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Abstract�

This paper presents a strategy that is an adaptation 
and an evolution of a previous one proposed to validate 
an isolated component. Faults are injected using a 
previously developed tool, Jaca that has the ability to 
inject faults into Java objects’ attributes and methods. 
One of the key issues in component-based systems is its 
architecture, not only for development but also for 
testing. By analyzing the architecture we can define the 
points of control and observation of the system’s 
components during testing. Another important issue is 
the selection of components to be injected and 
monitored. A risk-based strategy is proposed, in order to 
prioritize the components for testing which represent 
higher risks for the system. In this way, test costs can be 
reduced without undermining the system’s quality. 
 
1. Introduction 
1.1. Motivation 

Increasingly systems are being developed as a 
composition of several components; they can be 
developed in house (by the same team or by another) or 
by third-party. The use of components helps to attend the 
increasing pressures on reduced time and money, but it 
can introduce new problems, such as architectural 
mismatch [8] that can arise when the expectation of a 
component do not match those of other components or 
the environment in which they are operate. This increases 
the importance of the systems’ architecture: the system’s 
quality is increased when the used architecture is a good 
solution for the system. However the success of the 
implementation of architecture depends on two aspects 
[19]: i) that each component’s implementation behaves in 
accordance to its specification, and ii) that components 
interact adequately. 

This paper addresses the second point mentioned 
above. Specifically, our interest is to determine whether a 
malfunctioning in the interaction among components can 
compromise the overall system quality. Fault injection is 
used for that purpose.  

 

1.2. Fault Injection 
Fault injection has been widely used to evaluate the 

dependability of a system and to validate error-handling 
mechanisms. This technique consists of introducing 
faults during an execution of the system under test and 
then observing its behavior. By doing so, it is possible to  

 
know how the system will behave in the presence of 
faults in its components or in its environment.  

Fault injection approaches vary according to the 
system’s life cycle where they are applied, and the type 
of faults that are injected. Among the various existing 
approaches (see [9]), software fault injection is getting 
more popular. In this approach, logical faults are 
introduced in a prototype of the system and specific error 
conditions are injected to simulate software faults 
(internal, e.g., variable/ parameters that are not initialized 
among others), as well as faults that occur in external 
components that interact with the tested application (all 
external factors that alter the system’s state)[20].  

Fault injection can be a valuable approach in 
component-based development, not only to validate 
components in isolation but also to validate their 
integration into a system. By introducing faults or errors 
in different components of a system (in-house or third-
party components), it is useful to answer questions such 
as: does a component fail when receiving invalid inputs 
from other components or from the environment? Does a 
failure in a component cause the whole system to fail?  

 

1.3. Jaca - Fault Injection Tool 
Our approach is based on the introduction of interface 

faults, in which faults are introduced at a component’s 
interfaces by affecting input or output parameters as well 
as returned results. A software fault injection tool, Jaca 
[12], was used to introduce the faults, aiming at 
validating Java applications. Jaca does not require access 
to an application’s source code, though it is a solution for 
the validation of a system composed of multiple COTS 
(Commercial Off The Shelf) components, which are 
generally black box. All instrumentation needed for fault 
injection and monitoring purposes are introduced at byte 
code level during load time. However, a minimum 
controllability (ease in controlling a component’s inputs 
and outputs) and observability (the ability to observe a 
component’s inputs, outputs and operational behavior) is 
required.  

In order to inject faults using Jaca the controllability 
can be achieved when the tester knows the public 
methods’ signature and may observes the tests’ results 
and exceptions raised through Jaca’s interface. 
Nevertheless, when the architecture is composed by 
third-party and in-house developed codes, specially parts 
that “glue” components together, the tester may use these 



units to improve the system’s controllability and 
observability by taking them as control and observation 
points during the process of fault injection.  

 

1.4. Objectives of This Work 
The goal of this work is to propose a fault injection 

strategy to test component-based systems. Our interest is 
in the interaction among components. For that reason, we 
introduce interface faults, by corrupting input data as 
well as interface output data.  

Interface fault injection is useful in that it is at the 
interfaces that corrupt data come into a component. 
Components’ internal faults can reach their interfaces, 
the errors’ propagation occurs through the interfaces, and 
in the validation of component-based software this 
technique can be the only way to inject faults.  

In Section II we discuss related works. Section III 
presents our proposed strategy. In section IV we point 
out some difficulties of the strategy and Section V 
presents the contributions of this work. Finally, in section 
VI we outline future research. 

2.  Related Works 
This work is an evolution of that presented in [13] 

where we tested an isolated component. In that work we 
used an application to activate the component under test. 
The differences between them are twofold: (i) the target 
is no longer a component in isolation, but a system 
integrating various heterogeneous components, where 
some of them may be black-box; (ii) the units considered 
for fault injection purposes are components rather than 
classes. Thus, the strategy cannot use source code 
dependent metrics as in [13] and the architecture 
becomes essential for planning fault injection. 

A closely related approach to the one presented here 
is the Interface Propagation Analysis (IPA) [24, ch.9.2]. 
IPA takes a black-box view of software components, 
injecting faults at the interfaces between the hardware 
and the software as well as between the operating system, 
microkernel and so on. The difference is that we are 
considering that not all components are black box.  

The steps described in our work were strongly 
influenced by those described in [4], where the 
generation of error sets was based on field data. The 
difference in our case is that we considered field data to 
be unavailable.  

TAMER [6] is another work that describes a tool 
that injects interface faults aiming to observe fault 
propagation. The main focus of that work is code 
coverage. We are not interested in source code coverage, 
but rather in the exceptions raised by the component, and 
whether these exceptions cause the whole system to fail. 

The work in [7] is quite similar to ours since they 
use a tool based on computational reflection, called Java 
Wrapper Generator (JWG), which modifies the bytecode 
at load time, in order to provoke an exception and 

observe the behavior of the exception handlers. In their 
case the focus is on objects, whereas in our approach the 
focus is on components, which may be composed by 
several classes.  

From the Ballista [10] approach we utilized the 
definition of the error model that was proposed by the 
authors for robustness testing. 

We also borrowed ideas from studies that use risk 
for test costs reduction. Many risk-based testing 
strategies have been proposed [2], [17]. The approach 
presented here is specially related to [2], from which we 
use the heuristic risk-based testing presented below.  

3. The Approach 
Fault injection experiments can be characterized by 

the FARM model [1], where F designates the set of 
faults/errors to be injected, A the activation mode of the 
system, R is the set of data collected during the 
experiments and M the verdict of whether or not the 
system behaves as specified, when the fault injection 
goal is to reveal design and/or implementation faults. 

The approach used to validate a component-based 
system using fault injection is quite similar to that 
proposed in [20, ch.9.2], where faults are injected at the 
interfaces between components to simulate the situation 
where a component fails and its outputs corrupted 
information to the others components System robustness 
is determined by checking post-conditions at specific 
points as well as at the system-level interface. 

The remainder of this section presents an approach 
that helps to determine the F set by answering: which 
components should be injected? How should they be 
injected? What fault model should be used? and When 
should they be injected? 

3.1. Architectural View  
The software architecture of a system represents the 

software structures that form the skeleton of the 
application. It defines how the system is structured in 
terms of the components that form the system, assigns 
the responsibilities to the components, defines the 
interactions among them and assures that the 
component’s interactions satisfy the system requirements 
[5][18]. An important issue is the definition of an 
interconnection mechanism for gluing the pieces 
together, the connectors [8][19]. Thus a system 
architecture is defined as a collection of components, 
which is a unit of software that performs a function at 
run-time and a collection of connectors, which is a unit 
of software that “glues” components together and 
mediates the interactions (communication, coordination, 
or cooperation) among these components [8]. Through 
the connectors’ format conversions, two incompatible 
components can share data as well as connectors 
augmented by performance and behavior monitoring, 
authentication and audit-trail capabilities [18]. Although 



Figure 3.1: A generic view of a component-based system
the system may be composed of COTS components, 
from which no source code is available, the system is not 
considered a black-box: the system’s architecture, which 
represents how the various components are 
interconnected, is known. Figure 3.1 shows, using UML 
notation and the system’s architecture as viewed for fault 
injection purposes.  

Components can provide one or more interfaces, 
through which they specify their services. They can also 
require interfaces that describe the services they need in 
order to provide theirs own interfaces [5][14]. In Figure 
3.1 the Example4 component offers its services through 
the interface designated as IExample4 and IExample4N. 
The Example5 component requires services specified by 
interface IExample3N.  

Connectors can also provide services, such as 
persistence, invocation and transactions, which are 
independent of the interacting component’s functionality 
[19] and are responsible for the association between a 
required interface and one or more provided interfaces. 
This association is called interface connection [8] [19]. 

As shown in Figure 3.1, connectors link the interface 
required by a component to an interface provided by 
another component (shown as “lollipops in the UML 
notation for interfaces), but these interfaces can interact 
directly with each other without the mediation of a 
connector (interaction between Example3 and 
Example5). 

3.2.  Generation of the F Set 
Inspired by the work of [4] we defined the following 

steps to determine the F set: 
1. Prioritize the components 
2. Select the components that should be injected 
3. Select the operations of each selected component 
4. Generate a list of injection points within each 

operation 
5. Define error model 

6. Decide temporal characterization of the faults 
Steps 1 and 2 are not injection tool dependent, all 

other steps are. To answer the question “Which 
components to inject?” we defined steps 1 and 2. The 
question “How to inject?” can be answered in steps 3 and 
4. “What fault model to use?” can be answered in step 5 
and finally “When to inject?” in step 6. 

 

3.2.1. Components prioritization 
Given a system of multiple components, what 

components should be selected, when it is not possible to 
inject all of them? An approach could be to select the 
components based on information about the distribution 
of faults over the component observed either during 
development or in the field [4]. If such information is not 
available, a risk-based testing strategy can be applied. 
The idea is to allocate test effort in code parts that are 
most error prone, and where failure would have the 
highest impact [17]. 

There are several techniques to assess risk (see [11], 
[17]). We use a heuristic method, as proposed in [2], 
where the following criteria are used to assess a 
components’ risk: New (freshly developed), Changed 
(has been modified), Upstream Dependency (failure in it 
will cause cascading failure in the rest of the system) 
Downstream Dependency (it is especially sensitive to 
failures in the rest of the system), Critical (failure in it 
could cause substantial damage), Popular (will be used a 
lot), Strategic (has special importance to business-feature 
that set apart from the competition), Third-party 
(developed outside the project), Distributed (spread out 
in time or space, yet whose elements must work 
together). To these criteria we add one more: 
Understandable (how much information about the 
component is provided and how it is presented). 

With these criteria, a component risk matrix can be 
constructed, as shown in Table 3.1. If a check is placed 
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Table 3.1: Summary table of component risks 
Component New Changed Upstream 

Dep 
Downstream 

Dep 
Critical Popular Strategic Thid-Party Distribute

d 
Not Under 
standable 

Risk 

Component1  �   � � � �  � High 
Component2   �    �    Low 
Component3     �   �  � Medium 
Component4 �   �  � � � � � High 

 
in a column, it means that this criterion is significant for 
that component. Although we can count the number of 
checks placed for a component, the risk judgments 
cannot be considered with this simplicity. It is possible to 
have a situation in which a component has less heuristics 
checked than another but it is considered more risky than 
the latter. These heuristics have to be seen as tools for 
assessing risk not for determining it. They do not 
substitute an expert’s opinions [14]. 
 
3.2.2. Selection of the Components  

Given the high risk components obtained in step 1, 
we continue to select those components that can be 
injected using Jaca. Two more criteria are used: 
�� Controllability: which shows how easy it is to inject 

faults on a component’s inputs/outputs. 
�� Observability: which regards the ease with which a 

component can be monitored in terms of its 
operational behaviors, input parameters, and outputs.  
When Jaca is used, the injectors and sensors needed 

for injection and monitoring purposes during runtime are 
inserted at bytecode level when the system is being 
loaded. This is achieved through the use of the Javassist 
toolkit[3], which extends the Java Reflective Interface.  

If a selected component has low controllability and 
observability, the user has the following options: (i) to 
inject faults into the component’s predecessors and 
successors developed in-house which have the desired 
controllability and observability (ii) to inject faults into 
the user-developed connectors (connectors can be taken 
as injection points or as observer points, not both, as the 
results could be influenced by the faults injected). 
 

3.2.3. Selection of the Operations 
The components’ operations are distributed among 

the components’ interfaces. Once a component has been 
chosen, faults are injected in the component’s interfaces 
indistinctly, considering all of their operations as a 
whole. To select the operations in which parameters will 
be affected during fault injection, we can use a technique 
similar to partition testing, as presented in [16, ch.22.5], 
where each operation can be categorized, for example, as 
Initialization, Computational, Queries and Termination 
operations. We can also use a state-based partitioning 
that categorizes operations according to their ability to 
change the state of the component. Faults are selected so 
that they affect operations in each category at least once. 
Faults are distributed uniformly among the categories. 

 

3.2.4. Generation of  the List of Injection Points 
 

Once the operations that are to be injected are 
selected, the next steps are to determine the parameters to 
inject, and what error model to apply. 

In what concerns the parameter selection, we have to 
cope with Jaca’s current limitations: only non-structured 
values can be affected (integer, real, and Boolean). The 
only structured type that can be affected is string [13]. 
 

3.2.5. Selection of the Error Model 
The error model is based on Ballista’s [10], 

alongside the one proposed by [20]. According to these 
two approaches the values to be used for each type are:  
• Integer / long: 0, 1, -1, MinInt, MaxInt, neighbor 

value (current value ± 1) 
• Real floating point: 0, 1, -1, DBLMin, DBLMax, 

neighbor value (current value*0.95 or *1.05) 
• Boolean: inversion of state (true -> false; false -> 

true) 
• String: null, largest string, string with all ASCII, 

string with pernicious file modes and printf format 
which can be composed by conflicting characters. 
These values potentially represent exceptional test 

values for each data type. 
 

3.2.6. Temporal Characterization 
The temporal characterization of faults is strongly 

related to the mechanisms used to trigger fault injection. 
In Jaca, faults are triggered when the target operation is 
accessed. 

Faults can be injected either permanently (each time 
a target operation is accessed), transiently (where faults 
are injected only once), or intermittently (injected 
repeatedly according to a pre-specified frequency, 
established in terms of the number of accesses to an 
operation). 

 

4.  Difficulties of the strategy 
We identified some difficulties, such as: 

(i) How many criteria must be satisfied? 
(ii) How should these criteria be weighted? 
(iii) How should each factor be quantified? 
This should be based on experts’ experiences as 
suggested by [14]. Experts can comprise developers, key 
users, customers and test personnel, who should 
brainstorm the risks associated with the specific software 
system [15]. Some factors are more difficult to quantify 



than others, such as, popular, critical, upstream 
/downstream dependence, understandable.  
(iv) How should the risk of a component be determined? 
Risks are normally a quantitative value. To obtain this 
final value, it is necessary to rank risks for each factor, 
i.e. in the range 1-3 rank low to high (relational severity 
indicator, one-third for each degree). The severity 
associated with each factor is also application-domain-
dependent and must be established by experts. It can be 
determined subjectively, as in [15]. It can also be 
determined according to safety analysis classification, as 
in [11]. . The risk of the component should be the sum of 
all partition’s risk[20]. 
(v) How should successors and predecessors be 

determined? Following the determination of 
upstream/downstream dependency?  

Based on [20], predecessors are components upon which 
the target component depends for input information and 
conversely, successors are those components to which 
the target component sends information. Thus, the 
predecessor can send corrupted data for the component 
under test and the latter can send corrupted data to its 
successors. Static analyses can help in determining 
successors and predecessors of a component[15]. 
(vi) What error model should be selected? 
We combine the partition testing model with the error 
model based on Ballista’s robustness testing. However, 
the later considers only the input space, which, as 
determined by boundary-value analysis, is not enough. 
The output space should also be considered. Which 
inputs may cause the component or the system to 
produce the wrong output? Using Fault Tree Analysis we 
can map the wrong output to the potential inputs. 
(vii)  How can good controllability and observability  of 

the system’s components be achieved? 
Jaca is designed for interface fault injection, so, only 
externally visible operations are considered. Nonetheless, 
there are still some limitations to overcome, such as 
injection and monitoring of non-scalar types; insertion of 
post-condition and invariant checkers to indicate failure 
occurrence; and tracking of exceptions and activation of 
exception handlers. We are proposing the use of 
connectors to achieve the desired controllability and 
observability. 
 
5. Contributions of Our Work 

This work focus on the systems’ architecture, in 
particular the connectors, for improving the 
controllability and observability that is necessary for 
fault injection tests. 

What is being proposed is a systematic way to 
perform fault injection to characterize the behavior of 
components and systems in the presence of faults. This 
also contributes to dependability benchmark, in that it 
provides a uniform and repeatable way to perform fault 
injection. 

6. Future Research  
     Our short-term goals are (i) define how safety 
techniques (methods based on FMEA, FMECA, FTA) 
can help to better define the selection of the injections 
points; (ii) the application of the strategy in a real world 
application aiming to assess the value of using the 
architecture to guide fault injection (we will perform 
experiments comparing the results obtained when fault 
injection points are randomly chosen among the 
components). 
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