
1
WADS-3, May 2004

Facing Up to Faults
(v.2.0.1)

Brian Randell

Facing Up to FaultsFacing Up to Faults
(v.2.0.1)(v.2.0.1)

Brian RandellBrian Randell

2
WADS-3, May 2004

• On Dependability Concepts
• On Fault Assumptions
• On System Structure

The MenuThe MenuThe Menu

3
WADS-3, May 2004

• A system failure occurs when the delivered service
deviates from fulfilling the system function, the latter
being what the system is aimed at.

• An error is that part of the system state which is
liable to lead to subsequent failure: an error affecting
the service is an indication that a failure occurs or
has occurred. The adjudged or hypothesised cause
of an error is a fault.
(Note: errors do not necessarily lead to failures; component
failures are not necessarily faults to the surrounding system)

On Dependability ConceptsOn Dependability ConceptsOn Dependability Concepts

4
WADS-3, May 2004

• A failure occurs when an error “passes through” the
system-user interface and affects the service
delivered by the system – a system of course being
composed of components which are themselves
systems. Thus the manifestation of failures, faults
and errors follows a “fundamental chain”:

. . . → failure → fault → error → failure → fault →. . .
i.e.

. . . → event → cause → state → event → cause → . . .

The Failure/Fault/Error “Chain”The Failure/Fault/Error “Chain”The Failure/Fault/Error “Chain”

5
WADS-3, May 2004

Dependability is usually defined as that property of a
computer system such that reliance can justifiably be
placed on the service it delivers. (The service
delivered by a system is its behaviour as it is
perceptible by its user(s); a user is another system
(human or physical) which interacts with the former.)

Dependability -
the “standard” definition

Dependability Dependability --
the “standard” definitionthe “standard” definition

6
WADS-3, May 2004

• The four basic dependability technologies are
• fault prevention (rigorous design),
• fault removal (verification & validation)
• fault tolerance
• fault forecasting (system evaluation)

• The effective combination of the first three is crucial - reliance on
any one - or even two - of them is in general insufficient to
achieve dependability, even just for software, leave alone
systems

• And the fourth, being the means of assessing progress towards
achieving adequate dependability, is equally vital, in order to
demonstrate this achievement

Dependability > CorrectnessDependability > CorrectnessDependability > Correctness

7
WADS-3, May 2004

A given system, operating in some particular
environment (a wider system), may fail in the sense
that some other system makes, or could in principle
have made, a judgement that the activity or inactivity
of the given system constitutes failure.

The concept of dependability can then be more
simply defined as: “the quality or characteristic of
being dependable”, where the adjective
“dependable” is attributed to a system whose failures
are judged sufficiently rare or insignificant.

The Role of JudgementThe Role of JudgementThe Role of Judgement

8
WADS-3, May 2004

• Note the generality of the definitions of fault,error,
failure and dependability, and their wide applicability

• What matters are concepts, rather than terminology
• Differing research communities (reliability, safety,

survivability, security, etc.,) use differing terminology,
and definitions, unfortunately

• But what is critical is a fully general notion of failure,
and of the three different concepts: fault, error, failure

• (to deal properly with the complexities (and realities)
of failure-prone components, being assembled
together in possibly incorrect ways, so resulting in
failure-prone systems.)

Concepts & TerminologyConcepts & TerminologyConcepts & Terminology

9
WADS-3, May 2004

• Regarding the nature and likelihood of faults
• and the effectiveness of fault masking - possibly obviating

the need for error recovery

• Regarding the ability to validate inputs and ouputs
• and the practicality of various types of error recovery

• All these assumptions greatly influence the system
designer’s task
• including that of the designer of the facilities and processes

used for system design

• Their careful identification is one of the most crucial
aspects of system design

On Fault AssumptionsOn Fault AssumptionsOn Fault Assumptions

10
WADS-3, May 2004

Fault Assumptions
- the possible “domino effect”

Fault AssumptionsFault Assumptions
-- the possible “domino effect”the possible “domino effect”

Inter-thread communication checkpoint

T1

T2

The possibility of this effect depends critically on validation assumptions

11
WADS-3, May 2004

A “solution”
- the nested conversation structure

A “solution”A “solution”
-- the nested conversation structurethe nested conversation structure

inter-thread communication checkpoint

T1

T2

T3

conversation boundary acceptance test

But conversations deal only with co-operative, not competitive concurrency -
Hence Newcastle’s work on “Coordinated Atomic Actions”:

12
WADS-3, May 2004

“The price of reliability is utter simplicity - and this is a
price that major software manufacturers find too high
to afford!” - Hoare

On StructureOn StructureOn Structure

13
WADS-3, May 2004

“The price of reliability is utter simplicity - and this is a
price that major software manufacturers find too high
to afford!” - Hoare

But
“Everything should be made as simple as possible,
but not simpler” - Einstein

On StructureOn StructureOn Structure

14
WADS-3, May 2004

“The price of reliability is utter simplicity - and this is a
price that major software manufacturers find too high
to afford!” - Hoare

But
“Everything should be made as simple as possible,
but not simpler” - Einstein

• Good system structuring allows one to deal with the
added complexity that result from more realistic fault
assumptions - its quality is measured by its:
• coupling and cohesion (for performance)
• strength (for dependability)

On StructureOn StructureOn Structure

15
WADS-3, May 2004

Structural Strength -
e.g. in Triple Modular Redundancy

Structural Strength Structural Strength --
e.g. in Triple Modular Redundancye.g. in Triple Modular Redundancy

V

V

V

A strongly-structured system is one in which the structuring
exists in the actual system, not just its description or design,
and helps to limit the impact of faults

16
WADS-3, May 2004

• The basic idea underlying all techniques aimed at achieving
high dependability is that of “consistency-checking of useful
redundancy”
• It underlies all forms of validation, from program verification

and code inspection to debugging,
• and all forms of fault tolerance, (including in hardware,

software, bureaucracies, and socio-technical systems)
• Equally fundamental and closely-related is the use of system (in

particular program) structuring techniques.
• Important for complexity reduction (i.e. understandability),

and code re-use, but also – if retained in the operational
system – for error detection and for limiting error
propagation.

Structure and RedundancyStructure and RedundancyStructure and Redundancy

17
WADS-3, May 2004

• Exception Handling - in programming languages, and at higher system
levels (e.g. in workflow languages)

• this is a form of retained structuring that aids the provision of coherent
methods of error recovery, and the production of systems which can when
necessary “degrade gracefully”

• Software Architecture - e.g. “design patterns”, and in particular
techniques for constructing systems out of components and stylized
connectors

• these facilitate not just the system design and evolution, but also run-time
error detection and confinement.

• Multi-level Architectures - the use of multiple representations of a
system, at successively lower levels of abstraction. Ideally, such levels
of abstraction are employed not just at design time, but instead are
retained during operation.

• they aid system adaptation, and enable consistency checking at each level,
and between levels.

Structure for DependabilityStructure for DependabilityStructure for Dependability

18
WADS-3, May 2004

• To have a concept which is associated with a fully general notion of failure -
not limited just to particular types, causes or consequences of failure

• To use separate terms for the three essentially different concepts: “fault”,
“error” and “failure”

• To understand the “fundamental chain”:
. . . → failure → fault → error → failure → fault →. . .

- in order to deal with situations involving complex badly-specified systems, with
uncertain boundaries, where judgements as to possible causes or consequences of
failure are difficult, and provisions for preventing (possibly deliberate) faults from
causing failures are likely to be fallible, i.e. with reality!

• And to pay careful attention to the use and retention of structure and
redundancy
- for purposes of complexity control, error containment, and system evolution

• As a basis for a coherent and comprehensive approach to dealing with the
possibility of failure, in both system design and operation

By Way of Summary: it is vital -By Way of Summary: it is vital By Way of Summary: it is vital --

19
WADS-3, May 2004

Co-ordinated Atomic ActionsCoCo--ordinated ordinated Atomic ActionsAtomic Actions
• A mechanism/protocol for (forward and/or backward) error recovery for

systems and their environments in the presence of both cooperative
and competitive concurrency.

• In effect a programming discipline for nested multi-threaded
transactions with very general exception handling provisions

• To cooperate in a CA action a group of concurrent threads must come
together to perform the roles of the action collectively. They enter and leave
the action in real or virtual synchrony

• Inside a CA action, roles can be involved in (nested CA actions.
• If an error is detected inside a CA action, recovery measures must be

invoked co-operatively, by all the roles, in order to reach some mutually
consistent conclusion (success, exception, or failure)

• External objects, which are in effect being competed for by the CA action,
must behave atomically with respect to other CA actions and threads so that
they cannot be used as an implicit means of “smuggling” information into or
out of a CA action.

http://homepages.cs.ncl.ac.uk/alexander.romanovsky/home.formal/caa.html

20
WADS-3, May 2004

A Co-ordinated Atomic ActionA CoA Co--ordinated ordinated Atomic ActionAtomic Action

Thread 1

Thread 2

Time

CA action

e

raised exception e
exception handler H1
abnormal control flow

suspended control flow

Role 2

Role1 return to normal

exit with success

entry points exit points

accesses repairs

exception handler H2
abnormal control flow

suspended control flow return to normal

External
Objects

start transaction commit transaction

