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Motivation

e Software reliability: probability that the system
performs its intended functionality without
failure

e Software reliability techniques aim at reducing
or eliminating failure of software systems

e Complementary to testing, rely on
implementation

* How do we go about building reliable
systems?

* How do we measure reliability early?



Software Architecture

e High-level abstractions describing
— Structure, Behavior, Constraints
e Coarse-grain building blocks, promote
separation of concerns, reuse
— Components, Connectors, Interfaces, Configurations
e Architectural decisions directly affect aspects of
software dependability
— Reliability
e ADLs, Formal modeling notations, related
analysis
— Often lack gquantification and measurement



Architectural Reliability

e Lightly explored

e Require availability of implementation to:
— Build behavioral model of the software system
— Obtain each component’s reliability

e Software architecture offers compositional
approaches to modeling and analysis

* The challenge is quantifying these results
— Presence of uncertainty

— Unknown operational profile
— Improper behavior
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The Quartet

Interface

Point by which a component interacts with other
components

Static behavior

Discrete functionality of a component

i.e., at particular “snapshots” during the system’s
execution

Dynamic behavior

Continuous view of how a component arrives at
different states throughout its execution

Interaction protocol

External view of the component

Specifies its legal interactions with other components
in the system
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PROV gas(val :SpeedType) :SpeedType;
PROV brake(val:SpeedType): SpeedType;
PROV cruise(speed:SpeedType);Boolean;

STATIC BEHAVIOR
STATE-VAR:
curSpeed:SpeedType;
isCruising:Boolean;
INVARIANT =
0 < curSpeed < MAX;
OPERATIONS :
gas.preCond (val > 0);
gas.postCond (~curSpeed = curSpeed + val);
brake.preCond (val < 0);
brake.postCond (~curSpeed = curSpeed + val
AND isCruising = false);
cruise.preCond (speed > 0);
cruise.postCond (~curSpeed = speed
AND isCruising = true);

DYNAMIC BEHAVIOR
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Deftect Quantification

e Architectural defects could affect system
Reliability
e Ditferent defects affect the Reliability differently

— e.g., interface mismatch vs. protocol mismatch

* The cost of mitigating defects varies based on
the defect type

e Other (domain specific) factors may atfect the
quantification

e (Classification + Cost framework



Classification + Cost Framework
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Reliability Techniques

 Non-Homogenous Poisson Processes, Binomial
Models, Software Reliability Growth Models, ...

 Markovian Models
— Suited to architectural approaches
— Consider a system’s structure, compositional
— Stochastic processes

— Informally, a finite state machine extended
with transition probabilities



Our Reliability Model

* Built based on the dynamic behavioral model
e Assume Markov property

— Discrete Time Markov Chains

e Transition probabilities may be unknown

 Complex behavior results in lack of a
correspondence between events and states

e Event/action pairs to describe component
interactions

= Augmented Hidden Markov Models (AHMM)



Evaluation

e Uncertainty analysis
— Operational profile
— Incorrect behavior
* Sensitivity analysis
— Traditional Markov-based sensitivity analysis
combined with the defect quantification

 Complexity
 Scalability



Conclusion and Future Work

e Step toward closing the gap between
architectural specification and its effect on
system’s reliability

 Handles two types of uncertainties associated
with early reliability estimation

* Preliminary results are promising

e Need further evaluation

* Build compositional models to estimate system
reliability based on estimated component
reliabilities



Questions?



AHMM

S :Set of all possible States,S ={S,,..., S}
N : Number of states
g, :state at time t
E :Setof all events, E={E,,...,.E,, }
M : Number of events
F :Setof all actions, F :{F,..., F}
K :Number of actions
We now define:
A=(A, B, r)isaHidden Markov Model such that :
A :statetransition probability distribution
A:{aij}’aij =Pr[q.., = Sj 10, =S;],1<1, J<N
B : Interface probability distribution in state j
B ={b;(m)}
b;(m)=Pr[E, /F att|q,=S;],1< J<N,1<m<M,1<k <K
z :The initial probability distribution 7 ={r,}
, =Pr[q, =S;]1,11<i<n.



Cruise Control Example

DYNAMIC BEHAVIOR

gas/accelerate
gas/accelerate
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cruise/maintain

gas/accelerate



Partial Markov Extension
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Transition Probabilities

OS:;%Ln Observation | Pr(O) | Reaction Pr(R) Pr-l(—gt)é:ol:(;) Dest. State
stop TRUE | 01 | 01 TRUE 1 0.1 stop
stop gas 0.05 accelerate 1 0.05 stop
stop gas 0.9 0.05 accelerate 1 0.05 cruise
stop gas 0.8 accelerate 1 0.8 manual
Cruise break 0,;.’8 0.85 decelerate 1 0.85 manual
cruise TRUE | 0.1 0.1 TRUE 1 0.1 cruise
cruise gas 00 | 0.02 | accelerate 1 0.02 stop
cruise gas 5 0.03 accelerate 1 0.03 cruise
manual TRUE | 0.2 0.2 TRUE 1 0.2 manual
manual gas 0.08 accelerate 1 0.08 manual
manual gas 0.1 accelerate 0.6 0.012 cruise
manual gas 0.02 accelerate 0.4 0.008 stop
manual break 0.08 decelerate 1 0.08 manual
manual break | 0.1 | 0.01 decelerate 1 0.01 cruise
manual break 0.01 decelerate 1 0.01 stop
manual cruise | 0.6 0.6 maintain 1 0.6 cruise

stop manual cruise

stop | 0.15 0.8 0.05
ITP =manual| 0.018 0.36 0.622
cruise | 0.02 0.85 0.13

Baum-Welch

(0.1178 0.8293 0.0529 |
P=|0.0304 0.3672 0.6024
10.0135 0.8537 0.1328 |




Reliability Model
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Example...

stop manual cruise
stop [ 0.15 0.8 0.05
ITP =manual| 0.018 0.36 0.622
cruise | 0.02 0.85 0.13 |
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More on the AHMM

* For states 5;and S, there may be several transitions
E,/F,

e Probability of transition from S, to S; by means of a
given E_ and all possible actions F,

M K
Tij = Z Z PijEka
m=1 k=1

e But do we know what these are at the architecture
level?



Parameter (re)estimation

 Baum-Welch algorithm

— Uses Expectation Maximization
o () = 2 a1 (J)Pr(a =10y = DPr(x |0 =1)
j

Ba(i) =2 Pr(a = jla, =1)Pr(x [0 = 1)A ()

— Given a sequence of training data

e Calculates the probability of a given observation sequence

and the probability of transitions from S; to S,



System Reliability
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Relationships

e Interface vs. Other Models

— Syntactic
— Interface as the core

— Static Behaviors constrain interfaces using pre/post-
conditions

— Transition labels on Dynamic Behaviors and Interaction
Protocols relate to interface as well

— Dynamic Behaviors and Interaction Protocol model
may have additional transitions that do not relate to
component’s interfaces

* hierarchy and abstraction




Relationships II

e Static Behaviors vs. Dynamic Behaviors

— Semantic
— Transition Guard vs. Operation Pre-Condition
n
e Union Guard: UG = v G.
i=1
UG = P

— State Invariant vs. Component Invariant
Statelnv => Complinv

— State Invariants vs. Operation Post-Condition
Statelnv => PostCond



Relationships III

 Dynamic Behaviors vs. Interaction Protocols
— Semantic
— The dynamic behavioral model may be more general than the

protocol of interactions; any execution trace obtained by the
protocol model, must result in a legal execution of component’s
dynamic behavioral model

e Static Behaviors vs. Interaction Protocols

Static Behaviors €= Dynamic Behaviors € -> Interaction Protocols
Dynamic Behavioral model acts as a conceptual bridge

Interaction protocols specifies the valid sequence by which the
component’s interfaces may be accessed, oblivious to the
component’s internal state

* No direct conceptual relationship



Uncertainty Analysis

e Two sources of uncertainty:

— Unknown operation profile, and incorrect component
behavior

e How important it is to estimate ITP accurately?

— Complexity of the behavioral model directly relates to
the importance of correct ITP initialization

 How about slight changes to ITP? How well the
model can handle uncertainty?



Evaluation

e Uncertainty analysis
— Operational profile
— Incorrect behavior
* Sensitivity analysis
— Traditional Markov-based sensitivity analysis
combined with the defect quantification

 Complexity
 Scalability



Uncertainty Analysis

e Two sources of uncertainty:

— Unknown operation profile, and incorrect component
behavior

e How important it is to estimate ITP accurately?

— Complexity of the behavioral model directly relates to
the importance of correct ITP initialization

 How about slight changes to ITP? How well the
model can handle uncertainty?



Example
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Sensitivity Analysis
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Complexity and Scalability

* Complexity of event-based
Markov Model: O(N*xM xT)

e Qur event/action based model: O(N*xM x K xT)

— N: num states, M: num events

— K:num actions, T: length of
training data

e M and K are fixed, but N can be
reduced using hierarchy



