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Goals of the Talk

m Tdentify some challenges
m Suggest some solutions

m Motivate future research
m Invite dissenting opinions



Goals of the Talk

The problem is this big
and sometimes ill-defined



Goals of the Talk

I will talk to you

about this much of it




Goals of the Talk

will suggest a solution
for this much of it
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But, hopefully, we will have

this much funl!
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What Is Dependability?

m Degree of user confidence that the system
will operate as expected
m Key dimensions
Availability
Reliability
Security
Safety
m But also
Repairability
Maintainability
Survivability
Fault tolerance
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What Is Architecture?

m A high-level model of a system
The system'’s "blueprint”

m Represents system organization
Data
Computation
Interaction
Structure

m Embodies system properties
Communication integrity, performance, throughput,
liveness, . ..
Can/does it embody dependability?
(how) Can those properties be transferred to the
system itself?



A "Traditional” Architectural Model

connector Pipe =
role Writer = write — Wrilter 0O close —
role Header =
let ExitCnly = close —
in let DoRead = (read — EReader
l read-ecf — ExitOnly)
in DoRead N ExitOnly
glue = let Keadinly = Header.read — EeadOnly
 Eeader.read-20f — EReader.close —
l Reader.close —
in let WriteOnly = Writer.write — Writelnly
0 Writer.close —
in Writer.write — glue
0 Reader.read — glue
] Writer.close — ReadOnly
 Reader.close — WriteCnly



A "Traditional” Architectural Model

connector Pipe =
role Writer
role Header
let ExitCnly = close —
in let DoRead = (read — EReader
l read-ecf — ExitOnly)
in DoRead N ExitOnly
glue = let Keadinly = Header.read — EeadOnly
 Eeader.read-20f — EReader.close —
l Reader.close —
in let WriteCnly = Writer.write
0 Writer.close —

write — Wrilter 0O close —

— WritelCnly

in Writer.write — glue
0 Reader.read — glue
] Writer.close — ReadOnly
 Reader.close — WriteCnly

What/where is the dependability?



A "Standard” Architectural Model
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A "Standard"” Architectural Model

% HTTPD Resources

: SocketClient| : httpd : DirectoryResource | : ContainerResource | : FramedResource

WebBLows br

processRefjuest(Request)

perform(Requesthterface) |<dereate>> : LookupResult

m

lookup(LookupState, LookupResult) L

[lookup(LookupState, LookupResult)]

[lookup(LookupState, LookupResult)]

setTarget(resourceReference)

internalLookup()
[MoreComponents]: <<
lookup(l_ookupState, LookupResult)
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A "Standard” Architectural Model

% HTTPD Resources
) : SocketClient| : httpd : DirectoryResource | : ContainerResource | : FramedResource
WebBrowser
proceLsRequest( equest) J
perform(Requesthterface) |<dereate>> : LookupResult
lookup(LookupState, LookupResult) (]
[lookup(LookupState, LookupResult)]

[lookup(LookupState, LookupResult)]

setTarget(resourceReference)

internalLookup()
[MoreComponents]: <<
looku okupState, LookupResult)

What/where is the dependability?
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But, We Can Model Anything

m Meta-H, ROOM, UniCon, etc. can help ensure
real-time properties in models

m Markov chains can help ensure reliability in
models

m Multi-versioning connectors can help ensure
fault tolerance

m Code/data mobility and replication formalisms
can help ensure availability
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But, We Can Model Anything

m Meta-H, ROOM, UniCon, etc. can help ensure
real-time properties in models

m Markov chains can help ensure reliability in
models

m Multi-versioning connectors can help ensure
fault tolerance

m Code/data mobility and replication formalisms
can help ensure availability

So then the problem is solved, right?
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Why the Problem Isn't Solved
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From Models to Systems
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From Models to Systems




The remainder of this talk will
focus on two key questions:
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1. How do we get from
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1. How do we get from
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2. How do we know
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2. How do we know
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m Problem definition
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m Concluding remarks
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How Do I Dependably Implement an
Architecture?

m Architectures provide Aigh-/eve/ concepts
Components, connectors, ports, events, configurations

m Programming languages provide /ow-/eve/ constructs
Variables, arrays, pointers, procedures, objects

m Bridging the two often is an art-form
Middleware can help "split the difference”

m Existing middleware technologies
Support some architectural concepts (e.g., components, events)
but not others (e.g., connectors, configurations)
Impose particular architectural styles
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How Do I Dependably Implement an
Architecture?

m Architectures provide Aigh-/eve/ concepts
Components, connectors, ports, events, configurations

m Programming languages provide /ow-/eve/ constructs
Variables, arrays, pointers, procedures, objects

m Bridging the two often is an art-form
Middleware can help "split the difference”

m Existing middleware technologies
Support some architectural concepts (e.g., components, events)
but not others (e.g., connectors, configurations)
Impose particular architectural styles

What is needed is “"architectural middleware"
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Architectural Middleware

m Natively support architectural concepts as middleware
constructs

m Include system design support
Typically via an accompanying ADL and analysis tools
May support explicit architectural styles

m Support round-trip development
From architecture to implementation and back

m Support automated transformation of architectural
models to implementations
i.e., dependable implementation

m Examples
ArchJava
Aura
c2.fw
Prism-MW
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Dependable Implementation
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Example: Prism-MW

Fifo Abstract
Scheduler Scheduler
Round Robin Abstract
Dispatcher Dispatcher

Serializable
Brick A
Scaffold PR
Architecture IPOrt mutualPort
IComponent Q ~C
IConnector
. OMPONE
IArchitecture
O > O
Extensible

Component
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Using Prism-MW

class DemoArch {
static public void main(String argv|[]) {
Architecture arch = new Architecture ("DEMO");
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Using Prism-MW
class DemoArch {
static public void main(String argv|[]) {
Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");

ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");

Component A | |Component B| |Component D
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Using Prism-MW
class DemoArch {
static public void main(String argv|[]) {

Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors
Connector conn = new Connector('C");

Component A | |Component B| |Component D Connector C I




Using Prism-MW

class DemoArch {

Component A| |Component B

Connector C I

Component D

Architecture - DEMO

static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMQO");

// create components

ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors

Connector conn = new Connector('C");

// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);



Using Prism-MW

class DemoArch {

Component A| |Component B

Connector C

Component D

Architecture - DEMO

static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMQO");

// create components

ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors

Connector conn = new Connector('C");

// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);

// establish the interconnections
arch.weld(a, conn);
arch.weld(b, conn);
arch.weld(conn, d)
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Deploying a Prism-MW Architecture
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Deploying a Prism-MW Architecture

add (DataRepository : source HQ) : HQ;

weld (TopDistributionConnector,
Cl AvailableTroops) : Commanderl;
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Availability

m The degree to which a system is operational and
accessible when required for use [IEEE]

m Deployment architecture influences availability

Components on the same host can communicate
regardless of the network’s status

Components on different hosts are insulated from
each other's failures

m Quantifying availability
Ratio of the
number of successfully completed interactions

in the system to the
total number of attempted interactions



" S
Maximizing Availability a priors

m We may not know many relevant system
parameters
Dependability of each component
Frequency of component interactions
Volume of component interactions
Dependability of component interactions
CPU usage on each host
Dependability of each host
Effective bandwidth of each network connection
Dependability of each network connection
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Maximizing Availability a priors

m We may not know many relevant system
parameters
Dependability of each component
Frequency of component interactions
Volume of component interactions
Dependability of component interactions
CPU usage on each host
Dependability of each host
Effective bandwidth of each network connection
Dependability of each network connection

The current deployment architecture may not work well
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Simplified Problem Definition
Given:
(Da set C of n components (n=|C|), a relation
freg:CxC - R, and a function mem___ :C —>R

comp
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Simplified Problem Definition
Given:
(1)a set C of n components (n=\C), a relation
freg:CxC - R, and a function mem___ :C —>R

comp

0 if ¢, =c,
f irvi)— | J |
req(c CJ) { frequency of comm between ¢, and C LIS ¢ }
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Simplified Problem Definition
Given:
(1)a set C of n components (n=\C), a relation
freg:CxC - R, and a function mem____ :C >R

comp

0 if ¢, =c,
f | N I J .
req(ci. c;) { frequency of comm betweenc; and c; If ¢ #¢; }

mem,,,.,(C) = required memory for c
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Simplified Problem Definition
Given:
(2) a set H of k hardware nodes (k =|H|), a relation

rel:HxH >R and a function mem_,:H —>®R
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Simplified Problem Definition
Given:

(2) a set H of k hardware nodes (k =|H|), a relation

rel:HxH >R and a function mem_,:H —>®R

1 if h =h,
rel(h;,h;)=<0 1f h; 1Is not connected to h; >

reliability of the link between h; and h; if h; =h,
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Simplified Problem Definition
Given:

(2) a set H of k hardware nodes (k =|H|), a relation

rel:HxH >R and a function mem_,:H —>®R

1 if h =h,
rel(h;,h;)=<0 1f h; 1Is not connected to h; >

reliability of the link between h; and h; if h;=h,

mem, . (h) = available memory on host h
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Simplified Problem Definition
Given:

(3) Two relations that restrict locations
of software components

loc.CxH — {01} colloc:CxC —{-1,01}
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Simplified Problem Definition
Given:

(3) Two relations that restrict locations
of software components

loc.CxH — {01} colloc:CxC —{-1,01}

1 if c¢; can be deployed onto h,
loc(c;, h;) =

0 If ¢ cannot be deployed onto h,
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Simplified Problem Definition
Given:

(3) Two relations that restrict locations
of software components

loc.CxH — {01} colloc:CxC —{-1,01}

(1 if c; can be deployed onto h,
loc(c;, h;) =1

0 If ¢ cannot be deployed onto h,

(—1 if c; cannot be on the same host as c,
colloc(c;,c;) =7 1 if ¢, has to be on the same host as c;

O if there are no restrictions on collocation of c; and c,
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Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1

IS maximized
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Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:
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Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

vie[l k]{w c[Ln] f(c,)=h

ZmerrLomp(Cj )) < memwst(hi )}
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Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

V] e[l n] loc(c;, T(c;)) =1
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Simplified Problem Definition

Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

vk e[L,n] VI el[ln]

(colloc (c,,c,)=1) = (f(c,) = f(c)))
(colloc (¢, ,c,)=-1)= (f(c,) = f(c,))
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Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

ii(freq(ci,cj)* rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

Note that the possible number of

different functionsfis kn
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Overview of the Approach

m Objective
Identify the problem

= Log and examine system events
= Actively monitor the system during runtime

Develop a solution
= Decide which data to cache
» Decide which components to replicate
= Introduce multiple execution modes
= Calculate an improved system deployment

Apply the solution to eliminate the problem
» Cache or hoard data

= Replicate data or code
m Redeploy (parts of) the system
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Overview of the Approach

m Objective
Identify the problem

= Log and examine system events
» Actively monitor the system during runtime

Develop a solution
= Decide which data to cache
» Decide which components to replicate
= Introduce multiple execution modes
» Calculate an improved system deployment

Apply the solution to eliminate the problem
» Cache or hoard data

= Replicate data or code
> Redeploy (parts of) the system
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Monitoring in Prism-MW

Serializable

Fifo Abstract Scaffold | | Brick
Scheduler 4> Scheduler |-
Round Robin Abstract Architecture
Dispatcher $ Dispatcher
Abstract Q
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Monitoring in Action
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Estimating in Action

Suite of algorithms:

Stochastic - quadratic complexity
Adaptive greedy - cubic complexity
Decentralized - guadratic complexity
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Automatic Algorithm Selection
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Automatic Algorithm Selection

Availability

S
sl > o ET AAAA
sl 3 =
x D o
LL — L L
O 8 H™
N
" = lll_“.umw
| 0|
| _||O T
my -4
BRAVIGY
P t
/
B s
| o
L \\/\v Ay
I . A4 llln% "
_ _ K- - -7 l* T|E
| | |
| | _ H
[
_ _ O
| ! SNy .|.N_.E
| | | 0
! H-
[
[
g ! LYYy
L ) n O
< << < <
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Redeployment in Prism-MW

Serializable
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Redeployment in Action
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> From architectures to systems
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> Problem definition
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Concluding Remarks

a Still so much to do
Enriching/completing the models

Focusing on additional aspects of
dependability

Addressing feature interactions
Addressing emergent properties

Determining which concerns are (not)
architectural



" A
Promise or Illusion?

aIf we can define it, we should be able to
Analyze for it
Build it
Measure it
Act on it

a So, why haven't we done it yet?
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Exploring the Problem Space

M Deployment Control Window
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Exploring the Problem Space
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Exploring the Problem Space
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Exploring the Problem Space
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Questions?




Using Prism-MW

Event e = new Event (“Event_D");
Component A| | Component B e.addParameter("param_1", pl);
send (e);

Component B handles the event and sends a response

public void handle(Event e)

{
if (e.equals(“*Event_D”)) {
Event el= new Event(“Response _to D”);
Component D el.addParameter("'response", resp);
send(el);
}...
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Assumptions

A
Aval
A2

A
ability
S

4 2

Time

For

example,

Ty HTHI<<T,

ePossible In small
amounts of time
even for slow links

edialup (56K), 50% reliability, 100K In 28 sec
1M, 50% reliability, 100K In less than 0.7 sec
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Assumptions

Mverage value of
a parameter
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What Is Needed?

m Scalable and lightweight support for
distributed architectures
with arbitrary topologies

m Support for automatic monitoring

m Efficient and precise solutions for the
exponentially complex redeployment problem

m Support for automatic redeployment
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Problem breakdown
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1) Lack of knowledge about runtime system parameters
unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support
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Problem breakdown

1) Lack of knowledge about runtime system parameters
unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = A4” possible deployments
system constraints further complicate the problem
polynomial-time approximating algorithms

3) Assessing deployment architectures
comparison of different algorithms
performance vs. complexity, sensitivity analysis, etc.
analysis and simulation environment

4) Effecting the selected solution
redeploying components
requires an automated solution
architectural middleware with deployment support



Why the Problem Isn't Solved
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