
DSN 2004 WADS 1

Architecture-based Dependability Prediction
for Service-oriented Computing

Vincenzo Grassi

Università di Roma “Tor Vergata”, Italy

DSN 2004 WADS 2

Service-oriented Computing

emerging paradigm for designing, architecting and delivering
distributed applications

applications built as a composition of Internet accessible, independently
developed and delivered “services”
“service”: unit of composition, spans high level functionalities (some
complex business logic) and basic functionalities (processing, storage, …)

strong overlapping with component-based approaches
distinguishing feature: automatic service advertisement, discovery and
composition

– need of agreed on and machine-processable service description languages
– need of automatic discovery, selection and composition tools

DSN 2004 WADS 3

QoS-driven service selection and composition

Non obvious correlation between service assembly QoS
and individual services QoS

assembly QoS monitoring to assess the fulfillment of some
QoS goal, after the service selection and composition

assembly QoS prediction to drive the selection of services

need of QoS prediction methodologies
– compositional (to exploit the SOC application structure)
– automatic (to be compliant with the SOC requirements)

in this work, focus on dependability issues

DSN 2004 WADS 4

Compositional and automatic QoS (dependability)
prediction (1)

need of a QoS language for SOC
machine-processable
integrated with existing SOC languages
supporting compositionality

built to express which concepts ?
syntax
semantics

DSN 2004 WADS 5

Compositional and automatic QoS (dependability)
prediction (2)

Contributions from different areas and communities

Software
Architecture and
Component
based
approaches

QoS modeling
and analysis

description
and composition
languages for
SOCQoS

(dependability)
prediction for
SOC
applications

DSN 2004 WADS 6

Example

“search an item in a list" service
can require a "sort" service if the list is not ordered

required
service

offered
service

symbols :

search service
provider

search sort

sort service
provider

sort

cpu cpunet 1-2

DSN 2004 WADS 7

Contributions from each area (1)
description and composition languages for SOC

built on top of basic XML-based languages and protocols (WSDL, SOAP, UDDI)
examples

– OWL-S (formerly DAML-S): promoted by BBN Technologies, Nokia, and several
academic institutions (CMU, Stanford, USC, MIT, Vrije Univ., …)

– BPEL4WS (formerly WSFL and XLANG): promoted by BEA, IBM, Microsoft, SAP AG,
Siebel Systems

main features
machine-processable and interoperable
support the definition of non functional properties (e.g. reliability)

but …

no explicit description of the "interaction infrastructure"
QoS values mainly expressed as absolute values (no platform dependent
parameterization)
lack of support for compositional analysis

DSN 2004 WADS 8

Example

search service
provider

sort service
provider

search sort sort

cpu net 1-2 cpu

DSN 2004 WADS 9

Contributions from each area (2)
Software Architecture and Component based approaches

main features
the "interaction infrastructure" is a first class concept

– connector concept
explicit consideration of dependencies between offered and required services
attention given to non functional (QoS) properties

but …

several (too many?) "experimental" architecture description languages (ADLs)
– some unification/interoperation effort

need of a better integration of QoS analysis techniques
– non well defined “QoS semantics” for existing ADLs

DSN 2004 WADS 10

search service
provider

search sort

sort service
provider

sort

Example

local call connector

net 1-2cpu cpu

cpu cpu

search service
provider

search sort

sort service
provider

sort

net 1-2

rpc connector

DSN 2004 WADS 11

Contributions from each area (3)
QoS modeling and analysis

main features
analysis techniques
QoS specification languages

– QML (Frolund - Koistinen, 1998), HQML (Gu et al., 2001), CQML (Aagedal, 2001),
CQML+ (Rottger - Zschaler, 2003), …

– UML QoS Profile

but …

weak connection between QoS specification languages and QoS analysis
techiques
unsatisfactory support for compositionality in existing QoS languages

DSN 2004 WADS 12

Integration of contributions (1)

a QoS language for SOC

built around a unifying “service+connector” model
for both “high level” and “low level” services

– more flexibility
– simpler description language definition

search service
provider

search sort

sort service
provider

sort

rpc connector

process process

process process

transmit

process transmit
process

net 1-2
cpu cpu

DSN 2004 WADS 13

Integration of contributions (2)

“analytic interface” associated with each offered service
general concept proposed by CMU-SEI (PECT: Prediction Enabled
Component Technlogy)
suitable abstraction of the “constructive (functional) interface”
allows a structured approach to compositional analysis

in our approach:
consider services offered by both resources (components) and
connectors
“abstract” service representation

– abstract service description
» abstract parameter domains

– (for non basic services) abstract service request flow addressed to other
resources/connectors: stochastic model

» abstract flow: probabilistic graph
» abstract service request: actual parameters as (parametric) random

variables

DSN 2004 WADS 14

Example (1)

“abstract” service description :

Search(in i : T; in l : list of T; out res: boolean) Search(l : integer)
“functional” description abstraction

list size

Search(in i : T; in l : list of T;
out res: boolean)

{if not_ordered(l)
then Sort(l);
res := do_search(i, l);
}

“abstract” service request flow :

cpu(log(#list))

Sort(#list)

Start

End

a

b

1

1

q
1-q

 Search (in:list) :

abstract service
requests

abstract flow

“functional” description abstraction

DSN 2004 WADS 15

Example (2)

abstract request flows of the Sort and RPC services

 cpu(ip*) // marshal ip*

Start

End

1

1

RPC(in:ip*, out:op*) :

1
 net(ip*) // transmit ip*
 cpu(m(ip*)) // unmarshal ip*

 cpu(op*) // marshal op*
 net(op*) // transmit op*
 cpu(m(op*)) // unmarshal op*

cpu(#list·log(#list))

Start

End

1

1

 Sort
 (in-out:list) :

DSN 2004 WADS 16

Dependability prediction

cpu(log(list))

Sort(list)

Start

End

a

b

1

1

q

1-q

 Search (in:elem, in:list, out:result) :

the presented concepts provides the support for QoS compositional
prediction

addition of QoS related information (specialized for some QoS
dimension, e.g. dependability) with well defined semantics

example: composite service reliability analysis

cpu(log(list))

Sort(list)

Start

End

a

b
1-p(a,Fail)

1-p(b,Fail)

q
1-q

Search(in:elem, in:list, out:result) :

Fail

p(a,Fail)

p(b,Fail)

addition of a “failure structure”

reliability = probability of reaching the End state
crucial issue: evaluation of p(node, Fail)

DSN 2004 WADS 17

“Dependability semantics” issues (1)
node of a service request flow graph: collection of service requests

node = {R1, R2, …, Rn}, where:
Rj = request(Sj, apj*) Sj = required service specification

apj* = list of actual (abstract) parameters

node failure probability: depends on :
failure probability of each Rj
completion model for R1, R2, …, Rn

– AND, OR, ...
dependencies among R1, R2, …, Rn

– no dependence (e.g. no service sharing), dependence (e.g. service sharing)

failure probability of Rj depends on :
internal failure prob for Rj (Pfail_int(Rj)) (definition?)
connector failure prob for Rj (Pfail_connect(Rj))
service failure prob for Rj (Pfail_service(Rj))

Pfail_int(Rj) × Pfail_connect(Rj) × Pfail_service(Rj) ?

DSN 2004 WADS 18

“Dependability semantics” issues (2)

Rj = request(S, apj*)Ri = request(S, api*)

flow graph node: AND completion model

OK

Rj = request(S, apj*)Ri = request(S, api*)

flow graph node: OR completion model

NO

Ri = request(Si, api*)
Rj = request(Sj, apj*)

what if Si = Sj ? (i.e., the two requests are connected to the same service S)

failure prob {Ri} = Pfail_int(Ri) × Pfail_connect(Ri) × Pfail_service(Ri) ?
failure prob {Rj} = Pfail_int(Rj) × Pfail_connect(Rj) × Pfail_service(Rj) ?

DSN 2004 WADS 19

Conclusions

issues for dependability (QoS) prediction in a SOC framework

inclusion of a well structured "analytic interface" into existing XML-
based service description and composition languages

based on concepts from Software Architecture approaches
(connectors!)

dependability (QoS) semantics deserves special care
example: dependability analysis methodologies should not be based on
a priori (prior to service composition) independence assumptions

– service composition or F-T features can introduce dependencies among
services

reuse existing work on algorithmic methods for the automatic
generation of QoS analysis models

mostly from UML models
idea: express the QoS semantics of XML-based SOC languages in
terms of appropriate UML models

– UML Profile for Modeling QoS and F-T

