
Improving Availability of Distributed
Event-Based Systems via Run-Time

Monitoring and Analysis

Sam Malek
and

Marija Mikic-Rakic
Nels Beckman

Nenad Medvidovic

University of Southern California

WADS 2004

May 25th ICSE-WADS 2004 2

Outline

Motivation
Problem description
Prism-MW
DeSi
Algorithms
Concluding remarks

May 25th ICSE-WADS 2004 3

Motivation

Deployment architecture: distribution
(i.e., assignment) of software components
onto hardware nodes.

How good is this deployment architecture?

What are its properties?

How should it be modified to ensure
higher availability?

May 25th ICSE-WADS 2004 4

Outline

Motivation
Problem description
Prism-MW
DeSi
Algorithms
Concluding remarks

May 25th ICSE-WADS 2004 5

Problem description
Given system model parameters:

Software component properties
Memory requirements
Frequency of interaction
Size of the exchanged data

Hardware host properties
Memory capacity
Network reliability
Network bandwidth

Constraints
Location
Co-location

May 25th ICSE-WADS 2004 6

Find a function HCf →: such that the
A defined as

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

system’s overall availability

is maximized, and the deployment is valid.

Problem description

Note that the possible number of

different functions is

May 25th ICSE-WADS 2004 7

Problem breakdown

1) Lack of knowledge about runtime system model parameters
System model parameters not known at the time of initial deployment
System model parameters change at runtime
Middleware with monitoring support

2) Exponentially complex problem
n components and k hosts = kn possible deployments
Polynomial time approximating algorithms

3) Environment for assessing deployments
Comparison of different solutions and algorithms
performance vs. complexity, sensitivity analysis, etc
Analysis and visualization utilities

4) Effecting the selected solution
Redeploying components
Requires an automated solution
Middleware with deployment support

May 25th ICSE-WADS 2004 8

Outline

Motivation
Problem description
Prism-MW
DeSi
Algorithms
Concluding remarks

May 25th ICSE-WADS 2004 9

IComponent
IConnector

Abstract
Monitor

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Brick

Architecture

Extensible
Component

Component

Connector

Event

Port

IPort

Serializable

Admin

IArchitecture

#mutualPort

Abstract
Admin

Deployer
Abstract

Redeployment Algo

Exact

Stochastic

Adaptive Greedy

Disconnection Rate

EvtFrequency

Prism middleware
An architectural
middleware
Enables
implementation and
deployment of
distributed systems
in terms of their
architectural
elements
Support for
monitoring and
redeployment

May 25th ICSE-WADS 2004 10

Monitoring and redeploying

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0
Admin

22
26

13

27

10
33

7

24

25

32

19

23

11

Deployer

5
Legend:

Event frequency
monitor

Architecture

Network reliability
monitor

Skeleton
configuration

Deployer
/Admin

Pointer to
architecture

i Component

May 25th ICSE-WADS 2004 11

DeSi

Deployment simulation environment
Specification and generation of deployment architectures
Visualization and analysis of distributed system
Estimation of the quality of deployment
Facilitation of rapid development and comparison of
algorithms

May 25th ICSE-WADS 2004 12

May 25th ICSE-WADS 2004 13

DeSi’s architecture
DeSi Model DeSi View

DeSi Controller

SystemData AlgoResultData

GraphViewData

TableView GraphView

Generator

Modifier

Algorithm
Container

Middleware
Adapter

Monitor

Effector

Middleware
Platform

Legend:

Data flow

Control flow

May 25th ICSE-WADS 2004 14

Suite of algorithms
Exact – finds optimal solution O(k^n)
Biased/Unbiased stochastic – random selection O(n^2)
Avala – greedy approximation O(n^3)
DecAp – decentralized auction based O(n^3)
Clustering – decreases complexity

1

100

10000

1000000

Stochastic Algorithm Exact AlgorithmAvala Algorithm

Time taken
(in ms)

10 comps 100 comps 200 comps 1000 comps 100 comps 30 comps 300 comps
4 hosts 10 hosts 20 hosts 100 hosts 40 hosts 7 hosts 70 hosts

0

0.2

0.4

0.6

0.8

1

z

Achieved
availability

10 comps 100 comps 200 comps 1000 comps 100 comps 30 comps 300 comps
4 hosts 10 hosts 20 hosts 100 hosts 40 hosts 7 hosts 70 hosts

DecAp AlgorithmOriginal Availability

May 25th ICSE-WADS 2004 15

Integration

2) Monitoring data

4) Redeployment data

1) Monitor

PrismMW DeSi

3) Analyze

May 25th ICSE-WADS 2004 16

Conclusion and future work

On-going/future work:
Modeling other system properties
Integrating DeSi with other platforms
Decentralization and trust

Quality of deployment architectures
Techniques/tools for improving availability

May 25th ICSE-WADS 2004 17

Questions?

May 25th ICSE-WADS 2004 18

Approach - overview

Enabling the system to:
Monitor its operation
Estimate its new deployment
architecture
Effect the estimated architecture

Time

Availability

A1

A2

TM TR
T

TOTE T’M T’R
T’

T’OT’E

A3

A4

May 25th ICSE-WADS 2004 19

Automatic algorithm selection

AC

AS

T0STES

Greedy
AG

AE
Exact

TEG TEE

T0G T0E

Time

Availability

TR
TR TRT

Stochastic

TE * AC + (TAVG – TE) * AEXP

May 25th ICSE-WADS 2004 20

Architecture - DEMO

class DemoArch {
static public void main(String argv[]) {

Architecture arch = new Architecture ("DEMO ");

Using Prism-MW
// create components
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
ComponentD d = new ComponentD (“D”);

Component BComponent A Component D

// create connectors
Connector conn = new Connector("Conn");

CConnector C

// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(d);
arch.addConnector(conn);

Component BComponent A

Component D

CConnector C

// establish the interconnections
arch.weld(a, conn);
arch.weld(b, conn);
arch.weld(conn, d)

}
}

May 25th ICSE-WADS 2004 21

Component B handles the event and sends a response

public void handle(Event e)
{

if (e.equals(“Event_D”)) {
...
Event e1= new Event(“Response_to_D”);
e1.addParameter("response", resp);
send(e1);
}...

}

S
en

d
 (

e1
)

Using Prism-MW

Architecture - DEMO

Component BComponent A

Component D

CConnector C

Component D sends an event

Event e = new Event (“Event_D”);
e.addParameter("param_1", p1);
send (e);

S
en

d
 (e)

