WADS-DSN 2004 Invited Talk

From
Dependable Architectures

To
Dependable Systems

Nenad Medvidovic

Computer Science Department
University of Southern California
Los Angeles, U.S.A.

heno@usc.edu

" A
Goals of the Talk

m Tdentify some challenges
m Suggest some solutions

m Motivate future research
m Invite dissenting opinions

Goals of the Talk

The problem is this big
and sometimes ill-defined

Goals of the Talk

I will talk to you

about this much of it

Goals of the Talk

will suggest a solution
for this much of it

(4

But, hopefully, we will have

this much funl!

" S
What Is Dependability?

m Degree of user confidence that the system
will operate as expected
m Key dimensions
Availability
Reliability
Security
Safety
m But also
Repairability
Maintainability
Survivability
Fault tolerance

" A
What Is Architecture?

m A high-level model of a system
The system'’s "blueprint”

m Represents system organization
Data
Computation
Interaction
Structure

m Embodies system properties
Communication integrity, performance, throughput,
liveness, . ..
Can/does it embody dependability?
(how) Can those properties be transferred to the
system itself?

A "Traditional” Architectural Model

connector Pipe =
role Writer = write — Wrilter 0O close —
role Header =
let ExitCnly = close —
in let DoRead = (read — EReader
l read-ecf — ExitOnly)
in DoRead N ExitOnly
glue = let Keadinly = Header.read — EeadOnly
 Eeader.read-20f — EReader.close —
l Reader.close —
in let WriteOnly = Writer.write — Writelnly
0 Writer.close —
in Writer.write — glue
0 Reader.read — glue
] Writer.close — ReadOnly
 Reader.close — WriteCnly

A "Traditional” Architectural Model

connector Pipe =
role Writer
role Header
let ExitCnly = close —
in let DoRead = (read — EReader
l read-ecf — ExitOnly)
in DoRead N ExitOnly
glue = let Keadinly = Header.read — EeadOnly
 Eeader.read-20f — EReader.close —
l Reader.close —
in let WriteCnly = Writer.write
0 Writer.close —

write — Wrilter 0O close —

— WritelCnly

in Writer.write — glue
0 Reader.read — glue
] Writer.close — ReadOnly
 Reader.close — WriteCnly

What/where is the dependability?

A "Standard” Architectural Model

HleResauroe Dr:fe'jtm:rf;e'?uoe R Filter Wﬁioam AraDiciaEry HTTPRincipel ProyReqLestCHeener
- (from... (fromut... R (rompo..
(fromresources) /
HmiSyle HipTderList SSSream DetugThread
(fremt Prot IFrame / (frantt ﬁ (fr:?j (frams... \ (framsack wml-ﬁcb
HipVi
| (fromframes) | X a = s Segment
IPMatcher (rom Nt ecFra.. (fl'u'n S) ScletOupuB fier
W AuhUserPringpel SSFare (frem sock
HiniHead Se— «mjrq\ / (frams.. e
(fromlt —1 (frommi
r Mg | | FamsReors BtareCataner (fromresources) DAMTClaticiay
MmeType - i | f—
(frommime) < — — N \
MineCliertFactary
SenerHard \ \ \ R@umﬂu%a (..
[5f e
HimlGenereter T pe— it lmmﬂndf frmsta LIS
fomlt L oo (froman \\ R 'S -m
HipCreckrtial g -
(franft. celndeer
(framindec.. B
\ . n
anmxt AfributeDescripion : \ ?'"Oj;d'_\’é
- (from adirin) - Jgsanr:mﬁmnm hitpd e pr— ST ——
Seridizer | m .] (iromsock RequestTimeott
A (fromhitp) e
BertMereger
MuCliertFactary (fromtime.
Aa | — | ResourceDescripion (fronm..
A | tman o o \
(fromadm. W - Srm’
(fm..

(fromtes.

"
A "Standard"” Architectural Model

% HTTPD Resources

: SocketClient| : httpd : DirectoryResource | : ContainerResource | : FramedResource

WebBLows br

processRefjuest(Request)

perform(Requesthterface) |<dereate>> : LookupResult

m

lookup(LookupState, LookupResult) L

[lookup(LookupState, LookupResult)]

[lookup(LookupState, LookupResult)]

setTarget(resourceReference)

internalLookup()
[MoreComponents]: <<
lookup(l_ookupState, LookupResult)

" S
A "Standard” Architectural Model

% HTTPD Resources
) : SocketClient| : httpd : DirectoryResource | : ContainerResource | : FramedResource
WebBrowser
proceLsRequest(equest) J
perform(Requesthterface) |<dereate>> : LookupResult
lookup(LookupState, LookupResult) (]
[lookup(LookupState, LookupResult)]

[lookup(LookupState, LookupResult)]

setTarget(resourceReference)

internalLookup()
[MoreComponents]: <<
looku okupState, LookupResult)

What/where is the dependability?

" S
But, We Can Model Anything

m Meta-H, ROOM, UniCon, etc. can help ensure
real-time properties in models

m Markov chains can help ensure reliability in
models

m Multi-versioning connectors can help ensure
fault tolerance

m Code/data mobility and replication formalisms
can help ensure availability

"SI
But, We Can Model Anything

m Meta-H, ROOM, UniCon, etc. can help ensure
real-time properties in models

m Markov chains can help ensure reliability in
models

m Multi-versioning connectors can help ensure
fault tolerance

m Code/data mobility and replication formalisms
can help ensure availability

So then the problem is solved, right?

Why the Problem Isn't Solved

Why the Problem Isn't Solved

Why the Problem Isn't Solved

Why the Problem Isn't Solved

Architecture
(ADL)

___/‘/—/_/

\C
i 8 b & (OOP\
» Implementation Copny eC"OY\?ﬂteLa aguad®
o (middleware, bus 00t - (ing

a
© c2 technolgies) 20l proodf

Why the Problem Isn't Solved

Domain Entltles

Components /

Problem Space

\\

Connectors
/ u re Space
|é ;é / / Class Namg Class Namd
Class Namg Attributes Attributes
Attributes Class Namg
Attributes Operation Operation
Operation
Operation
Class Namg
Attributes Desiagn Space
Classes 9 P
COTS Components Operation

" S
Why the Problem Isn't Solved

O
Domain Entities Problem Space
0 @) °
P

/ C \
Components

R
] / \ %{\ifm‘{um Space

[/ 1\

_Z/

/ / Class Nams Class Name
Class Namg Attributes Attributes
Attributes Class Namg
Attributes Operation Operation
Operation
Operation
Class Namg
Attributes Des|gn Space
Classes
COTS Components Operation

Why the Problem Isn't Solved

O
Domain Entities Problem Space
0 @) °
P
/ \

Co
Corflector

/

N

re ifec\geaa

//

A

i

Class Nams
Attributes Class Nams
Attributes
Operation
Operation
Classes

COTS Components

\

Class Namg Class Namg
Attributes Attributes
Operation Operation

Class Namd

Attributes

Operation

Design Space

Why the Problem Isn't Solved

Domain Entitie 9)\ ﬁ Q\Problem Space

g/

Class Nams I
a e
Attri i
z Operation P
() 12 e
COTS Components

Design Space

"
From Models to Systems

Strategy SAKBUI
Analyzer
Agent Deployment
\ Advisor
Strategy HQ UI
AnalysiskB
Comman
der Ul
Weather Repository
Simulation
Clock Agent
Map
Resource
Manager
Weather
Analyzer Resogrce
Monitor
/A C
omman
Soldier der Ul
ul Soldier
ul

From Models to Systems

SAKBUI

Clock

Weather
Analyzer

Soldier

L Hosts

Map

m————— | Comman
der Ul

. Hosts -

"
From Models to Systems

The remainder of this talk will
focus on two key questions:

"

1. How do we get from

1. How do we get from

1. How do we get from

to

5
pa S

Host 5

Host 3

Host 3

" N

1. How do we get from

"

2. How do we know

" A
2. How do we know

3oy
Analyzer

AT

/
’

Sirulation

Agent [7
Resn
Wanager

R

Soldier
ul

‘i ather
Analyzer
Soldier
Ul

. Hosts - “__ Hosta M Hosts

Resource
W onitor

" A
2. How do we know

3oy
Analyzer

AT

1 > st
| TNEN
H .
1 -"‘ h 3
/
2
7 S\mu\;tion ¥

Agent [7
Resn
Wanager

R

Soldier
ul

‘i ather
Analyzer
Soldier
Ul

Resource
W onitor

— T — T
Host 3
__f—/ \\Host 4)// NOSJ{ 5{/ Deplayrment | el Clack| [Resource
Advisor Manager
Resource
Wieather | | COmman Lt i Maritor
Analyzer der Ul
rategy
| [A paly siskB
Analyzer Wgp
Agent Westher [—H g et
. |\ | | " 1_
l s b e e a n = ’
r ' L)
H 3
] ’ :
: ,“' H %
L)
L) “ I‘
-] .
o~] 4 s

/

Repository

Camman
der Ul

Soldier
ul

o Host3

uost 5//

"
Outline

m From architectures to systems

m Ensuring dependability
m Problem definition
m Proposed solution

m Concluding remarks

» B
Outline

> From architectures to systems

m Ensuring dependability
m Problem definition
m Proposed solution

m Concluding remarks

" S
How Do I Dependably Implement an
Architecture?

m Architectures provide Aigh-/eve/ concepts
Components, connectors, ports, events, configurations

m Programming languages provide /ow-/eve/ constructs
Variables, arrays, pointers, procedures, objects

m Bridging the two often is an art-form
Middleware can help "split the difference”

m Existing middleware technologies
Support some architectural concepts (e.g., components, events)
but not others (e.g., connectors, configurations)
Impose particular architectural styles

" S
How Do I Dependably Implement an
Architecture?

m Architectures provide Aigh-/eve/ concepts
Components, connectors, ports, events, configurations

m Programming languages provide /ow-/eve/ constructs
Variables, arrays, pointers, procedures, objects

m Bridging the two often is an art-form
Middleware can help "split the difference”

m Existing middleware technologies
Support some architectural concepts (e.g., components, events)
but not others (e.g., connectors, configurations)
Impose particular architectural styles

What is needed is “"architectural middleware"

" A
Architectural Middleware

m Natively support architectural concepts as middleware
constructs

m Include system design support
Typically via an accompanying ADL and analysis tools
May support explicit architectural styles

m Support round-trip development
From architecture to implementation and back

m Support automated transformation of architectural
models to implementations
i.e., dependable implementation

m Examples
ArchJava
Aura
c2.fw
Prism-MW

" SN
Dependable Implementation

i (\°
.l B 3oV Bed d
o> Implementation /Cop ol ec“ov‘?ﬂg\,a aguad®
O (middleware, bus OLI%~” rnin

0
c2 technolgies) JEDY progd

" SN
Dependable Implementation

i (\°
.l B 3oV Bed d
o> Implementation /Cop ol ec“ov‘?ﬂg\,a aguad®
O (middleware, bus OLI%~” rnin

0
c2 technolgies) JEDY progd

" S
Dependable Implementation

"
Example: Prism-MW

Fifo Abstract
Scheduler Scheduler
Round Robin Abstract
Dispatcher Dispatcher

Serializable
Brick A
Scaffold PR
Architecture IPOrt mutualPort
IComponent Q ~C
IConnector
. OMPONE
IArchitecture
O > O
Extensible

Component

"
Example: Prism-MW

Fifo Abstract
Scheduler Scheduler
Round Robin Abstract
Dispatcher Dispatcher

Serializable

Scaffold

Brick A

Architecture

O

IComponent

IArchitecture

Extensible
Component

IPort mutualPort

IConnector

"
Example: Prism-MW

Fifo Abstract
Scheduler Scheduler
Round Robin Abstract
Dispatcher Dispatcher

Serializable
Brick A
Scaffold PR
Architecture IPOrt mutualPort
IComponent Q ~C
IConnector
. OMPONE
IArchitecture
O > O
Extensible

Component

"
Example: Prism-MW

Fifo Abstract
Scheduler Scheduler
Round Robin Abstract
Dispatcher Dispatcher

Serializable
Brick A
Scaffold PR
Architecture IPOrt mutualPort
IComponent Q ~C
IConnector
. OMPONE
IArchitecture
O > O
Extensible

Component

"
Example: Prism-MW

Fifo Abstract
Scheduler Scheduler
Round Robin Abstract
Dispatcher Dispatcher

Serializable
Brick A
Scaffold PR
Architecture IPOrt mutualPort
IComponent Q ~C
IConnector
. OMPONE
IArchitecture
O > O
Extensible

Component

"
Example: Prism-MW

Fifo Abstract
Scheduler Scheduler
Round Robin Abstract
Dispatcher Dispatcher

Serializable
Brick A
Scaffold PR
Architecture IPOrt mutualPort
IComponent Q ~C
IConnector
. OMPONE
IArchitecture
O > O
Extensible

Component

Using Prism-MW

Using Prism-MW

class DemoArch {
static public void main(String argv|[]) {
Architecture arch = new Architecture ("DEMO");

" N
Using Prism-MW
class DemoArch {
static public void main(String argv|[]) {
Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");

ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");

Component A | |Component B| |Component D

" N
Using Prism-MW
class DemoArch {
static public void main(String argv|[]) {

Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors
Connector conn = new Connector('C");

Component A | |Component B| |Component D Connector C I

Using Prism-MW

class DemoArch {

Component A| |Component B

Connector C I

Component D

Architecture - DEMO

static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMQO");

// create components

ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors

Connector conn = new Connector('C");

// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);

Using Prism-MW

class DemoArch {

Component A| |Component B

Connector C

Component D

Architecture - DEMO

static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMQO");

// create components

ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors

Connector conn = new Connector('C");

// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);

// establish the interconnections
arch.weld(a, conn);
arch.weld(b, conn);
arch.weld(conn, d)

"
Deploying a Prism-MW Architecture

+1 Microsoft Visio - [tds++.vsd:Page-1]

@Eile Edit Yiew Insert Add Components Connectivity monitoring Deployment Format Tools Shape Window Help

i Hardware HEB
= F
Laptop PA

v

Ij F
Process
w

[=]
& Connectors WE
~

RegularC:... BattomBa..
b

hieyClock
Clack

HQ

hoRep
Repostory
COTECE

T RETIEF

hieghdap:
Map

cionn P =T L = O =m0 |
bR b hiS 2E
Resourceiarsce Stratecy SnaysiziB
[4 Oy | |
by hjResMor: TR
Simulation Resourceiio Deploamen hgi’?(g%w
Aoert nitor t&chisor
[

[[
[]} Rﬁu_mwrem:r

[gl=10R

RenderingAcert

B Java Compon B
-~

192.168.123.100

4 4 » [M} Page-1 /

L1 [
Clock Deploym...
L1 [
[opT -
Map Renderin...
clRM [EE=TN c1SUE
Resouce Strategtra SAKBL
honitar Iyzerdpert
Repository Resource...
hd CiT
Commancey
Manager
-~
[]
AdminOLL
A
192.168.123.101

14

_—

shdngr:
SoldierManzoer

Ul
Rendering
Agert

Soldier 1

e

\

192.168.123.102

Page 1/1

Status:

al”

Move

"
Deploying a Prism-MW Architecture

add (DataRepository : source HQ) : HQ;

weld (TopDistributionConnector,
Cl AvailableTroops) : Commanderl;

» B
Outline

> From architectures to systems

> Ensuring dependability
m Problem definition
m Proposed solution

m Concluding remarks

»
Outline

> From architectures to systems

> Ensuring dependability
> Problem definition
m Proposed solution

m Concluding remarks

" S
Availability

m The degree to which a system is operational and
accessible when required for use [IEEE]

m Deployment architecture influences availability

Components on the same host can communicate
regardless of the network’s status

Components on different hosts are insulated from
each other's failures

m Quantifying availability
Ratio of the
number of successfully completed interactions

in the system to the
total number of attempted interactions

" S
Maximizing Availability a priors

m We may not know many relevant system
parameters
Dependability of each component
Frequency of component interactions
Volume of component interactions
Dependability of component interactions
CPU usage on each host
Dependability of each host
Effective bandwidth of each network connection
Dependability of each network connection

" S
Maximizing Availability a priors

m We may not know many relevant system
parameters
Dependability of each component
Frequency of component interactions
Volume of component interactions
Dependability of component interactions
CPU usage on each host
Dependability of each host
Effective bandwidth of each network connection
Dependability of each network connection

The current deployment architecture may not work well

" A

Simplified Problem Definition
Given:
(Da set C of n components (n=|C|), a relation
freg:CxC - R, and a function mem___ :C —>R

comp

" A

Simplified Problem Definition
Given:
(1)a set C of n components (n=\C), a relation
freg:CxC - R, and a function mem___ :C —>R

comp

0 if ¢, =c,
f irvi)— | J |
req(c CJ) { frequency of comm between ¢, and C LIS ¢ }

" A

Simplified Problem Definition
Given:
(1)a set C of n components (n=\C), a relation
freg:CxC - R, and a function mem____ :C >R

comp

0 if ¢, =c,
f | N I J .
req(ci. c;) { frequency of comm betweenc; and c; If ¢ #¢; }

mem,,,.,(C) = required memory for c

" A

Simplified Problem Definition
Given:
(2) a set H of k hardware nodes (k =|H|), a relation

rel:HxH >R and a function mem_,:H —>®R

" S
Simplified Problem Definition
Given:

(2) a set H of k hardware nodes (k =|H|), a relation

rel:HxH >R and a function mem_,:H —>®R

1 if h =h,
rel(h;,h;)=<0 1f h; 1Is not connected to h; >

reliability of the link between h; and h; if h; =h,

" S
Simplified Problem Definition
Given:

(2) a set H of k hardware nodes (k =|H|), a relation

rel:HxH >R and a function mem_,:H —>®R

1 if h =h,
rel(h;,h;)=<0 1f h; 1Is not connected to h; >

reliability of the link between h; and h; if h;=h,

mem, . (h) = available memory on host h

" S
Simplified Problem Definition
Given:

(3) Two relations that restrict locations
of software components

loc.CxH — {01} colloc:CxC —{-1,01}

" S
Simplified Problem Definition
Given:

(3) Two relations that restrict locations
of software components

loc.CxH — {01} colloc:CxC —{-1,01}

1 if c¢; can be deployed onto h,
loc(c;, h;) =

0 If ¢ cannot be deployed onto h,

" S
Simplified Problem Definition
Given:

(3) Two relations that restrict locations
of software components

loc.CxH — {01} colloc:CxC —{-1,01}

(1 if c; can be deployed onto h,
loc(c;, h;) =1

0 If ¢ cannot be deployed onto h,

(—1 if c; cannot be on the same host as c,
colloc(c;,c;) =7 1 if ¢, has to be on the same host as c;

O if there are no restrictions on collocation of c; and c,

" A
Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1

IS maximized

" A
Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

" A
Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

vie[l k]{w c[Ln] f(c,)=h

ZmerrLomp(Cj)) < memwst(hi)}

" A
Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

V] e[l n] loc(c;, T(c;)) =1

" S
Simplified Problem Definition

Find a function f:C —H such that the
system’s overall availability

anzn:(freq(ci c)=rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

vk e[L,n] VI el[ln]

(colloc (c,,c,)=1) = (f(c,) = f(c)))
(colloc (¢, ,c,)=-1)= (f(c,) = f(c,))

" A
Simplified Problem Definition
Find a function f:C —H such that the
system’s overall availability

ii(freq(ci,cj)* rel(f(c,), f(c,)))

A— i=1 j=1
anzn: freq(c;,c;)

i=1 j=1
IS maximized, and the following three
conditions are satisfied:

Note that the possible number of

different functionsfis kn

»
Outline

> From architectures to systems

> Ensuring dependability
> Problem definition
> Proposed solution

m Concluding remarks

" S
Overview of the Approach

m Objective
Identify the problem

= Log and examine system events
= Actively monitor the system during runtime

Develop a solution
= Decide which data to cache
» Decide which components to replicate
= Introduce multiple execution modes
= Calculate an improved system deployment

Apply the solution to eliminate the problem
» Cache or hoard data

= Replicate data or code
m Redeploy (parts of) the system

" SN
Overview of the Approach

m Objective
Identify the problem

= Log and examine system events
» Actively monitor the system during runtime

Develop a solution
= Decide which data to cache
» Decide which components to replicate
= Introduce multiple execution modes
» Calculate an improved system deployment

Apply the solution to eliminate the problem
» Cache or hoard data

= Replicate data or code
> Redeploy (parts of) the system

N il
o _n||||\H.|--*R,T
o _ H
> | |II|_,.«m
>~ | ——+ X
+— | [
£ [T
0 | |
= | |
— | |
m ._m N |) H
_ _ N
< o | | VL
2% L.
= ————+——1%
SO 2z T T |
m Q 2o || =t _ _ L x
D..% = | | | i
S o z || __|||.J<.M
I R < _2_4 '1_3 T<.|N
< < < <

First Identify the Problem

4 Availability
AZ 2
Al
) » TIme
<«T + >

28 T
< I\/I*' E)
1<

First Identify the Problem

4 Availability

A, Y

A
== 22 » Time
|<TM)|<TE>< + +5 >

"
Monitoring in Prism-MW

Serializable

Fifo Abstract Scaffold | | Brick
Scheduler 4> Scheduler |-
Round Robin Abstract Architecture
Dispatcher $ Dispatcher
Abstract Q
EvtFrequency [: Monitor IComponent O\
IConnector
/V O ormoone
Disconnection Rate IArchitecture
Extensible

Component

IPort 4 mutualPort

" S
Monitoring in Action

Then Develop a Solution

4 Availability

AZ 2

A
e 2 » TIme
|<TM)|<TE>< + TO >

Then Develop a Solution

4 Availability

AZ 2

Al
St 2 » TIme
|<TM)|<TE>< + TO >

"
Estimating in Action

Suite of algorithms:

Stochastic - quadratic complexity
Adaptive greedy - cubic complexity
Decentralized - guadratic complexity

1000000

10000 1 Time taken
100 | (in ms)
1:I3HHHHH 10 os 00
1 -
0.8 — — — B
0.6 - — — = | [Achieved
0.4 - — — — — — — availability
02 | a a 1_ a RN
0, | | _— _— _—

10 comps 100comps 200 comps 1000 comps 100 comps 30comps 300 comps
4 hosts 10 hosts 20 hosts 100 hosts 40 hosts 7 hosts 70 hosts

Automatic Algorithm Selection

Availability

S A
= > o ET A AAA
B -
w, 2 .qlla L
5| C it
N
e -1
“ [
_II
_ H
I -1y
RAVIEGY
T 1
/~
N SRR - VRS
| /\J. ©
| “ \/v H
| I e e—————— l'l# E
S et Bfintate - TH
o e
_
| | 1_ O
I I “ === *TE
! _ | N
Lo H
_
< “ ! LYY
L) n O
< << < <

Automatic Algorithm Selection

Availability

S
sl > o ET AAAA
sl 3 =
x D o
LL — L L
O 8 H™
N
" = lll_“.umw
| 0|
| _||O T
my -4
BRAVIGY
P t
/
B s
| o
L \\/\v Ay
I . A4 llln% "
_ _ K- - -7 l* T|E
| | |
| | _ H
[
_ _ O
| ! SNy .|.N_.E
| | | 0
! H-
[
[
g ! LYYy
L) n O
< << < <

Then Apply the Solution

4 Availability
AZ 2
Al
= 2 » Time
|<"'M>|<TE>< F>le To >

Then Apply the Solution

4 Availability
AZ 2
A
- _r—I—I—I ! 22 ' Tlme
Rt R 5 >

Redeployment in Prism-MW

Serializable
Fifo Abstract Scaffold | | Brick
Scheduler 4> Scheduler |-
Round Robin Abstract Architecture IPort #mutualPort
Dispatcher $ Dispatcher
IComponent a0
IConnector
. ompone
IArchitecture
O - O
Admin Abstract Extensible
4I> Admln Component Adap'nve Greedy

N

Deployer

Q/ Stochastic

Abstract
———1{ Redeployment Algo

Exact

Redeployment in Action

Going
from

—7

h
Strategy SAKBUI
Analyzer
Augnt \ // Deployment
Advisor
Strategy ~—| HQ ul
AnalysisKB_ Mt oococcccscsee ./
Comman »
der Ul <N

I /\Weather
g/4 N\

A RN

Y/

4

e

s ‘
S

Clock

Weather
Analyzer

/

Ul

AN

Resource |—

Monitor

—

Soldier /

T

. Host3

N I/
Simulation
Agent N
Map
Resource ><—- |
Manager ><\\
- >
“/.QA
] =
T 11— | Comman
B der Ul
| Soldier
Ul

Advizor

Weather Comman
Analyzer der LI

SiraeTy
Analyzer

Deployrment |]

HG U

Clock Resource
Manager

/

L1 Reszource

Agent Wy eather

Maonitor
-+ L) L,
|1 N Tat edy
ol A nalysisikB
STt M\E(p

Repasitory q
|-
Saoldier
)

o _Hosta

3
X
LA
y‘i’
.

=S

I
AN -
SAKBUI
Soldier
L

S\

T~ ——————_ | comman
der LI

~__ Host4 -

~___Hosts -

» B
Outline

> From architectures to systems

> Ensuring dependability
> Problem definition
> Proposed solution

> Concluding remarks

"
Concluding Remarks

a Still so much to do
Enriching/completing the models

Focusing on additional aspects of
dependability

Addressing feature interactions
Addressing emergent properties

Determining which concerns are (not)
architectural

" A
Promise or Illusion?

aIf we can define it, we should be able to
Analyze for it
Build it
Measure it
Act on it

a So, why haven't we done it yet?

"
The Playing Field

Dependability
A

! I 1 I 1
! | I | |
Survivability I | | | |
K L e T 1=
. s
e ! | | | |
< I | I | I
Safety
L T -4 ——— = |—— === |— — -
i 4 | | | | |
7 | | | | |
s /.
v, 7 setrity 1
| ~ | 7| Tt |- —— ==
' A | I | I I
| P Relﬁ?ﬁlllty I I | | |
| | / Y- T T T T T T T T e e e e e e e e e e e =
e L7 A | | | | |
- | - | |
s 7| Pt I ! ! '
7 T vty | I
% |7 | /’ | T [| 1
7 | 7 I I
7 | s | | |
/ /l /(/ 1 1 1 1 1
y 7 s s L L 4 L L
’ |/ v | 4 . 1 . - 1
¢ | 7 | Intéraction Intéraction Component Component Component
/| ,]/ | p 7 A .
-7 /I /,r /Ifrequency/ Volume _~ Size /CPUUsage/I{allureRate
/ “AvAai >~ 7 - -7 - - -7 - - - — 7/ -
e | s I Avaijlable y P P P
e 7 I Memory / /)y s
e s - f{ £ sl _ £ _ _
2 7 Avaiiable s / / 7
207 €PU 7 s v /
P s I v / s / s
g S N A
//| Network // // / /
e P
s | /RéllablhtyL/ 7 e p
— £ L e £
Network s s /_/ s
Banhdwidth 7 4 7 7/
7 7 / / 7/

, s ’ / 4

H/W Properties

S/W
Properties

Exploring the Problem Space

M Deployment Control Window

=olx|

Component-2

Minirmum host reliability: 0 Component-10
Paxirunn hiosk reliabilicy: L Component-11
Minimum comp. event size (in KE): 0.01 Component-12

i de Component-13
Maximum comp, event size {in KEI: 10 Component-14
Minirorn host bandwidth (in KB/s): 30 Compaonent-15
Maxirnunn host bandwidth (in KBjis): 1000 Component-16

Component-17
Component-15
Component-19
Component-20
Component-21

Central hosk
Mirirum bandwidthiin KBis): 100
Maximum bandwidthlin KEfs): 500

Minimurmn reliabilicy: N Comporent-22
Maxi liabiliby: 1 Component-23
i reliabiliby Component-24
Component-23

Generate | Component-26

Component-27
Component-25
Comoonent-29

Availability: 0.8160¢

—Input ricanskraints
Mumber of components: 100 Components Hosts
Mumber of hasts: g Componert-0 | [Host-o
Winimum comp. memory {in KB): 10 Compaonent-1 Hosk-1
Max in KE3: 20 Component-2 Hosk-2
sximum comp, memory (in KED: Component-3 Host-3
Minimum host memory (in KB 200 Component-4 Hosk-4
- - . Component-5 Hosk-
Mazirnurn hosk mermary fin KB 300 Component-5 Hoekt
Minirmum comp, Frequency (ineventsfs) 0 Component-7 Hosk-7
Maxirnurn comp. frequency (in events/s): 10 Compornent-8 |

I~ |

LseMappirng I

On the same host I
Mot on the same host I
Fix bo hosk I

— Algarithrs

What do vou want to do;

=
i Run and prey
Run and effect
Unbiased STachasktc

Biased Stochastic

Greedy Spproximation

Clustered

Decentralized

INumber of iterations: 1000

Eenchmark (howe many timesy; 1000

Benchrnar k. |

Rewert ta previous deployvment

r Tables of parameters Resuls
Hosts: reliabiity and memary |c;0m|;.5; frequency and memery | Hosts: bandwidth | ¢4 |+ Component | mitiald... | E... | Unbias... | Biased... | Greedy | Decent. «|
—Huosts &5 <] 7 =] 7 =]

=11] 4 7 7 7

HostiHost | o | el e e e | e 3 c 2 5 5

0 1.0 0,123 oo 0.246 0.0 0.0 an 1 i} 7 1 &

1 0.123 1.0 .0 0.0 0.0 0.0 59 < & 2 4 g

2 0.0 a0 1.0 a0 0.0 0.0 ag 7 I3 7 7 7

3 0.246 0.0 0.0 1.0 0,654 0.0 a1 5 o] 0 7 1

4 .0 0.0 0.0 0,554 1.0 0.0 az 5 1 7 [1

5 0.0 0.0 0.0 0.0 0.0 1.0 a3 1] 7 7 7

-] 0.0 0.0 0.0 0.0 0114 0.0 a4 1 I 5 5 3

7 0,672 0,883 0627 0966 L6300 0781 a5 n 4 N 3 7

Mem 202, 235, 247, 232, 204, 247, ag 0 3 4 4 0
a7 4 & 1 3 7
95 1] 5] 3 5
a9 5 2 4 1 1
Avvailability 0,3091,., 0,3937... 0.4503... 0.6334... 0.6392,
Funining time fin ms) 0 90 501 7130 0

P I I LI Estimated redeplowment bime .. A ZOG60.... 13149, 16940.... 0.0 «
1] |

Exploring the Problem Space

Il System’s Architecture Yisualization Window = |I:I |£|
s
E r
Host 1
'lr.. = Hosk 5

Hask 0 nln

l l.'l- 'l'.l L

Kl | LILI

Host ID:7 Total Memory: 283.5528192688531 [Number of Components:13 |

" S
Exploring the Problem Space

I Host Detail: Host 7 o] x|
1
To: Hosk & To: Hosk O
Ely: 396, il 427,
Fel: 0,61 Fel: 0,75 |
| |
Hosk 7 Moy Hosk 1
< B 49z
5 i35 9z Z:15 Fel: 0,69
L1
i I I
14 36 a4
| —1
.}
To: Host & | L=
0: Hos C:77 C:85 97
R 483, [™
Fel: 0,95 | |
[~--J
P
] T , . 113,
-
(3
| ¥
To: Hosk 3
Efw: 485,
Fel: 0.62
L]
[Host ID:7 Total Memory: 253.5528192688851 Number of Components: 13

" S
Exploring the Problem Space

Il Component detail: Component 49 o] x|

[o: Com, 97 Ta: Com. 0 ED;:CS':.'"-"IBE 3 To: Com, 33

[akaSize: 7,31 on: Hosk 3 Ffeqa' EEE;I ' on: Hosk 3

Freq: 2.06 =T To: Com, 36
[akasize: 1.41
Freg: 8,83

Z:49
Ta: Com, 94
on: Hosk 0
"H
To: Com, 37—
I HOSE G
To: Com, 7 pumm———
01 HOSE 3
Ta: Com, 39
on: Hosk 35
To: Corm, 69 ED;:CS':.'m'. ?3368 To: Corn, 44 To: Corm, 43
12N Hosk 1 akalzes = 0N Hosk 3 0N Host &
Freq: 1.63 \ \
Component ID:49 Parent Host ID:7 Component Size: 11.309516022551121

Questions?

Using Prism-MW

Event e = new Event (“Event_D");
Component A| | Component B e.addParameter("param_1", pl);
send (e);

Component B handles the event and sends a response

public void handle(Event e)

{
if (e.equals(“*Event_D”)) {
Event el= new Event(“Response _to D”);
Component D el.addParameter("'response", resp);
send(el);
}...

"
Assumptions

A
Aval
A2

A
ability
S

4 2

Time

For

example,

Ty HTHI<<T,

ePossible In small
amounts of time
even for slow links

edialup (56K), 50% reliability, 100K In 28 sec
1M, 50% reliability, 100K In less than 0.7 sec

"
Assumptions

Mverage value of
a parameter

T U ST TR TR TR RS T Y W WTRP T TOROTIF N P TR

1T

» Time

|

|

Events

il

Ill

rr r rrr rrrrrrrr1rrrr1r1rrr1rr1rr1rr1rrrrrrrrrrrr1r1r 1r1rr 10 r0— 1 1 1T T T 1T T1

M4 37 40 43 46 49 52

10 13 16 19 22 25 28 31

7

4

1

Average

M 13 15 17 19 21 23 25 XY U9 31 33 58 37 39 41 43 45 47 49 51 &3

H

7

What Is Needed?

m Scalable and lightweight support for
distributed architectures
with arbitrary topologies

m Support for automatic monitoring

m Efficient and precise solutions for the
exponentially complex redeployment problem

m Support for automatic redeployment

" B
Problem breakdown

R
Problem breakdown

1) Lack of knowledge about runtime system parameters
unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

" B
Problem breakdown

1) Lack of knowledge about runtime system parameters
unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = A4” possible deployments
system constraints further complicate the problem
polynomial-time approximating algorithms

" B
Problem breakdown

1) Lack of knowledge about runtime system parameters
unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = A4” possible deployments
system constraints further complicate the problem
polynomial-time approximating algorithms

3) Assessing deployment architectures
comparison of different algorithms
performance vs. complexity, sensitivity analysis, etc.
analysis and simulation environment

" B
Problem breakdown

1) Lack of knowledge about runtime system parameters
unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = A4” possible deployments
system constraints further complicate the problem
polynomial-time approximating algorithms

3) Assessing deployment architectures
comparison of different algorithms
performance vs. complexity, sensitivity analysis, etc.
analysis and simulation environment

4) Effecting the selected solution
redeploying components
requires an automated solution
architectural middleware with deployment support

Why the Problem Isn't Solved

\C

NG B 3 D d
Implementatlon Cony - qonen®
(middleware, bus \ 0ob)° Camming
c2 technolgies) ~JEP' Pro9

