High-level Supervision of
Program Execution Based on
Formal Specification

= Gergely PINTER
= [stvan MAJZIK

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Research goals

®r Run-time fault-detection architecture
based on the abstract specification

= Behavioral models (e.g. statecharts)

= Communication protocols (e.g. live sequence
charts, seguence diagrams)

m Configurable granularity of observation

m Selection of key aspects of the specification
(e.g. by Temporal Logic Formulae)

m Supporting safety-critical SW architectures
(e.g. EN-50128)

Run-time verification against
formal models

.C
AV

.C
Source code

ngf
‘ I - Instrumentation

N =
Specification to -l

be checked Monitor

Instrumented application

c
o
=
©
&)
=
O
Q
o
N

Self-checking architecture

Run-time verification against

Specification
« Basis of implementation
» Reference information

c
O
)
©
O
Q.
o
©
@)
)
)
c
()
=
>
| -
)
7))
c

Specification
Self-checking architecture

Specification to
be checked

Run-time verification against
formal models

AV

.C
Source code

Run-time verification .C
» Detection of programming bugs, umentatlon
misunderstood specification etc.

] ° Independent monitor component l
Sper .

be checked Monitor

c
O
)
©
O
Q.
o
©
@)
)
)
c
()
=
>
| -
)
7))
c

Specification
Self-checking architecture

Specification

Specification to
be checked

Implementation
 Manual or automatic
» Pattern-based approach

.C

AV

Source code

.C

Instrumentation

Self-checking architecture

Run-time verification against
formal models

Configurable granularity _
* Selection of key modeling c RV
aspects (e.g. behavioral
specification from the
entire software model)

Source code

.C

Instrumented application

c
o
=
©
&)
=
O
Q
o
N

Self-checking architecture

Specification to
be checked

Run-time verification against
formal models

.C}B{E
C A/

Source code

.C
Instrumentation

c
O
)
©
O
Q.
o
©
@)
)
)
c
()
=
>
| -
)
7))
c

Specification

Reference information
» Automatically derived
from the specification

Self-checking architecture

Run-time verification against
formal models

e c [

Instrumentation Source code
« Systematic, transparent
e Pattern-based approach —

aN

Specification to
be checked

c
o
=
©
&)
=
O
Q
o
N

Instrumented application

Self-checking architecture

Run-time verification against

)
S
-
)
&
)
=
(C
O
| -
S
(@))
j=
4
&)
)
L
&
A
O]
N

Specification to
be checked

Run-time verification against
1{® >

r Run-time observation

Objecty

2 Tng =
R
C o[=

_—— = 7Y

Intra-object behavior
 Internal event-driven behavior should I. I

correspond to the behavioral specification
 Fault detection by embedded component
* Reference information:

UML statecharts

T-'.- -------------- \

be checked ‘ I - Monitor ()

Self-checking architecture

Run-time verification against
1{® >

Run-time observation

Objecty
>

| |2

Inter-object communication
e Monitor component on the
communication bus
 Detection of communication
protocol violations
* Reference information:
Seqguence diagrams,
Life sequence charts

O
S
S
e
O
D
=
Ic
O
| -
©
o
=
=
O
@
<
o
u
@
p)

Run-time verification against
1{® >

Run-time observation

Objecty
L Ing

O,

Error Confinement Layer |

« Detach the faulty object DN middleware
after fault detection

» Fault silent behavior or
more advanced schemes

be checked ‘I -

Self-checking architecture

Run-time verification against

)
S
-
)
&
)
=
(C
O
| -
S
(@))
j=
4
&)
)
L
&
A
O]
N

Specification to
be checked

Run-time verification against

L R
b

LR
e
!

E

!
ﬁ Hii
e
& i;;;%;
e

o

HARE
S
R

=
e
ey
EELEETEE
SR,
phabebibetettityd
!

o
e

e

bt
L,
L,
bt

bt

FEELEEEE PR e S e,

e e ! e e 4
A e e e e

g +++

& L

+

ey et S £ L
o o e e e o o N G o e o o o o
! o L L,
S
s sl et et b e
e e e

e R e

o
3 o

o)
S
>
)
&)
Q
=
rC
&)
S
c
)
j=
4
&
@
L
&)
A
)
p)

Specification to
be checked

Focus and Contribution
* Run-time observation of internal behavior
* Advanced monitoring mechanism:
Based on UML statecharts
* [nstrumentation method:
Aspect-oriented approach

Self-checking architecture

B

Specification to
be checked

Abstract, high-level
control-flow fault detection

Reference information:
« Automatically derived from the behavioral specification
» Capable of expressing state hierarchies, concurrent operation, etc.

Implementation of the monitor:

» Based on the operational semantics of the behavioral model

* Run-time checking of the behavior on the basis of the abstract
reference model

Implementation of the instrumentation:
* Providing information to the monitor about the internal behavior
» Configurable, transparent and automatically applied

Abstract, high-level
control-flow fault detection

Reference information:
« Automatically derived from the behavioral specification
» Capable of expressing state hierarchies, concurrent operation, etc.

Reference information of the
InNternal behavior

m Extended Hierarchical Automata (EHA)

m Clear structure:

m Seguential automata:
Containing any number of states

= Non-composite states:
Refined to any number of sequential automata

= Non-interlevel transitions:
Source restriction and target determination sets

= Well elaborated formal semantics
= Automatically derived from UML statecharts

Reference information of the
InNternal behavior

T
M
N
&)
()
o
©
i
7))
-
=
>

; source parent \

target parent

~

—»[source ch||d] >[target child]—»[t2]
J & J

evt SrcRest:; {source child

source parent]ZI .
TrgDet: {target child}

target parent]

) }'\

_,[source child] S2

|

[target child]_,

Reference information of the
InNternal behavior

~
target parent

>[target chiId]—»[t2]
. _

source parent

T
M
N
&)
()
o
©
i
7))
-
=
>

<Vl evt SrcRest: {source.child}e[target parent]
\TrgDet: {target child} i

(eroercna),

Reference information of the
InNternal behavior

evt

~
target parent

>[target chiId]—»[t2]
U _J/

source parent

T
M
N
&)
()
o
©
i
7))
-
=
>

&J°Vl eyt SrcRest: {source_ child}e[target parent]
\TrgDet: {target child} i

(eroercna),

Reference information of the
InNternal behavior

evt

target parent

-
source parent
. >[target chiId]--»[t2
U

T
M
N
&)
()
o
©
i
7))
-
=
>

2.8Vl eyt SrcRest: {source_child}e[target parent]
\TrgDet: {target child} i

Reference information of the
InNternal behavior

~
target parent

source parent
h target chiId]--»[t2

() IQJ]

T
M
N
&)
()
o
©
i
7))
-
=
>

2-®eVl eyt SrcRest: source.child target parent]
O\TrgDet: {target child} i

Reference information of the

T
M
N
&)
()
o
©
i
7))
-
=
>

INternal behavior

ource parens target parent

~

J

M - >[target chiId]--»[t2]
U

¢-:eVl eyt SrcRest: {source child}e[target parent]

TrgDet: {target child}

|

[target child],

Reference information of the
mternal behavior

target parent

; source parent
b[source child >[target child]--»[t2
&

T
M
N
&)
()
o
©
i
7))
-
=
>

exit _ :
. /l evt SrcRest: {source.chlld}e[target parent]
\TrgDet: {target child} i

,[source child] s2 [target child],

Reference information of the
InNternal behavior

~

& source parent

b[source child

J

T
M
N
&)
()
o
©
i
7))
-
=
>

target parent]

|

,[source child] [target child],

Reference information of the
InNternal behavior

; source parent
X

b[source ChlldJ

T
M
N
&)
()
o
©
i
7))
-
=
>

énfry
target parent
target chiId]--»[t2]

source parentk

entry
evt SrcRest: {source child YN get parent
TrgDet: {target child}

- }'\

,[source child]

S2

[target child],

Reference information of the
InNternal behavior

T
M
N
&)
()
o
©
i
7))
-
=
>

; source parent
X

b[source ChlldJ

source parentk

evt SrcRest: {source child target parent

TrgDet: {target child}

- }'\

,[source child] S2

!

entry
e,

Abstract, high-level
control-flow fault detection

Reference information:
« Automatically derived from the behavioral specification
» Capable of expressing state hierarchies, concurrent operation, etc.

Abstract, high-level
control-flow fault detection

Reference information:
» Automatically derived from the behavioral specification
« Capable of expressing state hierarchies, concurrent operation, etc.

Implementation of the monitor:

» Based on the operational semantics of the behavioral model

* Run-time checking of the behavior on the basis of the abstract
reference model

Checking the
InNternal behavior

m Structural decomposition:
= Run-to-completion and transition contexts

m Specification of contexts:

= Protocol state machines (statecharts)

Run-time Monitor

ObservedApp Monitor RTCContext
o—=

N]

MessageQueue TransitionContext

Checking the
InNternal behavior

m Structural decomposition:
- Run-to-completlon a)’un.-to-com;oletion cont.ex‘t<RS

e |nitialization

- Sp@lelcaUOn Of COr » Start and finish of event

processing

= Protocol state maclf Fr .
» Dispatching messages to

transition contexts

Run-ti

ObservedApp I- RTCContext
_MessageQueue

MessaaeOueue TransitionContext

Checking the
InNternal behavior

m Structural decomposition:
= Run-to-completion and transition contexts

m Specification of contexts:
= Protocol state machines (statecharts)

AP Transition context

ObservedApp Atomic actions within a
_ single transition (state
entry and exit)
\

MessaaeOueue TransitionContext

Checking the
InNternal behavior

m Structural decomposition:
= Run-to-completion and transition contexts

m Specification of contexts:

= Protocol state machines (statecharts)

Run-time Monitor

ObservedApp Monitor RTCContext
o—=

N]

MessageQueue TransitionContext

Checking the
InNternal behavior

m Structural decomposition:
= Run-to-completion and transition contexts

m Specification of contexts:

= Protocol state machines (statecharts)

Run-time Monitor
ObservedApp Monitor RTCContext

1 J, I

MessageQueue TransitionContext

Run-to-completion context

09[Uninitialized J
initStarting\L \ initEntry [ieOK]

[Initialization

trStarting [tsOK] /
createTrCtx

initFinishing[ifOK] evtProcStarting \I«

e [epsOIg[

evtProcFinishing Transient

JJ\gpfO K] g

yoredsip

Before initialization

R U n 'tO'CO m p I » The state configuration of
the observed application is
inconsistent, none of the
states is active.

Uninitialized

initStarting initEntry [ieOK]
[Initialization
trStarting [tsOK] /

e create TrCtx
initFinishing[ifOK] evtProcStarting \I«

e [epsOIg[

evtProcFinishing Transient

jj\gpfo K] g

yoredsip

Run-to-completion context

Uninitialized J

initStarting | initEntry [ieOK]

B

Initialization started
message trStarting [tsOK] /
» The observed application create TrCtx
has started entering the
initial configuration. \Ig

initFinishing][ifC

evtProcFinishing Transient
pfOK]

yoredsip

Run-to-completion context

09[Uninitialized

InitStarting

1 InitEntry [ieOK]
Initialization

trStarting [tsOK] /

T create TrCtx
During initialization

- The state configuration of evtProcStarting \IQ
the observed application is [epSOIg(
inconsistent, some states S
of the initial configuration cFinishing
are active. {]

Transient

yoredsip

.

Run-tO-Comple /" Entry during initialization

» The observed application has
entered a state.

» Guard: (i) the state belongs to

the initial configuration, (ii) is
09[Uninitialized currently inactive and (i) all

parent states are active.

InitStarting

1 InitEntry [ieOK]
Initialization

trStarting [tsOK] /
T createTrCtx
InitFinishing[ifOK] HPTIES AT

4 [epsOKﬁ(\K

evtProcFinishing

Transient
jj\gpfOK]
_

yoredsip

Run-to-completion context

Initialization finished message
» The observed application has
finished entering the initial
configuration.
e Guard: all states of the initial
configuration are active.

create TrCtx

InitFinishing[ifOK] HPTIES AT

4 [epsOlg[

evtProcFinishing Transient

JJ\gpfOK] :

yoredsip

Run-to-completion context

09[Uninitialized J

initStarting\|/ [| initEntry [ieOK]

Stable configuration

* The observed application is in a Starting [tsOK] /

consistent state configuration,
initFinishing[if(EELERE IS being processed.

Stable evtProcFinishing Transient
pfOK]

create TrCtx

yoredsip

.

Run-to-completion context

initStarting\L

09[Uninitialized

[

Event processing started

e » The observed application has
Initialization received an event from the

environment and started

processing it.

[epsO

evtProcFinishing
pfOK]

N

Transient

yoredsip

Run-to-completion context

09[Uninitialized

initStarting\L Transient state
[» The state configuration of the

WIEY opserved application is _
inconsistent, some transitions JIUCHISCLNES
initFinishing[ifOK] | QS jateTrek

CVLL 1 UV LT

~ [epsOK

evtProcFinishing Transient !

JJ\gpfOK]

Transition selected for firing

* The observed application has selected
a transition to be fired during the event
processing.

e Guard: (i) triggered by the currently
processed event, (ii) source state and
ones in the source restriction set are
active and (iii) does not violate the
priority relations.

« Action: create a new transition context.

erStarting [tsOK] /

e createTrCtx
InitFinishing[ifOK] SlPeESElG

L\
s [epsOK
evtProcFinishing Transient
jj\gpfOK]

yoredsip

Run-to-completion context

09[Uninitialized
initStarting\L \ i Dispatch message to

transition context
» The observed application has
performed an activity that is
initFinishing[ifOK] iProg E:cz)gte:e)c(:{]ecked by a transition

~ [epSOK

[Initialization

evtProcFinishing

Transient
jj\gpfOK]

yoredsip

Run-to-completion context

09[Uninitialized

LanaSelarannE initEntry [ieOK]
Event processing finished

* The observed application has _
finished the processing of the trStarting [tsOK] /
event. create TrCtx

 Guard: all transitions have evtProcStarting
been finished. [epsOK \K

evtProcFinishing Transient
pfOK]

yoredsip

Run-to-completion context

09[Uninitialized J
initStarting\L \ initEntry [ieOK]

[Initialization

trStarting [tsOK] /
createTrCtx

initFinishing[ifOK] evtProcStarting \I«

e [epsOIg[

evtProcFinishing Transient

JJ\gpfO K] g

yoredsip

Run-tO-Comple Fault detected

* Any guard evaluated
to false.
« Any protocol violation.

“ HUL 111101111 IHL:II —

09[Uninitialized }
Fault

nitEntry [lieOK
. . — _ detected
InitStarting \ initEntry [ieOK]

4[Initialization

evtProcStarting [!epsOK] createTrCtx

trStarting [tsOK] .

initFinishing[ifOK] evtProcStarting \/

r epsOK]

evtProcFinishing Transient

ﬁ pfOK] g

evtProcFinishing ['epfOK]

yoredsip

Checking the
InNternal behavior

m Structural decomposition:
= Run-to-completion and transition contexts

m Specification of contexts:

= Protocol state machines (statecharts)

Run-time Monitor
ObservedApp Monitor RTCContext

1 J, I

MessageQueue TransitionContext

Checking the
InNternal behavior

m Structural decomposition:
= Run-to-completion and transition contexts

m Specification of contexts:

= Protocol state machines (statecharts)

Run-time Monitor

ObservedApp Monitor RTCContext

_\I/ \L H
MessageQueue TransitionContext

Transition context

o>

Exiting states

J

1

o

trAssociated [taOK]

Entering states

~

J

gerinishing [tfOK]

exitState [xsOK] /
marklnactive

enterState [esOK] /
markActive

Transi

o

Exiting states

Exiting states
» The observed application is in
the first phase of performing a
transition: leaving the source
state and all active states
refining it.

exitState [xsOK] /
marklnactive

trAssociated [taOK]

Entering states

~

enterState [esOK] /
markActive

J

gerinishing [tfOK]

State left

* The observed application has left a state
during a transition.

e Guard: (i) the state is the source of the
transition or a refinement of it, (ii) it is active
and (iii) none of its refinements are active.

» Action: update the configuration observation.

exitState [xsOK] /
marklnactive

Exiting states

: ‘ ,trAssociated [taOK]
\

enterState [esOK] /
markActive

Entering states

_ _J
gerinishing [tfOK]

Transition context

Associated action performed
» The observed application has finished

o

the first phase of performing a transition

(leaving source states) and has performed
the action associated to the transition.

SUMPESEN] * Guard: the source and all states refining it
have already been left.

trAssociated [taOK]
\

Entering states

<
J

nginishing [tfOK]

enterState [esOK] /
markActive

Transition context

Entering states
» The observed application is in
the second phase of performing a
transition: entering the target state
and the ones in the target
.. determination set.

Exiting states

enterState [esOK] /

Entering states markActive

rFinishing [tfOK]

Transition context

State entered

* The observed application has entered a state
during a transition.

o Guard: (i) the state is the target of the transition
or member of the target determination set, (ii) it
IS inactive and (iii) all of its parents are active.

e Action: update the configuration observation.

enterState [esOK] /

Entering states markActive

rFinishing [tfOK]

Transition context

exitState [xsOK] /
marklnactive

Transition finished
» The observed application has
finished performing the transition.
_ » Guard: the target and all states
SQIENORSIE] i\ the target determination set
have been entered.

rFinishing [tfOK]

Transition context

exitState [xsOK] /

EXxiting states marklnactive

J
trAssociated [taOK]

N

Transition context closed State [esOK] /
* The transition context is closed, PNz
the observed application has
legally performed the transition.

Y[LU

Transition context

o>

Exiting states

J

1

o

trAssociated [taOK]

Entering states

~

J

gerinishing [tfOK]

exitState [xsOK] /
marklnactive

enterState [esOK] /
markActive

Transition context

o>

Exiting states

J

1

o

Fault detected
* Any guard evaluated
to false. exitState
* Any protocol violation. JFelY

1
trAssociated [taOK]

Entering states

~

Fault

trAssociate
- detected

[taOK]

enterState [esOK] /
markActive

nginishing [tfOK]

enterState [lesOK]

trFinishing ['tfOK]

Checking the
InNternal behavior

m Structural decomposition:
= Run-to-completion and transition contexts

m Specification of contexts:

= Protocol state machines (statecharts)

Run-time Monitor

ObservedApp Monitor RTCContext

_\I/ \L H
MessageQueue TransitionContext

Abstract, high-level
control-flow fault detection

Reference information:
» Automatically derived from the behavioral specification
« Capable of expressing state hierarchies, concurrent operation, etc.

Implementation of the monitor:

» Based on the operational semantics of the behavioral model

* Run-time checking of the behavior on the basis of the abstract
reference model

Abstract, high-level
control-flow fault detection

Reference information:
» Automatically derived from the behavioral specification
« Capable of expressing state hierarchies, concurrent operation, etc.

Implementation of the instrumentation:
* Providing information to the monitor about the internal behavior
» Configurable, transparent and automatically applied

Instrumentation

m Systematic transparent instrumentation:
= Explicit message transfer to the monitor
= Modification of the data model and the behavior
m Case study: Aspect-Oriented Programming

StatechartBase

+ dispatchEvent Implementation pattern
» Abstract base class:
Fundamental facilities
» Derived class:

ObservedApp Implements the behavior

- fireTransition

Instrumentation

m Systematic transparent instrumentation:
= Explicit message transfer to the monitor
= Modification of the data model and the behavior
m Case study: Aspect-Oriented Programming

StatechartBase

+ dispatchEvent + sendTrStarting

Message queue

ObservedApp » Accessible from the

- fireTransition base class
» Methods for message

transfer to the monitor

Adding a member variable (Java AOP)

public aspect BehavioralMonitoring {
. SyStemat /[l Add a member variable to the base class

B EXpIiCit protected MessageQueue StatechartBase.msgq;

= Modifica
= Case study:

StatechartBase msg MessageQueue
+ dispatchEvent (L + sendTrStarting

JAY

ObservedApp
- fireTransition

Instrumentation

O Systematlc transparent mstrumentatlon
= Explicit message
Original behavior

= Modification of t (Firing a transition) havior

_ Recursively leave
= Case StUdy' ASE the source state Be

StatechartBase

+ dispatchEvent ASEOEELER

action

Enter target

ObservedApp states

- fireTransition

I nStr Instrumented behavior

(Firing a transition)

Send the ,Starting
transition” message

m Systematic trans

B Explicit message Recursively leave

.) the source state
= Modification of t

Associated
action

= Case study: Aspg

StatechartBase
+ dispatchEvent

A Send the ,Transition
ObservedApp finished” message
- fireTransition

Enter target
states

trStarting [tsOK] /
createTrCtx

Transient

StatechartBase

+ dispatchEvent

JAY

ObservedApp

- fireTransition

Instrumented behavior
(Firing a transition)

“Q, d the ,Starting
7

ansition” message

Recursively leave
the source state

Associated
action

Enter target
states

Send the , Transition
finished” message

I nStr Instrumented behavior

(Firing a transition)

Send the ,Starting
transition” message

m Systematic trans

B Explicit message Recursively leave

.) the source state
= Modification of t

Associated
action

= Case study: Aspg

Enter target
states

Entering states enteliit?te/ nd the ,Transition
MATKACIVE g™ finished” message

I r,/Add code around function call (Java AOPN

public aspect BehavioralMonitoring {
/[Define pattern matching calls to fireTransition

pointcut firingTransitionPattern
u SyStemat call (StatechartBase+.fireTransition(Transition t));
- EXpIICIt f // Define instrumentation to be applied
- Modifica around(): firingTransitionPattern() {
msgqg.sendTrStarting();

m Case stL proceed();
msgq.sendTrFinishing();

ObservedApp

- fireTransition

Abstract, high-level
control-flow fault detection

Reference information:
» Automatically derived from the behavioral specification
« Capable of expressing state hierarchies, concurrent operation, etc.

Implementation of the instrumentation:
* Providing information to the monitor about the internal behavior
» Configurable, transparent and automatically applied

Summary

= Monitoring of the dynamic behavior
= Verification against abstract specification
= Pattern-based instrumentation scheme

m Prototype implementation

= Benchmark experiment: bit-inversion faults in
the statechart implementation (C++ version)

m HW: 40%, monitor: 21.5%, SW: 18.5%

= Instrumentation case study (Java, AspectJ):
= Run-time overhead: 10.9%

Future work

_ NN o

Event queue

Statechart implementation

Future work

Statechart
reference

_ 0N

Event queue

Statechart implementation

N\ W
EaS

Temporal logic

anime YFUTUre work

verification of
behavior

Assessment by
Statechart fault injection
reference EUROMICRO 04

_ 0N

Event queue

Verification Statechart implo
against SC- PSR R Exception

LTL formulae handling in
statecharts

Temporal logic

Run-time fault detection of
statechart implementations

* Formal reference

» Temporal logic fitted to statecharts

« Exception handling

 No manual modification on the
Implementation (AOP)

 Original event dispatcher |nterface

Event queue

Statechart implementation

Temporal logic

