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Motivation

Deployment architecture: distribution 
(i.e., assignment)  of software components 
onto hardware nodes.

How good is this deployment architecture?

What are its properties?

How should it be modified to ensure 
higher availability?
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Problem description
Given system model parameters:

Software component properties
Memory requirements
Frequency of interaction 
Size of the exchanged data

Hardware host properties
Memory capacity
Network reliability
Network bandwidth

Constraints
Location
Co-location
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system’s overall availability

is maximized, and the deployment is valid.

Problem description

Note that the possible number of 

different functions is 
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Problem breakdown

1) Lack of knowledge about runtime system model parameters
System model parameters not known at the time of initial deployment
System model parameters change at runtime
Middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = kn possible deployments
Polynomial time approximating algorithms

3) Environment for assessing deployments
Comparison of different solutions and algorithms
performance vs. complexity, sensitivity analysis, etc
Analysis and visualization utilities

4) Effecting the selected solution
Redeploying components
Requires an automated solution
Middleware with deployment support
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Monitoring and redeploying
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DeSi

Deployment simulation environment
Specification and generation of deployment architectures
Visualization and analysis of distributed system
Estimation of the quality of deployment
Facilitation of rapid development and comparison of 
algorithms
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DeSi’s architecture
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DeSi Controller

SystemData AlgoResultData

GraphViewData

TableView GraphView

Generator

Modifier

Algorithm
Container

Middleware
Adapter

Monitor

Effector

Middleware
Platform

Legend:

Data flow

Control flow



May 25th ICSE-WADS 2004 14

Suite of algorithms
Exact – finds optimal solution O(k^n)
Biased/Unbiased stochastic – random selection O(n^2)
Avala – greedy approximation O(n^3)
DecAp – decentralized auction based O(n^3)
Clustering – decreases complexity

1

100

10000

1000000

Stochastic Algorithm Exact AlgorithmAvala Algorithm

Time taken
(in ms)

10 comps     100 comps    200 comps   1000 comps 100 comps    30 comps     300 comps  
4 hosts          10 hosts         20 hosts        100 hosts     40 hosts         7 hosts          70 hosts        

0

0.2

0.4

0.6

0.8

1

z

Achieved 
availability

10 comps    100 comps    200 comps   1000 comps 100 comps    30 comps     300 comps  
4 hosts         10 hosts        20 hosts        100 hosts      40 hosts        7 hosts          70 hosts        

DecAp AlgorithmOriginal Availability



May 25th ICSE-WADS 2004 15

Integration

2) Monitoring data

4) Redeployment data

1) Monitor

PrismMW DeSi

3) Analyze
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Conclusion and future work

On-going/future work:
Modeling other system properties
Integrating DeSi with other platforms
Decentralization and trust

Quality of deployment architectures
Techniques/tools for improving availability
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Questions?
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Approach - overview

Enabling the system to:
Monitor its operation
Estimate its new deployment 
architecture
Effect the estimated architecture
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Automatic algorithm selection
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Architecture - DEMO

class DemoArch {
static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMO ");

Using Prism-MW
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD (“D”);

Component BComponent A Component D 

// create connectors
Connector conn = new Connector("Conn");

CConnector C 

// add components and connectors 
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);

Component BComponent A

Component D 

CConnector C 

// establish the interconnections
arch.weld(a, conn);
arch.weld(b, conn);
arch.weld(conn, d) 

}
}
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Component B handles the event and sends a response

public void handle(Event e)
{

if (e.equals(“Event_D”)) {
...   
Event e1= new Event(“Response_to_D”);
e1.addParameter("response", resp);
send(e1);
}...

}
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Using Prism-MW

Architecture - DEMO

Component BComponent A

Component D 

CConnector C 

Component D sends an event

Event e = new Event (“Event_D”);
e.addParameter("param_1", p1);
send (e);
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