
How to Guarantee at the Architectural
Level the Dependability Requirements of
a System?

Contracts, Composability and Optimized
Prevention

Miroslaw Malek
Institut für Informatik
Humboldt-Universität zu Berlin
malek@informatik.hu-berlin.de

The NOMADS Republic

The Status: The largest nation on Earth

Population: 20 - 100 B citizens, maybe 1T

Key qualities: Mobility, Adaptivity and Dependability

The Need

Need for a unifying paradigm that covers:
• embedded systems
• sensor networks
• personal computing
• server farms
• GRID computing

Approach

Application
Network

Physical
D

ep
en

da
bi

lit
y

M
ob

ili
ty

A
da

pt
iv

ity
Dist

rib
uti

on

Com
po

sit
ion

Acq
uis

itio
n

Properties

Processes

Problem
domain (e.g.,

Ad hoc
routing)

Layers

Our Experience at Architectural Level

• Consensus:
– Unstoppable orchestra, robots, security

• Service
– Contracts
– Reuse
– Composability

• Failure Prediction and Recovery
• Communication

– Ad hoc routing
– Remote experiment

• Resource Allocation
– Dynamic scheduling

NOMADS Services

Hiding complexity behind services:
• “everything” is a service paradigm
• W-questions:

- Who are you?
- Where are you?
- What do you offer?

• services/contracts expose extended interfaces:
functional properties
non-functional properties
semantics

•contracts extraction
•interoperation between systems
•composable architectures
• composition, decomposition, adaptation
Existing Approaches:
• WSCI (Web Service Choreography Interface)
• WSFL (Web Service Flow Language)
• BPEL (Business Process Execution Language)

Dependability

redundancy
in space

redundancy
in time

Fundamental principle:
• redundancy in space
• redundancy in time

Service replication vs. service retry:
• tradeoffs
• cost
• applications

Conflicting requirements:
• fault tolerance

multiple copies
• security

single secure copy

Two-stage approach

• Step 1: Failure Prediction

– Pattern recognition with extended Markov chains

– Function approximation with universal basis functions (UBF)

• Step 2: Preventive action(s)

– Load lowering

– State clean-up

– Garbage collection

– Establishing recovery point (checkpointing)

– Process restart

– Failover

– System restart

Universal Basis Functions Model

• Suited to continuous data, e.g.,

– Workload

– Memory usage

– Process starts per second

• Function approximation of

failure probability

• Universal basis functions:

– linear mixtures of bounded

and unbounded activation

functions such as Gaussian,

sigmoid and multi

quadratics t

m
ea

su
re

 1
t

m
ea

su
re

 2
Fa

ilu
re

pr
ob

ab
ilit

y

t

Example: Self-Rejuvenation

• Preventive restart before a failure occurs
• System-state-dependent, automatic restart
• Full-featured Self-Rejuvenation comprises:

– When to restart
– What to restart
– Which method to choose, e.g.,

• Going back to recovery block
• Redeploying an entire component

Today and Tomorrow

• Service Oriented Computing:
- frameworks are evolving
- reuse
- dependability
- productivity

• NOMADS and others will provide an
infrastructure for service architectures

• Failure prediction and prevention
will be widely applied

• Self-X functionality and flexibility will be a
must

