
Adding Safeness to Dynamic
Adaptation Techniques

Betty H.C. Cheng
Software Engineering and Network Systems Laboratory

Michigan State University
http://www.cse.msu.edu/SENS

Authors: J. Zhang, Z. Yang, B. H.C. Cheng, and P. K. McKinley

ACKNOWLEDGEMENTS: This work has been supported in part by grants:
NSF EIA-0000433, CDA-9700732, CCR-9901017, EIA-0130724, ITR-0313142, Department
of the Navy, and Office of Naval Research under Grant No. N00014-01-1-0744.

RAPIDware Project

• Ongoing project in SENS Laboratory
• Funded by U.S Office of Naval Research

– Critical Infrastructure Protection /Adaptable SW Program
• Goal: Software (middleware) that can protect itself from:

– Hardware and software component failures
– Changing environmental conditions
– Changing requirements (e.g. security policies)
– Malicious entities

• Applications:
– Dynamic power management
– Dynamic error correction for data transmission/receipt
– Dynamically changing security algorithms and policies
– Dynamic introduction of fault-tolerant capabilities

Outline

• Dynamic adaptation

• Safe Adaptation

• Example Application

Dynamic Adaptation

• At run time, adapt software in response to
changes in:
– environment, requirements, etc.

• Significant work in:
– Adaptation mechanisms
– Programming language extensions
– Architectural description languages

• Correctness/Assurance Issues:
– Adapted system provides correct functionality
– Safeness: During adaptation process, no

unexpected or undesirable results

Key Concepts

Assumptions:
– A distributed system is modeled as a set of communicating

components running on one or more processes.
– Adaptive actions: insert, remove, or replace SW elements

• Atomic communication:
– An interaction, either within a component or between

components, that cannot be interrupted.
– Otherwise, it would potentially yield erroneous or unexpected

results.

• Dependency invariants:
– relationships among the components that should be held true

throughout the program’s execution.

Safe adaptation process:
• Does not interrupt atomic communications.
• Does not violate dependency invariants.

Features

• Use dependency analysis to determine
safe states for a given adaptive action

• Centralized management of
adaptations,
– Enable optimizations of adaptive actions

• Roll back mechanism when encounter
failures during adaptation process

Safe Adaptation Process

1. Construct minimum adaptation path (given a
source and a target configurations).
(1) Construct safe configuration set.
(2) Construct safe adaptation graph:

vertices are safe configurations and arcs are adaptive actions.
(3) Assign a cost value to each arc.

(e.g. packet delay caused by the action)
(1) Search for minimum safe adaptation path (MAP):

path with minimum cost from the source to the target.

2. Manage adaptation process.
• Components are reset to safe states before adaptation.
• Blocking is introduced only when it is necessary to

ensure safeness.
• Adaptation process can roll back if encounter failure

during process.

Safe Adaptation Process

Adaptation
manager

Adaptation
agent

Adaptation
agent

Adaptation
request

Construct safe
adaptation graph

Coordinate

Coordinate

Construct MAP

……

……

Video Streaming Case Study

• MetaSocket [Sadjadi et al]:
• chain of data stream filters and a Java socket
• Alter behavior through filter insertion, removal, and replacement.

• Video streaming example
– Video server: Sends data streams through a MetaSocket

• A web camera captures video.
• Video stream is sent to clients through a multicasting MetaSocket.

• Video clients: Receive data streams through MetaSockets
• A handheld computer.
• A laptop computer.

– Server and clients are connected with wireless networks

MetaSockets
on clients

MetaSocket
on server

network

video
players

webcam

MetaSockets
on

MetaSocket
on server

network

video
players

webcam

E1: DES
64bit Encoder

E2: DES
128bit Encoder

Server
D4: DES

64bit Decoder
D5: DES

128bit Decoder

Laptop Client

D1: DES
64bit Decoder

D3:DES
128bit Decoder

Hand-held Client

D2: DES
64/128bit Decoder

E1: DES
64bit Encoder

E2: DES
128bit Encoder

Server
D4: DES

64bit Decoder
D5: DES

128bit Decoder

Laptop Client

D1: DES
64bit Decoder

D3:DES
128bit Decoder

Hand-held Client

D2: DES
64/128bit Decoder

Filters available in the MetaSockets

Video Streaming Case Study

MetaSockets
on clients

MetaSocket
on server

network

video
players

webcam

MetaSockets
on

MetaSocket
on server

network

video
players

webcam

Video Streaming Case Study

• Safe conditions:
• Safe states: System states in which, adaptive actions do

not interrupt atomic communications.
• Encoder: Not in the middle of encoding a packet.
• Decoders: No in-flight packet for the decoders to be

removed.
• Dependency invariants:

• Collaboration constraints: Each encoder requires the
corresponding decoder.

• Resource constraints: The hand-held device does not
support two decoders simultaneously in the device.

• Security constraints: All packets should be encoded with
either 64-bit or 128-bit encoder.

Video Streaming Case Study

• Adaptation goal:
Reconfigure system
– From: DES 64-bit encoder/decoders
– To: DES 128-bit encoder/decoders

in order to "harden" security at run time

Unsafe Adaptation Scenarios

• Interruption of atomic communication:
– Replace the encoder while it is encoding a packet.

• Effect: inconsistent results
– Replace encoder and decoders simultaneously:

• Effect: In-flight packets will not be decoded.

• Violation of dependency invariants:
– First remove 64-bit DES encoder/decoders then

insert 128-bit DES encoder/decoders:
• Effect: Violates security constraints.

– First insert 128-bit DES encoder, then insert 128-
bit DES decoder:

• Effect: Violates collaboration constraints.

source
0100101

0101001

1100101

1001010

1110010

10100101101001 1101010

D1 D2 +D5

+D5 D1 D2

(D1,D4,E1) (D2,D5,E2) (D2,D4,E1) (D3,D5,E2)

D4,E1) (D5,E2)

E1 E2

(D1,E1) (D3, E2)

-D4

-D4

D2 D3

D2 D3

(D1,D4,E1) (D3,D5,E2)

target

Figure 3 : Safe adaptation graph and MAP

50

50

10

1010

10
10

10

1010

10
source

0100101

0101001

1100101

1001010

1110010

10100101101001 1101010

D1 D2 +D5

+D5 D1 D2

(D1,D4,E1) (D2,D5,E2) (D2,D4,E1) (D3,D5,E2)

D4,E1) (D5,E2)

E1 E2

(D1,E1) (D3, E2)

-D4

-D4

D2 D3

D2 D3

(D1,D4,E1) (D3,D5,E2)

target

110 110

Figure 3 : Safe adaptation graph and MAP

50

50

150

10

1010

10
10

10

1010

10

Video Streaming Case Study

• Use 7-bit vector to represent
configuration:
(D5,D4,D3,D2,D1,E2,E1)

• Vertices are safe
configurations:
– Source: (0100101)
– Target: (1010010)

• Arcs are adaptive actions:
– “+”: insertion
– “-”: removal
– “->“: replacement
– Numbers indicate costs

• MAP: red path identified by
safe adaptation process

• Adaptive actions are
performed in safe states of
system.

Conclusions

• Safeness
– Adaptation process is safe with respect to:

• not violating dependency invariants and
• not interrupting atomic communications.

• Allows for choice and optimization among
multiple safe adaptation paths

• Supports roll-back mechanism in case of
failure during adaptation process

• Future work:
– Investigating approximation algorithms for MAP
– Cost measures for adaptive actions

Questions/Discussion

• Acknowledgements:
– Sandeep Kulkarni, Karun Biyani
– Other SENS faculty and students

• Supporting grants:
– NSF: EIA-0000433, CDA-9700732, CCR-

9901017, EIA-0130724, ITR-0313142
– ONR: research grant #: N00014-01-1-0744

Related Work

• Kramer and Magee: Conic and Darwin [1,2]
– Use architectural description language to model the system

connection.
– Separate communication from computation.
– Dynamically connect or disconnect components.
– Use LTSA to check adaptation models created with FSP.

• Appavoo, and colleagues: Hot Swapping [3]
– Quiescent states are the states when it is safe to perform

hot-swapping.
– Use generation counts to determine quiescent states.
– Component state transfer protocols are selected by transfer

negotiation protocol.

Related Work

• Schlichting et al: Cactus [4]
– Composite components are composed of multiple micro-

components.
– The composite component can be reconfigured by altering

its component micro-components.
– It uses fuzzy logic to deal with change coordination.
– It uses graceful adaptation process to perform adaptive

actions.
• Taylor, Medvidovic and et al: Chiron-2 and

ArchStudio [5]
– C2 is layered ADL.
– Substrate independent and implicit invocation facilitates

dynamic insertion, removal, and replacement of
components.

– Systems can be reconfigured in three ways:
• Argo: manipulates the model graphically.
• ArchShell: Use command line to manipulate the system

configuration
• Extension Wizard: execute modification script on the end-user's

system.

Related Work

• Kulkarni et al [6]
– safely composing distributed fault-tolerance

components at run time.
– use a spanning tree to pass adaptation messages.
– uses a reset mechanism to block computations

during the recomposition process.

References

• [1] J. Kramer and J. Magee, "The evolving
philosophers problem: Dynamic change
management," IEEE Trans. Softw. Eng., vol. 16, no.
11, pp. 1293--1306, 1990.

• [2] J. Magee, “Behavioral analysis of software
architectures using ltsa,” in Proceedings of the 21st
international conference on Software engineering,
pp. 634--637, IEEE Computer Society Press, 1999.

• [3] J. Appavoo, etc, “Enabling autonomic behavior in
systems software with hot swapping,” IBM System
Journal, vol. 42, no. 1, pp. 60, 2003.

References

• [4] P. Bridges, etc, “Supporting coordinated
adaptation in networked systems,‘” in the 8th
Workshop on Hot Topics in Operating Systems,
(Elmau, Germany), May 2001.

• [5] P. Oreizy, etc, “An architecture-based approach
to self-adaptive software,” IEEE Intelligent Systems,
1999.

• [6] S. S. Kulkarni, etc, “Composing distributed fault-
tolerance components,” in Proccedings of the
International Conference on Dependable Systems
and Networks, Workshop on Principles of
Dependable Systems, 2003.

Motivation

• Dynamic adaptation is the trend: software systems
must adapt their behavior to changing conditions.

• Examples warranting dynamic adaptations:
• Dynamic introductions of new strategies.
• Quick responses to security threats.
• Switching to certain execution mode to save battery life.
• Insertions of encryption layers to network protocol stack.

• Dynamic adaptation is prone to errors.
• Formalism: Unless adaptive software mechanisms are

grounded in formalisms, the resulting systems will be prone
to errant behavior.

• Safe dynamic adaptation separates the safeness issue from
the adaptation mechanism, and thus provides the basis for
formal reasoning about the adaptation behavior.

