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Abstract 
 

This paper presents an approach for concurrently 
supervising the execution of applications specified by 
UML statecharts and a corresponding instrumentation 
scheme.  The run-time verification is implemented by a 
statechart-level monitor while the instrumentation is 
based on Aspect-Oriented Programming. 
 
 

1. Introduction 
 

Our work in progress outlined in this paper aims at 
defining a framework for concurrent verification of ob-
ject-oriented program execution with respect to both 
the intra-object behavior and the inter-object commu-
nication.  The research is motivated by a current need 
for run-time verification against formal models as 
according to EN-50128 in case of software for railway 
control systems self-checking architectures are recom-
mended.  The model-based verification aims at detect-
ing implementation faults (i.e. programming bugs, mis-
understood specification etc.) resulting in a faulty se-
ries of actions or the delivery of incorrect results to the 
user.  The requirements against the verification mecha-
nism are as follows (Fig. 1).   
• The reference information should be the abstract 

specification (not the implementation) seamlessly 
integrating to modern SW visualization methods 
e.g. specifying the behavior by statecharts and de-
scribing scenarios and communication by sequence 
diagrams or Live Sequence Charts (LSC) [1]. 

• It should be configurable to enable the focusing on 
key aspects of the specification.  Promising formal-
isms according to this aspect are: temporal logic 
(TL) for liveliness and safety requirements, OCL 
(navigation) and LSCs for selecting scenarios [8]. 

• The verification (monitor) mechanism should be in-
dependent of the implementation i.e. automatically 
generated from the specification minimizing this 

way the possibility of common-mode faults. 
• The instrumentation of the applications should be 

systematic, transparent, configurable and based on 
the abstract specification.  Pattern-based ap-
proaches are viable candidates here e.g. the Aspect-
Oriented Programming [4] paradigm. 
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Figure 1. Obtaining the self-checking system 

 
While designing the self-checking architecture out-

lined above two aspects should be distinguished. The 
purpose of intra-object verification is the detection of 
invalid trajectory in the state space resulting from im-
plementation faults.  The reference specifications can 
be UML statecharts. The communication is usually 
specified by sequence diagrams or LSCs.  The purpose 
of inter-object verification is the detection of protocol 
violations, missed deadlines etc. 
 

 
Figure 2: Architecture for verification 
 

The unification of the two verification aspects im-
plies an architecture shown in Fig. 2: the inter-object 
behavior is monitored by an embedded verification 
component taking the statechart specification as refer-



ence information while the communication is checked 
against the LSC specification by an observer compo-
nent connected to the communication middleware.  
Based on the verification mechanisms an error con-
finement layer (ECL) can be inserted between the ob-
jects and the communication middleware enabling the 
implementation of fault-silent behavior or more ad-
vanced fault tolerance measures. 

This paper focuses on the intra-object verification. 
The key contributions are the proposal for an advanced 
monitoring scheme for supervising the execution of 
statechart implementations and an instrumentation 
method enabling the investigation by the monitor with-
out requiring manual modification of the application. 

The paper is structured as follows.  Sect. 2 intro-
duces the intermediate reference formalism statecharts 
are transformed to, Sect. 3 proposes our monitoring 
scheme, Sect. 4 discusses the instrumentation method 
finally Sect. 5 outlines some experiment results, identi-
fies the areas requiring further development and con-
cludes the article. 
 

2. Reference model 
 

Since the dynamic semantics of UML statecharts is 
informal, our monitor aiming at intra-object verifica-
tion uses the formally specified Extended Hierarchical 
Automata (EHA) [2] internally as reference model that 
statecharts are transformed to.  Note that the internal 
representation of the monitor is invisible to the applica-
tion designers, therefore the abstract models will be re-
ferred to as statecharts apart from this section. 

An EHA consists of sequential automata (SA).  A 
SA contains simple (non-composite) states and transi-
tions.  EHA states represent simple and composite 
states of the UML model.  States can be refined to any 
number of SA.  All automata refining a state are run-
ning concurrently (i.e. concurrent composite states are 
modeled by EHA states refined to several automata 
representing one region each). 

Source and target states of an EHA transition are 
always in the same automaton.  UML transitions con-
necting states at different hierarchy levels are repre-
sented by transitions with special guards and labels 
containing the original source and target states called 
source restriction and target determination respec-
tively.  At most one state in an automaton can be la-
beled as the initial state of the automaton building up 
the initial state configuration of the EHA. 

The operational semantics (transition selection 
method) is expressed by a Kripke-structure in [2].  The 
execution of extended hierarchical automata is driven 
by events.  A transition is enabled if its source state and 
all states in the source restriction set are active, the ac-

tual event satisfies the trigger and the guard is enabled.  
Priority of transition t1 is higher than the priority of t2 if 
the original source state of t1 (indicated by the source 
restriction set) in the UML model is a directly or transi-
tively nested substate of the original source of t2.  An 
enabled transition is fireable if there are no transitions 
enabled with higher priority.  The (possibly several) 
transitions selected for firing are taken concurrently 
(i.e. in a non-deterministic order). 

On taking a transition the source state is left recur-
sively (with all active refinements) and the target state 
and all states in the target determination set are entered.   
The original definition of EHA does not consider the 
representation of actions to be performed when exiting 
(entering) states or assigned to transitions.  According 
to the UML semantics the following requirements are 
to be introduced: (1) exit (entry) actions of states are to 
be performed according to the state hierarchy starting 
with the innermost (outermost) state and (2) the action 
associated to the transition is performed after the last 
exit and before the first state entry action. 
 

3. Concurrent intra-object verification 
 

There were several watchdog processor (WDP) 
schemes [3] (both in HW and SW [7]) proposed in the 
literature for detecting low-level control flow faults 
(i.e. deviation from the correct machine instruction se-
quence).  The WDP obtains the run-time information 
by observing the CPU fetch cycles (derived signatures) 
or by processing signatures of execution explicitly sent 
by the observed application (assigned signatures). 

The run-time signatures are checked against the 
reference information typically stored as the control-
flow graph (CFG) of the application.  Although the 
CFGs were successfully applied for supervising the 
execution of relatively low-level programming con-
structs (functions, interrupt routines etc.) the formal-
isms lacks the capability of expressing event-driven hi-
erarchical state-transition models and concurrent exe-
cution.  While classical WDPs are successful in detect-
ing effects of transient HW impairments, handling SW 
faults (programming bugs, misunderstood specifica-
tion, etc.) has remained on open issue. 

The high-level, EHA-based watchdog (EWD) pro-
posed in this paper overcomes the weaknesses identi-
fied above by explicitly storing the EHA representation 
of the application statechart as reference information 
and maintaining a local observer of the state configura-
tion of the supervised one.  The run-time information 
sent by the application holds identifiers of states and 
transitions (i.e. assigned signatures).  The task of con-
current control-flow verification can be decomposed 
into two abstraction levels (contexts): 



• The EHA context is responsible for monitoring the 
initialization process (i.e. exactly the states in the 
initial configuration are entered and the sequence of 
entry actions corresponds to the state hierarchy) and 
the transition selection method (i.e. the trigger 
event equals to the event received by the object, the 
source and source restriction states are active and 
priority relations are not violated). 

• The transition context is responsible for monitoring 
the firing of a single transition i.e. the states exited 
(entered) by the application are really left (entered) 
by the transition, the sequence of exit, associated 
and entry actions is valid etc. 
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Figure 3: Operation of the EHA context 
 

The implementation of EWD is based on the hier-
archy and behavior of contexts identified above.  The 
contexts are defined using protocol state machines 
(PSM) driven by messages sent by the application and 
the reference behavior is obtained from the UML state-
chart of the application.  The PSM of the EHA context 
(Fig. 3) consists of four states corresponding to the life-
cycle of the observed object: during construction (Ini-
tialization state) the object enters the states (initEntry 
message) belonging to the initial configuration.  The 
start and finish of the initialization phase is indicated 
by messages (initStarting and initFinishing). The 
consistent stable configurations of the observed object 
are represented by the Stable state.  While processing 
an event the configuration is considered to be transient: 
transitions may be fired (trStarting message) and states 
are left and entered accordingly.  Since several transi-
tions may fire simultaneously according to our decom-
position scheme a transition context is created for each 
running transition (createTrCtx action) and the mes-
sages related to them (e.g. state entry) are wrapped into 
messages sent to the EHA context and forwarded to the 
appropriate transition context (dispatch message). The 
start and finish of event processing is indicated by mes-
sages (evtProcStarting and evtProcFinishing). 

The actual behavior supervision is implemented by 
guard predicates assigned to the transitions of the 
PSM.  Entering a state during the initialization (ieOK) 
is valid if and only if (iff) (1) the state belongs to the 

initial configuration and (2) is currently inactive and 
(3) all the parent states were already entered.  The ini-
tialization may be finished (ifOK) iff all states of the 
initial configuration were entered.  A transition may be 
selected for firing (tsOK) iff (1) it is triggered by the 
currently processed event and (2) its source and source 
restriction states are active and (3) it is not disabled by 
an already started transition and (4) it does not disable 
an already started transition.  The event processing may 
be finished (epfOK) iff all started transitions were suc-
cessfully finished.  Any messages not triggering a tran-
sition of the PSM are considered to be protocol viola-
tions (e.g. the reception of initStarting in Stable state).  
The PSMs and the guards discussed here are automati-
cally generated on the basis of the reference statechart. 
 

 
Figure 4: Operation of the transition context 

 
The PSM of the transition context (Fig. 4) is 

driven by messages forwarded by the EHA context.   
Firing a transition involves three steps: (1) exiting the 
source state and all active states refining it (Exiting 
states), (2) performing the action associated to the tran-
sition and (3) entering the target state and the ones in 
the target determination set (Entering states).  While 
leaving (entering) the source (target) states the applica-
tion sends the stateExit (stateEntry) messages and the 
monitor updates its internal configuration observer ac-
cordingly (markInactive and markActive).  Before per-
forming the action associated to the transition or finish-
ing the transition the application sends trAssociated 
and trFinishing messages respectively. 

A state may be exited (sxOK) iff (1) it is the source 
of the transition or one of its refinements and (2) it is 
active and (3) none of its refinements are active.  The 
action associated to the transition may be performed 
(taOK) iff the source state and all of its active refine-
ments have been left.  A state may be entered (seOK) 
iff (1) it is the target of the transition or member of the 
target determination set and (2) it is inactive and (3) all 
of its parent states have already been entered.  The 
transition may be finished (tfOK) iff the target and all 
states in the target determination set have been entered. 

The watchdog discussed above was implemented 
as a stand-alone utility in ANSI C++ and successfully 
applied for detecting control flow faults in benchmark 
experiments.  The prototype implementation is capable 
of supervising the execution of arbitrary number of ob-
jects by introducing a new topmost hierarchy level, the 



application context that is responsible for observing 
object construction and destruction (i.e. capable of de-
tecting some types of memory leaks and corruptions) 
and dispatching the messages discussed above to EHA 
contexts.  Note that the approach presented here sup-
ports the checking of temporal logical requirements by 
taking the accepting automaton of the TL specification 
as reference model. 

 

4. Instrumentation 
 

Since the concurrent verification scheme proposed 
above requires explicit transmission of assigned signa-
tures to the EWD, observed applications have to be in-
strumented in two aspects: (1) the message processing 
interface of the EWD must be made accessible for the 
application and (2) message transmission routines have 
to be included at key control flow points identified 
above.  The first aspect necessitates the extension of 
the static data model of the application i.e. the con-
tainment relation should be implemented. The second 
task requires the instrumentation of the behavior. 

The approach followed by the application pro-
grammer for implementing state-based behavior has an 
important impact on the instrumentation method to be 
chosen.  Instead of searching for a probably non-
existing ultimate solution for instrumenting all possible 
statechart implementation techniques, we propose a 
pattern-based approach consisting of four steps:   
• Identification of extension points in the data model 

where the static features for accessing the monitor 
(e.g. pointers etc.) are to be included. 

• Identification of key control points in the behav-
ioral model (e.g. methods recursively leaving the 
source state of a transition) where message trans-
mission routines are to be included. 

• Developing instrumentation rules that consist of (1) 
source code patterns matching one of the instru-
mentation points identified above and (2) source 
code fragments to be applied (included, substituted 
etc.) to matching points. 

• Algorithmically applying the instrumentation rules 
to the source code of the application. 
Since the implementation of statechart-based be-

havior is usually addressed by applying a design pat-
tern proposed in the literature the process outlined 
above can be seen as developing instrumentation pat-
terns for implementation patterns. 

Figure 5 illustrates the identification of extension 
points according to our pattern-based approach in case 
of a simplified implementation pattern similar to [6] 
consisting of an abstract base class (StatechartBase) 
providing some fundamental facilities and a descendant 

class derived from it (UserClass) actually implement-
ing the behavior.  In this example the EWD is directly 
embedded in the application by adding a containment 
relation to the application class targeting the monitor 
instance with role “wd”.  One of the key methods of the 
pattern is the fireTransition function declared in the 
base class and implemented in the descendant.  This 
function takes the necessary steps during the firing of a 
transition i.e. recursively leaves the source state, per-
forms the action associated to the transition and enters 
the target states.  Since the EWD requires the applica-
tion to send a trStarting message before and a trFinish-
ing message after firing a transition, the instrumenta-
tion inserts these actions in the behavioral model.  The 
instrumentation-related elements (classes, actions etc.) 
are highlighted by grey surrounding. 
 

 
Figure 5: Instrumentation example 
 

For implementing the pattern matching and intro-
duction of static and dynamic instrumentation methods 
we propose the application of Aspect-Oriented Pro-
gramming [4]. AOP aims at separation of concepts and 
enabling efficient maintenance of application code by 
distinguishing core and crosscutting concerns: 
• Core concerns are the ones that belong to the pri-

mary purpose of the application.  The design and 
implementation of core concerns is according to 
popular methodologies. 

• Crosscutting concerns are features that should be 
implemented and integrated into the application but 
are difficult to design consistently together with the 
application since their purpose and related artifacts 
are independent of the primary purpose (e.g. re-
source accounting in a financial system).   
Adding crosscutting concerns typically introduces 

several minor code fragments sporadically distributed 
throughout the entire source resulting in a non-
maintainable, unreliable implementation.  In order to 
overcome these drawbacks, AOP provides facilities for 
defining programming language-level (i.e. not primitive 
textual) patterns, so called pointcuts that can be auto-
matically matched against application source.  The 
matching regions are called join points while the modi-



fications to be applied at join points are called advices.  
The class-like encapsulation of a set of pointcuts and 
advices is an aspect.  Examples for possible patterns 
are method calls, object creation, accessing specific 
member variables (reading or writing), exception han-
dling etc.  The pattern matching can be recursive: 
pointcuts can be defined containing other pointcuts.  
AOP compilers are used to seamlessly weave aspects 
into the implementation of the primary application. 

In our approach AOP is used for instrumentation 
of statechart implementations enabling the concurrent 
supervision by the monitor.  In case of the example in 
Fig. 5 the containment relation between UserClass and 
EWD can be implemented e.g. in Java as adding a 
member variable of type EWD named wd to UserClass.  
The instrumentation of the transition firing method can 
be implemented as enclosing the original function body 
within calls informing the monitor about the start and 
finishing of the transition respectively.  The aspect-
oriented (AspectJ) implementation of the instrumenta-
tion is shown in Fig. 6.  The first entry adds a new 
member variable to the abstract base class, the second 
one defines a pointcut as calls for the function fire-
Transition in classes derived from the StatechartBase 
class and finally the latest entry defines the instrumen-
tation (advice) as discussed above (calling the appro-
priate methods of EWD before and after performing 
the original function body). 

  
public aspect BehavioralMonitoring { 
    // Add a  member variable to the base class 
    protected EWD StatechartBase.wd; 
 

    // Define a pattern (pointcut) called firingTransitionPattern 
    // matching calls for fireTransition in derived classes 
    pointcut firingTransitionPattern(): 
        call(StatechartBase+.fireTransition(Transition tr)); 
 

    // Define the advice (instrumentation) to be applied when 
    // matching the previous pointcut 
    around(): firingTransitionPattern() { 
        wd.trStarting(tr); // Send trStarting to the EWD 
        proceed(); // Perform original function body 
        wd.trFinishing(tr); // Send trFinishing to the EWD 
    } 
} 
Figure 6: Instrumentation by AOP 

 
This section has demonstrated our proposal for the 

instrumentation process required for concurrent super-
vision of statechart-based behavior.  The instrumenta-
tion code is automatically generated on the basis of the 
pattern.  In a more sophisticated implementation sev-
eral instrumentation levels can be defined by corre-
sponding aspect sets enabling the supervision of pro-
gram execution at various abstraction levels in corre-

sponding phases of the application life cycle (e.g. test-
ing and operation). 

 

5. Conclusion and future work 
 

The key contributions of this paper were the pro-
posal of a monitoring mechanism for run-time verifica-
tion and a corresponding instrumentation scheme.  The 
verification method enables the supervision of applica-
tions specified by UML statecharts.  The instrumenta-
tion scheme seamlessly integrates to the pattern-based 
approach of modern software development methodolo-
gies and applies the emerging paradigm of AOP. 

The stand-alone prototype implementation of the 
EWD was assessed by low-level fault injection into a 
statically initialized constant data structure encoding 
the behavior in an implementation pattern [5].  Al-
though the bit-inversion faults do not exactly model 
software faults addressed by the watchdog, the fault de-
tection ratio was remarkable (21.5% of detected faults 
was detected by the EWD only, 40% of injections re-
sulted in HW exceptions, the remaining 18.5% were 
SW assertions).  The full elaboration of the instrumen-
tation pattern for a code generation scheme and the in-
tegration of the EWD into a benchmark application is 
subject of our current development.  The next step of 
our research will be the assessment of the EWD and the 
LSC-based communication verification by source-code 
mutation-based fault injection and the integration of 
our run-time verification framework into modern com-
ponent architecture. 
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