
Applying Design Diversity to
Aspects of System Architectures and

Deployment Configurations to
Enhance System Dependability

Matthew J. Hawthorne
Dewayne E. Perry

The University of Texas at Austin

Introduction

• Dependable Systems: Software-based systems
with very high reliability requirements

• Examples (current and potential):
– Aerospace applications
– Nuclear power plant controls
– Other industrial production and transportation

• Especially environmental and safety-critical systems
– Web servers, application servers

• Critical for many companies
• May be sole means of service delivery, transaction processing

The Challenge of Dependability

 Software is an increasingly integral part of the
systems on which we depend

• Two characteristics of software-based systems:
– Pervasiveness: Automation ≈ software-based systems

• Even embedded “hardware” systems usually include
significant software components

– Complexity
• Functional complexity
• Legacy complexity
• Application and component frameworks
• Hardware and operating system complexity

Enhancing Software Dependability

• Process improvement: ISO 9001, SEI Maturity
Model, Unified Process, Agile methods, …

• Architecture and design: CBSA, MDA, UML, …
• Engineering testing (component/unit testing)
• Verification and validation (QA, field testing)

Redundancy

• Used to enhance dependability
• Software-based systems present special challenges
• Software errors or vulnerabilities are almost

always the result of development errors, e.g.:
– Incorrect or incomplete requirements
– Design or implementation errors

• Major problem: Positive failure correlation
– Different versions tend to fail under the same, or

overlapping, sets of conditions (inputs)

Design Diversity

• Try to reduce inter-version error correlation with
“diversity-enhancing” development decisions
– Mutual isolation of development teams
– Different programming languages
– Different architecture and design patterns
– Different development and testing methodologies

• Design diversity research usually considers only the
application under development

 Limited by the scope of the diversity-enhancing
development decisions

Extending Design Diversity:
Layered Components

• Non-trivial software components are almost
certain to include unknown defects and
vulnerabilities

• As development environments become more
component and framework oriented, underlying
systems become more complex
– Most of the complexity of many systems is below the

application level
• Layered component diversity can help protect

against system and third-party defects

Extending Design Diversity:
Hardware and Operating Systems

• Hardware and operating systems are also
becoming more complex
– Viruses, worms, etc., often attack only certain operating

systems, operating system families, or different
operating systems on the same hardware platform

– Example: Dozens of security-enhancing fixes for the
Windows OS

• Operating system and hardware diversity can help
protect against OS- or hardware-specific errors or
vulnerabilities

Extending Design Diversity:
Network and Infrastructure

• Modern systems depend on connectivity
– Network outage → system/node inoperative

• Systems depend on power supply, other
infrastructure
– Power outage → system/node inoperative

• Diversity in networking, power supply, and other
infrastructure can help protect against
infrastructure-induced system failures

Diversity-Enhancing Properties

• Modal diversity
• Geographical diversity
• Ecological diversity
• Other diversity properties:

– Temporal diversity
– Control diversity
– Combinational diversity

Modal Diversity

• Provide for diverse modes of accomplishing
system functions

• Example: Diverse UI modes
– Power plant operator alert system
– Primary UI mode

• Graphical user interface (visual, auditory signals)

– Backup UI modes
• Operator’s digital pager
• Supervisor’s mobile phone

Geographical Diversity

• Distribute hardware-software components
geographically to avoid local failures

• Example: Diverse locations
– Web application server-based system
– Distributed redundant servers in London, Paris, Milano,

New York and San Francisco

Ecological diversity

• Use diverse hardware, software, network and
infrastructure components to protect against
hardware or software-specific errors or
vulnerabilities

• Example: Diverse networks (also modal diversity)
– Primary Network: T1 line via Ethernet
– Backup Networks: DSL modem, leased satellite link

Other Diversity Properties

• Temporal diversity: Ability of system to adapt
to temporal variability (variable event delays;
temporal decoupling)

• Control diversity: Diverse automatic and
human control systems (control decoupling)

• Combinational diversity: Combination of
hardware-software components is diverse, even if
not all the individual components are unique

Architectural Framework

• Diverse redundant hardware-software-
infrastructure “channels”

• Channels ideally incorporate top-to-bottom design
diversity

• May also leverage combinational diversity:
Diverse combinations of hardware and software in
different channels

Conceptual Model for Diverse
Systems

Diverse Channel
System Architecture Example

Conclusions

• Top-to-bottom design diversity for dependable systems
incorporates the whole system:
– Software: Applications, layered components, and operating

systems
– Hardware: Processors, storage units, etc.
– Infrastructure: Networks, power supplies, etc.

• Use properties like modal, geographical, ecological, and
temporal diversity to evaluate dependable system designs

• Diverse hardware-software-infrastructure channels can
provide multi-level redundancy

Current and Future Developments

• Architectural frameworks to enable the design and
development of systems with top-to-bottom
diversity
– Aspect-oriented approaches show some promise to help

configure multi-level diversity in the software parts of
the system

• Distributed intelligent service provider based self-
directed system
– Diverse nodes
– Common request/reply/routing protocol

