovsky are
partially supported by DOTS/EPSRC project.

References
1. Ferguson, D.F., T. Storey, et al., Reliable, Transacted Web

Services: Architecture and Composition. 2003, Microsoft
and IBM.

2. Tartanoglu, F., V. Issarny, et al., Dependability in the Web
Service Architecture, in Architecting Depndable Systems.
2003, Springer-Verlag. p. 89-108.

3. Group, W.C.W., Web Services Architecture. 2004.
4. Romanovsky, A. and I. Smith. Dependable On-line Up-

grading of Distributed Systems. in COMPSAC'2002. 2002.
Oxford. p. 975-976.

5. Randell, B., System Structure for Software Fault Tolerance.
IEEE Transactions on Software Engineering, 1975. SE-1(2):
p. 220-232.

6. Box, G.E.P. and G.C. Tiao, Bayesian Inference in Statistical
Analysis. 1973: Addison-Wesley Inc. 588.

7. Littlewood, B. and D. Wright, Some conservative stopping
rules for the operational testing of safety-critical software.
IEEE Transactions on Software Engineering, 1997. 23(11):
p. 673-683.

8. Popov, P. Reliability Assessment of Legacy Safety-Critical
Systems Upgraded with Off-the-Shelf Components. in
SAFECOMP'2002. 2002. Catania, Italy: Springer-Verlag. p.
139-150.

9. Littlewood, B., P. Popov and L. Strigini. Assessment of the
Reliability of Fault-Tolerant Software: a Bayesian Ap-
proach. in 19th International Conference on Computer
Safety, Reliability and Security, SAFECOMP'2000. 2000.
Rotterdam, the Netherlands: Springer.

10. Romanovsky, A., P. Periorellis and A.F. Zorzo. Structuring
Integrated Web Applications for Fault Tolerance. in 6th In-
ternational Symposium on Autonomous Decentralised Sys-
tems (ISADS 2003). 2003. Pisa, Italy. p. 99-106.

11. Kharchenko, V. Methods of Estimation of Multiversion
Safety Systems. in 17th International System Safety Confer-
ence. 1999. Orlando, USA. p. 347-352.

Fig. 1. A Deployment diagram of a composite WS which depends on two other WSs provided by third parties, Web-Service 1
and Web-Service 2, accordingly.

Fig. 2. A new release, Web-Service1.1, of a service is released, but the old version, Web-Service1.0, is also kept opera-
tional. The new release has no effect on the composite service, Composite Web-Service, which depends on the previous
release as long as Web-Service1.0 is used. Eventually, the composite service is ‘upgraded’ to use the newer version,
Web-Service1.1.

WS1.1

WS1.0

WS 2

Composite WS

URL:My Node

Composite Web-Service

URL:Node 2
Web-Service 2

URL:Node 1

Web-Service 1.1

Web-Service 1.0

Composite WS

URL:Node 1
Web-Service 1

URL:Node 2
Web-Service 2WS 2

WS1URL:My Node

Composite Web-Service

	On Dependability of Composite Web Services with Components Upgraded Online
	
	
	
	
	Peter Popov

	1. Introduction
	2. Confidence in WS correctness
	2.1. ‘Publishing’ confidence in WS correctness
	2.2. Confidence in the correctness of a composite WS

	3. WS Online Upgrading
	3.1. Several releases of the same WS are operational
	3.2. Only the latest release of a WS is operational

	4. Architectural Solutions on the Component WS
	5. Discussion
	Acknowledgments

	V. Kharchenko has been partially supported by the Royal Society grant (RS 16114). Popov and Romanovsky are partially supported by DOTS/EPSRC project.
	
	References

