
WADS-DSN 2004 Invited Talk

From
Dependable Architectures

To
Dependable Systems

Nenad Medvidovic
Computer Science Department
University of Southern California
Los Angeles, U.S.A.
neno@usc.edu

Goals of the Talk

Identify some challenges
Suggest some solutions
Motivate future research
Invite dissenting opinions

Goals of the Talk

The problem is this big
and sometimes ill-defined
The problem is this big

and sometimes ill-defined

Goals of the Talk

I will talk to you
about this much of it

Goals of the Talk

I will suggest a solution
for this much of it

Goals of the Talk

But, hopefully, we will have
this much fun!

What Is Dependability?
Degree of user confidence that the system
will operate as expected
Key dimensions

Availability
Reliability
Security
Safety

But also
Repairability
Maintainability
Survivability
Fault tolerance

What Is Architecture?
A high-level model of a system

The system’s “blueprint”
Represents system organization

Data
Computation
Interaction
Structure

Embodies system properties
Communication integrity, performance, throughput,
liveness, . . .
Can/does it embody dependability?
(how) Can those properties be transferred to the
system itself?

A “Traditional” Architectural Model

A “Traditional” Architectural Model

What/where is the dependability?

A “Standard” Architectural Model

Segment
(from ssi)

AttributeDescription
(from serializati...

ResourceDescription
(from serializati...

HttpCredential
(from ht.. .

PlainRemoteResource
(from adm...

HtmlHead
(from ht...

SampleMuxHandler
(from m...

Stresser
(from tes...

JigsawHttpSessionContext
(from servl...

HtmlStyle
(from ht...

AdminContext
(from admin)

AuthUserPrincipal
(from a...

IPMatcherNode
(from au...

HttpBag
(from ht...

HtmlGenerator
(from ht...

DirectoryResource
(from resourc...

FileResource
(from resourc...

HttpEntityTag
(from ht...

HttpManager
(from ht...

CGIHeaderHolder
(from fram...

Shuffler
(from ht...

IndexersCatalog
(from index...

ResourceIndexer
(from index...

MuxClientFactory
(from m.. .

ResourceContext
(from resourc...

EventManager
(from time...

ResourceStoreManager
(from sto...PropertySet

(from conf...

FramedResource
(from resourc...

ServerHandlerManager
(from daem...

AdminWriter
(from adm...

Serializer
(from serializati...

RequestTimeout
(from ht...

MimeType
(from mime)

IPMatcher
(from auth)

ExternalContainer
(from resourc. ..

PICS
(from pi...

SSIFrame
(from s...

SSIStream
(from s...

ArrayDictionary
(from ut...

CommandRegistry
(from comman...

VariantState
(from NegotiatedFra...

SampleResourceIndexer
(from index...

ProtocolFrame
(from frames)

MimeClientFactory
(from ht...

MimeParser
(from mi...

DAVMimeClientFactory
(from webd...

ResourceException
(from resourc...

SocketOutputBuffer
(from sock...

DebugThread
(from sock...

ThreadCache
(from ut...

SocketClientFactoryStats
(from sock...

httpd
(from http)

MuxSession
(from m...

ResourceFilter
(from resources)

HttpMimeType
(from ht...

HttpTokenList
(from ht...

ResourceReference
(from resources)

HTTPPrincipal
(from a...

ProxyRequestObserver
(from pro...

ProfileRef
(from cc...

HttpExtList
(from ht...

Client
(from http)

CCPPRequest
(from cc...

A “Standard” Architectural Model

 : WebBrowser
 : SocketClient : httpd : DirectoryResource : ContainerResource : FramedResource

 : LookupResult

processRequest(Request)
perform(RequestInterface) <<create>>

lookup(LookupState, LookupResult)

[lookup(LookupState, LookupResult)]
[lookup(LookupState, LookupResult)]

setTarget(resourceReference)

internalLookup()

lookup(LookupState, LookupResult)
[moreComponents]:

HTTPD Resources

Figure 10: Sequence diagram for the request processing use case.

A “Standard” Architectural Model

 : WebBrowser
 : SocketClient : httpd : DirectoryResource : ContainerResource : FramedResource

 : LookupResult

processRequest(Request)
perform(RequestInterface) <<create>>

lookup(LookupState, LookupResult)

[lookup(LookupState, LookupResult)]
[lookup(LookupState, LookupResult)]

setTarget(resourceReference)

internalLookup()

lookup(LookupState, LookupResult)
[moreComponents]:

HTTPD Resources

Figure 10: Sequence diagram for the request processing use case.
 What/where is the dependability?

But, We Can Model Anything
Meta-H, ROOM, UniCon, etc. can help ensure
real-time properties in models
Markov chains can help ensure reliability in
models
Multi-versioning connectors can help ensure
fault tolerance
Code/data mobility and replication formalisms
can help ensure availability
. . .

But, We Can Model Anything
Meta-H, ROOM, UniCon, etc. can help ensure
real-time properties in models
Markov chains can help ensure reliability in
models
Multi-versioning connectors can help ensure
fault tolerance
Code/data mobility and replication formalisms
can help ensure availability
. . .

So then the problem is solved, right?

Why the Problem Isn’t Solved

Why the Problem Isn’t Solved
Architecture

(ADL)

Architecture
(ADL)

Design
(UML)

Why the Problem Isn’t Solved

Architecture
(ADL)

Implementation
(middleware, bus

technolgies)

Design
(UML)

Object-Oriented

Programming Language (OOPL)
D/COM

CORBA
C++

Java

Visual Basic

JEDI

Java Beans

C2

Why the Problem Isn’t Solved

Problem SpaceDomain Entities

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation
Class Name

Attributes

Operation

Architecture Space

Design Space

Components
Connectors

Classes
COTS Components

Why the Problem Isn’t Solved

Problem SpaceDomain Entities

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation
Class Name

Attributes

Operation

Architecture Space

Design Space

Components
Connectors

Classes
COTS Components

Ω
Why the Problem Isn’t Solved

Problem SpaceDomain Entities

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation
Class Name

Attributes

Operation

Architecture Space

Design Space

Components
Connectors

Classes
COTS Components

Ω1

Ω
Ω2 Ω3

Why the Problem Isn’t Solved

Problem SpaceDomain Entities

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation

Class Name

Attributes

Operation
Class Name

Attributes

Operation

Architecture Space

Design Space

Components
Connectors

Classes
COTS Components

Ω1

Ω
Ω2 Ω3

Ω11
Ω21Ω31Ω12 Ω22

Ω13
Θ

Why the Problem Isn’t Solved

From Models to Systems

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

From Models to Systems

Host 2Host 1

Host 3 Host 4 Host 5

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

From Models to Systems

The remainder of this talk will
focus on two key questions:

1. How do we get from

1. How do we get from

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

and

Host 2Host 1

Host 3 Host 4 Host 5

1. How do we get from

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

Host 2Host 1

Host 3 Host 4 Host 5

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

to

and

Host 2Host 1

Host 3 Host 4 Host 5

1. How do we get from

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

Host 2Host 1

Host 3 Host 4 Host 5

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

to

and
to

Host 2Host 1

Host 3 Host 4 Host 5

?

2. How do we know

2. How do we know

2. How do we know

?is “better” than

Outline
From architectures to systems
Ensuring dependability

Problem definition
Proposed solution

Concluding remarks

Outline
From architectures to systems
Ensuring dependability

Problem definition
Proposed solution

Concluding remarks

How Do I Dependably Implement an
Architecture?

Architectures provide high-level concepts
Components, connectors, ports, events, configurations

Programming languages provide low-level constructs
Variables, arrays, pointers, procedures, objects

Bridging the two often is an art-form
Middleware can help “split the difference”

Existing middleware technologies
Support some architectural concepts (e.g., components, events)
but not others (e.g., connectors, configurations)
Impose particular architectural styles

How Do I Dependably Implement an
Architecture?

Architectures provide high-level concepts
Components, connectors, ports, events, configurations

Programming languages provide low-level constructs
Variables, arrays, pointers, procedures, objects

Bridging the two often is an art-form
Middleware can help “split the difference”

Existing middleware technologies
Support some architectural concepts (e.g., components, events)
but not others (e.g., connectors, configurations)
Impose particular architectural styles

What is needed is “architectural middleware”

Architectural Middleware
Natively support architectural concepts as middleware
constructs
Include system design support

Typically via an accompanying ADL and analysis tools
May support explicit architectural styles

Support round-trip development
From architecture to implementation and back

Support automated transformation of architectural
models to implementations

i.e., dependable implementation
Examples

ArchJava
Aura
c2.fw
Prism-MW

Dependable Implementation
Architecture

(ADL)

Implementation
(middleware, bus

technolgies)

Design
(UML)

Object-Oriented

Programming Language (OOPL)
D/COM

CORBA
C++

Java

Visual Basic

JEDI

Java Beans

C2

Dependable Implementation
Architecture

(ADL)

Implementation
(middleware, bus

technolgies)
Object-Oriented

Programming Language (OOPL)
D/COM

CORBA
C++

Java

Visual Basic

JEDI

Java Beans

C2

Dependable Implementation
Architecture

(ADL)

Implementation
(middleware, bus

technolgies)
Object-Oriented

Programming Language (OOPL)
D/COM

CORBA
C++

Java

Visual Basic

JEDI

Java Beans

C2

IComponent
IConnector

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

IArchitecture

#mutualPort

Example: Prism-MW

IComponent
IConnector

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

IArchitecture

#mutualPort

Example: Prism-MW

IComponent
IConnector

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

IArchitecture

#mutualPort

Example: Prism-MW

IComponent
IConnector

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

IArchitecture

#mutualPort

Example: Prism-MW

IComponent
IConnector

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

IArchitecture

#mutualPort

Example: Prism-MW

IComponent
IConnector

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

IArchitecture

#mutualPort

Example: Prism-MW

Using Prism-MW

Using Prism-MW

Architecture - DEMO

class DemoArch {
static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMO");

Using Prism-MW

Architecture - DEMO

class DemoArch {
static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");

Component BComponent A Component D

Using Prism-MW

Architecture - DEMO

class DemoArch {
static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors
Connector conn = new Connector("C");

Component BComponent A Component D CConnector C

Using Prism-MW

Architecture - DEMO

class DemoArch {
static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors
Connector conn = new Connector("C");
// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);

Component BComponent A

Component D

CConnector C

Using Prism-MW

Architecture - DEMO

class DemoArch {
static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMO");
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD ("D");
// create connectors
Connector conn = new Connector("C");
// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);

Component BComponent A

Component D

CConnector C

// establish the interconnections
arch.weld(a, conn);
arch.weld(b, conn);
arch.weld(conn, d)

}
}

Deploying a Prism-MW Architecture

Deploying a Prism-MW Architecture

add (DataRepository

weld (TopDistributionConnector,

: source HQ) : HQ;

C1_AvailableTroops) : Commander1;

Outline
From architectures to systems
Ensuring dependability

Problem definition
Proposed solution

Concluding remarks

Outline
From architectures to systems
Ensuring dependability

Problem definition
Proposed solution

Concluding remarks

Availability
The degree to which a system is operational and
accessible when required for use [IEEE]
Deployment architecture influences availability

Components on the same host can communicate
regardless of the network’s status
Components on different hosts are insulated from
each other’s failures

Quantifying availability
Ratio of the

number of successfully completed interactions
in the system to the

total number of attempted interactions

Maximizing Availability a priori
We may not know many relevant system
parameters

Dependability of each component
Frequency of component interactions
Volume of component interactions
Dependability of component interactions
CPU usage on each host
Dependability of each host
Effective bandwidth of each network connection
Dependability of each network connection
. . .

Maximizing Availability a priori
We may not know many relevant system
parameters

Dependability of each component
Frequency of component interactions
Volume of component interactions
Dependability of component interactions
CPU usage on each host
Dependability of each host
Effective bandwidth of each network connection
Dependability of each network connection
. . .

The current deployment architecture may not work well

Simplified Problem Definition

(1)a set C of n components (Cn =), a relation
ℜ→×CCfreq : , and a function ℜ→Cmemcomp :

Given:

Simplified Problem Definition

(1)a set C of n components (Cn =), a relation
ℜ→×CCfreq : , and a function ℜ→Cmemcomp :

Given:

⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=
jiji

ji
ji ccifcandcbetweencommoffrequency

ccif
ccfreq

0
),(

Simplified Problem Definition

(1)a set C of n components (Cn =), a relation
ℜ→×CCfreq : , and a function ℜ→Cmemcomp :

⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=
jiji

ji
ji ccifcandcbetweencommoffrequency

ccif
ccfreq

0
),(

cformemoryrequiredcmemcomp =)(

Given:

(2) a set H of k hardware nodes (Hk =), a relation

ℜ→× HHrel : , and a function ℜ→Hmemhost :

Simplified Problem Definition
Given:

(2) a set H of k hardware nodes (Hk =), a relation

ℜ→× HHrel : , and a function ℜ→Hmemhost :

Simplified Problem Definition
Given:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≠

=
=

jiji

ji

ji

ji

hhifhandhbetweenlinktheofyreliabilit
htoconnectednotishif

hhif
hhrel 0

1
),(

(2) a set H of k hardware nodes (Hk =), a relation

ℜ→× HHrel : , and a function ℜ→Hmemhost :

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≠

=
=

jiji

ji

ji

ji

hhifhandhbetweenlinktheofyreliabilit
htoconnectednotishif

hhif
hhrel 0

1
),(

hhostonmemoryavailablehmemhost =)(

Simplified Problem Definition
Given:

Simplified Problem Definition
Given:
(3) Two relations that restrict locations

of software components
}1,0{: →×HCloc }1,0,1{: −→×CCcolloc

Simplified Problem Definition
Given:
(3) Two relations that restrict locations

of software components
}1,0{: →×HCloc }1,0,1{: −→×CCcolloc

⎭
⎬
⎫

⎩
⎨
⎧

=
ji

ji
ji hontodeployedbecannotcif

hontodeployedbecancif
hcloc

0
1

),(

Simplified Problem Definition
Given:
(3) Two relations that restrict locations

of software components
}1,0{: →×HCloc }1,0,1{: −→×CCcolloc

⎭
⎬
⎫

⎩
⎨
⎧

=
ji

ji
ji hontodeployedbecannotcif

hontodeployedbecancif
hcloc

0
1

),(

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧−
=

ji

ji

ji

ji

candcofncollocatioonnsrestrictionoarethereif
cashostsametheonbetohascif
cashostsametheonbecannotcif

cccolloc
0
1
1

),(

Find a function HCf →: such that the

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

system’s overall availability

is maximized, and the following three
conditions are satisfied:

Simplified Problem Definition

Find a function HCf →: such that the

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

system’s overall availability

is maximized, and the following three
conditions are satisfied:

Simplified Problem Definition

Simplified Problem Definition
Find a function HCf →: such that the

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

system’s overall availability

is maximized, and the following three
conditions are satisfied:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤=∈∀∈∀ ∑
j

ihostjcompij hmemcmemhcfnjki)())()(],1[],1[

Find a function HCf →: such that the

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

system’s overall availability

is maximized, and the following three
conditions are satisfied:

Simplified Problem Definition

1))(,(],1[=∈∀ jj cfclocnj

Find a function HCf →: such that the

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

system’s overall availability

is maximized, and the following three
conditions are satisfied:

Simplified Problem Definition

],1[],1[nlnk ∈∀∈∀
))()(()1),((lklk cfcfcccolloc =⇒=
))()(()1),((lklk cfcfcccolloc ≠⇒−=

Simplified Problem Definition
Find a function HCf →: such that the

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

system’s overall availability

is maximized, and the following three
conditions are satisfied:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤=∈∀∈∀ ∑
j

ihostjcompij hmemcmemhcfnjki)())()(],1[],1[1))(,(],1[=∈∀ jj cfclocnj
],1[],1[nlnk ∈∀∈∀

))()(()1),((lklk cfcfcccolloc =⇒=
))()(()1),((lklk cfcfcccolloc ≠⇒−=

Note that the possible number of

different functions is

Outline
From architectures to systems
Ensuring dependability

Problem definition
Proposed solution

Concluding remarks

Overview of the Approach
Objective

Identify the problem
Log and examine system events
Actively monitor the system during runtime

Develop a solution
Decide which data to cache
Decide which components to replicate
Introduce multiple execution modes
Calculate an improved system deployment

Apply the solution to eliminate the problem
Cache or hoard data
Replicate data or code
Redeploy (parts of) the system

Overview of the Approach
Objective

Identify the problem
Log and examine system events
Actively monitor the system during runtime

Develop a solution
Decide which data to cache
Decide which components to replicate
Introduce multiple execution modes
Calculate an improved system deployment

Apply the solution to eliminate the problem
Cache or hoard data
Replicate data or code
Redeploy (parts of) the system

Improving Availability via
Redeployment

Time

Availability

A1

A2

TM TR
T

TOTE
T’M T’R

T’
T’OT’E

A3

A4

First Identify the Problem

Time

Availability

A1

A2

TM TR
T

TOTE

First Identify the Problem

Time

Availability

A1

A2

TM TR
T

TOTE

IComponent
IConnector

Abstract
Monitor

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

IArchitecture

#mutualPort

Disconnection Rate

EvtFrequency

Monitoring in Prism-MW

Monitoring in Action

34

31

18

2 615

16

4 12

21

8

3 9

29 1 28

20
30

17

14

0

22
26

13

27

10
33

7

24

25

32

19

23

11

5

Then Develop a Solution

Time

Availability

A1

A2

TM TR
T

TOTE

Then Develop a Solution

Time

Availability

A1

A2

TM TR
T

TOTE

1

100

10000

1000000

Time taken
(in ms)

0

0.2

0.4

0.6

0.8

1

z

Achieved
availability

10 comps 100 comps 200 comps 1000 comps 100 comps 30 comps 300 comps
4 hosts 10 hosts 20 hosts 100 hosts 40 hosts 7 hosts 70 hosts

Suite of algorithms:
Exact – exponential complexity
Stochastic – quadratic complexity
Adaptive greedy – cubic complexity
Decentralized – quadratic complexity

Estimating in Action

Automatic Algorithm Selection

AC

AS

T0STES

Greedy
AG

AE
Exact

TEG TEE

T0G T0E

Time

Availability

TR
TR TRT

Stochastic

Automatic Algorithm Selection

AC

AS

T0STES

Greedy
AG

AE
Exact

TEG TEE

T0G T0E

Time

Availability

TR
TR TRT

Stochastic

Then Apply the Solution

Time

Availability

A1

A2

TM TR
T

TOTE

Then Apply the Solution

Time

Availability

A1

A2

TM TR
T

TOTE

IComponent
IConnector

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

Admin

IArchitecture

#mutualPort

Abstract
Admin

Deployer
Abstract

Redeployment Algo

Exact

Stochastic

Adaptive Greedy

Redeployment in Prism-MW

Redeployment in Action

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0
Admin

22
26

13

27

10
33

7

24

25

32

19

23

11

Deployer

5

Going
from

Host 2Host 1

Host 3 Host 4 Host 5

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Legend:

User interface component
(fixed to a host)

Processing or data
component

Comman
der UI

Soldier
UI

Ho
st 2

Hardware host

Network link

Interaction path
between components

to

Outline
From architectures to systems
Ensuring dependability

Problem definition
Proposed solution

Concluding remarks

Concluding Remarks
Still so much to do

Enriching/completing the models
Focusing on additional aspects of
dependability
Addressing feature interactions
Addressing emergent properties
Determining which concerns are (not)
architectural

Promise or Illusion?
If we can define it, we should be able to

Analyze for it
Build it
Measure it
Act on it

So, why haven’t we done it yet?

The Playing Field
Dependability

Hardware
Properties

Software
Properties

 Availability

 Reliability

 Security

 Safety

Interaction
Frequency

Interaction
 Volume

Component
 Size

Interaction
 Volume

Component
CPU Usage

Available
Memory

Available
 CPU

Network
Reliability

Network
Bandwidth

 Survivability

Component
Failure Rate

H/W Properties

S/W
Properties

Dependability

Exploring the Problem Space

Exploring the Problem Space

Exploring the Problem Space

Exploring the Problem Space

Questions?

Using Prism-MW

Component B handles the event and sends a response

public void handle(Event e)
{

if (e.equals(“Event_D”)) {
...
Event e1= new Event(“Response_to_D”);
e1.addParameter("response", resp);
send(e1);
}...

}

S
en

d
 (

e1
)

Architecture - DEMO

Component BComponent A

Component D

CConnector C

Component D sends an event

Event e = new Event (“Event_D”);
e.addParameter("param_1", p1);
send (e);

S
en

d
 (e)

Assumptions

Time

Availability

A1

A2

TM TR
T

TOTE

TM+TE+TR<<T0TM+TE+TR<<T0

•Possible in small
amounts of time
even for slow links

For example,
•dialup (56K), 50% reliability, 100K in 28 sec
•1M, 50% reliability, 100K in less than 0.7 sec

Assumptions

Time

Availability

A1

A2

TM TR

T
TOTE

TM+TE+TR<<T0
TM+TE+TR<<T0

Time
T

Average value of
a parameter

ε

Monitoring
How many samples before I assume stability?
Proposed solution

Average for every new event that arrives
Compare averages for small number of samples (e.g., 3)
As soon as the difference between the samples is < ε
assume the parameter is stable
Some parameters will take longer to stabilize

Keep comparing all the parameters to ensure stability, until all
of them are within their ε

Keep monitoring during redeployment estimation to
make sure the parameters have not changed

What Is Needed?

Scalable and lightweight support for
distributed architectures
with arbitrary topologies

Support for automatic monitoring
Efficient and precise solutions for the
exponentially complex redeployment problem
Support for automatic redeployment

Problem breakdown

Problem breakdown
1) Lack of knowledge about runtime system parameters

unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

Problem breakdown
1) Lack of knowledge about runtime system parameters

unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = kn possible deployments
system constraints further complicate the problem
polynomial-time approximating algorithms

Problem breakdown
1) Lack of knowledge about runtime system parameters

unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = kn possible deployments
system constraints further complicate the problem
polynomial-time approximating algorithms

3) Assessing deployment architectures
comparison of different algorithms
performance vs. complexity, sensitivity analysis, etc.
analysis and simulation environment

Problem breakdown
1) Lack of knowledge about runtime system parameters

unknown at the time of initial deployment
change at runtime
architectural middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = kn possible deployments
system constraints further complicate the problem
polynomial-time approximating algorithms

3) Assessing deployment architectures
comparison of different algorithms
performance vs. complexity, sensitivity analysis, etc.
analysis and simulation environment

4) Effecting the selected solution
redeploying components
requires an automated solution
architectural middleware with deployment support

Architecture
(ADL)

Implementation
(middleware, bus

technolgies)

Design
(UML)

Object-Oriented

Programming Language (OOPL)
D/COM

CORBA
C++

Java

Visual Basic

JEDI

Java Beans

C2

Not N
ece

ssa
rily

 Dr
awn

 to
Sca

le
Why the Problem Isn’t Solved

