

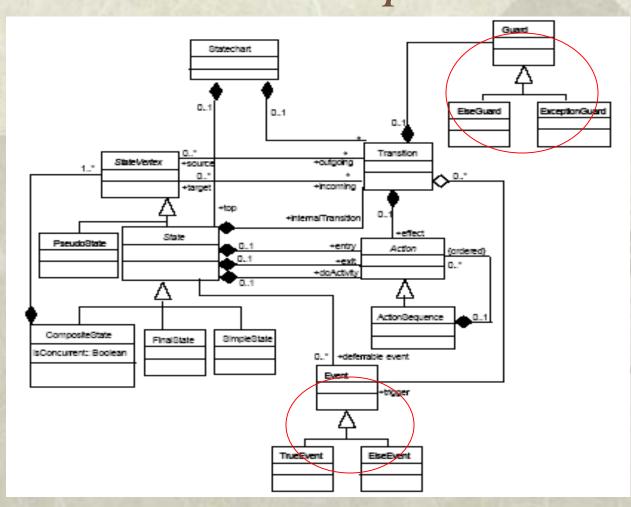
Leila Naslavsky, Lihua Xu, Marcio Dias, Hadar Ziv, and Debra J. Richardson

Motivation

- Software Architecture in Dependable Systems
 - Design (guide, analysis and evaluation of system)
 - Implementation (conformance testing)
 - Integration (conformance and reliability analysis)
 - Operation (residual testing and analysis)
 - Maintenance (regression testing)
- Architecture-based Analysis and Testing
 - Structural and Behavioral Architecture Descriptions
 - Structural and Behavioral Architecture Analysis Tools
- * Behavioral Description on Architecture Description Languages
 - Not available in many ADLs
 - When available, use the particulars of specific ADLs
- * xADL: standard and extensible XML-based representation for Sw. Arch.
 - "vanilla" xADL lacks support for behavioral description

Approach

- * Associate UML Statecharts with architecture elements
 - Adapt UML statecharts conceptual model for software architecture
- * Build upon xADL and an existing analysis tool (Argus-I)
 - Augment xADL with behavioral specifications (e.g. statecharts)
 - Refactor Argus-I to support xADL


Contributions and Status

- Conceptual model and XML schema for Statecharts
- Augment component-behavior modeling in xADL to support XML representation of statecharts
- * Work in progress
 - Refactor Argus-I to utilize this representation of statecharts instead of the current extension for C2 architectures
 - Extend both Argus-I and xADL tools to further enhance their integration, intend to improving specific test techniques

Background and Related Work within our Research Group

- * xADL 2.0 (Architecture Research Group UCI)
 - Designed for developing various architecture types
 - Extensible
 - Lack of semantic definition of component behavior
- Argus-I (Testing and Analysis Research Group UCI)
 - Specification-based analysis tool
 - Focus on both the component and architecture levels
 - Support both structural and behavioral analysis
 - Rely on a specific ADL and its representations
- RTMC (Regression Testing via Model Checking) Lihua Xu
 - Architecture-based testing tool
 - Generation of regression test cases based on formal specifications
 - Model checker as part of test generation tool
- Component and Object Level Residual Testing Leila Naslavsky
 - Test coverage criteria over call-graph and design models

Statechart Conceptual Model

Statechart XML-Schema

- Express conceptual model as xml-schema
- * Main element:
 - StateChart
- * Included elements:
 - top state
 - transition

```
<xs:element name = 'StateChart'>
 <xs:complexType>
    <xs:sequence>
  <xs:element name="transitions" type=TransitionType"</pre>
      maxOccurs="unbounded"/>
      <xs:element name="top" type="StateType"/>
    </r>
</xs:sequence>
 </r></xs:complexType>
/xs:element>
```

Augmenting component behavior in xADL

- Extend component type:
 - ourComponentType
- * Add attribute *Behavior* of type *StatechartType*

```
<xsd: complexType name="ourComponentType">
  <xsd:complexContent>
    <xsd:extension base="ComponentType">
      <xsd: sequence>
        <xsd:element name∈"Behavior" type="StatechartType"/>
      </xsd:sequence>
      </xsd:extension>
  </xsd:complexContent>
</xsd:complexType>
```

Conclusions

- In order to improve system dependability
 - Software Architecture Analysis & Testing
- Architectural descriptions should be "open" with respect to analysis and test tools
 - It should be possible to integrate and apply a given analysis or test capability to a
 given architectural representation with flexibility
 - Architectural descriptions should be able to interact with any analysis technique that works with information in the architecture specifications
- This work can be adapted/extended to be useful in the field of architecture-based analysis and testing
 - Reusing Argus-I to do analysis of xADL
 - Integrating xADL XML-schema and extensions with the efforts in architecture-based regression testing and residual testing

Future Work

 Extending this work to support other formalisms for behavioral specification of software architectures

* Researching new possibilities in analysis and testing of software systems based on architectural description