Adding Safeness to Dynamic
Adaptation Techniques

Betty H.C. Cheng

Software Engineering and Network Systems Laboratory
Michigan State University
http://www.cse.msu.edu/SENS

Authors: J. Zhang, Z. Yang, B. H.C. Cheng, and P. K. McKinley

ACKNOWLEDGEMENTS: This work has been supported in part by grants:

NSF EIA-0000433, CDA-9700732, CCR-9901017, EIA-0130724, ITR-0313142, Department
of the Navy, and Office of Naval Research under Grant No. N0O0014-01-1-0744.

* Ongoing project in SENS Laboratory
 Funded by U.S Office of Naval Research

— Critical Infrastructure Protection /Adaptable SW Program
o Goal: Software (middleware) that can protect itself from:

— Hardware and software component failures

— Changing environmental conditions

— Changing requirements (e.g. security policies)

— Malicious entities
* Applications:

— Dynamic power management

— Dynamic error correction for data transmission/receipt

— Dynamically changing security algorithms and policies

— Dynamic introduction of fault-tolerant capabillities

SN

MICHIGAN STATE
A EAREILE Outline

 Dynamic adaptation
o Safe Adaptation

» Example Application

' '
UNIVERSITY Dynamlc Adaptatlcn

e At run time, adapt software In response to
changes In:

— environment, requirements, etc.

« Significant work In:
— Adaptation mechanisms
— Programming language extensions
— Architectural description languages

» Correctness/Assurance Issues:
— Adapted system provides correct functionality

— Safeness: During adaptation process, no
unexpected or undesirable results

SN

MICHIGAN STATE

UNTVERSITY Key Concepts

Assumptions:
— A distributed system is modeled as a set of communicating
components running on one or more processes.
— Adaptive actions: insert, remove, or replace SW elements

« Atomic communication:
— An Iinteraction, either within a component or between
components, that cannot be interrupted.
— Otherwise, it would potentially yield erroneous or unexpected
results.

« Dependency invariants:
— relationships among the components that should be held true
throughout the program’s execution.

Safe adaptation process:
* Does not interrupt atomic communications.
* Does not violate dependency invariants.

SN

UNTVERSTTY Features

e Use dependency analysis to determine
safe states for a given adaptive action

e Centralized management of
adaptations,
— Enable optimizations of adaptive actions

 Roll back mechanism when encounter
fallures during adaptation process

SN

UNTVERSTTY Safe Adaptation Process

1. Construct minimum adaptation path (given a

source and a target configurations).
(1) Construct safe configuration set.

(2) Construct safe adaptation graph:
vertices are safe configurations and arcs are adaptive actions.

(3) Assign a cost value to each arc.
(e.g. packet delay caused by the action)

(1) Search for minimum safe adaptation path (MAP):
path with minimum cost from the source to the target.

2. Manage adaptation process.
« Components are reset to safe states before adaptation.

» Blocking is introduced only when it is necessary to

ensure safeness.
» Adaptation process can roll back if encounter failure

during process.

SN

MICHIGAN STATE

UNTVERSITY Safe Adaptation Process

Adaptation Adaptation Adaptation
manager agent -t agent
Adaptation
request Construct safe

adaptation graph

47
Construct MAP | ..

47

Coordinate

Coordinate

MICHIGAN STATE

UNTVERSTTY Video Streaming Case Study

= ¢

y

video
MetaSockets players

on clients

H
webcam
MetaSocket network
on server

« MetaSocket [Sadjadi et al]: =

« chain of data stream filters and a Java socket
« Alter behavior through filter insertion, removal, and replacement.

* Video streaming example
— Video server: Sends data streams through a MetaSocket
» A web camera captures video.
» Video stream is sent to clients through a multicasting MetaSocket.
» Video clients: Receive data streams through MetaSockets
» A handheld computer.
« A laptop computer.

— Server and clients are connected with wireless networks

SN

MICHIGAN STATE

UNITVERSITY Video Streaming Case StUdy

= S

webcam @
MetaSocket network
on server oo
MetaSockets players

on clients

Filters available in the MetaSockets

SN

UNTVERSTTY Video Streaming Case Study

e Safe conditions:

« Safe stales. System states in which, adaptive actions do
not interrupt atomic communications.
» Encoder: Not in the middle of encoding a packet.
« Decoders: No in-flight packet for the decoders to be
removed.

« Dependency invariants:
» Collaboration constraints: Each encoder requires the
corresponding decoder.
* Resource constraints: The hand-held device does not
support two decoders simultaneously in the device.
« Security constraints: All packets should be encoded with
either 64-bit or 128-bit encoder.

SN

BN Video Streaming Case Study

o Adaptation goal:
Reconfigure system
— From: DES 64-bit encoder/decoders
— To: DES 128-bit encoder/decoders

In order to "harden" security at run time

RN Unsafe Adaptation Scenarios

 |nterruption of atomic communication:

— Replace the encoder while it is encoding a packet.
« Effect: inconsistent results

— Replace encoder and decoders simultaneously:
« Effect: In-flight packets will not be decoded.

 Violation of dependency invariants:

— First remove 64-bit DES encoder/decoders then
insert 128-bit DES encoder/decoders:

» Effect: Violates security constraints.

— First insert 128-bit DES encoder, then insert 128-
bit DES decoder:

» Effect: Violates collaboration constraints.

Video Streaming Case Study

/ (D1,D4,E13(D2,D5,E2)

(D2,D4,E13(D3,D5,E2) \

target
Q01019 (2010019
N—)D3 o -

(DLE1Y(D3. E2)

»(111001

50

(D1.D4E1PR(D3.D5 E2)

150
Figure 3: Safe adaptation graph and MAP /

Use 7-bit vector to represent

configuration:

(D5,D4,D3,D2,D1,E2,E1)
are safe

configurations:

— Source: (0100101)

— Target: (1010010)

Arcs are adaptive actions:
— “+”: Insertion
— “" removal
— “->" replacement
— Numbers indicate costs

MAP: red path identified by
safe adaptation process

Adaptive actions are
performed in safe states of
system.

Conclusions

e Safeness

— Adaptation process is safe with respect to:
* not violating dependency invariants and
* not interrupting atomic communications.

» Allows for choice and optimization among
multiple safe adaptation paths

o Supports roll-back mechanism in case of
fallure during adaptation process

e Future work:

— Investigating approximation algorithms for MAP
— Cost measures for adaptive actions

SN

Questions/Discussion

* Acknowledgements:

— Sandeep Kulkarni, Karun Biyani
— Other SENS faculty and students

e Supporting grants:

— NSF: EIA-0000433, CDA-9700732, CCR-
9901017, EIA-0130724, ITR-0313142

— ONR: research grant #: NO0014-01-1-0744

SN

UNTVERSITY Related Work

« Kramer and Magee: Conic and Darwin [1,2]
— Use architectural description language to model the system
connection.
— Separate communication from computation.
— Dynamically connect or disconnect components.
— Use LTSA to check adaptation models created with FSP.

« Appavoo, and colleagues: Hot Swapping [3]
— Quiescent states are the states when it is safe to perform
hot-swapping.
— Use generation counts to determine guiescent states.
— Component state transfer protocols are selected by transfer
negotiation protocol.

SN

UNTVERSITY Related Work

. Schllchtlng et al: Cactus [4]
— Composite components are composed of multiple micro-
components.
— The composite component can be reconfigured by altering
Its component micro-components.
— It uses fuzzy logic to deal with change coordination.

— It uses graceful adaptation process to perform adaptive
actions.

 Taylor, Medvidovic and et al: Chiron-2 and

ArchStudio [5]

— C2is layered ADL.

— Substrate independent and implicit invocation facilitates
dynamic insertion, removal, and replacement of
components.

— Systems can be reconfigured in three ways:

« Argo: manipulates the model graphically.

» ArchShell: Use command line to manipulate the system
configuration

sm » Extension Wizard: execute modification script on the end-user's
system.

UNIVERSITY Related Work

o Kulkarni et al [6]

— safely composing distributed fault-tolerance
components at run time.

— use a spanning tree to pass adaptation messages.

— uses a reset mechanism to block computations
during the recomposition process.

UNTVERSITY References

e [1] J. Kramer and J. Magee, "The evolving
philosophers problem: Dynamic change
management,”" IEEE Trans. Softw. Eng., vol. 16, no.
11, pp. 1293--1306, 1990.

* [2] J. Magee, “Behavioral analysis of software
architectures using ltsa,” in Proceedings of the 21st
International conference on Software engineering,
pp. 634--637, IEEE Computer Society Press, 1999.

« [3] J. Appavoo, etc, “Enabling autonomic behavior in
systems software with hot swapping,” IBM System
Journal, vol. 42, no. 1, pp. 60, 2003.

SN

UNTVERSITY References

e [4] P. Bridges, etc, “Supporting coordinated
adaptation in networked systems,* in the 8th
Workshop on Hot Topics in Operating Systems,
(Elmau, Germany), May 2001.

o [5] P. Oreizy, etc, “An architecture-based approach
to self-adaptive software,” IEEE Intelligent Systems,
1999.

e [6] S. S. Kulkarni, etc, “Composing distributed fault-
tolerance components,” in Proccedings of the
International Conference on Dependable Systems
and Networks, Workshop on Principles of
Dependable Systems, 2003.

SN

MICHIGAN STATE Motivation

« Dynamic adaptation is the trend: software systems
must adapt their behavior to changing conditions.

« Examples warranting dynamic adaptations:
* Dynamic introductions of new strategies.
* Quick responses to security threats.
« Switching to certain execution mode to save battery life.
 Insertions of encryption layers to network protocol stack.

« Dynamic adaptation is prone to errors.

* Formalism: Unless adaptive software mechanisms are
grounded in formalisms, the resulting systems will be prone
to errant behavior.

» Safe dynamic adaptation separates the safeness issue from
the adaptation mechanism, and thus provides the basis for
formal reasoning about the adaptation behavior.

SN

