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Motivation
• Software reliability: probability that the system 

performs its intended functionality without 
failure

• Software reliability techniques aim at reducing 
or eliminating failure of software systems 

• Complementary to testing, rely on 
implementation

• How do we go about building reliable 
systems?

• How do we measure reliability early?



Software Architecture
• High-level abstractions describing

– Structure, Behavior, Constraints
• Coarse-grain building blocks, promote 

separation of concerns, reuse
– Components, Connectors, Interfaces, Configurations

• Architectural decisions directly affect aspects of 
software dependability
– Reliability

• ADLs, Formal modeling notations, related 
analysis
– Often lack quantification and measurement



Architectural Reliability
• Lightly explored
• Require availability of implementation to: 

– Build behavioral model of the software system
– Obtain each component’s reliability

• Software architecture offers compositional 
approaches to modeling and analysis

• The challenge is quantifying these results
– Presence of uncertainty 
– Unknown operational profile
– Improper behavior
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The Quartet
1. Interface

• Point by which a component interacts with other 
components

2. Static behavior
• Discrete functionality of a component 
• i.e., at particular “snapshots” during the system’s 

execution
3. Dynamic behavior

• Continuous view of how a component arrives at 
different states throughout its execution

4. Interaction protocol
• External view of the component 
• Specifies its legal interactions with other components 

in the system



Cruise Control 
Comp

gas()

brake ()cruise()

decelerate () accelerate ()

maintain()

   PROV gas(val:SpeedType):SpeedType;
   PROV brake(val:SpeedType):SpeedType;
   PROV cruise(speed:SpeedType);Boolean;

   STATE-VAR:
curSpeed:SpeedType;
isCruising:Boolean;

   INVARIANT:
0 curSpeed   MAX;

   OPERATIONS:
gas.preCond (val > 0);
gas.postCond (~curSpeed = curSpeed + val);
brake.preCond (val < 0);
brake.postCond (~curSpeed = curSpeed + val

     AND isCruising = false);
cruise.preCond (speed > 0);
cruise.postCond (~curSpeed = speed

AND isCruising = true);

INTERFACES

STATIC BEHAVIOR

≤ ≤

stop

gas/accelerate

manual

cruise

gas/accelerate

brake[val +curSpeed >0]
/decelerate

cruise/maintain

brake/decelerate

gas/accelerate

brake [val +curSpeed  0]
/decelerate

DYNAMIC BEHAVIOR

≤

S1

S2

gas()

brake ()

cruise

gas

brake()

INTERACTION 
PROTOCOLS
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Defect Quantification

• Architectural defects could affect system 
Reliability

• Different defects affect the Reliability differently
– e.g., interface mismatch vs. protocol mismatch

• The cost of mitigating defects varies based on 
the defect type

• Other (domain specific) factors may affect the 
quantification

• Classification + Cost framework



Classification + Cost Framework
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Reliability Techniques

• Non-Homogenous Poisson Processes, Binomial 
Models, Software Reliability Growth Models, …

• Markovian Models
– Suited to architectural approaches 
– Consider a system’s structure, compositional
– Stochastic processes
– Informally, a finite state machine extended 

with transition probabilities



Our Reliability Model

• Built based on the dynamic behavioral model
• Assume Markov property

– Discrete Time Markov Chains
• Transition probabilities may be unknown
• Complex behavior results in lack of a 

correspondence between events and states
• Event/action pairs to describe component 

interactions
Augmented Hidden Markov Models (AHMM)



Evaluation

• Uncertainty analysis
– Operational profile
– Incorrect behavior

• Sensitivity analysis
– Traditional Markov-based sensitivity analysis 

combined with the defect quantification
• Complexity
• Scalability



Conclusion and Future Work
• Step toward closing the gap between 

architectural specification and its effect on 
system’s reliability

• Handles two types of uncertainties associated 
with early reliability estimation

• Preliminary results are promising
• Need further evaluation
• Build compositional models to estimate system 

reliability based on estimated component 
reliabilities



Questions?
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Cruise Control Example

stop

gas/accelerate

manual

cruise

gas/accelerate

brake /decelerate

cruise /maintain

brake /decelerate

gas/accelerate

brake /decelerate

DYNAMIC BEHAVIOR



Partial Markov Extension

stop

gas/accelerate

cruise

gas/accelerate

cruise/
maintain

gas/accelerate

brake/decelerate

TRUE

TRUE

manual

TRUE

gas/accelerate

gas/accelerate gas/
accelerate

gas/accelerate

gas/
accelerate brake/

decelerate brake/
decelerate

brake/
decelerate



Transition Probabilities

0.15 0.8 0.05
0.018 0.36 0.622
0.02 0.85 0.13

stop manual cruise
stop

ITP manual
cruise

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

cruise0.61maintain0.60.6cruisemanual

stop0.011decelerate0.01breakmanual

cruise0.011decelerate0.01breakmanual

manual0.081decelerate0.08

0.1

breakmanual

stop0.0080.4accelerategasmanual

cruise0.0120.6accelerate
0.02

gasmanual

manual0.081accelerate0.08

0.1

gasmanual

manual0.21TRUE0.20.2TRUEmanual

cruise0.031accelerate0.03gascruise

stop0.021accelerate0.020.0
5

gascruise

cruise0.11TRUE0.10.1TRUEcruise

manual0.851decelerate0.850.8
5breakcruise

manual0.81accelerate0.8gasstop

cruise0.051accelerate0.05gasstop

stop0.051accelerate0.05

0.9

gasstop

stop0.11TRUE0.10.1TRUEstop

Dest. StateTotal Pr
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stop0.11TRUE0.10.1TRUEstop

Dest. StateTotal Pr
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Reliability Model
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Example…

1 0 0 0 0
0 1 0 0 0

ˆ 0 0.1300 0.0670 0.7444 0.0864
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More on the AHMM
• For states Si and Sj, there may be several transitions 

Em/Fk

• Probability of transition from Si to Sj by means of a 
given Em and all possible actions Fk

• But do we know what these are at the architecture 
level? 
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Parameter (re)estimation

• Baum-Welch algorithm
– Uses Expectation Maximization

– Given a sequence of training data
• Calculates the probability of a given observation sequence 

and the probability of transitions from Si to Sj
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System Reliability

comp B comp A

comp C

comp D

conn1

conn2

Archictecture

comp A comp B

conn1 comp C

conn2comp Dcomponents
connector

communication link

state

transition

concurrent
state



Relationships
• Interface vs. Other Models

– Syntactic
– Interface as the core
– Static Behaviors constrain interfaces using pre/post-

conditions
– Transition labels on Dynamic Behaviors and Interaction 

Protocols relate to interface as well
– Dynamic Behaviors and Interaction Protocol model 

may have additional transitions that do not relate to 
component’s interfaces

• hierarchy and abstraction



Relationships II

• Static Behaviors vs. Dynamic Behaviors
– Semantic
– Transition Guard vs. Operation Pre-Condition

• Union Guard:

– State Invariant vs. Component Invariant

– State Invariants vs. Operation Post-Condition

1

n

ii
U G G

U G P
=

= ∨

⇒

StateInv CompInv=>

StateInv PostCond=>



Relationships III

• Dynamic Behaviors vs. Interaction Protocols
– Semantic
– The dynamic behavioral model may be more general than the 

protocol of interactions; any execution trace obtained by the 
protocol model, must result in a legal execution of component’s 
dynamic behavioral model

• Static Behaviors vs. Interaction Protocols
– Static Behaviors Dynamic Behaviors  Interaction Protocols
– Dynamic Behavioral model acts as a conceptual bridge 
– Interaction protocols specifies the valid sequence by which the 

component’s interfaces may be accessed, oblivious to the 
component’s internal state

• No direct conceptual relationship



Uncertainty Analysis

• Two sources of uncertainty:
– Unknown operation profile, and incorrect component 

behavior
• How important it is to estimate ITP accurately?

– Complexity of the behavioral model directly relates to 
the importance of correct ITP initialization

• How about slight changes to ITP? How well the 
model can handle uncertainty?



Evaluation

• Uncertainty analysis
– Operational profile
– Incorrect behavior

• Sensitivity analysis
– Traditional Markov-based sensitivity analysis 

combined with the defect quantification
• Complexity
• Scalability



Uncertainty Analysis

• Two sources of uncertainty:
– Unknown operation profile, and incorrect component 

behavior
• How important it is to estimate ITP accurately?

– Complexity of the behavioral model directly relates to 
the importance of correct ITP initialization

• How about slight changes to ITP? How well the 
model can handle uncertainty?



Example
0.15 0.8 0.05
0.018 0.36 0.622
0.02 0.85 0.13

ITP
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

0.05 0.9 0.05
0.018 0.36 0.622
0.22 0.65 0.13

ITP
⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦-93.33% 12.50% 80.00%

. .% 555.55% 55.55% -48.23%
900.00% -23.52% 15.38%

Rand Fluc
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦



Sensitivity Analysis

0
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• Tied with the cost 
framework can 
offer cost-effective 
mitigation 
strategies



Complexity and Scalability
• Complexity of event-based 

Markov Model:

• Our event/action based model:

– N: num states, M: num events
– K: num actions, T: length of 

training data

• M and K are fixed, but N can be 
reduced using hierarchy

2( )O N M T× ×

2( )O N M K T× × ×


