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RAPIDware Project

• Ongoing project in SENS Laboratory
• Funded by U.S Office of Naval Research

– Critical Infrastructure Protection /Adaptable SW Program
• Goal: Software (middleware) that can protect itself from:

– Hardware and software component failures
– Changing environmental conditions
– Changing requirements (e.g. security policies)
– Malicious entities

• Applications:
– Dynamic power management
– Dynamic error correction for data transmission/receipt
– Dynamically changing security algorithms and policies
– Dynamic introduction of fault-tolerant capabilities



Outline

• Dynamic adaptation

• Safe Adaptation

• Example Application



Dynamic Adaptation

• At run time, adapt software in response to 
changes in:
– environment, requirements, etc.

• Significant work in:
– Adaptation mechanisms
– Programming language extensions 
– Architectural description languages

• Correctness/Assurance Issues:
– Adapted system provides correct functionality
– Safeness: During adaptation process, no 

unexpected or undesirable results



Key Concepts

Assumptions: 
– A distributed system is modeled as a set of communicating 

components running on one or more processes.
– Adaptive actions: insert, remove, or replace SW elements

• Atomic communication:
– An interaction, either within a component or between 

components, that cannot be interrupted. 
– Otherwise, it would potentially yield erroneous or unexpected 

results. 

• Dependency invariants:
– relationships among the components that should be held true 

throughout the program’s execution. 

Safe adaptation process:
• Does not interrupt atomic communications.
• Does not violate dependency invariants.



Features

• Use dependency analysis to determine 
safe states for a given adaptive action

• Centralized management of 
adaptations, 
– Enable optimizations of adaptive actions

• Roll back mechanism when encounter 
failures during adaptation process



Safe Adaptation Process

1. Construct minimum adaptation path (given a 
source and a target configurations).
(1) Construct safe configuration set.
(2) Construct safe adaptation graph:

vertices are safe configurations and arcs are adaptive actions.
(3) Assign a cost value to each arc. 

(e.g. packet delay caused by the action)
(1) Search for minimum safe adaptation path (MAP): 

path with minimum cost from the source to the target.

2. Manage adaptation process.
• Components are reset to safe states before adaptation. 
• Blocking is introduced only when it is necessary to 

ensure safeness.
• Adaptation process can roll back if encounter failure 

during process. 
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Video Streaming Case Study

• MetaSocket [Sadjadi et al]: 
• chain of data stream filters and a Java socket
• Alter behavior through filter insertion, removal, and replacement.

• Video streaming example 
– Video server: Sends data streams through a MetaSocket

• A web camera captures video.
• Video stream is sent to clients through a multicasting MetaSocket.

• Video clients: Receive data streams through MetaSockets
• A handheld computer.
• A laptop computer.

– Server and  clients are connected with wireless networks
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Video Streaming Case Study

• Safe conditions:
• Safe states:  System states in which, adaptive actions do 

not interrupt atomic communications.
• Encoder: Not in the middle of encoding a packet.
• Decoders: No in-flight packet for the decoders to be 

removed.
• Dependency invariants:

• Collaboration constraints: Each encoder requires the 
corresponding decoder. 

• Resource constraints: The hand-held device does not 
support two decoders simultaneously in the device.

• Security constraints: All packets should be encoded with 
either 64-bit or 128-bit encoder. 



Video Streaming Case Study

• Adaptation goal: 
Reconfigure system
– From: DES 64-bit encoder/decoders 
– To:  DES 128-bit encoder/decoders 

in order to "harden" security at run time



Unsafe Adaptation Scenarios

• Interruption of atomic communication:
– Replace the encoder while it is encoding a packet.

• Effect: inconsistent results
– Replace encoder and decoders simultaneously: 

• Effect: In-flight packets will not be decoded.

• Violation of dependency invariants:
– First remove 64-bit DES encoder/decoders then 

insert 128-bit DES encoder/decoders: 
• Effect: Violates security constraints.

– First insert 128-bit DES encoder, then insert 128-
bit DES decoder: 

• Effect: Violates collaboration constraints.
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Figure 3 : Safe adaptation graph and MAP
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Video Streaming Case Study

• Use 7-bit vector to represent 
configuration: 
(D5,D4,D3,D2,D1,E2,E1)

• Vertices are safe 
configurations:
– Source: (0100101)
– Target:  (1010010)

• Arcs are adaptive actions:
– “+”: insertion
– “-”: removal
– “->“: replacement
– Numbers indicate costs

• MAP: red path identified by 
safe adaptation process

• Adaptive actions are 
performed in safe states of 
system.



Conclusions

• Safeness
– Adaptation process is safe with respect to:

• not violating dependency invariants and 
• not interrupting atomic communications.

• Allows for choice and optimization among 
multiple safe adaptation paths

• Supports roll-back mechanism in case of 
failure during adaptation process

• Future work:
– Investigating approximation algorithms for MAP
– Cost measures for adaptive actions



Questions/Discussion
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Related Work

• Kramer and Magee: Conic and Darwin [1,2]
– Use architectural description language to model the system 

connection.
– Separate communication from computation.
– Dynamically connect or disconnect components.
– Use LTSA to check adaptation models created with FSP.

• Appavoo, and colleagues: Hot Swapping [3]
– Quiescent states are the states when it is safe to perform 

hot-swapping.
– Use generation counts to determine quiescent states.
– Component state transfer protocols are selected by transfer 

negotiation protocol.



Related Work

• Schlichting et al: Cactus [4]
– Composite components are composed of multiple micro-

components. 
– The composite component can be reconfigured by altering 

its component micro-components.
– It uses fuzzy logic to deal with change coordination.
– It uses graceful adaptation process to perform adaptive 

actions. 
• Taylor, Medvidovic and et al: Chiron-2 and 

ArchStudio [5]
– C2 is layered ADL.
– Substrate independent and implicit invocation facilitates 

dynamic insertion, removal, and replacement of 
components.

– Systems can be reconfigured in three ways:
• Argo: manipulates the model graphically.
• ArchShell: Use command line to manipulate the system 

configuration
• Extension Wizard: execute modification script on the end-user's 

system.



Related Work

• Kulkarni et al [6] 
– safely composing distributed fault-tolerance 

components at run time.
– use a spanning tree to pass adaptation messages.
– uses a reset mechanism to block computations 

during the recomposition process.
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Motivation

• Dynamic adaptation is the trend: software systems 
must adapt their behavior to changing conditions.

• Examples warranting dynamic adaptations:
• Dynamic introductions of new strategies.
• Quick responses to security threats.
• Switching to certain execution mode to save battery life.
• Insertions of encryption layers to network protocol stack.

• Dynamic adaptation is prone to errors.
• Formalism: Unless adaptive software mechanisms are 

grounded in formalisms, the resulting systems will be prone 
to errant behavior. 

• Safe dynamic adaptation separates the safeness issue from 
the adaptation mechanism, and thus provides the basis for 
formal reasoning about the adaptation behavior.


