How to Guarantee at the Architectural
Level the Dependability Requirements of

a System?

Contracts, Composability and Optimized
Prevention

Miroslaw Malek

Institut flr Informatik
Humboldt-Universitat zu Berlin
malek@informatik.hu-berlin.de

The NOMADS Republic

1-Ux
P f:}

AU ME,

- -

Hprist

The Status: The largest nation on Earth

Population: 20 - 100 B citizens, maybe 1T

Key qualities: Mobility, Adaptivity and Dependability

1-Uxn
o I
"4 &

'r‘-u""-"-'n

The Need

=
&r B 1 .I-I‘_iln

Lygpiet

Need for a unifying paradigm that covers:
 embedded systems
* sensor networks
 personal computing
 server farms

* GRID computing

= U
pt VN,

wl -H.ﬂ-n
k3
-fl"_r_'l,'ii'

Approach Yo
- =
E
23
Properties < > '%_ E’_
5 3 &8
E
= <
N
AP,Olication
Networy
. Layerg
Physic
Problem
domain (e.g.,
’ Ad hoc
&S routing)

Our Experience at Architectural Level

« Consensus:
— Unstoppable orchestra, robots, security
 Service
— Contracts
— Reuse
— Composability
« Failure Prediction and Recovery
e« Communication
— Ad hoc routing
— Remote experiment
 Resource Allocation
— Dynamic scheduling

NOMADS Services

UM
AT Mg

T
&
£ W 1 15‘#

« ti
"{11 '.'r-'rj:-

& v
&r B 1 .p-l‘_iln

Hiding complexity behind services:
* “everything” is a service paradigm
» W-guestions:
- Who are you?
- Where are you?
- What do you offer?
e services/contracts expose extended interfaces:
= functional properties
= non-functional properties
= semantics
scontracts extraction

sinteroperation between systems
scomposable architectures
e composition, decomposition, adaptation
Existing Approaches:
 WSCI (Web Service Choreography Interface)
« WSFL (Web Service Flow Language)
\\- BPEL (Business Process Execution Language)

4

Dependability :

T

Fundamental principle:
 redundancy in space
* redundancy in time

redundancy
In space

redundancy
In time

Service replication vs. service retry:
e tradeoffs

* CcOst

« applications

Conflicting requirements:
o fault tolerance

= multiple copies
 Security

" single secure copy

Two-stage approach : A

..,_J- [+
&r B 1 .p-l‘_iln

o Step 1: Failure Prediction

— Pattern recognition with extended Markov chains

— Function approximation with universal basis functions (UBF)
» Step 2: Preventive action(s)

— Load lowering

— State clean-up

— Garbage collection

— Establishing recovery point (checkpointing)

— Process restart

— Failover

— System restart

Universal Basis Functions Model

nl l!l_.n-n

« U
at "J’p

“ k3
LTyris®

: +
o pputt

e Suited to continuous data, e.g.,
— Workload
— Memory usage
— Process starts per second

 Function approximation of

failure probability
e Universal basis functions:

— linear mixtures of bounded
and unbounded activation
functions such as Gaussian,
sigmoid and multi

guadratics

Failure probability

measure 2

measure 1

>

> t

> t

> t

Example: Self-Rejuvenation

* Preventive restart before a failure occurs
o System-state-dependent, automatic restart
* Full-featured Self-Rejuvenation comprises:
— When to restart
— What to restart
— Which method to choose, e.g.,
» Going back to recovery block
* Redeploying an entire component

Today and Tomorrow

e Service Oriented Computing:
- frameworks are evolving
- reuse
- dependability
- productivity

« NOMADS and others will provide an
Infrastructure for service architectures

 Failure prediction and prevention
will be widely applied

o Self-X functionality and flexibility will be a
must

T

