
High-level Supervision of Program Execution Based on Formal Specification

Gergely Pintér, István Majzik
Department of Measurement and Information Systems

Budapest University of Technology and Economics
[pinterg, majzik]@mit.bme.hu

Abstract

This paper presents an approach for concurrently
supervising the execution of applications specified by
UML statecharts and a corresponding instrumentation
scheme. The run-time verification is implemented by a
statechart-level monitor while the instrumentation is
based on Aspect-Oriented Programming.

1. Introduction

Our work in progress outlined in this paper aims at
defining a framework for concurrent verification of ob-
ject-oriented program execution with respect to both
the intra-object behavior and the inter-object commu-
nication. The research is motivated by a current need
for run-time verification against formal models as
according to EN-50128 in case of software for railway
control systems self-checking architectures are recom-
mended. The model-based verification aims at detect-
ing implementation faults (i.e. programming bugs, mis-
understood specification etc.) resulting in a faulty se-
ries of actions or the delivery of incorrect results to the
user. The requirements against the verification mecha-
nism are as follows (Fig. 1).
• The reference information should be the abstract

specification (not the implementation) seamlessly
integrating to modern SW visualization methods
e.g. specifying the behavior by statecharts and de-
scribing scenarios and communication by sequence
diagrams or Live Sequence Charts (LSC) [1].

• It should be configurable to enable the focusing on
key aspects of the specification. Promising formal-
isms according to this aspect are: temporal logic
(TL) for liveliness and safety requirements, OCL
(navigation) and LSCs for selecting scenarios [8].

• The verification (monitor) mechanism should be in-
dependent of the implementation i.e. automatically
generated from the specification minimizing this

way the possibility of common-mode faults.
• The instrumentation of the applications should be

systematic, transparent, configurable and based on
the abstract specification. Pattern-based ap-
proaches are viable candidates here e.g. the Aspect-
Oriented Programming [4] paradigm.

In
st

ru
m

en
te

d
ap

pl
ic

at
io

n
S

el
f-c

he
ck

in
g

ar
ch

ite
ct

ur
e

Se
le

ct
io

n
(T

L,
 L

S
C

)

Figure 1. Obtaining the self-checking system

While designing the self-checking architecture out-

lined above two aspects should be distinguished. The
purpose of intra-object verification is the detection of
invalid trajectory in the state space resulting from im-
plementation faults. The reference specifications can
be UML statecharts. The communication is usually
specified by sequence diagrams or LSCs. The purpose
of inter-object verification is the detection of protocol
violations, missed deadlines etc.

Figure 2: Architecture for verification

The unification of the two verification aspects im-
plies an architecture shown in Fig. 2: the inter-object
behavior is monitored by an embedded verification
component taking the statechart specification as refer-

ence information while the communication is checked
against the LSC specification by an observer compo-
nent connected to the communication middleware.
Based on the verification mechanisms an error con-
finement layer (ECL) can be inserted between the ob-
jects and the communication middleware enabling the
implementation of fault-silent behavior or more ad-
vanced fault tolerance measures.

This paper focuses on the intra-object verification.
The key contributions are the proposal for an advanced
monitoring scheme for supervising the execution of
statechart implementations and an instrumentation
method enabling the investigation by the monitor with-
out requiring manual modification of the application.

The paper is structured as follows. Sect. 2 intro-
duces the intermediate reference formalism statecharts
are transformed to, Sect. 3 proposes our monitoring
scheme, Sect. 4 discusses the instrumentation method
finally Sect. 5 outlines some experiment results, identi-
fies the areas requiring further development and con-
cludes the article.

2. Reference model

Since the dynamic semantics of UML statecharts is
informal, our monitor aiming at intra-object verifica-
tion uses the formally specified Extended Hierarchical
Automata (EHA) [2] internally as reference model that
statecharts are transformed to. Note that the internal
representation of the monitor is invisible to the applica-
tion designers, therefore the abstract models will be re-
ferred to as statecharts apart from this section.

An EHA consists of sequential automata (SA). A
SA contains simple (non-composite) states and transi-
tions. EHA states represent simple and composite
states of the UML model. States can be refined to any
number of SA. All automata refining a state are run-
ning concurrently (i.e. concurrent composite states are
modeled by EHA states refined to several automata
representing one region each).

Source and target states of an EHA transition are
always in the same automaton. UML transitions con-
necting states at different hierarchy levels are repre-
sented by transitions with special guards and labels
containing the original source and target states called
source restriction and target determination respec-
tively. At most one state in an automaton can be la-
beled as the initial state of the automaton building up
the initial state configuration of the EHA.

The operational semantics (transition selection
method) is expressed by a Kripke-structure in [2]. The
execution of extended hierarchical automata is driven
by events. A transition is enabled if its source state and
all states in the source restriction set are active, the ac-

tual event satisfies the trigger and the guard is enabled.
Priority of transition t1 is higher than the priority of t2 if
the original source state of t1 (indicated by the source
restriction set) in the UML model is a directly or transi-
tively nested substate of the original source of t2. An
enabled transition is fireable if there are no transitions
enabled with higher priority. The (possibly several)
transitions selected for firing are taken concurrently
(i.e. in a non-deterministic order).

On taking a transition the source state is left recur-
sively (with all active refinements) and the target state
and all states in the target determination set are entered.
The original definition of EHA does not consider the
representation of actions to be performed when exiting
(entering) states or assigned to transitions. According
to the UML semantics the following requirements are
to be introduced: (1) exit (entry) actions of states are to
be performed according to the state hierarchy starting
with the innermost (outermost) state and (2) the action
associated to the transition is performed after the last
exit and before the first state entry action.

3. Concurrent intra-object verification

There were several watchdog processor (WDP)
schemes [3] (both in HW and SW [7]) proposed in the
literature for detecting low-level control flow faults
(i.e. deviation from the correct machine instruction se-
quence). The WDP obtains the run-time information
by observing the CPU fetch cycles (derived signatures)
or by processing signatures of execution explicitly sent
by the observed application (assigned signatures).

The run-time signatures are checked against the
reference information typically stored as the control-
flow graph (CFG) of the application. Although the
CFGs were successfully applied for supervising the
execution of relatively low-level programming con-
structs (functions, interrupt routines etc.) the formal-
isms lacks the capability of expressing event-driven hi-
erarchical state-transition models and concurrent exe-
cution. While classical WDPs are successful in detect-
ing effects of transient HW impairments, handling SW
faults (programming bugs, misunderstood specifica-
tion, etc.) has remained on open issue.

The high-level, EHA-based watchdog (EWD) pro-
posed in this paper overcomes the weaknesses identi-
fied above by explicitly storing the EHA representation
of the application statechart as reference information
and maintaining a local observer of the state configura-
tion of the supervised one. The run-time information
sent by the application holds identifiers of states and
transitions (i.e. assigned signatures). The task of con-
current control-flow verification can be decomposed
into two abstraction levels (contexts):

• The EHA context is responsible for monitoring the
initialization process (i.e. exactly the states in the
initial configuration are entered and the sequence of
entry actions corresponds to the state hierarchy) and
the transition selection method (i.e. the trigger
event equals to the event received by the object, the
source and source restriction states are active and
priority relations are not violated).

• The transition context is responsible for monitoring
the firing of a single transition i.e. the states exited
(entered) by the application are really left (entered)
by the transition, the sequence of exit, associated
and entry actions is valid etc.

di
sp

at
ch

Figure 3: Operation of the EHA context

The implementation of EWD is based on the hier-
archy and behavior of contexts identified above. The
contexts are defined using protocol state machines
(PSM) driven by messages sent by the application and
the reference behavior is obtained from the UML state-
chart of the application. The PSM of the EHA context
(Fig. 3) consists of four states corresponding to the life-
cycle of the observed object: during construction (Ini-
tialization state) the object enters the states (initEntry
message) belonging to the initial configuration. The
start and finish of the initialization phase is indicated
by messages (initStarting and initFinishing). The
consistent stable configurations of the observed object
are represented by the Stable state. While processing
an event the configuration is considered to be transient:
transitions may be fired (trStarting message) and states
are left and entered accordingly. Since several transi-
tions may fire simultaneously according to our decom-
position scheme a transition context is created for each
running transition (createTrCtx action) and the mes-
sages related to them (e.g. state entry) are wrapped into
messages sent to the EHA context and forwarded to the
appropriate transition context (dispatch message). The
start and finish of event processing is indicated by mes-
sages (evtProcStarting and evtProcFinishing).

The actual behavior supervision is implemented by
guard predicates assigned to the transitions of the
PSM. Entering a state during the initialization (ieOK)
is valid if and only if (iff) (1) the state belongs to the

initial configuration and (2) is currently inactive and
(3) all the parent states were already entered. The ini-
tialization may be finished (ifOK) iff all states of the
initial configuration were entered. A transition may be
selected for firing (tsOK) iff (1) it is triggered by the
currently processed event and (2) its source and source
restriction states are active and (3) it is not disabled by
an already started transition and (4) it does not disable
an already started transition. The event processing may
be finished (epfOK) iff all started transitions were suc-
cessfully finished. Any messages not triggering a tran-
sition of the PSM are considered to be protocol viola-
tions (e.g. the reception of initStarting in Stable state).
The PSMs and the guards discussed here are automati-
cally generated on the basis of the reference statechart.

Figure 4: Operation of the transition context

The PSM of the transition context (Fig. 4) is

driven by messages forwarded by the EHA context.
Firing a transition involves three steps: (1) exiting the
source state and all active states refining it (Exiting
states), (2) performing the action associated to the tran-
sition and (3) entering the target state and the ones in
the target determination set (Entering states). While
leaving (entering) the source (target) states the applica-
tion sends the stateExit (stateEntry) messages and the
monitor updates its internal configuration observer ac-
cordingly (markInactive and markActive). Before per-
forming the action associated to the transition or finish-
ing the transition the application sends trAssociated
and trFinishing messages respectively.

A state may be exited (sxOK) iff (1) it is the source
of the transition or one of its refinements and (2) it is
active and (3) none of its refinements are active. The
action associated to the transition may be performed
(taOK) iff the source state and all of its active refine-
ments have been left. A state may be entered (seOK)
iff (1) it is the target of the transition or member of the
target determination set and (2) it is inactive and (3) all
of its parent states have already been entered. The
transition may be finished (tfOK) iff the target and all
states in the target determination set have been entered.

The watchdog discussed above was implemented
as a stand-alone utility in ANSI C++ and successfully
applied for detecting control flow faults in benchmark
experiments. The prototype implementation is capable
of supervising the execution of arbitrary number of ob-
jects by introducing a new topmost hierarchy level, the

application context that is responsible for observing
object construction and destruction (i.e. capable of de-
tecting some types of memory leaks and corruptions)
and dispatching the messages discussed above to EHA
contexts. Note that the approach presented here sup-
ports the checking of temporal logical requirements by
taking the accepting automaton of the TL specification
as reference model.

4. Instrumentation

Since the concurrent verification scheme proposed
above requires explicit transmission of assigned signa-
tures to the EWD, observed applications have to be in-
strumented in two aspects: (1) the message processing
interface of the EWD must be made accessible for the
application and (2) message transmission routines have
to be included at key control flow points identified
above. The first aspect necessitates the extension of
the static data model of the application i.e. the con-
tainment relation should be implemented. The second
task requires the instrumentation of the behavior.

The approach followed by the application pro-
grammer for implementing state-based behavior has an
important impact on the instrumentation method to be
chosen. Instead of searching for a probably non-
existing ultimate solution for instrumenting all possible
statechart implementation techniques, we propose a
pattern-based approach consisting of four steps:
• Identification of extension points in the data model

where the static features for accessing the monitor
(e.g. pointers etc.) are to be included.

• Identification of key control points in the behav-
ioral model (e.g. methods recursively leaving the
source state of a transition) where message trans-
mission routines are to be included.

• Developing instrumentation rules that consist of (1)
source code patterns matching one of the instru-
mentation points identified above and (2) source
code fragments to be applied (included, substituted
etc.) to matching points.

• Algorithmically applying the instrumentation rules
to the source code of the application.
Since the implementation of statechart-based be-

havior is usually addressed by applying a design pat-
tern proposed in the literature the process outlined
above can be seen as developing instrumentation pat-
terns for implementation patterns.

Figure 5 illustrates the identification of extension
points according to our pattern-based approach in case
of a simplified implementation pattern similar to [6]
consisting of an abstract base class (StatechartBase)
providing some fundamental facilities and a descendant

class derived from it (UserClass) actually implement-
ing the behavior. In this example the EWD is directly
embedded in the application by adding a containment
relation to the application class targeting the monitor
instance with role “wd”. One of the key methods of the
pattern is the fireTransition function declared in the
base class and implemented in the descendant. This
function takes the necessary steps during the firing of a
transition i.e. recursively leaves the source state, per-
forms the action associated to the transition and enters
the target states. Since the EWD requires the applica-
tion to send a trStarting message before and a trFinish-
ing message after firing a transition, the instrumenta-
tion inserts these actions in the behavioral model. The
instrumentation-related elements (classes, actions etc.)
are highlighted by grey surrounding.

Figure 5: Instrumentation example

For implementing the pattern matching and intro-
duction of static and dynamic instrumentation methods
we propose the application of Aspect-Oriented Pro-
gramming [4]. AOP aims at separation of concepts and
enabling efficient maintenance of application code by
distinguishing core and crosscutting concerns:
• Core concerns are the ones that belong to the pri-

mary purpose of the application. The design and
implementation of core concerns is according to
popular methodologies.

• Crosscutting concerns are features that should be
implemented and integrated into the application but
are difficult to design consistently together with the
application since their purpose and related artifacts
are independent of the primary purpose (e.g. re-
source accounting in a financial system).
Adding crosscutting concerns typically introduces

several minor code fragments sporadically distributed
throughout the entire source resulting in a non-
maintainable, unreliable implementation. In order to
overcome these drawbacks, AOP provides facilities for
defining programming language-level (i.e. not primitive
textual) patterns, so called pointcuts that can be auto-
matically matched against application source. The
matching regions are called join points while the modi-

fications to be applied at join points are called advices.
The class-like encapsulation of a set of pointcuts and
advices is an aspect. Examples for possible patterns
are method calls, object creation, accessing specific
member variables (reading or writing), exception han-
dling etc. The pattern matching can be recursive:
pointcuts can be defined containing other pointcuts.
AOP compilers are used to seamlessly weave aspects
into the implementation of the primary application.

In our approach AOP is used for instrumentation
of statechart implementations enabling the concurrent
supervision by the monitor. In case of the example in
Fig. 5 the containment relation between UserClass and
EWD can be implemented e.g. in Java as adding a
member variable of type EWD named wd to UserClass.
The instrumentation of the transition firing method can
be implemented as enclosing the original function body
within calls informing the monitor about the start and
finishing of the transition respectively. The aspect-
oriented (AspectJ) implementation of the instrumenta-
tion is shown in Fig. 6. The first entry adds a new
member variable to the abstract base class, the second
one defines a pointcut as calls for the function fire-
Transition in classes derived from the StatechartBase
class and finally the latest entry defines the instrumen-
tation (advice) as discussed above (calling the appro-
priate methods of EWD before and after performing
the original function body).

public aspect BehavioralMonitoring {
 // Add a member variable to the base class
 protected EWD StatechartBase.wd;

 // Define a pattern (pointcut) called firingTransitionPattern
 // matching calls for fireTransition in derived classes
 pointcut firingTransitionPattern():
 call(StatechartBase+.fireTransition(Transition tr));

 // Define the advice (instrumentation) to be applied when
 // matching the previous pointcut
 around(): firingTransitionPattern() {
 wd.trStarting(tr); // Send trStarting to the EWD
 proceed(); // Perform original function body
 wd.trFinishing(tr); // Send trFinishing to the EWD
 }
}
Figure 6: Instrumentation by AOP

This section has demonstrated our proposal for the

instrumentation process required for concurrent super-
vision of statechart-based behavior. The instrumenta-
tion code is automatically generated on the basis of the
pattern. In a more sophisticated implementation sev-
eral instrumentation levels can be defined by corre-
sponding aspect sets enabling the supervision of pro-
gram execution at various abstraction levels in corre-

sponding phases of the application life cycle (e.g. test-
ing and operation).

5. Conclusion and future work

The key contributions of this paper were the pro-
posal of a monitoring mechanism for run-time verifica-
tion and a corresponding instrumentation scheme. The
verification method enables the supervision of applica-
tions specified by UML statecharts. The instrumenta-
tion scheme seamlessly integrates to the pattern-based
approach of modern software development methodolo-
gies and applies the emerging paradigm of AOP.

The stand-alone prototype implementation of the
EWD was assessed by low-level fault injection into a
statically initialized constant data structure encoding
the behavior in an implementation pattern [5]. Al-
though the bit-inversion faults do not exactly model
software faults addressed by the watchdog, the fault de-
tection ratio was remarkable (21.5% of detected faults
was detected by the EWD only, 40% of injections re-
sulted in HW exceptions, the remaining 18.5% were
SW assertions). The full elaboration of the instrumen-
tation pattern for a code generation scheme and the in-
tegration of the EWD into a benchmark application is
subject of our current development. The next step of
our research will be the assessment of the EWD and the
LSC-based communication verification by source-code
mutation-based fault injection and the integration of
our run-time verification framework into modern com-
ponent architecture.

References
[1] W. Damm and D. Harel. LSCs: Breathing Life into Mes-
sage Sequence Charts. In Formal Methods in System Design,
2001.
[2] D. Latella, I. Majzik and M. Massink: Towards a Formal
Operational Semantics of UML Statechart Diagrams. In Proc.
FMOODS'99, pp 331-347, 1999.
[3] A. Mahmood and E. J. McCluskey: Concurrent Error De-
tection Using Watchdog Processors – A Survey. In: IEEE
Transactions on Computers – 37(2), 1988.
[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.-M. Loingtier and J. Irwin. Aspect-Oriented
Programming. In Proc. of ECOOP, Springer-Verlag 1997.
[5] G. Pintér and I. Majzik: Automatic Code Generation
Based on Formally Analyzed UML Statecharts. In Proc.
FORMS-2003, pp 45-52, 2003.
[6] M. Samek: Practical Statecharts in C/C++. Kansas
(USA), CMP Books, 2002.
[7] I. Majzik, J. Jávorszky, A. Pataricza and E. Selényi.
Concurrent Error Detection of Program Execution Based on
Statechart Specification. Proc. EWDC-10, pp 181-185, 1999.
[8] S. Uchitel, J. Kramer and J. Magee. Synthesis of Be-
havorial Models from Scenarios. IEEE Transactions on
Software Engineering. Volume 29, Number 2, February 2003

