
Architecture-based Strategy for Interface Fault Injection

Regina Lúcia de Oliveira Moraes Eliane Martins
regina@ceset.unicamp.br eliane@ic.unicamp.br
+55 19 3788-5872 +55 19 3404-7165

State University of Campinas (UNICAMP)
Superior Center of Technology Education (CESET) Institute of Computing (IC)

Abstract�

This paper presents a strategy that is an adaptation
and an evolution of a previous one proposed to validate
an isolated component. Faults are injected using a
previously developed tool, Jaca that has the ability to
inject faults into Java objects’ attributes and methods.
One of the key issues in component-based systems is its
architecture, not only for development but also for
testing. By analyzing the architecture we can define the
points of control and observation of the system’s
components during testing. Another important issue is
the selection of components to be injected and
monitored. A risk-based strategy is proposed, in order to
prioritize the components for testing which represent
higher risks for the system. In this way, test costs can be
reduced without undermining the system’s quality.

1. Introduction
1.1. Motivation

Increasingly systems are being developed as a
composition of several components; they can be
developed in house (by the same team or by another) or
by third-party. The use of components helps to attend the
increasing pressures on reduced time and money, but it
can introduce new problems, such as architectural
mismatch [8] that can arise when the expectation of a
component do not match those of other components or
the environment in which they are operate. This increases
the importance of the systems’ architecture: the system’s
quality is increased when the used architecture is a good
solution for the system. However the success of the
implementation of architecture depends on two aspects
[19]: i) that each component’s implementation behaves in
accordance to its specification, and ii) that components
interact adequately.

This paper addresses the second point mentioned
above. Specifically, our interest is to determine whether a
malfunctioning in the interaction among components can
compromise the overall system quality. Fault injection is
used for that purpose.

1.2. Fault Injection
Fault injection has been widely used to evaluate the

dependability of a system and to validate error-handling
mechanisms. This technique consists of introducing
faults during an execution of the system under test and
then observing its behavior. By doing so, it is possible to

know how the system will behave in the presence of
faults in its components or in its environment.

Fault injection approaches vary according to the
system’s life cycle where they are applied, and the type
of faults that are injected. Among the various existing
approaches (see [9]), software fault injection is getting
more popular. In this approach, logical faults are
introduced in a prototype of the system and specific error
conditions are injected to simulate software faults
(internal, e.g., variable/ parameters that are not initialized
among others), as well as faults that occur in external
components that interact with the tested application (all
external factors that alter the system’s state)[20].

Fault injection can be a valuable approach in
component-based development, not only to validate
components in isolation but also to validate their
integration into a system. By introducing faults or errors
in different components of a system (in-house or third-
party components), it is useful to answer questions such
as: does a component fail when receiving invalid inputs
from other components or from the environment? Does a
failure in a component cause the whole system to fail?

1.3. Jaca - Fault Injection Tool
Our approach is based on the introduction of interface

faults, in which faults are introduced at a component’s
interfaces by affecting input or output parameters as well
as returned results. A software fault injection tool, Jaca
[12], was used to introduce the faults, aiming at
validating Java applications. Jaca does not require access
to an application’s source code, though it is a solution for
the validation of a system composed of multiple COTS
(Commercial Off The Shelf) components, which are
generally black box. All instrumentation needed for fault
injection and monitoring purposes are introduced at byte
code level during load time. However, a minimum
controllability (ease in controlling a component’s inputs
and outputs) and observability (the ability to observe a
component’s inputs, outputs and operational behavior) is
required.

In order to inject faults using Jaca the controllability
can be achieved when the tester knows the public
methods’ signature and may observes the tests’ results
and exceptions raised through Jaca’s interface.
Nevertheless, when the architecture is composed by
third-party and in-house developed codes, specially parts
that “glue” components together, the tester may use these

units to improve the system’s controllability and
observability by taking them as control and observation
points during the process of fault injection.

1.4. Objectives of This Work
The goal of this work is to propose a fault injection

strategy to test component-based systems. Our interest is
in the interaction among components. For that reason, we
introduce interface faults, by corrupting input data as
well as interface output data.

Interface fault injection is useful in that it is at the
interfaces that corrupt data come into a component.
Components’ internal faults can reach their interfaces,
the errors’ propagation occurs through the interfaces, and
in the validation of component-based software this
technique can be the only way to inject faults.

In Section II we discuss related works. Section III
presents our proposed strategy. In section IV we point
out some difficulties of the strategy and Section V
presents the contributions of this work. Finally, in section
VI we outline future research.

2. Related Works
This work is an evolution of that presented in [13]

where we tested an isolated component. In that work we
used an application to activate the component under test.
The differences between them are twofold: (i) the target
is no longer a component in isolation, but a system
integrating various heterogeneous components, where
some of them may be black-box; (ii) the units considered
for fault injection purposes are components rather than
classes. Thus, the strategy cannot use source code
dependent metrics as in [13] and the architecture
becomes essential for planning fault injection.

A closely related approach to the one presented here
is the Interface Propagation Analysis (IPA) [24, ch.9.2].
IPA takes a black-box view of software components,
injecting faults at the interfaces between the hardware
and the software as well as between the operating system,
microkernel and so on. The difference is that we are
considering that not all components are black box.

The steps described in our work were strongly
influenced by those described in [4], where the
generation of error sets was based on field data. The
difference in our case is that we considered field data to
be unavailable.

TAMER [6] is another work that describes a tool
that injects interface faults aiming to observe fault
propagation. The main focus of that work is code
coverage. We are not interested in source code coverage,
but rather in the exceptions raised by the component, and
whether these exceptions cause the whole system to fail.

The work in [7] is quite similar to ours since they
use a tool based on computational reflection, called Java
Wrapper Generator (JWG), which modifies the bytecode
at load time, in order to provoke an exception and

observe the behavior of the exception handlers. In their
case the focus is on objects, whereas in our approach the
focus is on components, which may be composed by
several classes.

From the Ballista [10] approach we utilized the
definition of the error model that was proposed by the
authors for robustness testing.

We also borrowed ideas from studies that use risk
for test costs reduction. Many risk-based testing
strategies have been proposed [2], [17]. The approach
presented here is specially related to [2], from which we
use the heuristic risk-based testing presented below.

3. The Approach
Fault injection experiments can be characterized by

the FARM model [1], where F designates the set of
faults/errors to be injected, A the activation mode of the
system, R is the set of data collected during the
experiments and M the verdict of whether or not the
system behaves as specified, when the fault injection
goal is to reveal design and/or implementation faults.

The approach used to validate a component-based
system using fault injection is quite similar to that
proposed in [20, ch.9.2], where faults are injected at the
interfaces between components to simulate the situation
where a component fails and its outputs corrupted
information to the others components System robustness
is determined by checking post-conditions at specific
points as well as at the system-level interface.

The remainder of this section presents an approach
that helps to determine the F set by answering: which
components should be injected? How should they be
injected? What fault model should be used? and When
should they be injected?

3.1. Architectural View
The software architecture of a system represents the

software structures that form the skeleton of the
application. It defines how the system is structured in
terms of the components that form the system, assigns
the responsibilities to the components, defines the
interactions among them and assures that the
component’s interactions satisfy the system requirements
[5][18]. An important issue is the definition of an
interconnection mechanism for gluing the pieces
together, the connectors [8][19]. Thus a system
architecture is defined as a collection of components,
which is a unit of software that performs a function at
run-time and a collection of connectors, which is a unit
of software that “glues” components together and
mediates the interactions (communication, coordination,
or cooperation) among these components [8]. Through
the connectors’ format conversions, two incompatible
components can share data as well as connectors
augmented by performance and behavior monitoring,
authentication and audit-trail capabilities [18]. Although

Figure 3.1: A generic view of a component-based system
the system may be composed of COTS components,
from which no source code is available, the system is not
considered a black-box: the system’s architecture, which
represents how the various components are
interconnected, is known. Figure 3.1 shows, using UML
notation and the system’s architecture as viewed for fault
injection purposes.

Components can provide one or more interfaces,
through which they specify their services. They can also
require interfaces that describe the services they need in
order to provide theirs own interfaces [5][14]. In Figure
3.1 the Example4 component offers its services through
the interface designated as IExample4 and IExample4N.
The Example5 component requires services specified by
interface IExample3N.

Connectors can also provide services, such as
persistence, invocation and transactions, which are
independent of the interacting component’s functionality
[19] and are responsible for the association between a
required interface and one or more provided interfaces.
This association is called interface connection [8] [19].

As shown in Figure 3.1, connectors link the interface
required by a component to an interface provided by
another component (shown as “lollipops in the UML
notation for interfaces), but these interfaces can interact
directly with each other without the mediation of a
connector (interaction between Example3 and
Example5).

3.2. Generation of the F Set
Inspired by the work of [4] we defined the following

steps to determine the F set:
1. Prioritize the components
2. Select the components that should be injected
3. Select the operations of each selected component
4. Generate a list of injection points within each

operation
5. Define error model

6. Decide temporal characterization of the faults
Steps 1 and 2 are not injection tool dependent, all

other steps are. To answer the question “Which
components to inject?” we defined steps 1 and 2. The
question “How to inject?” can be answered in steps 3 and
4. “What fault model to use?” can be answered in step 5
and finally “When to inject?” in step 6.

3.2.1. Components prioritization
Given a system of multiple components, what

components should be selected, when it is not possible to
inject all of them? An approach could be to select the
components based on information about the distribution
of faults over the component observed either during
development or in the field [4]. If such information is not
available, a risk-based testing strategy can be applied.
The idea is to allocate test effort in code parts that are
most error prone, and where failure would have the
highest impact [17].

There are several techniques to assess risk (see [11],
[17]). We use a heuristic method, as proposed in [2],
where the following criteria are used to assess a
components’ risk: New (freshly developed), Changed
(has been modified), Upstream Dependency (failure in it
will cause cascading failure in the rest of the system)
Downstream Dependency (it is especially sensitive to
failures in the rest of the system), Critical (failure in it
could cause substantial damage), Popular (will be used a
lot), Strategic (has special importance to business-feature
that set apart from the competition), Third-party
(developed outside the project), Distributed (spread out
in time or space, yet whose elements must work
together). To these criteria we add one more:
Understandable (how much information about the
component is provided and how it is presented).

With these criteria, a component risk matrix can be
constructed, as shown in Table 3.1. If a check is placed

IE xa m p le 3 IE xa m p le 4 IE xa m p le 4 N

IE xa m p le 3 N

IE xa m p le 2IE xa m p le 1

In te r fa c
e

IE xa m p le 1
N

E xa m p le 5

C o m p o n e n t E xa m p le 1 E xa m p le 2

C o n n e c to r C o n n e c to r1 C o n n e c to r2

E xa m p le 3 E xa m p le 4

Table 3.1: Summary table of component risks
Component New Changed Upstream

Dep
Downstream

Dep
Critical Popular Strategic Thid-Party Distribute

d
Not Under
standable

Risk

Component1 � � � � � � High
Component2 � � Low
Component3 � � � Medium
Component4 � � � � � � � High

in a column, it means that this criterion is significant for
that component. Although we can count the number of
checks placed for a component, the risk judgments
cannot be considered with this simplicity. It is possible to
have a situation in which a component has less heuristics
checked than another but it is considered more risky than
the latter. These heuristics have to be seen as tools for
assessing risk not for determining it. They do not
substitute an expert’s opinions [14].

3.2.2. Selection of the Components

Given the high risk components obtained in step 1,
we continue to select those components that can be
injected using Jaca. Two more criteria are used:
�� Controllability: which shows how easy it is to inject

faults on a component’s inputs/outputs.
�� Observability: which regards the ease with which a

component can be monitored in terms of its
operational behaviors, input parameters, and outputs.
When Jaca is used, the injectors and sensors needed

for injection and monitoring purposes during runtime are
inserted at bytecode level when the system is being
loaded. This is achieved through the use of the Javassist
toolkit[3], which extends the Java Reflective Interface.

If a selected component has low controllability and
observability, the user has the following options: (i) to
inject faults into the component’s predecessors and
successors developed in-house which have the desired
controllability and observability (ii) to inject faults into
the user-developed connectors (connectors can be taken
as injection points or as observer points, not both, as the
results could be influenced by the faults injected).

3.2.3. Selection of the Operations
The components’ operations are distributed among

the components’ interfaces. Once a component has been
chosen, faults are injected in the component’s interfaces
indistinctly, considering all of their operations as a
whole. To select the operations in which parameters will
be affected during fault injection, we can use a technique
similar to partition testing, as presented in [16, ch.22.5],
where each operation can be categorized, for example, as
Initialization, Computational, Queries and Termination
operations. We can also use a state-based partitioning
that categorizes operations according to their ability to
change the state of the component. Faults are selected so
that they affect operations in each category at least once.
Faults are distributed uniformly among the categories.

3.2.4. Generation of the List of Injection Points

Once the operations that are to be injected are
selected, the next steps are to determine the parameters to
inject, and what error model to apply.

In what concerns the parameter selection, we have to
cope with Jaca’s current limitations: only non-structured
values can be affected (integer, real, and Boolean). The
only structured type that can be affected is string [13].

3.2.5. Selection of the Error Model
The error model is based on Ballista’s [10],

alongside the one proposed by [20]. According to these
two approaches the values to be used for each type are:
• Integer / long: 0, 1, -1, MinInt, MaxInt, neighbor

value (current value ± 1)
• Real floating point: 0, 1, -1, DBLMin, DBLMax,

neighbor value (current value*0.95 or *1.05)
• Boolean: inversion of state (true -> false; false ->

true)
• String: null, largest string, string with all ASCII,

string with pernicious file modes and printf format
which can be composed by conflicting characters.
These values potentially represent exceptional test

values for each data type.

3.2.6. Temporal Characterization
The temporal characterization of faults is strongly

related to the mechanisms used to trigger fault injection.
In Jaca, faults are triggered when the target operation is
accessed.

Faults can be injected either permanently (each time
a target operation is accessed), transiently (where faults
are injected only once), or intermittently (injected
repeatedly according to a pre-specified frequency,
established in terms of the number of accesses to an
operation).

4. Difficulties of the strategy
We identified some difficulties, such as:

(i) How many criteria must be satisfied?
(ii) How should these criteria be weighted?
(iii) How should each factor be quantified?
This should be based on experts’ experiences as
suggested by [14]. Experts can comprise developers, key
users, customers and test personnel, who should
brainstorm the risks associated with the specific software
system [15]. Some factors are more difficult to quantify

than others, such as, popular, critical, upstream
/downstream dependence, understandable.
(iv) How should the risk of a component be determined?
Risks are normally a quantitative value. To obtain this
final value, it is necessary to rank risks for each factor,
i.e. in the range 1-3 rank low to high (relational severity
indicator, one-third for each degree). The severity
associated with each factor is also application-domain-
dependent and must be established by experts. It can be
determined subjectively, as in [15]. It can also be
determined according to safety analysis classification, as
in [11]. . The risk of the component should be the sum of
all partition’s risk[20].
(v) How should successors and predecessors be

determined? Following the determination of
upstream/downstream dependency?

Based on [20], predecessors are components upon which
the target component depends for input information and
conversely, successors are those components to which
the target component sends information. Thus, the
predecessor can send corrupted data for the component
under test and the latter can send corrupted data to its
successors. Static analyses can help in determining
successors and predecessors of a component[15].
(vi) What error model should be selected?
We combine the partition testing model with the error
model based on Ballista’s robustness testing. However,
the later considers only the input space, which, as
determined by boundary-value analysis, is not enough.
The output space should also be considered. Which
inputs may cause the component or the system to
produce the wrong output? Using Fault Tree Analysis we
can map the wrong output to the potential inputs.
(vii) How can good controllability and observability of

the system’s components be achieved?
Jaca is designed for interface fault injection, so, only
externally visible operations are considered. Nonetheless,
there are still some limitations to overcome, such as
injection and monitoring of non-scalar types; insertion of
post-condition and invariant checkers to indicate failure
occurrence; and tracking of exceptions and activation of
exception handlers. We are proposing the use of
connectors to achieve the desired controllability and
observability.

5. Contributions of Our Work

This work focus on the systems’ architecture, in
particular the connectors, for improving the
controllability and observability that is necessary for
fault injection tests.

What is being proposed is a systematic way to
perform fault injection to characterize the behavior of
components and systems in the presence of faults. This
also contributes to dependability benchmark, in that it
provides a uniform and repeatable way to perform fault
injection.

6. Future Research
 Our short-term goals are (i) define how safety
techniques (methods based on FMEA, FMECA, FTA)
can help to better define the selection of the injections
points; (ii) the application of the strategy in a real world
application aiming to assess the value of using the
architecture to guide fault injection (we will perform
experiments comparing the results obtained when fault
injection points are randomly chosen among the
components).

References:
[1] Arlat, J.; Aguera, M.; Amat, L.; Crouzet, Y.; Fabre, J. C.; Laprie, J.
C.; Martins, E.; Powell, D. “Fault Injection for Dependability
Validation–A Methodology and some Applications”. IEEE
Transactions on Software Engineering, 16 (2), Feb/1990, pag 166-182.
[2] Bach J. “Heuristic Risk-Based Testing”, Software Testing and
Quality Engineering Magazine, November 1999
[3] Chiba, Shigeru. “Javassist – A Reflection-based Programming
Wizard for Java”, proceedings of the ACM OOPSLA’98 Workshop on
Reflective Programming in C++ and Java, Oct/1998.
[4] Christmansson, J ; Chillarege, R. “Generation of an Error Set that
Emulates Software Faults-Based on Fields Data”, 26th Int Syposium on
Fault-Tolerant Computing, pp 304-13, Sendai, Japan Jun/1996.
[5] Cheesman, J; Daniels, J “UML Components – A Simple Process for
Specifying Component-Based Software”, The Component Software
Series, Addison-Wesley, 2001.
[6] De Millo, R. A.; Li, T.; Mathur, A. P. “Architecture or TAMER: A
Tool for dependability analysis of distributed fault-tolerant systems”,
Purdue University, 1994.
[7] Fetzer, C.; Högstedt, K.; Felber, P. “Automatic Detection and
Masking of Non-Atomic Exception Handling”, proceedings of DSN
2003, pages 445/454, San Francisco, USA, June/2003.
[8] Garlan, D. ; Allen, R.; Ockerbloom, J. “Ärchitecture Mismatche, or,
why it’s hard to build systems out of existing parts”, proc. of the 17th
ICSE, April/95.
[9] Hsueh, M.C; Tsai, T.; Iyer, R.. “Fault Injection Techniques and
Tools”. IEEE Computer, Abril/1997.
[10] Koopman, P.; Siewiorek, D.; DeVale, K.; DeVale, J.; Fernsler, K.;
Guttendorf, D.; Kropp, N.; Pan, J.; Shelton, C.; Shi, Y. “Ballista Project
: COTS Software Robustness Testing”, Carnegie Mellon University,
http://www.ece.cmu.edu/~koopman/ballista/, 2003.
[11] Levenson, N.G. “Safeware, System Safety and Computers”
Addison-Wesley Publishing Company, 1995.
[12] Martins, E.; Rubira, C. M. F.,Leme, N. G. M., “Jaca: A reflective
fault injection tool based on patterns“, proceeding of the IPDS, 2002.
[13] Moraes, R; Martins, E “A Strategy for Validating an ODBMS
Component Using a High-Level Software Fault Injection Tool”, proc.
of the First Latin-American Symposium, pages 56-68, SP, Brazil, 2003.
[14] Peters, J. F.; Pedrycz, W. “An Engineering Approach”, John Wiley
& Sons Inc, 2000.
[15] Perry, W. “Effective Methods for Software Testing”, John Wiley
& Sons, New York, 1995.
[16] Pressman, R. S. “Software Engineering a Practitioner Approach”,
4th edition, Mc Graw Hill , 1997.
[17] Rosenberg, L; Stapko, R; Gallo, A “Risk-based Object Oriented
Testing “, 13th International Software / Internet Quality Week
(QW2000), San Francisco, California USA, 2000.
[18] Shaw, M.; Clements, P. “Toward Boxology: Preliminary
Classification of Architectural Styles”, proceedings of SIGSOFT 96
Workshop, San Francisco, CA, USA, 1996.
 [19] Silva, M. C.Jr.; Guerra, P. A. C.; Rubira, C. M.F. “A Java
Component Model for Evolving Software Systems”, proc. of
Automated Software, Engineering, Canada, 2003.
[20] Voas, J.; McGraw, G.. “Software Fault Injection: Inoculating
Programs against Errors”, John Wiley & Sons, NY, EUA, 1998.

